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hp-DGFEM for Kolmogorov-Fokker-Planck Equations of
Multivariate Lévy Processes∗

D. Marazzina†, O. Reichmann‡, Ch. Schwab§

March 24, 2011

Abstract We analyze the discretization of non-local degenerate integrodifferential equations arising as
so-called forward equations for jump-diffusion processes, in particular in option pricing problems when dealing
with Lévy driven stochastic volatility models. Well-posedness of the arising equations is addressed. We
develop and analyze stable discretization schemes. The discontinuous Galerkin (DG) Finite Element Method
is analyzed. In the DG-FEM, a new regularization of hypersingular integrals in the Dirichlet Form of the pure
jump part of infinite variation processes is proposed. Robustness of the stabilized discretization with respect
to various degeneracies in the characteristic triple of the stochastic process is proved. We provide in particular
an hp-error analysis of the DG-FEM and numerical experiments.
Keywords: Discontinuous Galerkin Methods, Feller-Lévy processes, Pure jump processes, Lévy Copulas,
Option pricing, Dirichlet Forms, Error analysis

1 Introduction

We consider the discretization of non-local degenerate integrodifferential equations. Such equations arise, for
example, in financial modelling with jump processes, cf. [11], when dealing with advanced stochastic volatility
models, where the volatility is modeled using a subordinator, cf. [17]. Similar problems arise in the context
of pricing derivatives on electricity or other commodities as in this case Ornstein-Uhlenbeck type processes
are an appropriate model class and lead to drift dominated equations, cf. [3, 6]. This paper aims at the
development and analysis of stable discretization schemes for such equations. We consider the Discontinuous
Galerkin method with and without small jump regularization. We derive localization estimates for a large
class of processes and obtain sharp estimates for the small jump truncation. Our error analysis is performed
in multiple space dimensions. The reason for considering Discontinuous Galerkin discretizations lies in the
structure of the equations: Continuous Galerkin Finite Element Methods (CGFEM for short) which are based
on continuous, piecewise polynomial functions on simplicial partitions, cf. [27, 32], are not applicable in general
as they are well-known to become unstable for operators with dominating drift. The Discontinuous Galerkin
(DG for short) Finite Element discretizations allow to accurately discretize drift-dominated operators via a
judicious choice of the numerical flux to account for dominating drift. However, for discontinuous, piecewise
polynomials the Dirichlet Form of the jump part of the process X is, in general, not well-defined, and some
form of jump regularization is required then. We show that by the so-called small jump regularization of the
stochastic process X in [10] and the references therein, a Dirichlet form is obtained which remains finite even for
Discontinuous Finite Element discretizations, albeit at the expense of introducing an artificial diffusion which
depends on the second moments of the jumps of X of size at most ε. The resulting stable DG discretizations
of hypersingular integral operators are of independent interest also in other applications.
This paper is organized as follows. We present the necessary preliminaries in Section 2. In Section 3 we discuss
the small jump regularization and localization errors. Well-posedness of the arising equations is addressed in

∗This research was performed under partial support of the European Research Council under grant AdG 247277 and of
GNCS-INDAM.

†Department of Mathematics “Francesco Brioschi”, Politecnico di Milano, IT-20133 Milano, Italy
(daniele.marazzina@polimi.it).

‡Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland (oleg.reichmann@sam.math.ethz.ch).
§Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland (christoph.schwab@sam.math.ethz.ch).
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Section 4. The DG-method is discussed in the subsequent section. We conclude with some remarks on the
implementational aspects of the methods and numerical examples in one space dimension.

2 Preliminaries

In this section, the necessary preliminaries are presented. The class of stochastic processes considered in this
paper is discussed and the domains of the corresponding generators are defined.

2.1 Lévy processes

Let (Ω, F , P) be a filtered probability space satisfying the usual assumptions, cf. [24], and X = (Xt)t≥0

an adapted time-homogeneous Markov process with state space Rd, d ≥ 1, characterized by the triplet
(b(x), 0, ν(dz)) (i.e., a pure jump process):

X(t) = X0 +

∫ t

0
b(X(s)) ds+

∫ t

0

∫

Rd

zÑ(ds, dz). (2.1)

Existence and uniqueness of a solution for the Stochastic Differential Equation (SDE) (2.1) follow from [21,
Theorem 9.1] for globally Lipschitz b(x), where Ñ(dt, dz) denotes a compensated Poisson random measure
with intensity measure ν(dz)dt. The Lévy measure satisfies

∫

Rd

(|z|2 ∧ 1)ν(dz) < ∞.

Remark 2.1. This setup includes Lévy processes and Lévy driven Ornstein-Uhlenbeck processes. We focus
on the harder pure jump case, but the consideration of jump-diffusion processes is also possible in this context.

Assumption 2.2. We make the following assumptions on the Lévy measure ν.

(i) The Lévy measure ν has a density k, i.e., ν(dz) = k(z)dz.

(ii) There exist constants β−
i > 0, β+

i > 1, i = 1, . . . , d, such that

ki(z) !
{
e−β−

i |z|, if z < −1

e−β+
i |z|, if z > 1

,

where ki(z) is the i-th marginal of k(z).

(iii) Furthermore we assume that the Lévy density k(z) behaves at z = 0 similar to an α-stable density k0(z),
i.e., there exist constants C1, C2 > 0 s.t.

C1k
0(z) ≤ k(z) ≤ C2k

0(z), 0 < |z| < 1.

Remark 2.3. These assumptions can be expressed in terms of marginals of the process and a Lévy copula.
We refer to [36, Section 2.3], [32, Section 4.3] and [14, 31] for details and the definition of a Lévy copula.
Note that subordinators are excluded by condition (iii).

We will consider the following boundary value problem: given an appropriate right hand side f(t,x), find
a suffiently smooth function u(t,x) such that

∂tu(t,x) + Lu(t,x) = f(t,x) in (0, T )× Rd, u(0,x) = P (x), (2.2)

where, for sufficiently smooth u(t,x),

Lu(t,x) := b(x) ·∇u(t,x) + c(x)u(t,x)−AJ [u](t,x), (2.3)

AJ [u](t,x) :=

∫

Rd

(u(t,x+ z)− u(t,x)) ν(dz). (2.4)
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In the pricing of derivative contracts, x is the vector of log-prices or real-prices and P in (2.2) denotes the
payoff function. The operator L − cI is the infinitesimal generator of the process X. Note that formulation
(2.4) is not feasible for general Lévy jump measures in (2.1), but only for finite variation processes. We will
approximate the general Kolmogorov equation by this special case via a small jump regularization as described
in Section 3. Therefore, we will restrict ourselves to the discretization of Kolmogorov equations corresponding
to finite variation processes. Note that the operator AJ in (2.4) is a pseudo differential operator with constant
symbol, we refer to the monograph [22] for details on this topic and [25] for analytical properties of the operator
AJ .

2.2 Domains of Generators

For the variational formulation, we need to identify the domains of generators and of their Dirichlet forms. As
shown in [14, 22, 31], those domains are certain Sobolev spaces in the case of pure jump processes. Therefore
we start with the definition of fractional order isotropic spaces. We define for a positive non-integer ρ ∈ (0, 2)
and u ∈ S∗(Rd), where S∗(Rd) is the space of tempered distributions, the isotropic Sobolev space Hρ/2(Rd),
equipped with the norm ‖·‖Hρ/2(Rd) given by

‖u‖2Hρ/2(Rd) :=

∫

Rd

(1 + |ξ|2)ρ/2 |û(ξ)|2 dξ, (2.5)

denoting by û the Fourier transform of u. Similarly for any multi-index ρ = (ρ1, . . . , ρd), ρi ∈ (0, 2), i =
1, . . . , d, anisotropic Sobolev spaces Hρ/2(Rd) with norm ‖·‖Hρ/2(Rd) given by

‖u‖2Hρ/2(Rd) :=

∫

Rd

d∑

j=1

(1 + ξ2j )
ρj/2 |û(ξ)|2 dξ, (2.6)

can be defined. We define the following spaces on an open, bounded Lipschitz domain G with boundary Γ

H̃ρ/2(G) =
{
u ∈ Hρ/2(Rd), u|Rd\G = 0

}
,

where a norm on H̃ρ/2(G) is given by ‖u‖H̃ρ/2(G) = ‖ũ‖Hρ/2(Rd) and we denote the zero extension of u outside

of G by ũ. An intrinsic norm on H̃ρ/2(G) is given by

||u||2
H̃ρ/2(G)

= ||u||2L2(G) +

∫

Rd

∫

Rd

d∑

j=1

|ũ(x)− ũ(y)|2

|xj − yj |1+ρj
dxdy. (2.7)

Remark 2.4. Note that one can use the integral over G instead of Rd in (2.7) for ρj ∈ (0, 2), ρj += 1, cf. [27,

Section 4.3]. The case ρj = 1 is different, in fact H̃1/2(G) = H
1
2
00(G) (see [26, Theorem 11.7], [27]). The case

ρi = 1, i = 1, . . . , d, is of special interest in financial modelling, as it arises when using generalized hyperbolic
processes, cf. e.g. [13].

Remark 2.5. The relation between α in Assumption 2.2 and the Blumenthal-Getoor-index β, cf. [34, Theorem
47.23] or [4], of a Lévy process was studied by [16] for d = 1 in (2.2). Korollar I.33 in [16] implies that α = β
for 0 < α < 2.

In the following we briefly outline the standard variational setting for parabolic equations which was applied
in, e.g., [31] and [36]. Let V ⊂ H be two Hilbert spaces with continuous and dense embedding. We identify
H with its dual H∗ and obtain the Gelfand triplet

V ⊂ H ≡ H∗ ⊂ V ∗.

