
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Abstract

This paper proposes a novel approach to optimally solve

volumetric registration problems. The proposed framework

exploits parametric dictionaries for sparse volumetric rep-

resentations, !1 dissimilarities and DC (Difference of Con-

vex functions) decomposition. The SAD (sum of absolute

differences) criterion is applied to the sparse representation

of the reference volume and a DC decomposition of this cri-

terion with respect to the transformation parameters is de-

rived. This permits to employ a cutting plane algorithm for

determining the optimal relative transformation parameters

of the query volume. It further provides a guarantee for the

global optimality of the obtained solution, which – to the

best of our knowledge – is not offered by any other existing

approach. A numerical validation demonstrates the effec-

tiveness and the large potential of the proposed method.

1. Introduction

Registration [1] is a fundamental problem in computer

vision and in particular in medical image analysis. It is an

elementary step towards bringing various volumetric data

into the same reference space, which in turn permits to

gather statistics and exploit similarities across subjects.

Geometric and iconic methods are often used to address

this problem. Geometric methods [2] extract characteris-

tic landmarks between two images, and then seek the op-

timal transformation that establishes geometric correspon-

dences between the images. Unfortunately, such an ap-

proach may be very sensitive to the landmark extraction

process. Furthermore, solving the correspondence problem

between landmarks, which is a pre-step of the registration,

is highly nontrivial. Often, robust EM-like methods are

used for this purpose. These methods iteratively determine

the optimal transformation for a set of correspondences and

then improve the correspondences based on this transfor-

mation. Naturally such a method may converge to a local

minimum, mostly due to erroneous correspondences.

Iconic methods [1] employ a (dis)similarity criterion on

the observation space that is a function of rigid transforma-

tion parameters, which are optimized to minimize / maxi-

mize this criterion. The selection of the criterion and the op-

timization method are the two critical components of iconic

registration. SAD, SSD, NCC, CR [3], as well as complex

statistical metrics [4] in the case of multi-modal data have

been considered. The optimization of the criterion is often

performed using descent-like methods that are sensitive to

initial conditions and do not provide guarantees on the op-

timality of the obtained solution. Recently the use of global

optimization frameworks such as discrete MRFs was sug-

gested [5]. However, the dimensionality of the resulting

continuous search space makes its quantization quite prob-

lematic and even inefficient and therefore the results are far

from being optimal.

Despite an enormous effort in the field [6], none of the

existing methods can guarantee optimality of the obtained

solution even in the case of volumes coming from the same

modality. In this paper we propose a novel approach that

estimates optimal transformation parameters. Global opti-

mality is achieved through the expression of the objective

function as a DC (difference of convex functions) decom-

position and with the use of a cutting plane algorithm to

estimate the optimal registration parameters.

Input volumes are sparsely represented over a redundant

dictionary of geometric atoms. Using such a representation,

the set of all transformations of a certain volume (which

constitutes the so-called transformation manifold) admits a

closed form expression with respect to the transformation

parameters. This relation is used to derive a !1 criterion
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between the two volumes in terms of the registration pa-

rameters. Using basic theorems on DC functions [7, 8, 9],

we prove that the resulting objective function admits a DC

decomposition with respect to the rigid transformation pa-

rameters.

Once a DC decomposition is established, a number of al-

gorithms are available to solve the optimization problem in

an efficient and robust manner [7]. In this paper, we propose

a modified version of the cutting plane algorithm [7, Thm

5.3] and use it to recover the optimal registration parame-

ters. The modifications are introduced in order to acceler-

ate the convergence of the original cutting plane algorithm.

In addition, we implement the DC function evaluation on

a graphics processing unit (GPU), in order to further speed

up our method. We provide numerical experiments demon-

strating the effectiveness and the global optimality property

of our method.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly present the sparse geometric representa-

tions of volumes as well as the corresponding transforma-

tion manifolds. Section 3 is devoted to the definition of the

registration problem. Next, Section 4 provides some back-

ground material on DC functions and Section 5 introduces

our modified cutting plane method. We discuss our GPU

implementation of the DC function evaluation in Section 6.

In Section 7, we present numerical experiments of our ap-

proach, followed by some conclusions in Section 8.

2. Volume transformation manifolds

In the following, we define and characterize the trans-

formation manifold of a certain volume. For this purpose,

we represent the volume by a parametric sparse model ex-

tracted from a dictionary of geometric functions. Such a

geometric representation leads to a closed form expression

for the transformation manifold, which is used in the com-

putation of !1 dissimilarity measures.

2.1. Sparse atomic volumetric representations

We represent the volume of interest as a linear combi-

nation of geometric functions (usually called atoms), taken

from a parametric and (typically overcomplete) dictionary

D = {φγ , γ ∈ Γ} spanning the input volume space. This
representation generally captures the most prominent geo-

metric features of the volume. The atoms in D are con-

structed by applying geometric transformations to a gener-

ating function denoted by φ. Representing the geometric
transformation γ ∈ Γ by an operator U(γ), the parametric
dictionary takes the form

D = { φγ = U(γ)φ, γ ∈ Γ}. (1)

In this work, a transformation γ = (a,R, b) ∈ Γ, will de-
note a synthesis of translations$b ∈ R3×1, anisotropic scal-

ings $a ∈ R
3×1
+ and rotations R ∈ SO(3). The dictionary is

built from three-dimensional atoms that can efficiently cap-

ture the salient geometrical features in volumetric images.

A sparse approximation of a given volume v ∈
Rn1×n2×n3 with atoms from the dictionary D can be ob-

tained in various ways. Even if finding the sparsest ap-

proximation of v is generally a hard problem, effective sub-
optimal solutions are usually sufficient to capture the salient

geometric structures of a signal with only a few atoms. Such

solutions are obtained, for example, by Orthogonal Match-

ing Pursuit (OMP) [10, Sec. 9.5.3] and Tree-based Pursuit

[11], to name just a few. In this work we use Tree-based

Pursuit, which organizes the dictionary in a tree structure

and admits significantly faster searches over the dictionary

compared to OMP. Hence, this provides an effective algo-

rithm for computing sparse volume approximations in prac-

tice. After K steps of the algorithm, the volume v is ap-
proximated by a sparse linear combination of a few atoms

i.e.,

v =
K
∑

k=1

ξkφγk
+ rK , (2)

where rK is the residual of the approximation. In what

follows we will assume that rK is negligible and can be

dropped.

2.2. Characterization of transformation manifolds

The set of all geometric transformations γ applied to
a certain volume v generates a manifold M in the high-

dimensional ambient observation volume space. Each point

on this manifold corresponds to a transformed version of

v. In the following, we only consider transformations

η = (s,G, t) consisting of a synthesis of translations
t = [tx, ty, tz], isotropic scaling s ∈ R+ and rotations

G ∈ SO(3). Then the transformation manifoldM can be

expressed as follows:

M = {v(η) ≡ U(η)v, where η = (s,G, t)}. (3)

Note that although the manifold is embedded in a high-

dimensional space, its intrinsic dimension is rather small

and equals the number of transformation parameters.

The transformations η form a group, namely the simil-

itude group SIM(3) in R3. If (a,R, b) and (a′, R′, b′) are
two elements from SIM(3) then the group law is

(a,R, b) ◦ (a′, R′, b′) = (aa′, RR′, b+ aRb′). (4)

Using (2) and dropping the residual term rK , it turns out
that applying the transformation η to the volume v results
in

v(η) = U(η)v =
K∑

k=1

ξkU(η)φγk
=

K∑

k=1

ξkφη◦γk
, (5)

2



where η◦γk is a product of transformations. In other words,
the transformation is applied to each constituent atom indi-

vidually, resulting in a sparse representation of the trans-

formed volume over atoms with updated parameters. The

group law (4) indeed applies [12] and can be further em-

ployed to work out the updated parameters of the trans-

formed atoms. Equation (5) is of great importance in the

proposed approach, since it expresses the manifold (3) in

closed form with respect to the transformation parameters

η. This is a key observation for the applicability of the DC
programming methodology that is proposed in this work.

3. Rigid registration

After having introduced sparse geometric representa-

tions and transformation manifolds, we are now ready to

provide the problem formulation. We are interested in esti-

mating the transformation between two volumes. Suppose

that we are given a query volume p, and we aim to estimate
the optimal transformation parameters η∗ that best align v
with p. We formulate the transformation estimation prob-
lem as follows

η∗ = arg min
η=(s,G,t)

f(η), where f(η) = ‖v(η)− p‖1. (6)

Here, ‖p‖1 =
∑

ijk |pijk| denotes the !
1 norm of a volume

p ∈ Rn1×n2×n3 . The criterion (6) is also known as the sum

of absolute differences (SAD) criterion.

Recall that v(η) ∈ M denotes the transformed volume

v subject to a transformation η = (s,G, t). We assume
that the reference volume v has been well approximated by
a sparse expansion over D according to (2) where rK is

negligible. Note that in the above optimization problem,

only the reference volume v is expanded in the redundant
basis and the query volume p is treated as is.
The optimization problem (6) is generally a non-convex

nonlinear optimization problem [13] and hard to solve us-

ing traditional methods. For example, steepest descent or

Newton-type methods converge only locally and may get

trapped in local minima. To avoid these issues, we will ex-

ploit that the above objective function is a DC function with

respect to the transformation parameters, i.e., it can be ex-

pressed as the difference of two convex functions.

Theorem 1 The objective function

f(η) = ‖v(η)− p‖1 =
∥
∥
∥

K∑

k=1

ξkφηk
− p

∥
∥
∥
1
, (7)

where ηk = η ◦ γk, is DC.

The proof of this theorem is given in the appendix. The

proof is constructive and provides a procedure for evaluat-

ing the two convex parts of f . Using Theorem 1, the opti-
mization problem (6) can be formulated as a DC program

[7, 8, 9], which can be optimally solved by exploiting the

special structure of the objective function. In this paper, we

employ a cutting plane method to solve the DC formulation

of (6). The proposed method is guaranteed to converge to

the global minimizer. To the best of our knowledge, this is

the first globally optimal algorithm that is proposed for the

problem of rigid volume registration.

4. DC functions

Before we introduce the proposed algorithm, we start

with some background material about DC functions [7, 8,

9]. Let X be a convex subset of Rn. A function f : X ⊆
Rn → R is called DC [7, 8, 9] on X , if there exist two
convex functions g, h : X → R such that f is expressed as

f(x) = g(x)− h(x). (8)

A representation of the above form is called a DC decom-

position of f . The DC decomposition of f is not unique,
since one can obtain a different decomposition by adding

the same convex function c(x) in both convex parts of it.
We provide below an example of a DC function.

Example 1 Consider the function f(x) = cos(x), x ∈
[0, 2π) and suppose that we want to determine a DC decom-
position of it. In other words, we seek two convex functions

g(x) and h(x) such that f(x) = g(x) − h(x). We know
from Taylor’s theorem that

cosx =
∞∑

n=0

(−1)nx2n

(2n)!
= 1−

x2

2!
+

x4

4!
−

x6

6!
+ . . .

Grouping together the terms of the same sign, one obtains

cosx =

[

1 +
x4

4!
+ . . .

]

︸ ︷︷ ︸

g(x)

−

[
x2

2!
+

x6

6!
+ . . .

]

︸ ︷︷ ︸

h(x)

, (9)

which readily provides a DC decomposition of f(x), since
g(x) and h(x) are convex functions. The obtained decom-
position is illustrated in Fig. 1.

The example above shows that even a highly non-linear

and non-convex function such as the cosine, can be decom-

posed into two convex parts giving rise to a special structure

that can be further exploited for global optimization. We

present now a few properties of DC functions.

Proposition 1 ([8, Sec 4.2]) Let f = g − h and fi =
gi − hi, i = 1 . . . ,m be DC functions. Then the follow-

ing functions are also DC:

(a)

m
∑

i=1

λifi =
[ ∑

{i:λi≥0}

λigi −
∑

{i:λi<0}

λihi

]

−

[ ∑

{i:λi≥0}

λihi −
∑

{i:λi<0}

λigi
]

.

3
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Figure 1. The function cos(x) and its convex parts g(x) and h(x) in (9).

(b) |f | = 2max{g, h}− (g + h).