The space V is in this setting the domain of a certain bilinear form A(·, ·) associated to an operator A. Let
(A,D(A)) be a densely defined operator on H = L2(Rd) which is negative definite, cf. [22, Definition 4.6.10]
and satisfies

|(−Au, v)| ≤ C (−Au, u)1/2 (−Av, v)1/2 ,

3



where (·, ·) denotes the L2(Rd) scalar product and u, v ∈ D(A). Then we may introduce on D(A) the bilinear
form

A(u, v) := (−Au, v).

The bilinear form Ã(·, ·) given as

Ã(u, v) := Asym(u, v) + (u, v) =
1

2
(A(u, v) +A(v, u)) + (u, v)

defines a scalar product and we may consider the completion of D(A) with respect to Ã(·, ·), which is denoted
by D(A). Well-posedness of the following parabolic problem can then be shown: Find u ∈ L2((0, T ), V ) ∩
H1((0, T ), V ∗) such that

(∂tu, v)V ∗,V +A(u, v) = (f, v)V ∗,V , ∀v ∈ V, a.e. in (0, T ),

u(0) = u0,

with u0 ∈ H, f ∈ L2((0, T ), V ∗) and T > 0. The space V = D(A) is an anisotropic fractional order Sobolev
space if the operator A is the infinitesimal generator of a Lévy process, we refer to [31] for further details. For
an infinitesimal generator A of a Markov process X the bilinear form A(·, ·) is closely linked to its Dirichlet
form, cf. [22, Definition 4.7.21]

Remark 2.6. Note that pure transport operators do not fit into this framework and have to be analyzed using
different techniques.

Throughout the work we use the generic positive constant C taking different values in different places, it
is independent of the mesh width h, the polynomial degree p and the jump truncation threshold ε, cf. Section
3. But it may depend on various parameters, such as, s the smoothness of the solution, C1 and C2 the shape
regularity and quasi-uniformity constants of the triangulation, the drift dominance parameter γ, the penalty
parameter α and the dimension of the problem d. Besides, we use the generic constant C(ε) which depends
on the same parameters as C and additionally explicitly on ε.

3 Small jump regularization and localization

In this section probabilistic results for the small jump regularization and the localization will be presented.
These are not based on the parabolic integro-differential equation (PIDE) representation of the option price,
but will be useful for the analysis of the PIDE, since the probabilistic estimates can be used to obtain error
bounds for the numerical solution of the equation. This will be done at two steps of the discretization. An
infinite activity Markov process will be approximated by a finite activity process adding an appropriately scaled
diffusion, besides the PIDE formulated on an unbounded domain will be localized to a bounded domain. The
rigorous justification of both steps using purely numerical analysis methods without any probabilistic tools is
much more tedious and technical.

3.1 Small jump approximation for Lévy Processes

We consider a Markov process X as defined in (2.1), with a jump measure that satisfies Assumption 2.2. The
easiest approach to the approximation of the jump measure consists in a truncation of ν(dz) in a small ball
around the origin, i.e., we consider the jump measure νε(dz) := 1|z|>εν(dz), νε := ν − νε, with ε > 0. We
denote the process with characteristic triplet (b, 0, νε) by Y ε. We can also approximate the small jumps by an
appropriately scaled Brownian motion, i.e., we consider the process Zε with characteristic triplet (b, Qε, νε),
where Qε =

∫
Rd zz$ νε(dz). Due to Assumption 2.2.(iii), Qε is a symmetric positive definite Rd×d-matrix.

The following approximation result for Lévy processes is well known, cf. [10, Theorem 3.1].

Theorem 3.1. Let X be a Lévy process in Rd with characteristic triplet (b, 0, ν) and let the decomposition
ν = νε + νε be given. Assume that Qε is non-singular for every ε > 0 and that for every δ > 0 there holds

∫

(Q−1
ε z,z)>δ

(Q−1
ε z, z)νε(dz) → 0, as ε → 0.
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Assume further that for some family of non-singular matrices {Σε}ε∈(0,1] there holds

Σ−1
ε QεΣ

−$
ε → I, as ε → 0,

where I denotes the identity matrix in Rd. Then for all ε ∈ (0, 1] there exists an Rd-valued càdlàg process Rε

and a process Zε = (Zε,1, . . . , Zε,d) with characteristic triplet (b, Qε, νε) such that

Xt
(d)
= Zε

t +Rε
t ,

in the sense of equality of finite dimensional distributions.

Furthermore, we have for all T > 0, supt∈[0,T ]

∣∣Σ−1
ε Rε

t

∣∣ (P)→ 0, as ε → 0.

Remark 3.2. Note that the Assumption on the matrices Σε can be expressed in terms of the jump measure
ν, cf. [10, Theorem 2.4].

Throughout this paper, X in (2.1) will generally not be a Lévy process due to the non-constant drift,
therefore a more general result is needed. A weaker convergence result in mean square sense also holds for
more general Markov processes, cf. [2, Proposition 3.3].

Theorem 3.3. Let X be an Rd-valued Markov process as given in (2.1), then there holds

E
[∫ T

0
‖X(t)− Zε(t)‖2 dt

]
≤ C

d∑

i=1

∫

|zi|<ε
z2i νi(dzi),

for sufficiently small ε > 0 and a constant C independent of ε.

For applications to option pricing we are mainly interested in weak convergence estimates.

3.2 Estimates for Lévy processes

Let X = (X1, . . . , Xd) be a Lévy process with characteristic triplet (b, 0, ν), such that ν satisfies As-

sumption 2.2, where b is chosen such that eX
1

, . . . , eX
d

are martingales. Now we consider the process
Z̃ε = (Z̃ε,1, . . . , Z̃ε,d) with characteristic triplet (bε, Qε, νε), where νε(dz) and Qε are chosen as above and

bε is chosen such that eZ̃
ε,1

, . . . , eZ̃
ε,d

are martingales. Convergence of X to Z̃ε in an appropriate sense follows
from Theorem 3.1.

Lemma 3.4. Let the payoff function P to be globally Lipschitz, then we obtain the following estimate using
U ε = Xt + (bε − b)t, where X is a Lévy process with characteristic triplet (b, 0, ν).

|E[P (x+XT )]− E[P (x+ U ε
T )]| ≤ C

d∑

j=1

∫ ε

−ε
|zj |3 νj(dzj), ∀x ∈ Rd. (3.1)

Proof. This estimate can be obtained by Taylor expansion of ex around 0 and is given in [36, Proposition
8.2.1]. For the one dimensional case we refer to [12, Theorem 5.1].

Lemma 3.5. If P ∈ C4(Rd) and ρ := maxi=1,...,d ρi < 1, there holds:

∣∣∣E[P (x+ U ε
T )]− E[P (x+ Z̃ε

T )]
∣∣∣ ≤ C

d∑

j=1

∫ ε

−ε
|zj |3 νj(dzj), ∀x ∈ Rd. (3.2)

If we only assume ρ < 2, then the following estimate holds

∣∣∣E[P (x+ U ε
T )]− E[P (x+ Z̃ε

T )]
∣∣∣ ≤ C

d∑

j=1

∫ ε

−ε
|zj |2 νj(dzj), ∀x ∈ Rd. (3.3)
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Proof. This follows using Taylor expansion of P and Jensen’s inequality. Note that the existence of first
moments of the jump measure (which is a consequence of ρ < 1) is essentially used in the first part of the
proof, cf. [36, Proposition 8.2.3.].

Remark 3.6. Intermediate cases, i.e., ρ < c for c ∈ (1, 2), lead to analogous estimates.

Finally we obtain the following result from (3.1) - (3.3).

Theorem 3.7. Let X and Z̃ε be as above and P ∈ C4(Rd), further let u(t,x) = E[P (x+XT )] and uε(t,x) =
E[P (x+ Z̃ε

T )], then the following estimate can be obtained

|u(t,x)− uε(t,x)| ≤ C

{
ε3−ρ, ∀x ∈ Rd, ρ ∈ (0, 1)

ε2−ρ, ∀x ∈ Rd, ρ ∈ (0, 2)
.

Remark 3.8. Note that Theorem 3.7 yields at least quadratic convergence in ε for the L∞-error for finite
variation processes and payoffs P ∈ C4(Rd). Using merely a small jump trunctation to approximate the
process X without an artificial diffusion would lead to an approximation rate of ε2−ρ, for all ρ ∈ (0, 2), cf.
[36, Corollary 8.2.5].

Remark 3.9. The constant C in Theorem 3.7 depends on the tail behavior and the moments of the jump
measure as well as the time to maturity T .

3.3 Estimates for general Markov processes

The described procedure is not directly applicable for more general Markov processes as a solution of the SDE
(2.1) is generally not available in closed form. We can use Theorem 3.3 to obtain a weaker error bound.

Lemma 3.10. Let P be globally Lipschitz and let X and Zε be as in Theorem 3.3, then the following estimate
holds:

|E[P (XT + x)]− E[P (Zε
T + x)]| ≤ C

d∑

i=1

∫

|zi|<ε
z2i νi(dz).

Proof. Using the Lipschitz continuity of P and Jensen’s inequality, we obtain

|E[P (XT + x)]− E[P (Zε
T + x)]| ≤ K

d∑

i=1

E
[∣∣∣Zε,i

T −Xi
T

∣∣∣
]
.

The result follows from the Cauchy-Schwarz inequality and Theorem 3.3.

Theorem 3.11. Let X and Zε be as above and let P be globally Lipschitz, let further u(t,x) = E[P (x+XT )]
and uε(t,x) = E[P (x+ Zε

T )] be as above. Then, as ε ↓ 0 the following estimate can be obtained

|u(t,x)− uε(t,x)| ≤ Cε2−ρ, ∀x ∈ Rd, for all ρ ∈ (0, 2).

Proof. This is a direct consequence of Lemma 3.10.