(c) If f1 and f2 are DC functions, then the product f1 · f2
is DC. Moreover, if f1 and f2 have nonnegative convex
parts, the following DC decomposition holds:

f1 · f2 =
1

2
[(g1 + g2)

2 + (h1 + h2)
2]−

1

2
[(g1 + h2)

2 + (g2 + h1)
2]. (10)

In addition, it can be shown that the synthesis of a convex

function and a DC function is again DC, which is particu-

larly important for our further developments.

Proposition 2 Let f(x) : Rn → R be DC and q : R → R

be convex. Then,

(a) the composition q(f(x)) is DC [8, Sec 4.2].

(b) q(f(x)) has the following DC decomposition:

q(f(x)) = p(x)−K[g(x) + h(x)], (11)

where p(x) = q(f(x)) + K[g(x) + h(x)] is a con-
vex function and K is a constant satisfying K ≥
|q′(f(x))| [14, 15].

In the next section we discuss the proposed algorithm in

more details.

5. Proposed cutting plane method

An optimization problem is called a DC program if it

takes the form

min
x

f(x) = g(x)− h(x), (12)

s.t. x ∈ X = {x ∈ R
n : δ(x) ≤ 0},

where g, h : X → R are convex functions and δ : Rn → R

is a convex function. Denote by ω∗ the global minimum of

(12). The next proposition provides an optimality condition

for (12).

Proposition 3 ([7]) The point x∗ ∈ X is an optimal solu-

tion to the DC problem (12) if and only if there exists t∗ ∈ R

such that

0 = inf{−h(x) + t : x ∈ X, t ∈ R,

g(x)− t ≤ g(x∗)− t∗}. (13)

One may solve optimally the DC program (12) using the

cutting plane method of [7, Thm 5.3], which is briefly dis-

cussed in the sequel. The cutting plane algorithm seeks a

point x∗ that satisfies the global optimality condition (13).

Each iteration involves the minimization of the concave

function−h(x) + t over a convex constraint set of the form
Ck := {g(x) − t ≤ ωk}, where ωk is the best upper bound

for ω∗ as of iteration k. The cutting plane method uses a
polytope that provides an outer approximation of the set Ck;

hence, the minimizer xk of the concave function−h(x) + t
can be readily found at one of the extreme vertices of the

polytope. A cutting plane is defined based on xk and fur-

ther used to refine the polytope by excluding points that are

guaranteed to violate the constraints Ck. The same process

is repeated in the next iteration. Once a better bound ωk

of ω∗ has been found in the course of the algorithm, the

constraint set Ck is updated. More details about the cutting

plane method can be found in [7, Thm 5.3].

We introduce two modifications to the standard cutting

plane method described above, in order to accelerate its

convergence. The main steps of the modified cutting plane

method are summarized in Algorithm 1.

• First, we use two cutting planes in each iteration in
order to make the cut more effective. To define the two

cutting planes, we use the minimizer and the second

best minimizer1 of −h(x) + t over the polytope (see
also Lines 7 and 19). Empirically we found no further

improvement by using more than two cutting planes;

thus, we employ two cutting planes in our experiments.

1Actually, we mean the next possible minimizer which is not removed

by the cutting plane of the best minimizer.
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Algorithm 1Modified Cutting Plane Algorithm

1: Initialization: Set ω0 = g(y0)− h(y0), the first upper
bound of the optimal value ω∗ of the Problem (12).

2: Construct a polytope P 0 that contains {(x, t) : x ∈
X, t ∈ R, g(x)− t− ω∗ = 0}.

3: Compute the vertex set V (P 0) of the polytope P 0.

4: f0
min = ∞.

5: Set k = 0.
6: Iteration:

7: Compute the minimizer (xk
1 , t

k
1) and second best mini-

mizer (xk
2 , t

k
2) of the problem:

min{−h(x) + t : (x, t) ∈ V (P k)}.

8: if −h(xk
1) + tk1 = 0 then

9: yk is the optimal solution with optimal value ωk.

10: else

11: Compute ski ∈ ∂g(xk
i ), i = 1, 2.

12: fk+1
min = min{g(x)− h(x) : (x, t) ∈ V (P k)}.

13: if fk+1
min < fk

min then

14: Identify x̄k such that fk+1
min = f(x̄k).

15: fk+1
min = subgradientDescent(x̄

k).

16: end if

17: Compute the improved upper bound

ωk+1 = min{ωk, fk+1
min }.

18: Update yk+1 such that g(yk+1)− h(yk+1) = ωk+1.

19: Construct the cutting planes:

lki (x, t) = (x−xk
i )

'ski +g(xk
i )−ωk+1−t, i = 1, 2.

20: Set P k+1 = P k ∩ {(x, t) : lk1 (x, t) ≤ 0, lk2(x, t) ≤
0} and compute V (P k+1).

21: end if

22: Set k = k + 1 and go to step 6.

• Second, we employ subgradient descent as a means to
further improve the bound for ω∗ (see also Lines 12-

17). Experimental evidence suggests that this modifi-

cation often greatly accelerates the convergence of the

method. It is important to emphasize that subgradient

descent has only an auxiliary role: it is only used as a

means to provide improved bounds ωk+1 to the global

minimizer ω∗ in the early iterations of the algorithm.

Of course, the global optimality property of the pro-

posed modified cutting plane method still holds, and

this is verified in practice as will be shown below in

the numerical experiments.

6. Computational aspects

Evaluating the DC decomposition of the objective func-

tion f scales proportionally with K · n1 · n2 · n3, due to

the fact that the DC decomposition needs to be evaluated

volume size CPU GPU

128x128x10 12.1 sec 390ms

64x64x20 5.2 sec 190ms

32x32x20 2.5 sec 60ms

Table 1. Average timings of CPU and GPU implementations.

for each voxel of theK atoms of size n1 × n2 × n3. In or-

der to accelerate the computational speed, we perform the

function evaluation on the graphics processing unit (GPU).

In what follows, we provide an overview of the GPU imple-

mentation.

GPU architecture and CUDA. We make use of a CUDA

enabled GPU; more specifically, we used the NVIDIA Tesla

C1060. This processor consists of 30 multiprocessors, with
each of them containing a collection of 8 CUDA cores. Fol-
lowing the SIMD model, a CUDA function, called kernel,

is executed simultaneously by each thread on every CUDA

core, i.e., there are 240 threads for the Tesla C1060. Threads

are organized in blocks and the blocks in turn are organized

in a grid.

The memory of a CUDA device is organized in a hierar-

chical way. All threads have access to the global memory,

threads within a block share an on-chip, fast memory space

called shared memory and each thread has its own private

memory space and registers. We refer to the CUDA Pro-

gramming Guide for further details.

GPU implementation. Since the evaluation of the DC de-

composition is not only the computationallymost expensive

task but also well structured and highly parallelizable, it is

well suited for GPU implementation. To compute this de-

composition for a vertex in the polytope generated by the

cutting plane method, the decomposition is evaluated at ev-

ery voxel and summed up. In our GPU implementation, the

loops over the vertices and the voxels are parallelized, leav-

ing only one loop over the atoms in CPU code. A 2-D grid

of blocks is created, with the blocks in the ith grid row eval-
uating the ith vertex. Each thread evaluates the decompo-
sition of one voxel. The final summation for each vertex is

performed using a parallel reduction algorithm as described

in [16]. Vectors like µ, ν and ζ, see Lemma 1, that are re-
quired for the decomposition of every vertex are computed

once and stored in the global memory, along with the sparse

representation of the volume. Since not all vertices may fit

into global memory, they are split into several batches. The

fast, on-chip, shared memory is used as cache, accelerating

memory accesses and enabling higher bandwidth.

Benchmarks. We compare the execution of the CPU and

GPU implementations using an Intel Xeon X5570 (2.93

5



(a) original volume

(b) sparse volume representation (1000 atoms)

Figure 2. A sample MRI calf volume and its sparse representation.

GHz) and the NVIDIA Tesla C1060, respectively. For

the benchmarks we used volumes of sizes 32 × 32 × 20,
64×64×20 and 128×128×10, decomposed intoK = 50
atoms. The comparison of the average time needed for eval-

uating the DC decomposition is shown in Table 1, demon-

strating a remarkable speedup.

7. Numerical experiments

We apply the method proposed in this work to medical

imaging. For this purpose, we use MRI calf muscle vol-

umes, which have been obtained with 0.7812x0.7812x7mm

voxel spacing using a 1.5T Siemens scanner. Each volume

slice is 7mm thick. Figure 2 shows a sample volume used

in our experiments and its sparse representation with 1000

atoms. It is important to emphasize that for the purposes

of rigid alignment, one does not actually need an accurate

sparse approximation of the reference shape [15]. In prac-

tice, relatively few atoms providing a crude shape approxi-

mation are typically sufficient for successful alignment.

7.1. 5D parameter space

In the first experiment, we consider transformations

η = (q0, q1, q2, q3, s) consisting of five parameters, where
q0, q1, q2, q3 are the quaternion parameters of the 3D ro-

tation and s is the (isotropic) scaling (see the Appendix
A for more details on the transformation parametriza-

tion). The reference volume consists of a 128 × 128 × 10
sparse representation of the calf volume with K = 50

atoms, and it is to be aligned with a query volume that

is a rotated and scaled version of it. The ground-truth

transformation parameters are η∗ = (q0, q1, q2, q3, s) =
(−0.73,−0.36, 0.54, 0.18, 0.8). We give the query vol-

ume as input to the proposed cutting plane method which

converged to the exact transformation parameters η∗ in
25 iterations. We did the same alignment experiment

using subgradient descent that converged to the estimate

(q̂0, q̂1, q̂2, q̂3, ŝ) = (0.11, 0.55,−0.66, 0.5, 0.8), which is
clearly suboptimal. Hence, we verify in practice the global

optimality properties of our algorithm and its superiority

over subgradient descent that is typically trapped in a local

minimum.

Next, for the sake of completeness, we do the same ex-

periment with 64 × 64 × 20 volume sizes and K = 100
atoms in the sparse representation of the reference volume.

We used the same ground-truth transformation parameters

η∗ as above. Our cutting plane method converged to η∗

in 15 iterations, whereas subgradient descent converged to

(q̂0, q̂1, q̂2, q̂3, ŝ) = (0.67,−0.23, 0.64,−0.3, 0.79), which
is suboptimal as well.

7.2. 8D parameter space

In the sequel, we consider a full transformation

η = (q0, q1, q2, q3, t1, t2, t3, s) consisting of eight pa-
rameters: q0, q1, q2, q3 are the quaternion parameters of
the 3D rotation, t1, t2, t3 are the translation parameters
and s is the (isotropic) scaling. In our experiment, we

used η∗ = (−0.963, 0.053,−0.03, 0.26, 3, 2, 1, 0.8) as a
ground-truth transformation. The sparse representation

of the reference volume consists of K = 20 atoms of
size 32 × 32 × 20. After 1003 iterations, the cutting

plane provided the following transformation estimate: η̂ =
(−0.969, 0.051,−0.033, 0.24, 2.91, 2.26, 0.25, 0.798).
Observe that the scaling and rotation parameters are

almost exact and the translation parameters have been

estimated with sub-pixel accuracy. Hence, the es-

timate from our method is indeed very close to the

exact transformation η∗. On the contrary, the esti-

mate obtained from subgradient descent was found to be

(−0.028,−0.027, 0.102,−0.994,−3.35,−3.00, 3.18, 0.8),
which is again far from the optimal solution.

7.3. Warped query volumes

So far, we have only considered query volumes that have

been constructed by applying a transformation on the sparse

representation of the reference volume. In this experiment,

we consider warped query volumes, where the intensity

value at each transformed voxel position is obtained with

nearest neighbor interpolation. This setup makes the align-

ment experiment even more challenging due to the involved

approximation error, since the query volume does not ex-

actly represent a transformed version of the sparse approxi-
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mation of the reference volume.