Remark 3.12. Note that Theorem 3.11 yields, in contrast to Theorem 3.7, at least linear convergence in ε
for the L∞-error for finite variation processes with globally Lipschitz payoffs. An analogous estimate can be
obtained if merely a small jump truncation, without regularization, is employed.
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3.4 Localization

In the following we estimate the error due to localization of the Kolmogorov equation. This is necessary as
the Galerkin discretization will be performed on the localized problem. It turns out that the localization error
decays exponentially with increasing domain under certain assumptions. We assume the payoff P to satisfy
the following polynomial growth condition:

|P (s)| !
(

d∑

i=1

|si|+ 1

)q

, for all s ∈ Rd. (3.4)

The variable s denotes the state variable in a real price model and the exponential of the state variable in a
log-price model. The condition is satisfied for all standard multi-asset options like basket, maximum or best-of
options. We consider log-price models with log(si) = xi, i = 1, . . . , d, in the following; the estimates for the
real price models follow easily.
The unbounded domain Rd of x will be truncated to a bounded domain GR = [−R,R]d. In terms of financial
modelling, this corresponds to the approximation of an option by the corresponding double barrier option. In
the following we will consider two cases. First we will derive a localization error estimate for tempered Lévy
market models and then extend this to tempered affine market models.

Theorem 3.13. Let the payoff function P : Rd → R satisfy (3.4). Further let X be a Lévy process with state
space Rd and Lévy measure ν satisfying Assumption 2.2 with β+

i ,β−
i > q, where q > 0 is as in (3.4). Then

|u(t,x)− uR(t,x)| ! e−αR+β‖x‖∞ ,

for 0 < α < mini min (β+
i ,β−

i )− q and β = α+ q,

uR(t,x) = E[P (eXT )1T<τGR
|Xt = x],

and τGR = inf{t ≥ 0|Xt ∈ Gc
R}, where Gc

R is the complement set of GR.

Proof. See [31, Theorem 4.14].

There holds a corresponding result for affine models.

Theorem 3.14. Let X be a Markov process as given in (2.1) with a finite variation jump measure, we set
b(x) = (−b1x1, . . . ,−bdxd), for some constants b1, . . . , bd ∈ R+. Further let ν and P be as in Theorem 3.13,
then the following estimate holds:

|u(t,x)− uR(t,x)| ! e−αR+β‖x‖∞ , (3.5)

where α, β are given in Theorem 3.13.

Proof. The idea of the proof is to reduce this problem to the setting discussed in Theorem 3.13. We make use
of the explicit solvability of the SDE (2.1) in this special case. The solution for this SDE is given as:

Xi(t) = Xi,0e
−tbi +

∫ t

0
e−(t−u)bidLi(u), i = 1, . . . , d. (3.6)

The process Xi(t) can be estimated pathwise as follows:

|Xi(t)| ≤| Xi,0|+max

(∫ t

0
dL+

i (u),−
∫ t

0
dL−

i (u)

)
. (3.7)

Therefore we obtain the following estimate:

|u(t,x)− uR(t,x)| = E[P (eXT )1{T≥τGR
}|Xt = x] ≤ E[eqMT 1{MT>R}|Xt = x],
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where MT = sups∈[t,T ] ‖Xs‖∞. Using (3.7) it follows:

E[eqMT 1{MT>R}|Xt = x] ≤ E[eqM̃T 1{M̃T>R}|Xt = x],

for M̃T = ‖Xt‖∞ + sups∈[t,T ] max {L+(s),−L−(s)}.

E[eqM̃T 1{M̃T>R}|Xt = x] ≤ E[eqM̃
+
T 1{M̃+

T >R}|Xt = x] + E[eqM̃
−
T 1{M̃−

T >R}|Xt = x] (3.8)

Both terms in (3.8) can be estimated analogously to Theorem 3.13, which yields the claimed result.

Remark 3.15. Similar results can also be obtained for more general drift functions. E.g. assuming
(b1, . . . , bd) ∈ Rd, leads to an analogous estimate to (3.5) under stricter assumptions on β+

i , β−
i , i = 1, . . . , d,

and different constants α and β.

4 Well-posedness of the Kolmogorov equations

The well-posedness of the arising equations is addressed in this section. Abstract existence and uniqueness
results are presented. In several particular cases, such as pure diffusion, resp. pure jump, a characterization
of the domain of the generator is given.

4.1 Abstract results

In the following we consider the localized problem on a bounded domain G with Lipschitz boundary ∂G. We
impose the following conditions on the coefficients.

Assumption 4.1. Let the coefficients in (2.2) satisfy:

1. b ∈ [W 1,∞(G)]d.

2. There exists a positive constant cmax such that cmax ≥ |c(x)| ∀x ∈ G.

3. Let aGJ (·, ·) denote the bilinear form of the jump part of the generator of X, i.e. aGJ (u, v) := (AG
J [u], v) :=

(AJ [ũ], ṽ), u, v ∈ D(aGJ ), with a jump measure ν(dz) that satisfies Assumption 2.2 with order ρ, ρ :=
maxi=1,...,d ρi < 2 and ρ := mini=1,...,d ρi ≥ 0.

4. There exists a positive constant γ s.t.

∀x ∈ G : c(x)− 1

2
div (b(x)) > γ > 0 . (4.1)

The strong formulation of the localized problem reads:

∂tu(t,x) + Su(t,x)−AG
J [u](t,x) = f(t,x) on (0, T )×G, (4.2)

u(0,x) = P (x) on G, u(t,x) = 0 on (0, T )× Γ−,

where we set Γ− := {x ∈ ∂G : b(x) · n < 0}, n is the exterior unit normal vector to G and we define

Su(t,x) := b(x) ·∇u(t,x) + c(x)u(t,x). (4.3)

We obtain the following result. Consider the inner product (w, v)H for w, v ∈ H1(G) given by

(w, v)H := (w, v)L2(G) + 〈w, v〉∂G + (w, v)H̃ρ/2(G),

where 〈w, v〉∂G =
∫
∂G |n(s) · b(s)|w(s)v(s) ds. We denote by H the closure of H1(G) in the norm ‖w‖H :=√

(w,w)H .
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Theorem 4.2. Let (4.2) satisfy Assumption 4.1. Then a G̊arding inequality and continuity of the bilinear
form corresponding to Lu holds on a certain Hilbert space Ṽ = Ĥ(G) which is a subspace of H. This implies
the well-posedness of problem (4.2) on L2((0, T ); Ṽ ) ∩H1((0, T ); Ṽ ∗).

Proof. The result follows from [17, Theorem 3.16], [20, Theorem 2] and [28, Theorem 1.4.1].

An alternative approach to the proof of well-posedness is the use of semigroup theory. We consider the
weak space-time formulation:
∫ T

0

∫

G

(
∂tu(t,x) + b(x) ·∇u(t,x)−AG

J [u](t,x) + c(x)u(t,x)
)
v(t,x)dxdt =

∫ T

0

∫

G
f(t,x)v(t,x)dxdt, (4.4)

for all v ∈ W , where

W :=
{
u ∈ L2 ((0, T )×G) , ∂tu+ b ·∇u+ cu ∈ L2 ((0, T )×G) , u(0) ∈ L2(G), u|Γ− ∈ L2 ((0, T )× Γ−)

}

∩ L2
(
(0, T ), H̃ρ/2(G)

)
,

equipped with the norm ‖·‖W defined by

||u||2W =

∫ T

0

∫

G
u2(t,x)dxdt+

∫ T

0

∫

G
(∂tu+ b ·∇u+ cu)2 (t,x)dxdt+

∫

G
u2(0,x)dx

+

∫ T

0

∫

Γ−

u2(t, s)dsdt+

∫ T

0
||u(t, ·)||2

H̃ρ/2(G)
dt.

We shall use the following Theorem from [1], where we denote by Lip(G,R) the class of real valued functions
which are Lipschitz continuous in the domain G ⊆ Rd.

Theorem 4.3. Let us assume F ∈ Lip(G,R) and div(F ) ∈ L∞(G); further let the operator K be given as

Ku = −∇ · (F (x)u(x)),

with u in the domain D(K) =
{
u ∈ L2(G) : Ku ∈ L2(G), u|Γ− = 0

}
, where Γ is assumed to be piecewise C1.

Then (K,D(K)) is the generator of a C0 semigroup of contractions.

Proof. See [1, Theorem 4.4].

Thus the transport as well as the jump operator generate C0 semigroups, using Assumption 4.1, therefore
the mild solution u ∈ C([0, T ], L2(G)) of problem (4.2) is well-defined (cf. [29, Section 4.2, Definition 2.3]),
i.e.,

u(t, ·) = exp (t(S −AJ))P (·) +
∫ t

0
exp (s(S −AJ)) f(t− s, ·) ds. (4.5)

Uniqueness of suffiently smooth solutions follows from linearity of the Partial Integro Differential Equation
(PIDE) and the following estimate, which can be obtained choosing v = u and f = 0 in (4.4)

0 ≤ 1

2
‖u(t, ·)‖2L2(G) + C ‖u‖2W ≤ 0.

Remark 4.4. If one assumes u(0) ∈ D(S −AJ) and f ∈ C1([0, T ], L2(G)), then a unique strong solution on
[0, T ) can be obtained due to [29, Section 4.2, Corollary 2.5].

Remark 4.5. Using semigroup theory we are not restricted to bounded domains G, but we can consider
the problem on the whole space Rd; in this case the boundary conditions on Γ− are void. Note that the
integrability condition P ∈ L2(Rd) is strong and not satisfied in many financial applications. Therefore we
can either work in weighted Sobolev spaces, cf. [27], an approach we do not pursue in this work, or we can
use a localization argument to reduce the problem to a bounded domain and control the truncation error under
certain assumptions by a probabilistic argument, cf. Section 3.4.