We try to align a 32 × 32 × 20 sparse representation of
the reference volume with K = 100 atoms with a warped
query volume corresponding to transformation η∗ =
(q0, q1, q2, q3, s) = (0.924, 0.125,−0.327, 0.151, 1.2). Af-
ter 107 iterations, our cutting plane method provided the es-

timate η̂ = (0.927, 0.127,−0.321, 0.147, 1.15) that is very
close to the optimal transformation η∗. Hence, our method
was still able to compute the optimal solution, despite the

fact that the query volume does not exactly lie on the trans-

formation manifold of the sparse reference volume.

Next, we explore the robustness of the method against

different sparse representations of the reference volume.

This also helps studying the impact of the information loss

due to the sparse representation. To this end, we repeated

the above experiment with different sparse representations

obtained with increasing number of atoms. The obtained re-

sults are shown in Table 2, where the End Point Difference

(EPD) corresponds to the distance between the optimally

transformed voxel position and the one obtained with the

estimated transformation. The Angular Error (AE) corre-

sponds to the angle between them when treated as three-

dimensional vectors. Note that the results for K = 100
atoms have been already reported above.

Atoms Estimated transformation

10 (0.934, 0.131, -0.317, 0.092, 1.142)

30 (0.920, 0.126, -0.339, 0.143, 1.157)

50 (0.922, 0.118, -0.332, 0.156, 1.154)

100* (0.927, 0.127, -0.321, 0.147, 1.152)

200 (0.927, 0.125, -0.321, 0.146, 1.156)

Atoms Mean EPD (std) Mean AE (std)

10 1.3508 (0.4953) 0.1032 (0.0222)

30 0.4917 (0.1565) 0.0233 (0.0070)

50 0.4822 (0.1485) 0.0150 (0.0053)

100* 0.4846 (0.1491) 0.0117 (0.0035)

200 0.4624 (0.1429) 0.0130 (0.0037)

Table 2. Performance of the method with different sparse repre-

sentations.

Observe that once the sparse representation of the ref-

erence volume becomes reasonable (e.g., more than 30

atoms), the solution is very close to the optimal one. Al-

though increasing the number of atoms reduces the approxi-

mation error, it does not really influence the estimated trans-

formation which remains very close to the optimal trans-

formation (notice that in all cases the error is below voxel

accuracy).

A few remarks are in order. First, we confirm that for the

purpose of linear registration where one seeks an optimal

global estimation of the parameters, a very accurate approx-

imation of the reference volume is not necessary. Second,

(a) Before alignment (Dice’s coefficient: 0.71)

(b) After alignment (Dice’s coefficient: 0.77)

Figure 3. Atlas obtained from the two volumes: before and after

the alignment.

although the sparse representation of the reference volume

induces an information loss, it does not harm the optimality

of the method, provided that the representation sufficiently

captures the pattern shape. Moreover, there is no issue with

the multiple approximations due to the redundancy of the

dictionary. As a last note we emphasize that the approxima-

tion doesn’t even have to be sparse. The sparsity of the rep-

resentation can only impact the computational cost of the

function evaluation, and it cannot compromise the global

optimality of the obtained solution.

7.4. Alignment between two different volumes

In this last experiment, we consider the even more chal-

lenging case where another volume (i.e., from a differ-

ent person) is used as a query volume, and we try to

align it with the reference volume. In this case, the op-

timal transformation is unknown. The sparse representa-

tion of the reference volume consists of K = 50 atoms
of size 128 × 128 × 20. After 1416 iterations of the cut-
ting plane method, the obtained transformation estimate is

η̂ = (−0.998, 0.01, 0.007, 0.051, 1.087), implying that the

7



respective rotation is very small and that the query volume

is slightly larger than the reference volume (see also Fig.

3). The Dice’s coefficient has increased from 0.71 (before

alignment) to 0.77 (after alignment), which is very satisfac-

tory for a rigid alignment method.

8. Conclusions

We have proposed a globally optimal method for rigid

registration between volumetric images by transformation

parameter estimation. The proposed methodology is based

on sparse volumetric representations. We have shown that

under such a representation, the !1 similarity is a DC func-
tion of the transformation. The rigid registration problem

becomes then equivalent to a DC optimization problem that

can be optimally solved. We have proposed a modified cut-

ting plane method for computing the globally optimal so-

lution to the above problem. Finally, we have presented

experimental results that (i) verify in practice the global op-

timality property of the method (ii) demonstrate its superi-

ority over other descent-type of methods and finally show

its large potential.
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A. Proof of Theorem 1

We show in several steps that Theorem 1 is true. Us-

ing the fact that the geometric transformation of an atom

φηk
is equivalent to a change in the coordinate system

before applying φ(·), we show that the transformed co-

ordinate system (x̃, ỹ, z̃) explicitly depends on the trans-
formation parameters η. This is then used to show that

x̃(ηk)2 + ỹ(ηk)2 + z̃(ηk)2 is a DC function of η, which in
turn allows us to express the voxels of each atom φηk

in DC

form. Based on the above developments, we finally obtain

the DC decomposition of the objective function‖v(η)−p‖1.

A.1. DC decomposition of transformed atoms

In what follows, we show that the transformed atom φηk

can be expressed in DC form. For notational convenience,

we will drop the subscript k.

We first note that an atom in a parametric dictionary

(1) is constructed by applying geometric transformations on

the generating function φ. Applying a transformation γ =
(a,R, b) to the generating function is equivalent to trans-
forming the coordinate system from {x, y, z} to {x̃, ỹ, z̃}
before applying φ(·). More specifically, this means that an
atom φγ = U(γ)φ(x, y, z) coincides with φ(x̃, ỹ, z̃), where





x̃
ỹ
z̃



 = AR'





x− bx
y − by
z − bz



 , (14)

and A = diag(1/ax, 1/ay, 1/az).

As we have already mentioned in Sec. 2.2, a transforma-

tion η applied to φγ results in a synthesis of the two trans-

formations η and γ. Therefore, the transformed atom φη◦γ

can be readily constructed by applying the resulting trans-

formation η ◦ γ directly to the mother function as shown in
the paragraph above. One should make a clear distinction

between γ, which denotes the (fixed) individual transfor-
mation for each atom and η, which is the global transfor-
mation applied to the entire volume (and hence to all atoms

according to (5)). The transformed coordinate system of

φη◦γ therefore depends only on η (as γ is considered fixed).

In what follows, we derive the explicit dependence be-

tween the transformed coordinate system and the trans-

formation parameters. For this purpose, we parametrize

η = (s,G, t) using quaternions for the rotation ma-
trix G and let (q0, q1, q2, q3) denote the quaternion pa-
rameters. This results in eight optimization variables

(q0, q1, q2, q3, tx, ty, tz, s) for representing the transforma-
tion η.

Lemma 1 The transformed coordinates of an atom in (7)

have the form

x̃(η) = µ0
q20
σ

+ µ1
q21
σ

+ µ2
q22
σ

+ µ3
q23
σ

+ µ4
q1q2
σ

+µ5
q0q3
σ

+ µ6
q0q2
σ

+ µ7
q1q3
σ

+ µ8
q2q3
σ

+µ9
q0q1
σ

+ µ10
τx
σ

+ µ11
τy
σ

+ µ12
τz
σ

+µ13, (15)

and similarly for ỹ and z̃ by replacing µi by νi and ζi, re-
spectively. All µi, νi and ζi are constants depending only on
the fixed atom parameters. In addition, σ as well as τ are
related to s and t, respectively, by the following relations

σ = N(q)s,

τ = G̃'t.

Here, N(q) = q20 + q21 + q22 + q23 denotes the quaternion
norm and G̃ denotes the (unnormalized) rotation matrix

2

4

q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q0q1 + q2q3)
2(q0q2 + q1q3) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

3

5 .

Proof. The proof is given in the Appendix B. !

With the change of variables suggested by the lemma

above, the new optimization variables become (q0, q1, q2,
q3, τx, τy , τz , σ). Note that we can always recover the orig-
inal parameters t, s from τ,σ, and vice versa, using Lemma
1 (since the quaternion parameters are known). For nota-

tional convenience, we will assume in the following that

this change of variables has been performed and continue

to use η for denoting the (new) transformation parameters.
The next step in order to show that φη is DC, is to show

that every constituent function in (15) is DC as well. In what

follows, we provide a few lemmas towards this direction.

In particular, we show that the following functions are DC:

f(qi,σ) = q2i
σ
, i = 0, 1, 2, 3, f(qi, qj ,σ) = qiqj

σ
, i, j =

0, 1, 2, 3 and i -= j, f(τx,σ) = τx
σ
, f(τy,σ) = τy

σ
and

f(τz,σ) =
τz
σ .

Lemma 2 The function f(x,α) = x
α
: R×R∗

+ → R is DC

with the following DC decomposition

f(x,α) =
x

α
=

1

2

(x+ 1)2

α
−

1

2

(x2 + 1)

α
. (16)

Proof. The proof can be found in [15, Lemma 3]. !

The above lemma implies that the constituent functions
τx
σ
,
τy
σ
and τz

σ
in (15) are DC.

Lemma 3 The function f(x,α) = x2

α
: R × R∗

+ → R is

convex.
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Proof. The Hessian matrix of f is

∇2f(x,α) =
1

α3

[

2α2 −2xα
−2xα 2x2

]

.

Observe that the term 1
α3 is positive, so we only need to

prove that the remaining matrix is positive semi-definite.

Call λ1 and λ2 its eigenvalues. Then observe that its de-

terminant is λ1λ2 = 4α2x2 − 4x2α2 = 0. Thus either λ1

or λ2 are zero. Now, observe that the trace is λ1 + λ2 =
2α2 + 2x2 > 0. Therefore, the Hessian matrix is positive
semi-definite and f is convex.!
According to the above lemma, the constituent functions

q2i
σ , i = 0, 1, 2, 3 in (15) are DC.

Lemma 4 The function f(x, y,α) = xy
α : R×R×R∗

+ → R

is DC, with the following decomposition

xy

α
=

1

2

(x+ y)2

α
−

1

2

x2 + y2

α
. (17)

Proof. The proof is given in the Appendix C. !

The above lemma implies that the functions
qiqj
σ , where

i, j = 0, 1, 2, 3 and i -= j in (15) are DC.
To summarize, we have shown the DC property of all

constituent functions in (15). We can therefore write (15) in

the more abstract form

x̃(η) =
13
∑

i=0

µifi =
13
∑

i=0

µi(gi − hi), (18)

where gi − hi is the DC decomposition of each function fi.
Moreover, note that each convex part gi, hi is nonnegative.

This allows us to conclude that the transformed coordinates

are DC.

Lemma 5 The functions x̃2(η) (and similarly ỹ2(η) and
z̃2(η)) introduced in Lemma 1 are DC functions of η.

Proof. From (18) we have that x̃2(η) =
∑13

i,j=0
i!=j

2µiµjfifj +
∑13

i=0 µ
2
i f

2
i . Proposition 1 (c)

states that the product of two DC functions (with nonnega-

tive convex parts) is also DC. Using the results developed

above, this implies that all summands in x̃2(η) are DC.
Since the linear combination of DC functions is again DC

by Proposition 1 (a) we have finally obtained that x̃2(η) is
DC. !

Lemma 5 implies that w(η) = x̃(η)2 + ỹ(η)2 + z̃(η)2

is DC and we denote its DC decomposition by w(η) =
gw(η)− hw(η).

A.2. DC form of the objective function

Finally we are ready to prove the main result of our pa-

per, namely Theorem 1, which states that the objective func-

tion of the optimization problem (6) is DC. Recall that the

construction of geometric atoms by transforming the gen-

erating function is equivalent to considering the generating

function on the transformed coordinates x̃, ỹ and z̃ com-
puted above. Given these developments, it remains to show

that the transformed generating functions are DC, and that

the !1 distance between the transformed volume v(η) and
the query volume p is DC. We prove this for the Gaussian
generating function i.e., φ(x, y, z) = exp(−(x2+y2+z2)).
Note that the atoms φγ are not normalized; the L2 norm of

φγ will be denoted by ‖φγ‖.
Proof of Theorem 1.