Under certain conditions on the Lévy driving process, we can obtain stronger regularity results. We will
examine several special cases in the following.
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4.2 Infinite variation processes

In the following we assume ρ ≥ 1. Let the bilinear form A(·, ·) be given as

A(u, v) :=

∫

Rd

Lu(x) v(x)dx (4.6)

=

∫

Rd

b(x) ·∇u(x) v(x)dx+

∫

Rd

c(x)u(x) v(x)dx−
∫

Rd

A′
J [u(x)] v(x)dx,

A′
J [u](x) :=

∫

Rd

(u(x+ z)− u(x)− z ·∇u(x)) ν(dz), (4.7)

for u, v ∈ D(A). We consider the following problem: find u ∈ V such that ∀v ∈ V , V = D(A) it holds

A(u, v) =

∫

G
f(x) v(x)dx.

4.2.1 G̊arding inequality

Let us denote by v̂ the Fourier transform of v, i.e., v̂ = Fv. Using [31, Proposition 3.10], we obtain for a′J(·, ·)
with a jump measure ν satisfying Assumption 2.2, for any u ∈ D(a′J)

−a′J(u, u) = −(A′
J [u], u) ≥ C+

G ||u||2ρ/2 − C−
G ||u||20, (4.8)

with C+
G > 0, C−

G ≥ 0, and where we denote by || · ||ρ/2 and || · ||0 the norm in H̃ρ/2(G) and L2(G), respectively.
See [31, Section 4] for further details.
Let us now consider the drift and reaction term in (4.6). Due to condition (4.1), it holds for
u ∈

{
u ∈ L2(G)|Su ∈ L2(G), u|Γ− = 0

}
, with S as in (4.3)

∫

G
b(x) ·∇u(x)u(x)dx+

∫

G
c(x)u2(x) dx, =

∫

G
c(x)u2(x) +

1

2

∫

G
b(x) ·∇u2(x)dx

=

∫

G

(
c(x)− 1

2
div(b(x))

)
u2(x)dx ≥ γ||u||20. (4.9)

Thus we obtain the following result.

Theorem 4.6. If Assumption 4.1 holds, the bilinear form A(·, ·) satisfies a G̊arding inequality on V .

Proof. The result follows from (4.8) and (4.9).

Remark 4.7. We do not require the assumption ρ ≥ 1 for Theorem 4.6.

Remark 4.8. A similar estimate to (4.8) can be obtained for the localized problem using the Sobolev-Slobodecki
norm. Splitting the bilinear form aGJ (·, ·) into its symmetric (aG,s

J (·, ·)) and antisymmetric part (see [31],
Section 4.4), we obtain for u ∈ V

−aGJ (u, u) = −aG,s
J (u, u) =

1

2

∫

Rd

∫

Rd

(ũ(x)− ũ(y))2 (k(x− y) + k(y − x)) dydx. (4.10)

Without loss of generality, we impose G ⊂ B(0; 1
2 ) ⊂ Rd. Then we obtain

−aGJ (u, u) ≥ C
(
||ũ||2ρ/2 − ||ũ||20

)
.

The constant C depends only on C1 and C2 in Assumption 2.2.
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4.2.2 Continuity

In order to study the continuity, it is convenient to use the Fourier transform. We consider the term∫
G Su(x)v(x) dx. Since F∇u(ξ) = iξ û(ξ), it holds

∣∣∣∣
∫

Rd

Su(x)v(x)dx

∣∣∣∣ ≤ ||b||∞
∣∣∣∣
∫

Rd

i1 · ξ û(ξ) v̂(ξ) dξ
∣∣∣∣+ cmax ‖u‖0 ‖v‖0

≤ C||b||∞
(∫

Rd

|ξ| |û(ξ)|2 dξ

)1/2 (∫

Rd

|ξ| |v̂(ξ)|2 dξ

)1/2

+ cmax ‖u‖0 ‖v‖0 ,

where 1 denotes the unit vector in Rd. Since ρj ≥ 1, j = 1, · · · , d, we have

∣∣∣∣
∫

G
Su(x)v(x)dx

∣∣∣∣ ≤ C||u||1/2||v||1/2 ≤ C||u||ρ/2||v||ρ/2. (4.11)

We study the behavior of the jump term. As above it follows from Assumption 2.2 using [31, Proposition 3.5]

∣∣∣∣−
∫

G
AJ [u](x)v(x)dx

∣∣∣∣ ≤ C||u||ρ/2||v||ρ/2, (4.12)

for some positive constant C that depends only on the jump measure.

Theorem 4.9. The bilinear form (4.6) with ρ ≥ 1, is continuous on V := D(A).

Proof. The result follows from (4.11) and (4.12).

The well-posedness of the parabolic problem: given f ∈ L2((0, T );V ∗), find u ∈ L2((0, T );V )∩H1((0, T );V ∗),
such that

(∂tu, v) +A(u, v) = (f, v) a.e. in (0, T ), u(0,x) = P (x), (4.13)

for all v ∈ V , where A is given as in (4.6), follows from Theorems 4.6 and 4.9.

4.3 Finite variation processes

We now assume that 0 < ρ < 1. Note that in this situation ρ < 1 (ρ ≥ 1) implies that the corresponding
process is of finite (infinite) variation. Therefore (4.11) does not hold. The above steps, leading to Theorem 4.6
and 4.9 still give a G̊arding inequality on the space V = H̃ρ/2(G) and continuity on the space H̃ρ/2(G)∩Wb,
where Wb =

{
w ∈ L2(G) : b ·∇w ∈ L2(G)

}
.

Remark 4.10. We still rely on the general results presented in Section 4.1 for the well-posedness of the
problem.

Remark 4.11. If we assume b ≡ 0, then we obtain the framework discussed in [31]. Therefore well-posedness
of the Kolmogorov equation can be proved on the space H̃ρ/2(G).

Remark 4.12. Note that for Lévy market models, where the drift component is constant, this situation can be
achieved using a change of variable (e.g.[27]). The removal of the drift is nontrivial for more general Markov
processes.
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4.4 Regularized Kolmogorov equation

We now consider the well-posedness of problem (4.2) after the small jump regularization. We assume the
following uniform estimate for the diffusion part of the operator: Qε ≥ Q0, where Q0 is a symmetric positive
definite matrix. Thus, instead of considering problem (2.2), after localization to Lipschitz domain G ⊂ Rd, we
study the numerical solution of its small jump truncation approximation

∂tu
ε(t,x) + LG,εuε(t,x) = f(t,x) in (0, T )×G, (4.14)

uε(t,x) = g = 0 in (0, T )× ∂G, uε(0,x) = P (x) in G,

where

LG,εw(t,x) = Sεw(t,x)−AG,ε
J [w](t,x),

AG,ε
J [w](t,x) =

∫

Rd

(w̃(t,x+ z)− w̃(t,x)) νε(dz),

Sεw(t,x) = bε(x) ·∇w(t,x) + c(x)w(t,x)− 1

2
tr(QεD

2)w(t,x),

with coefficients that satisfy Assumption 4.1 and νε, Qε and bε as in Section 3.2. Therefore a weak formulation
of (4.14) reads:find uε ∈ L2((0, T ), H1

0 (G)) ∩H1((0, T ), H−1(G)) such that

(∂tu
ε, v) + (Sεuε, v)− (AG,ε

J uε, v) = (f, v), a.e. in (0, T ) uε(0) = P (x) (4.15)

for all v ∈ H1
0 (G), where (·, ·) denotes the scalar product on L2(G). We obtain existence of a unique weak

solution of the above problem from [31, Theorem 4.8]. If G = Rd, then the domain of the generator is H1(Rd).

Remark 4.13. Sufficiently smooth non-homogeneous Dirichlet boundary conditions can also be considered.

Remark 4.14. If the diffusion coefficient Qε is not positive definite, but only positive semidefinite, we obtain
anisotropic Sobolev spaces as the domains of the generators. This corresponds to regularized pure jump pro-
cesses with a finite activity compound Poisson process in certain directions and infinite activity processes in
other directions.

5 DGFEM for the forward equation

A DG-discretization scheme for the forward equation is described in this section. After introducing the
necessary notations, the numerical scheme is presented and analyzed. An error analysis in multiple space
dimensions is performed.

5.1 Triangulations

In the following we briefly summarize the requirements that have to be imposed on the triangulation. Let Th
be a subdivision of G into disjoint open element domains K such that G =

⋃
K∈Th

K and each K ∈ Th is an

affine image of a fixed master element K̂, i.e. K = F (K̂), where K̂ is the unit simplex. We assume Th to be
a shape regular, quasi-uniform and simplicial triangulation and

∃ C1, C2 > 0 independent of h such that sup
K∈Th

hK

rK
< C1 < +∞ and sup

K∈Th

hK < C2hK′ ∀ K ′ ∈ Th, (5.1)

where hK and rK denote the diameter of the element K and the maximum radius of a ball contained in K,
K ∈ Th, respectively. Moreover, we set h = maxK∈Th hK .
We denote by Vh the space of discontinuous piecewise polynomial functions, i.e., vh ∈ Vh if and only if
vh|K ∈ Pp(K), ∀K ∈ Th, where K is a simplex in Rd and Pp(K) is the space of polynomials of total degree p
in K. Finally, we assign to the subdivision Th the broken Sobolev space of composite order s, where sK ∈ N0

are non-negative integers,

Hs(G, Th) =
{
u ∈ L2(G) : u|K ∈ HsK (K) ∀K ∈ Th

}
(5.2)
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equipped with the norm

‖u‖Hs(G,Th)
=

(
∑

K∈Th

‖u‖2HsK (K)

)1/2

.

Furthermore we use the following notations: Γh =
⋃

K∈Th
∂K, Th being the considered triangulation and

Γ0
h =

⋃
K∈Th

∂K ∩ ∂G. The average and jump operators are defined as follows: if e ∈ Γ is an edge shared by
two elements K1 and K2 of Th and n is the unit vector normal oriented from K1 to K2, then

{v} =
v|K1 + v|K2

2
, [v] = v|K1 − v|K2 ,

otherwise (i.e., e ∈ Γ ∩ ∂G) we set {v} = [v] = v.

5.2 DG formulation

The DG semidiscrete formulation of (4.14), with possibly inhomogeneous boundary conditions, reads as follows:
for (sufficiently small) jump regularization parameter ε > 0, find uε

h(t,x) ∈ H1((0, T );Vh) such that ∀ vh ∈ Vh

it holds
∫

G
∂tu

ε
h(t,x)vh(x)dx+Aε

DG(u
ε
h(t,x), vh(x)) = rhsεDG(vh(x)), (5.3)

uε
h(0,x) = ΠpP (x), (5.4)

where ΠpP is the L2-projection of the initial condition function P in Vh, and

Aε
DG(w, v) := dεDG(w, v) + tεDG(w, v) + rDG(w, v) + jεDG(w, v), (5.5)

rhsεDG(v) =

∫

G
fvdx+ bcεDG(v). (5.6)

The bilinear forms dεDG(·, ·), tεDG(·, ·), rDG(·, ·), jεDG(·, ·) and the boundary form bcεDG(·) are defined as follows
for v, w ∈ Vh.

(i) Diffusion term dεDG(·, ·) : for ease of notation we will drop the dependency on time t and space x. It
holds

dεDG(w, v) :=
∑

K∈Th

1

2

∫

K
∇w$Qε∇vdx−

∑

e∈Γh

1

2

∫

e

{
∇w$Qεn

}
[v]ds

+
β

2

∑

e∈Γh

∫

e
[w]

{
∇v$Qεn

}
ds+

∑

e∈Γh

α

|e|

∫

e
[w][v]ds, (5.7)

where α > 0 is independent of h and ε; β = −1 yields the Symmetric Interior Penalty Galerkin (SIPG)
method (which converge only if α is sufficiently large), while β = 1 gives the Non-Symmetric Interior
Penalty Galerkin (NIPG) method. See [33, Chapter 2] for further details. From now on we set β = 1,
i.e., we discretize the diffusion term with the NIPG method.

(ii) Transport term tεDG(·, ·): following [18], we obtain

tεDG(w, v) :=
∑

K∈Th

∫

K
bε ·∇w vdx−

∫

∂ε
−K

(bε · nK)[w]vIds, (5.8)

where nK is the normal unit vector exterior to K, vI (vO) is the inner (outer) trace of v relative to K
and, according to the above definition, [v] = vI − vO. Moreover we set

∂ε
−K := {x ∈ ∂K : bε · nK < 0} and ∂ε

+K := {x ∈ ∂K : bε · nK > 0}.

Notice that in the following we will drop the index ε when ε = 0, i.e., ∂±K := ∂0
±K.
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(iii) Reaction term rDG(·, ·): it holds

rDG(w, v) :=

∫

G
cw vdx. (5.9)

(iv) Integrodifferential term jεDG(·, ·): since the jump operator AG,ε
J in (4.14) can be rewritten as

AG,ε
J [w](t,x) =

∫

Rd

(w̃(t,y)− w̃(t,x))kε(y − x)dy, (5.10)

the integrodifferential term is given as

jεDG(w, v) := −
∫

Rd

∫

Rd

(w̃(t,y)− w̃(t,x))kε(y − x)dy ṽ(x)dx. (5.11)

(v) The boundary term bcεDG(·) reads

bcεDG(v) =
∑

e∈Γ0
h

∫

e

(
1

2
∇v$Qεn+

α

|e|v
)
gds−

∑

K∈Th

∫

∂ε
−K∩∂G

(bε · nK)gvIds.

The first term stems from the discretization of the diffusion part, while the second term originates from
the transport term. Notice that if g ≡ 0 as in (4.14), then bcεDG ≡ 0.

Remark 5.1. In [19] the authors deal with a DG discretization for the hyperbolic part bε · ∇u + cu = f .
More precisely, they discretize the bilinear form tεDG(·, ·) + cDG(·, ·) as in (5.8) and (5.9) adding the following
stabilization term

δ
∑

K∈Th

∫

K
(bε ·∇u+ cu) (bε ·∇v)dx,

for δ > 0. The consistency of the method is ensured by adding the term δ
∫
G f(bε · ∇v)dx to the right-hand

side of the equation. Consistency, stability and an error analysis is provided in [19] with δ = Chp−1, with
C independent of h and p. However, numerical results (see [19, Section 5]) show that the scheme without
stabilization, i.e., δ = 0, is marginally more accurate for p = 1 and p = 2. For larger p the stabilized scheme
is slightly more accurate.

Remark 5.2. According to the previous section, G ⊂ Rd, d ≥ 1, is a bounded plane faced polyhedral domain
with Lipschitz boundary Γ. The above DG formulation is written with integrals over faces of the elements of
the mesh, and thus for the case d > 1. In the one dimensional case, this is to be interpreted as follows: if
K = [a, b], then ∂K = {a, b} and we set for v ∈ Pp(K)

∫

a
vI(x)dx = v(a),

∫

b
vI(x)dx = v(b),

∫

a
vI(x)ndx = −v(a),

∫

b
vI(x)ndx = v(b),

where n = 1 (−1) in b (a). Moreover, if h is the length of the interval K, i.e., h := b− a, we replace |e| by h
in (5.7).

Remark 5.3. Let us consider, for simplicity, the one dimensional case, i.e. d = 1 in (4.14), and the in-

tegrodifferential term (5.11): if we denote by k(−1)
ε the antiderivative of kε, then (5.11) can be rewritten as

follows:

jεDG(w, v) =

∫

R

∑

K∈Th

∫

K
w̃′(y)k(−1)

ε (y − x)dy ṽ(x)dx

−
∫

R

∑

K∈Th

∫

∂K
(w̃I(s)− w̃(x))nk(−1)

ε (s− x)ds ṽ(x)dx,
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where the antiderivatives of kε(x) are given by

k(−(i+1))
ε (x) =

{ ∫ x
−∞ k(−i)

ε (y)dy if x < 0,

−
∫ +∞
x k(−i)

ε (y)dy if x > 0,
(5.12)

and k(0)ε = kε. See Section 6 for details.

Remark 5.4. The discretization of the regularized Lévy density, cf. Section 3.2, can be performed as follows.
If we assume a Lévy copula construction for the density k(z) with a 1-homogeneous Lévy copula F , cf. [23],
then the jump term AG,ε

J (5.10) can be expressed as follows:

AG,ε
J w(x) =

d∑

i=1

∫

R
(w̃(t,x+ eiyi)− w̃(t,x)) kε,i(yi) dyi

+
d∑

j=2

∑

|I|=j
I1<...<Ij

∫

Rj

∂jw̃

∂yI
(yI)F I((Uε(yk − xk))k∈I) dy

I , (5.13)

where

F I(uI) = lim
a→∞

∑

(uj)j∈Ic∈{−a,∞}|Ic|




∏

j∈Ic

signuj



F (u1, . . . , ud),

cf. [31, Proposition 4.11]. Therefore Remark 5.3 can be used to discretize the univariate marginal integrals, this
corresponds to a Lévy measure with independent marginals. The remaining term in (5.13) can be discretized
analogously.

5.3 DG stability and error analysis

In the following section we analyze the stability and derive error estimates for the DG semidiscrete formulation
(5.3)-(5.4) of (4.14). Let us consider the following notation. We denote by u the smooth solution of problem
(4.2), uε is the smooth solution of problem (4.15) with ε > 0 and uε

h ∈ Vh is the solution of problem (5.3)-(5.4)
according to the DG discretization.
We prove the consistency of the considered DG scheme in Section 5.3.1, while in Sections 5.3.2 and 5.3.3 we
deal with an a priori bound and error estimates of the DG solution.

5.3.1 Consistency of the DG scheme

Theorem 5.5. If uε is the solution of (4.15), then it satisfies (5.3).

Proof. Assume for simplicity g ≡ 0, i.e., uε|∂G = 0. Let vh ∈ Vh be a test function. Multiplying (4.14) by vh
and integrating by parts, we obtain

(∂tu
ε, vh) + (Sεuε, vh)− (AG,ε

J uε, vh) = (f, vh),

where (·, ·) denotes the scalar product in L2(G). Since

(AG,ε
J uε, vh) ≡ jεDG(u

ε, vh), (cuε, vh) ≡ rDG(u
ε, vh) and (f, vh) ≡ rhsDG(vh),

holds, in order to prove consistency of the method, we have to deal with the diffusion and transport terms.
However, the regularity of uε implies [uε] = 0 on Γh, thus (b

ε ·∇uε, vh) = tεDG(u
ε, vh). Finally, the consistency

of the diffusive part (and thus of the whole formulation) follows from [33, Proposition 2.9].
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5.3.2 A priori bound

Let us assume that bε and c satisfy

(cε0)
2(x) := c(x)− 1

2
div(bε(x)) > γε ≥ γ̃ > 0 (5.14)

for sufficiently small ε > 0 and γ̃ > 0. Note that this condition follows from (4.1). Following [18], it holds for
all w ∈ H1(G, Th)

dεDG(w,w) + tεDG(w,w) + rDG(w,w) =
∑

K∈Th

(
|w|2H1,ε(K) + ||cε0w||2L2(K) +

1

2
||[w]||2L2(∂ε

−K)

+
1

2
||[w]||2L2(∂ε

+K∩Γ0
h)

)
+

∑

e∈Γh

α

|e| ||[w]||
2
L2(e), (5.15)

with

|w|2H1,ε(K) :=
1

2

∫

K
∇w$Qε∇wdx.