φη " φ(x̃(η), ỹ(η), z̃(η)) =
e−(x̃(η)2+ỹ(η)2+z̃(η)2)

s‖φγ‖

=
e−w(η)

s‖φγ‖
= e−w(η)−ln s−ln ‖φγ‖

= e−[w(η)+lns+ln ‖φγ‖] = e−δ(η),

where we have introduced the function

δ(η) = w(η) + ln s+ ln ‖φγ‖

= gw(η) − hw(η) + ln s+ ln ‖φγ‖. (19)

Recall from Lemma 1 that s = σ
N(q) , where N(q) = q20 +

q21 + q22 + q23 , which is rewritten as

ln s = lnσ − lnN(q). (20)

Note that lnσ is concave. Unfortunately, lnN(q) is not a
convex function in the quaternion parameters, and we there-

fore need a DC decomposition for lnN(q). We show in the
Appendix D that

lnN(q) =

[

ln(N(q)) +
3

∑

i=0

ln(q2i )

]

−

[
3

∑

i=0

ln(q2i )

]

= gNq(η)− hNq(η)

is a decomposition of lnN(q), where both components
are concave. Inserting this decomposition into (20) yields

ln s = lnσ − gNq(η) + hNq(η). Putting all facts together,
we can rewrite (19) as

δ(η) = [gw(η)− gNq(η) + ln ‖φγ‖]

− [hw(η) − lnσ − hNq(η)] , (21)

which readily provides a DC decomposition for δ(η).
Next, we make use of Proposition 2 (b), which states that

the synthesis of a convex function with a DC function is

again DC. This shows that every voxel of φη is DC with the

following decomposition: e−δ(η) = [e−δ(η) + K(gδ(η) +
hδ(η))]− [K(gδ(η) + hδ(η))]. This holds for each atom in
the sparse approximation of the volume v.
Consider now the kth atom and let φηk

= gk(η) −
hk(η) denote the DC decomposition of its voxels. Next,
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we use once again Proposition 1 (a) to come up with

the DC decomposition of v(η) =
∑K

k=1 ξkφηk
, which

reads v(η) =
[
∑

{k:ξk≥0} ξkgk −
∑

{k:ξk<0} ξkhk

]

−
[
∑

{k:ξk≥0} ξkhk −
∑

{k:ξk<0} ξkgk
]

≡ gv(η)− hv(η).

So far, we have shown that the transformed reference

volume v(η) is a DC decomposition of η. Since, the query
volume p is fixed, the same holds for the difference volume
v(η) − p. Proposition 1 (b) permits to compute the DC de-
composition of the ith voxel of |v(η)−p|, which is given by
|v(η)−p|i = 2max{gi, hi}−(gi+hi), where gi−hi is the

DC decomposition of the ith voxel of v(η)− p. Finally, the
objective function in (7) is DC, as it is a sum over the voxels

of |v(η) − p|, which have been shown to be DC functions.
!

Finally, we note that the proof above can be extended

from the Gaussian generating function to other generating

functions (similarly to the proof in [15]). We conclude that

the objective function is a DC function, which permits the

application of DC programmingmethods for computing the

global minimizer of the optimization problem (6).

B. Proof of Lemma 1

Suppose that the atom under consideration has param-

eters γ = (a,R, b), where a = [ax, ay, az] and b =
[bx, by, bz]. If we denote by η = (s,G, t) the transforma-
tion, then according to the SIM(3) group law (4), the trans-

formed parameters of the atom will be

η ◦ γ = (sa,GR, t+ sGb).

If we denote A = diag(1/ax, 1/ay, 1/az), then the trans-
formed axes [x̃, ỹ, z̃]' according to (14) will be





x̃
ỹ
z̃



 = 1
sAR

'G'









x
y
z



− t− sGb





= AR'



G"

s





x
y
z



− G"

s t− b



 . (22)

In the above equation we have used the fact that G is a ro-

tation matrix i.e., G'G = I .
We use quaternions to parametrize the unknown rotation

matrixG. Consider a quaternion q = q0 + iq1 + jq2 + kq3
with normN(q) = q20 + q21+ q22+ q23 . Then the correspond-
ing rotation matrix takes the form

G =
1

N(q)
G̃,

where

G̃ =

[
q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

]

(23)

denotes the unnormalized rotation matrix. Inserting this

representation into (22) gives





x̃
ỹ
z̃



 = AR'



 G̃"

N(q)s





x
y
z



− G̃"

N(q)s t− b



 . (24)

Defining

σ = N(q)s, (25)

τ = G̃'t, (26)

the original set of optimization vari-

ables (q0, q1, q2, q3, tx, ty, tz, s) becomes

(q0, q1, q2, q3, τx, τy, τz ,σ). Note that these two vari-

able representations are equivalent and one may switch

from the first one to the second and vice versa via the use of

equations (25) and (26). In what follows we use the second

representation and rewrite (24) as





x̃
ỹ
z̃



 = AR'



 1
σ G̃

'





x
y
z



− 1
σ τ − b



 . (27)

Recall that in the above, A, R, b, x, y and z are constant.
In particular, the matrix AR' is constant and its entries are

denoted as follows:

AR' =





ρ1 ρ2 ρ3
ρ4 ρ5 ρ6
ρ7 ρ8 ρ9



 .

The right hand side of (27) thus takes the form





ρ1 ρ2 ρ3
ρ4 ρ5 ρ6
ρ7 ρ8 ρ9




1

σ



G̃'





x
y
z



− τ



−





cx
cy
cz



 , (28)

where [cx, cy, cz]' = AR'b.
Next, we will use (23) to compute the explicit depen-

dence of x̃ on the optimization variables. Note that

G̃
"

0

@

x
y
z

1

A =

2

6

4

x(q20 + q21 − q22 − q23) + 2y(q1q2 − q0q3) + 2z(q0q2 + q1q3)

2x(q1q2 + q0q3) + y(q20 − q21 + q22 − q23) + 2z(q2q3 − q0q1)

2x(q1q3 − q0q2) + 2y(q0q1 + q2q3) + z(q20 − q21 − q22 + q23)

3

7

5
.