The above arguments suggest to define for ε > 0 sufficiently small and w ∈ H1(G, Th), the DG norm:

||w||2DG(ε) :=
∑

K∈Th

(
|w|2H1,ε(K) + ||cε0w||2L2(K) +

1

2
||[w]||2L2(∂ε

−K) +
1

2
||[w]||2L2(∂ε

+K∩Γ0
h)

)

+
∑

e∈Γh

α

|e| ||[w]||
2
L2(e). (5.16)

Let us now consider the term jεDG(·, ·); for ease of notation, we will omit the dependence on t. Using (4.10),
we obtain for ε > 0 sufficiently small jεDG(w,w) ≥ 0, and therefore

Aε
DG(w,w) ≥ ||w||2DG(ε). (5.17)

Considering (5.11), it holds for all w ∈ H1(G, Th) and all ε > 0

jεDG(w,w) ≤
∣∣∣∣
∫

G

∫

G
(w(y)− w(x))kε(y − x)dyw(x)dx

∣∣∣∣ (5.18)

≤ C||kε||L∞(Rd)||w||2L2(G) ≤ C(ε)||w||2DG(ε),

i.e.,
Aε

DG(w,w) ≤ C(ε)||w||2DG(ε). (5.19)

Remark 5.6. From (5.18), it is clear that it is not necessary to add an additional term in the definition of
the norm || · ||DG(ε) to control jDG(·, ·) once ε > 0 is fixed. However, if ε → 0, then C(ε) → +∞ in (5.19).
See Section 5.4 for details on the case ε ≡ 0.

To prove the a priori bound, we need the following result.

Lemma 5.7. Let w ∈ Vh ⊂ H2(G, Th) and K ∈ Th, then there exists a constant C > 0, independent of h, p
and dependent on the shape regularity of Th, such that,

∣∣∣∣∇hw
$Qεn

∣∣∣∣
L2(e)

≤ Cph−1/2
∣∣∣
∣∣∣
√

∇hw$Qε∇hw
∣∣∣
∣∣∣
L2(K)

∀e ∈ ∂K.

Proof. The result follows from trace inequalities. In fact

∣∣∣∣∇hw
$Qεn

∣∣∣∣2
L2(e)

≤ Cmax {|Qε|}
∫

e
∇hw

$Qε∇hw dx ≤ Cp2

hK
max {|Qε|}

∫

K
∇hw

$Qε∇hw dx,

where the constant C is independent of hK , i.e., the diameter of the element K, the polynomial degree p and
|e| (see for example [33, Section 2.1.3] and [18, Section 4.2]).
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Theorem 5.8. Let uε
h be the solution of (5.3), then the following a priori bound holds:

||uε
h(T, ·)||2L2(G) +

∫ T

0
||uε

h(t, ·)||2DG(ε)dt ≤ C



||f ||2L2((0,T );L2(G)) +
∑

e∈Γ0
h

1

|e| ||g||
2
L2((0,T );L2(e))



+ ||ΠpP ||2L2(G).

Proof. Considering (5.17), it holds

1

2

d

dt
||uε

h||2L2(G) + ||uε
h||2DG(ε) ≤

∫

G
∂tu

ε
h uε

hdx+ dεDG(u
ε
h, u

ε
h) + tεDG(u

ε
h, u

ε
h) + jεDG(u

ε
h, u

ε
h)

= rhsDG(u
ε
h) + bcεDG(u

ε
h)

≤ ||f ||L2(G)||uε
h||L2(G) +

∑

e∈Γ0
h

||g||L2(e)

(
|| (∇uε

h)
$ Qεn||L2(e)

2
+||max {−bε · n, 0}uε

h||L2(e)+
α

|e| ||u
ε
h||L2(e)

)
,

where n is the exterior normal unit vector. From Lemma 5.7, we obtain

1

2

d

dt
||uε

h||2L2(G) + ||uε
h||2DG(ε) ≤




√

1

γε
||f ||L2(G) +

∑

e∈Γ0
h

Ĉe ||g||L2(e)



 ||uε
h||DG(ε),

with Ĉe = max

(
Cp
2
√
h
,
√

|e|
α max {maxx∈e (−bε(x) · n) , 0} ,

√
α
|e|

)
, where C is the constant in Lemma 5.7.

Thus

1

2

d

dt
||uε

h||2L2(G) + ||uε
h||2DG(ε) ≤ C



||f ||L2(G) +




∑

e∈Γ0
h

1

|e| ||g||
2
L2(e)




1/2



 ||uε
h||DG(ε)

≤ C2



||f ||2L2(G) +
∑

e∈Γ0
h

1

|e| ||g||
2
L2(e)



+
1

2
||uε

h||2DG(ε),

where C = max
{
maxe∈Γ0

h

(
Ĉe

√
|e|

)
,
√

1
γε

}
. We notice that C is independent of h, for sufficiently small h,

due to the mesh regularity properties (5.1). Thus

d

dt
||uε

h||2L2(G) + ||uε
h||2DG(ε) ≤ 2C2



||f ||2L2(G) +
∑

e∈Γ0
h

1

|e| ||g||
2
L2(e)





and the claimed result is obtained integrating in time and setting uε
h(0, ·) = ΠpP (·).

5.3.3 A priori error estimate

We want to estimate ||u− uε
h|| in a suitable norm. We estimate it as follows:

||u− uε
h|| ≤ ||u− uε||︸ ︷︷ ︸

(a)

+ ||uε − uε
h||︸ ︷︷ ︸

(b)

.

The term (a) can be estimated using Theorem 3.11, while the term (b) depends on the DG approximation. In
order to prove an a priori error estimate for ||uε − uε

h||, we need the following Lemma.

Lemma 5.9. Suppose that K ∈ Th is a shape regular d-simplex or a shape regular d-parallelepiped of diameter
hK . Suppose further that u|K ∈ Hr(K), r ≥ 2. Then there exists a projection Π(p,K) on the space of the
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polynomials of degree p in K such that, for s ≥ 1, p ≥ 1, s integer

||w −Π(p,K)w||L2(K) ≤ C
hmin(p+1,s)
K

ps
||w||Hs(K),

||∇
(
w −Π(p,K)w

)
||L2(K) ≤ C

hmin(p+1,s)−1
K

ps−1
||w||Hs(K),

||w −Π(p,K)w||L2(∂K) ≤ C
h
min(p+1,s)− 1

2
K

ps−
1
2

||w||Hs(K),

||∇
(
w −Π(p,K)w

)
||L2(∂K) ≤ C

h
min(p+1,s)− 3

2
K

ps−
3
2

||w||Hs(K).

Moreover, for 0 < l < 1, it holds

||w −Π(p,K)w||Hl(K) ≤ C
hmin(p+1,s)−l
K

ps−l
||w||Hs(K).

Proof. See [8], [18, Lemma 4.4] and [35, Section 4.5].

Remark 5.10. In each estimate, s can be chosen differently, if w is sufficiently smooth.

Remark 5.11. Lemma 5.9 can be extended to the case 0 < s < 2. In this case, the right-hand side of the
interpolation estimates contains the term ||w||Hs(δK), where δK is the union of the element K with its neighbor

elements, i.e. δK =
{
K ′ ∈ Th : K ′ ∩K += ∅

}
, e.g., all the elements of the triangulation Th that share an edge

(d = 2) or vertex (d = 3) with K.

For ease of notation, we set w(t) := w(t, ·). We define the DG norm as follows:

|||w(t)|||2DG(ε) = ||w(t)||2L2(G) +

∫ t

0
||w(s)||2DG(ε)ds ∀t ∈ (0, T ).

Moreover, we assume that the following condition holds.

Assumption 5.12.
b(x) ·∇hvh ∈ Vh ∀vh ∈ Vh. (5.20)

This condition will be further discussed in Remark 5.14. We are now able to prove the following result.

Theorem 5.13. Let uε and uε
h be the solutions of (4.15) and (5.3), then ∀t ∈ [0, T ]

||| (uε − uε
h) (t)|||DG(ε) ≤ C(ε)

hmin(p+1,s)−1

ps−
3
2

(
||uε(t)||Hs(G,Th)

+ ||uε||H1((0,t);Hs(G,Th))

)
. (5.21)

Proof. Since the scheme is consistent, the DG formulation (5.3) satisfies the orthogonality property

∀t ∈ (0, T ), ∀v ∈ Vh

∫

G
∂t(u

ε − uε
h)vdx+Aε

DG(u
ε − uε

h, v) = 0.

Let us consider a suitable projection Πp onto the space of discontinuous piecewise polynomial functions such
that

∀K ∈ Th (Πpv) |K = Π(p,K)(v|K).

As in [18] we use the L2 orthogonal projector, i.e., given w ∈ L2(Ω), (w −Πpw, vh) = 0 ∀vh ∈ Vh. We set

η := uε −Πpu
ε ∈ V and ξ := uε

h −Πpu
ε ∈ Vh, (5.22)

where obviously ξ ∈ Vh holds. Using the Galerkin orthogonality and the equality uε − uε
h = η − ξ, we obtain

∫

G
∂tξ vdx+Aε

DG(ξ, v) =

∫

G
∂tηvdx+Aε

DG(η, v) ∀v ∈ Vh.
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Thus, setting v = ξ and applying (5.17), we obtain

1

2

d

dt
||ξ||2L2(G) + ||ξ||2DG(ε) ≤

∫

G
ξ∂tξdx+Aε

DG(ξ, ξ) =

∫

G
ξ∂tηdx+Aε

DG(η, ξ). (5.23)

Let us examine the terms in (5.23) in more detail. For any Ĉ1 > 0, it holds

∫

G
∂tη ξdx ≤ ||∂tη||L2(G)||ξ||L2(G) ≤

Ĉ1

2
||ξ||2L2(G) +

1

2Ĉ1

||∂tη||2L2(G)

≤ Ĉ1

2γε
||ξ||2DG(ε) +

1

2Ĉ1

||∂tη||2L2(G).

It follows from [18, Lemma 4.3] and Lemma 5.7 that for any Ĉ2 > 0

dεDG(η, ξ) ≤ ||ξ||DG(ε)

√
δDG(η) ≤

Ĉ2

2
||ξ||2DG(ε) +

1

2Ĉ2

δDG(η) (5.24)

with

δDG(η) := ||
√
αJ [η]||2L2(Γh)

+
∑

K∈Th

|η|2H1,ε(K) + Cqεp2h−1 ||[η]||2L2(∂K) + q2ε

∣∣∣∣

∣∣∣∣
1

√
αJ

∇η

∣∣∣∣

∣∣∣∣
2

L2(∂K)

,

where we recall that αJ is the penalization parameter, i.e., αJ |e = α
|e| ∀ e ∈ Γh and qε =

∣∣∣
√

1
2Qε

∣∣∣
2

2
with

| · |2 denoting the matrix norm subordinated to the l2 vector norm on Rd. Notice that δDG(η) corresponds
to the right hand side of [18, Equation (4.8)]. In fact, considering the notation of [18], dεDG(η, ξ) is equal to
Ba(η, ξ) +Bs(η, ξ) and (5.24) follows along the lines of the proof of [18, Lemma 4.3].

Using [18, Lemma 3.2], we obtain for any Ĉ3 > 0

tεDG(η, ξ) + cDG(η, ξ) ≤ ||ξ||DG(ε)

√
τDG(η) ≤

Ĉ3

2
||ξ||2DG(ε) +

1

2Ĉ3

τDG(η), (5.25)

where

τDG(η) :=
∑

K∈Th

γ2
1 ||cε0η||2L2(K) + 2||ηI ||2L2(∂ε

+K∩Γ0
h)

+ 2||ηO||2L2(∂ε
−K\Γ0

h)
,

with γ1 = supx∈G
c(x)−div(bε(x))

(cε0(x))
2 .

For any Ĉ4 > 0, reasoning as in (5.18), it holds

jεDG(η, ξ) ≤ C5(ε)

(
Ĉ4

2
||ξ||2L2(G) +

1

2Ĉ4

||η||2L2(G)

)
≤ C5(ε)

(
Ĉ4

2γε
||ξ||2DG(ε) +

1

2γεĈ4

||η||2DG(ε)

)
.

Choosing positive constants Ĉ1, Ĉ2, Ĉ3 and Ĉ4 sufficiently small, i.e., such that

Ĉ1

2γε
+

Ĉ2

2
+

Ĉ3

2
+

C5(ε)Ĉ4

2γε
=

1

2
, (5.26)

the following result holds

1

2

d

dt
||ξ||2L2(G) +

1

2
||ξ||2DG(ε) ≤ C

(
||∂tη||2L2(G) + δDG(η) + τDG(η) + ||η||2DG(ε)

)
=: ξ̂[η], (5.27)

with

C(ε) = max

(
1

2Ĉ1

,
1

2Ĉ2

,
1

2Ĉ3

,
C5(ε)

2γεĈ4

)
. (5.28)
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Thus, integrating (5.27), since all the above constants are time-independent, we obtain

|||uε − uε
h|||2DG(ε) ≤ |||ξ|||2DG(ε) + |||η|||2DG(ε) ≤

∫ t

0
ξ̂[η](s)ds+ |||η|||2DG(ε).

Therefore the interpolation error estimates in Lemma 5.9 give the claimed result, since ∀t ∈ (0, T ) it holds
∫ t

0
ξ̂[η](s)ds+ |||η|||2DG(ε) ≤ C(ε)

∫ t

0

( ∑

K∈Th

(
1 +

p2

h
+

1

h

)∫

∂K
η2(τ, s)ds+

∫

K
η2(τ,x)dx

+

∫

K
|∇η(τ,x)|2 dx+ h

∫

∂K
|∇η(τ, s)|2 ds+

∫

K
|∂tη(τ,x)|2 dx

)
dτ + ||η(t)||2L2(G)

≤ C(ε)
h2min(p+1,s)−2

p2s−3

(∫ t

0
||uε(τ)||2Hs(G,Th)

+ ||∂tuε(τ)||2Hs(G,Th)
dτ + ||η(t)||2L2(G)

)
.

Remark 5.14. Inequality (5.25) depends on Condition (5.20). In [18, Remark 3.13], the authors comment
on this condition: if it is violated, then the presented analysis yields an error bound that is still optimal with
respect to h but is p-suboptimal. A possible remedy is to supplement the definition of the scheme with a
streamline-diffusion term : this restores the hp optimality. However, our numerical results indicate that the
DG scheme is hp-optimal even if Assumption 5.12 is violated and no streamline-diffusion stabilization term
is added. Assumption 5.12 has been removed in [15, Remark 5.9], replacing b by a suitable projection on the
space of discontinuous piecewise polynomial functions.

Remark 5.15. We choose the stabilization parameter independent of p, i.e., αJ |e = α|e|−1 for any e ∈ Γh,
with α independent of h and p. From the above proof it is clear that setting αJ |e = αp|e|−1 does not affect the
hp-convergence order of the error estimate.

Remark 5.16. Since ||kε||∞ ! ε−(ρ+d) holds for sufficiently small ε, and thus C5(ε) ! |G|ε−ρ−d, we obtain

from condition (5.26) Ĉ4 " ερ+d. Therefore constant C(ε) in (5.28) satisfies C(ε) !
(
ερ+d

)−2
, and thus the

constant C(ε) in (5.21), i.e., in the a priori error estimate, satisfies C(ε) ! ε−(ρ+d) as ε ↓ 0.

Remark 5.17. The norm || · ||DG(ε), and thus norm ||| · |||DG(ε), depend explicitly on ε. In fact, if ε → 0 (and
thus Qε → 0), the H1-part of the norm || · ||DG(ε) tends to zero. Thus the considered norm becomes weaker.
Moreover, as stated in Remark 5.6, when ε → 0 we lose control of the jump term.
If we consider error estimates in the following norms:

||u||2DG :=
∑

K∈Th

(
|u|2H1(K) + ||cε0u||2L2(K) +

1

2
||[u]||2L2(∂ε

−K) +
1

2
||[u]||2L2(∂ε

+K∩Γ0
h)

)
+

∑

e∈Γh

α

|e| ||[u]||
2
L2(e), (5.29)

and

|||u(t)|||2DG := ||u(t)||2L2(G) +

∫ t

0
|||u(s)|||2ds ∀t ∈ [0, T ],

and we assume that σε = max1≤i,j≤d

∣∣(
√
Qε)ij

∣∣ < 1, then Theorem 5.13 implies

||| (uε − uε
h) (t)|||DG ≤ 1

σε
||| (uε − uε

h) (t)|||DG(ε)

≤ C

σε

hmin(p+1,s)−1

ps−
3
2

(
||uε(t)||Hs(G,Th) + ||uε||H1((0,t);Hs(G,Th))

)
.

Remark 5.18. The diffusion term in (5.3) has been discretized according to the so-called NIPG-DG method
(see [33] and Section 5.2 for this terminology). The results stated in this section hold also for the SIPG method,
i.e., setting β = −1 in the DG formulation of the diffusion term. In this case, (5.15) does not hold, since we
have to deal with the additional term −

∫
Γh

{∇w$Qεn}[w]ds. However, using the Cauchy-Schwarz inequality
(see [33, Section 2.7.1]), we obtain a lower bound for this additional term.
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5.4 Finite variation processes

To approximate problem (2.2) when ρ ≥ 1, we have to consider that the integral operator A′
J in (4.7) is only

well-defined for Lipschitz u, because of the singularity of k(x) in x = 0. Thus a Discontinuous Galerkin (DG)
discretization is not directly applicable. However, due to the small-jumps regularization, we can consider a
DG discretization of the regularized problem (4.14).
Note that for processes with finite variation, i.e., 0 < ρ < 1, the small jump regularization is not neces-
sary to obtain a feasible formulation for the application of a DG discretization. In fact, the jump term∫
Rd (φ(x+ y)− φ(x)) k(y) dy is not pointwise well-defined for a discontinuous basis function φ. This is not
necessary for the present algorithm, as a Galerkin formulation with the Dirichlet form of the process is applied
and therefore existence of the integral in a weaker sense is sufficient.

Theorem 5.19. Let AJ be as in (2.4) be an operator of order ρ and let ρ < 1 hold. Then the following
estimate can be proved for φ,ψ ∈ Vh:

aJ(φ,ψ) = (AJ [φ],ψ) < C
∥∥∥φ̃

∥∥∥
Hρ/2(Rd)

∥∥∥ψ̃
∥∥∥
Hρ/2(Rd)

< ∞.

Proof. This follows directly from the continuity of the bilinear form and the embedding Vh ⊂ H̃ρ/2(G).

Remark 5.20. Note that an analogous estimate can be obtained for the bilinear form aGJ (·, ·) in the H̃ρ/2(G).

The small jump regularization is not necessary when finite variation Lévy processes are considered. Note
that this argumentation does not hold if a finite difference discretization is applied. In this case a pointwise
definition of the jump term is necessary and a regularization has to be performed in any case, cf. [12].

5.4.1 DG Formulation

The variational form (5.3) when ε = 0, i.e., when no small jump approximation is considered, reads as follows.
Find uh(t,x) ∈ H1((0, T );Vh) such that ∀ vh ∈ Vh it holds

∫

G
∂tuh(t,x)vh(x)dx+ADG(uh(t,x), vh(x)) = rhsDG(vh(x)), (5.30)

uh(0,x) = ΠpP (x), (5.31)

where for v, w ∈ Vh

ADG(w, v) := tDG(w, v) + rDG(w, v) + jDG(w, v), (5.32)

tDG(w, v) :=
∑

K∈Th

∫

K
b ·∇w vdx−

∫

∂−K
(b · nK)[w]vIds, (5.33)

rDG(w, v) :=

∫

G
cw vdx,

jDG(w, v) := −
∫

Rd

∫

Rd

(w̃(t,y)− w̃(t,x))k(y − x)dy ṽ(x)dx, (5.34)

rhsDG(v) =

∫

G
fvhdx−

∑

K∈Th

∫

∂−K∩∂G
(b · nK)gvIds. (5.35)

Notice that (5.32), (5.33) and (5.34) corresponds to (5.5), (5.8) and (5.11), respectively, when ε = 0.