Putting all the above facts together one finally obtains, after

some straightforward algebraic manipulation,

x̃ = µ0
q20
σ

+ µ1
q21
σ

+ µ2
q22
σ

+ µ3
q23
σ

+ µ4
q1q2
σ

+ µ5
q0q3
σ

+µ6
q0q2
σ

+ µ7
q1q3
σ

+ µ8
q2q3
σ

+ µ9
q0q1
σ

+ µ10
τx
σ

+µ11
τy
σ

+ µ12
τz
σ

+ µ13, (29)
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where

µ0 = ρ1x+ ρ2y + ρ3z

µ1 = ρ1x− ρ2y − ρ3z

µ2 = −ρ1x+ ρ2y − ρ3z

µ3 = −ρ1x− ρ2y + ρ3z

µ4 = 2ρ1y + 2ρ2x

µ5 = −2ρ1y + 2ρ2x

µ6 = 2ρ1z − 2ρ3x

µ7 = 2ρ1z + 2ρ3x

µ8 = 2ρ2z + 2ρ3y

µ9 = −2ρ2z + 2ρ3y

µ10 = −ρ1

µ11 = −ρ2

µ12 = −ρ3

µ13 = −cx.

Observe that all µi are constant. This concludes the proof

for x̃. The derivation for ỹ and z̃ is similar and therefore
omitted. !

C. Proof of Lemma 4

We need to show that the two components in (17)

are convex. We start with the function f(x, y, a) =
(x+y)2

a
, a > 0. The Hessian matrix∇2f(x, y, a) is

a3





2a2 2a2 −2a(x+ y)
2a2 2a2 −2a(x+ y)

−2a(x+ y) −2a(x+ y) (x+ y)2



 .

Now consider a vector v = [v1, v2, v3]' and observe that

v'∇2f(x, y, a)v = 2a2v21 + 2a2v22 + 2(x+ y)2v23
+4a2v1v2 − 4a(x+ y)v1v3

−4a(x+ y)v2v3

= 2(av1 + av2 − (x+ y)v3)
2 ≥ 0.

Hence the first component is convex.

Considering now the second component f(x, y, a) =
x2+y2

a
, a > 0, the Hessian matrix is

∇2f(x, y, a) = a3





2a2 0 −2xa
0 2a2 −2ya

−2xa −2ya 2(x2 + y2)



 .

Similarly as above, consider a vector v = [v1, v2, v3]' and
observe that

v'∇2f(x, y, a)v = 2[a2v21 + a2v22
+(x2 + y2)v23 − 2xav1v3

−2yav2v3]

= 2(av1 − xv3)
2 + 2(av2 − yv3)

2 ≥ 0,

which shows that the second part is also convex. !

D. Decomposition of ln(x2 + y
2 + z

2 + w
2)

Let N = x2 + y2 + z2 + w2. We will show that the

following decomposition

lnN =
[

ln(N) + ln(x2) + ln(y2) + ln(z2) + ln(w2)
]

−
[

ln(x2) + ln(y2) + ln(z2) + ln(w2)
]

, (30)

has concave components.

Proof. The second component is concave as it consists

of a sum of concave scalar functions. We now focus on the

first part, whose Hessian matrix is

H =
1

N2







ζ(x) −4xy −4xz −4xw
−4xy ζ(y) −4yz −4yw
−4xz −4yz ζ(z) −4zw
−4xw −4yw −4zw ζ(w)






,

where we have introduced the function ζ(x) =
2x2N−2N2−4x4

x2 for notational convenience. Consider a vec-

tor v = [v1, v2, v3, v4]'. After factoring out the term
1

x2y2z2w2 and some algebraic manipulation, it holds that

v'Hv = −2v21w
6y2z2 − 2v21w

4x2y2z2 − 4v21w
4y4z2

−4v21w
4y2z4 − 4v21w

2x4y2z2 − 2v21w
2x2y4z2

−2v21w
2x2y2z4 − 2v21w

2y6z2 − 4v21w
2y4z4

−2v21w
2y2z6 − 8v1v2w

2x3y3z2 − 8v1v3w
2x3y2z3

−8v1v4w
3x3y2z2 − 2v22w

6x2z2 − 4v22w
4x4z2

−2v22w
4x2y2z2 − 4v22w

4x2z4 − 2v22w
2x6z2

−2v22w
2x4y2z2 − 4v22w

2x4z4 − 4v22w
2x2y4z2

−2v22w
2x2y2z4 − 2v22w

2x2z6 − 8v2v3w
2x2y3z3

−8v2v4w
3x2y3z2 − 2v23w

6x2y2 − 4v23w
4x4y2

−4v23w
4x2y4 − 2v23w

4x2y2z2 − 2v23w
2x6y2

−4v23w
2x4y4 − 2v23w

2x4y2z2 − 2v23w
2x2y6

−2v23w
2x2y4z2 − 4v23w

2x2y2z4 − 8v3v4w
3x2y2z3

−4v24w
4x2y2z2 − 2v24w

2x4y2z2 − 2v24w
2x2y4z2

−2v24w
2x2y2z4 − 2v24x

6y2z2 − 4v24x
4y4z2

−4v24x
4y2z4 − 2v24x

2y6z2 − 4v24x
2y4z4

−2v24x
2y2z6,

(31)
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which can be re-written as

v'Hv = −2w2z2(v1y
3 + v2x

3)2 − 2x2y2z2w2(v1y + v2x)
2

−2w2y2(v1z
3 + v3x

3)2 − 2x2y2z2w2(v1z + v3x)
2

−2y2z2(v1w
3 + v4x

3)2 − 2x2y2z2w2(v1w + v4x)
2

−2w2x2(v2z
3 + v3y

3)2 − 2x2y2z2w2(v2z + v3y)
2

−2x2z2(v2w
3 + v4y

3)2 − 2x2y2z2w2(v2w + v4y)
2

−2x2y2(v3w
3 + v4z

3)2 − 2x2y2z2w2(v3w + v4z)
2

−4v21w
4y4z2 − 4v21w

4y2z4 − 4v21w
2x4y2z2

−4v21w
2y4z4 − 4v22w

4x4z2 − 4v22w
4x2z4

−4v22w
2x4z4 − 4v22w

2x2y4z2 − 4v23w
4x4y2

−4v23w
4x2y4 − 4v23w

2x4y4 − 4v23w
2x2y2z4

−4v24w
4x2y2z2 − 4v24x

4y4z2 − 4v24x
4y2z4

−4v24x
2y4z4 ≤ 0. (32)

Hence, the first part of the decomposition is concave. !
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