5.4.2 A priori bound and error estimate

The above formulation is consistent, i.e., the following result holds.

Theorem 5.21. If u is the solution of (4.2), then it satisfies (5.30).

Proof. The proof follows along the lines of the proof of Theorem 5.5.
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Let us now assume that b and c satisfy

(c0)
2(x) := c(x)− 1

2
div(b(x)) > γ > 0 (5.36)

(see Condition (4.1)). Reasoning as in Section 5.3.2, we define the norm || · ||DGFV, for suffiently smooth w,

||w||2DGFV := ||c0w||2L2(G) + ||w||2
H̃ρ/2(G)

+
1

2

∑

K∈Th

||[w]||2L2(∂−K) + ||[w]||2L2(∂+K∩Γ0
h)
. (5.37)

Since we have tDG(w,w) + rDG(w,w) = ||w||2DGFV − ||v||2
H̃ρ/2(G)

and we assume jDG(w,w) ≥ C+
G ||u||2

H̃ρ/2(G)
,

i.e., C−
G = 0 in (4.8), ADG(w,w) ≥ C||w||DGFV holds, for some C > 0 and all w, i.e., the bilinear ADG(·, ·)

form is coercive.

Remark 5.22. Note that the coercivity assumption on jDG(·, ·), i.e., C−
G = 0 in (4.8), is not restrictive as we

may use the following transformation v(t,x) = e−tC−
Gu(t,x) to obtain a coercive bilinear form in the equation

satisfied by v. See [30, Section 11.1.1] for details.

The following a priori bound and error estimate hold.

Theorem 5.23. Let uh be the solution of (5.30), then

||uh(T, ·)||2L2(G) +

∫ T

0
||uh(t, ·)||2DGFVdt ≤ C



||f ||2L2((0,T );L2(G)) +
∑

e∈Γ0
h

1

|e| ||g||
2
L2((0,T );L2(e))



+ ||ΠpP ||2L2(G).

Proof. The proof follows along the lines of the proof of Theorem 5.8.

Theorem 5.24. Let us define the DG norm

|||w(t)|||2DGFV = ||w(t)||2L2(G) +

∫ t

0
||w(s)||2DGFVds ∀t ∈ (0, T ),

where, for ease of notation, we set w(t) := w(t, ·), and u and uh be the solution of (4.2) and (5.30), respectively,
then

||| (u− uh) (t)|||DGFV ≤ C
hmin(p+1,s)−1/2

ps−1/2

(
||u(t)||Hs(G,Th)

+ ||u||H1((0,t);Hs(G,Th))

)
(5.38)

∀t ∈ [0, T ].

Proof. Reasoning as in the proof of Theorem 5.13, we obtain

|||u− uh|||2DGFV ≤
∫ t

0
|∂tη|2 + τDG(η) + ||η||2DGFVds

and the result follows from interpolation estimates.

Remark 5.25. In the case of vanishing reaction and transport terms, we obtain an analogous result to Theorem
5.24, considering the norm || · ||DGFV′ := || · ||H̃ρ/2(G). The following estimate holds in this case

||u− uh(t)||2L2(G) +

∫ t

0
||u− uh(s)||2DGFV′ds ≤ C

hmin(p+1,s)−ρ/2

ps−ρ/2

(
||u(t)||Hs(G,Th)

+ ||u||H1((0,t);Hs(G,Th))

)
.
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6 Implementational Aspects

In the following we discuss in more detail some implementational issues for the DG finite element methods for
the Lévy generator (2.4). We consider the one dimensional bilinear form:

aJ(u, v) = −
∫

Rd

∫

Rd

(ũ(x+ y)− ũ(x))k(y)ṽ(x) dx dy

=

∫

R

∑

K∈Th

∫

K
ũ′(y)k(−1)(y − x)dy ṽ(x)dx−

∫

R

∑

K∈Th

∫

∂K
(ũI(s)− ũ(x))nk(−1)(s− x)ds ṽ(x)dx

=
∑

K′∈Th

∫

∂K′

∑

K∈Th

∫

K
ũ′(y)k(−2)(y − s)dy ṽ(s)nds−

∑

K′∈Th

∫

K′

∑

K∈Th

∫

K
ũ′(y)k(−2)(y − x)dy ṽ′(x)dx

−
∫

R

∑

K∈Th

∫

∂K
(ũI(s)− ũ(x))nk(−1)(s− x)ds ṽ(x)dx,

where k(−i)(x) is given in (5.12). Note that the limits limε↑0 k(−2)(ε) and limε↓0 k(−2)(ε) are finite, but might
not coincide, if the process exhibits asymmetric tail behavior. On the other hand limε→0 k(−1)(ε) does not
necessarily exist. Hence, the application of a standard quadrature rule, e.g., Gauss quadrature, is not feasible.
We therefore employ a composite Gauss quadrature rule to compute the arising integrals, c.f. [9] and [36] for
more details.
We remark that most of the computation time is used for the assembly of the system matrices, which can be
trivially parallelized, as the matrix entries are independent of each other.
For the error analysis we have to evaluate fractional Sobolev norms, this was done by a representation of the
corresponding function in a Riesz basis of the corresponding Sobolev space.

7 Numerical Examples

In the following we present numerical examples in one space dimension confirming the analytical results
obtained in the previous sections. The Lévy measure we use in the following is a CGMY jump measure.

Example 7.1. We consider the tempered stable process (for c = c+ = c− also called CGMY process in [7]
or KoBoL in [5]) which has a Lévy density of the form

ν(dz) =

(
c+

e−β+|z|

|z|1+α 1{z>0} + c−
e−β−|z|

|z|1+α 1{z<0}

)
dz, (7.1)

for c+, c−,β+,β− > 0 and 0 ≤ α < 2.

Remark 7.2. Note that we obtain a finite variation process for ρ = α < 1 and an infinite variation process
for ρ = α ≥ 1, with ρ as in Assumption 4.1.

Different choices for the drift b(x) will be considered in the following test problem:

Au = f for x ∈ G = (0, 1), u = 0 for x ∈ ∂G = {0, 1},

where A will be the corresponding Lévy operator and we choose f such that u = x2(x− 1)2.
Let A be the pure jump operator with a CGMY jump density and parameters given as α ∈ {0, 0.5}, β− =
β+ = 5, C = 1. The convergence rates can be observed in Figure 1, where the error has been measured in
the H̃α/2 ((0, 1))-norm. Note that in Figure 1.(a) we additionally employ the small jump approximation as
described in Section 3 and approximate the Lévy process Y by Y ε. The figure supports the theoretical results
(see Remark 5.25) and it can be observed that the truncation error dominates the discretization error for fine
discretization levels and large truncation parameters. In Figure 2 we consider the same equation with a drift
term and observe the convergence rates in the DG-norm || · ||DGFV, defined in (5.37), when artificial diffusion
is not considered. We choose b(x) = 20 − 20x. The results are analogous to the driftless case and confirm
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(a) CGMY model with α = 0.5 and small jump truncation.

H̃0.25-error.

(b) CGMY model with α = 0 (Variance Gamma). L2-error

Figure 1: Convergence rates for different Lévy measures

Figure 2: Convergence rates for CGMY jump measure with α = 0.5 (drift dominance). DG-error.

the error estimates of Theorem 5.24 when ε ≡ 0 , i.e., the truncation of the small jumps does not affect the
solution. In Figure 3 we consider the same problem adding artificial diffusion. The convergence rates in the
DG-norm || · ||DG(ε), defined in (5.16), obtained numerically agree with the theoretical results of Theorem 5.13.

Remark 7.3. We show the order of convergence of the time-independent problem in Figures 1-3, since for
this case an exact solution is known. Theorems 5.13 and 5.24 present a priori error estimates for the time-
dependent case in the ||| · |||DG(ε) and ||| · |||DGFV norm, respectively. However, the || · ||DG(ε) (|| · ||DGFV) error
for the time-independent problem has the same order of convergence of the ||| · |||DG(ε) (||| · |||DGFV) error of
the corresponding time-dependent problem. This can be easily shown along the lines of the proofs of Theorems
5.13 and 5.24.

Now we consider the dependence of the solution on the regularization parameter ε. In the driftless case
we observe the behavior presented in Figure 4, which confirms the results of Theorem 3.7 and Remark 3.8.
We either only truncate the jump measure on the interval (−ε, ε) or add an appropriately scaled diffusion as
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Figure 3: Convergence rates for CGMY jump measure with α = 0.5 and artificial diffusion (drift dominance).
DG-error.

described in Theorem 3.1. Note that in order to observe a convergence behavior in ε, we have to choose a
sufficiently fine discretization, such that the discretization error is negligible in comparison with the truncation
error. For the more general case we have to refer to the result in Theorem 3.11. We consider the same Lévy

(a) CGMY model with small jump truncation without artifi-
cial diffusion.

(b) CGMY model with small jump truncation with artificial
diffusion.

Figure 4: Convergence rates in ε for CGMY jump measure with α = 0.5. L2-error.

kernel as above with the drift component b(x) = 20− 20x. The numerical results are depicted in Figure 5 and
confirm the estimate in Theorem 3.11. The results suggest that the estimates are optimal.

Finally we present a parabolic test case. We consider a pure transport operator with drift b(x) = 10− 10x
and a Lévy operator with the same drift and the Lévy kernel chosen as above (Figure 6).
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Lévy Models, SIAM Journal of Numerical Analysis, Vol. 43-4 (2005), pp. 1596-1626.

[13] Eberlein E. Application of Generalized Hyperbolic Lévy Motions to Finance, Lévy Processes: Theory and
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Freiburg, 2010, http://www.freidok.uni-freiburg.de/volltexte/7724/pdf/Glau_Dissertation.pdf.

[17] Hilber N., Stabilized Wavelet Method for Pricing in High Dimensional Stochastic Volatility Models, ETH
Dissertation No. 18176, 2009, http://e-collection.ethbib.ethz.ch/view/eth:41687.
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