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Lp AND ALMOST SURE CONVERGENCE OF A MILSTEIN SCHEME
FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

ANDREA BARTH AND ANNIKA LANG

Abstract. In this paper, Lp convergence and almost sure convergence of the Milstein ap-
proximation of a partial differential equation of advection-diffusion type driven by a multi-
plicative continuous martingale is proven. The (semidiscrete) approximation in space is a
projection onto a finite dimensional function space. The considered space approximation has
to have an order of convergence fitting to the order of convergence of the Milstein approxi-
mation and the regularity of the solution. The approximation of the driving noise process is
realized by the truncation of the Karhunen–Loève expansion of the driving noise according
to the overall order of convergence. Convergence results in Lp and almost sure convergence
bounds for the semidiscrete approximation as well as for the fully discrete approximation are
provided.

1. Introduction

The numerical study of stochastic partial differential equations is a relatively recent topic.
This is in contrast with the abundance of research (see e.g. [24]) that has been conducted for
real-valued stochastic differential equations or partial differential equations (e.g. [5, 13, 36]).
In contrast to partial differential equations, for stochastic partial differential equations we
have different notions of convergence. Pathwise convergence plays a central role in filtering
theory and other phenomena in physics. For instance, the strong convergence of the second
moment gives a bound for the expected error. The strong convergence of higher moments,
and not only of the variance, is for pathwise approximations essential.

For a numerical treatment of stochastic partial differential equations, approximation has to
be done in space, in time, and possibly of the driving noise process. In this paper, we study a
Milstein scheme for the time approximation of the solution of a stochastic partial differential
equation of the form

(1.1) dX(t) = (A+B)X(t) dt+G(X(t)) dM(t), X(0) = X0.

Here, M is a continuous, square integrable martingale with values in a separable Hilbert
space U . Probably the most popular example of such stochastic processes are Wiener pro-
cesses. The linear operators A and B act on a dense subset of a separable Hilbert space H and
the linear operator G is a mapping from H into the linear operators from U to H (detailed
definitions and properties of A, B, and G are given in the next section).

Date: July 2, 2012.
Key words and phrases. Stochastic partial differential equation, Lp convergence, almost sure convergence,

Milstein scheme, Galerkin method, Finite Element method, backward Euler scheme, advection-diffusion
equation.
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2 BARTH AND LANG

Approximation schemes, like the Euler–Maruyama or Milstein scheme, are approximations
of the stochastic integral of a stochastic differential equation which are derived from the Itô–
Taylor expansion (see [24]). The Euler–Maruyama scheme has strong convergence of order
O(

√
kn), where kn denotes the time discretization step size, while the corresponding Milstein

scheme converges with order O(kn). In [28, 29], a Milstein scheme was derived for a stochastic
partial differential equation as introduced here, but driven by a Q–Wiener process W . The
authors showed that the approximation, which was obtained by recursive insertion of the mild
form of the stochastic partial differential equation, converges in L2 and almost surely of order
O(kn). They derive a Milstein scheme which has two more terms than the Euler–Maruyama
scheme. Here, we show that only one additional term is needed to derive the Milstein scheme
from the Euler–Maruyama scheme. The same estimates apply to the calculations in [28, 29]
as remarked in [20]. Like in the case of a real-valued stochastic differential equation, a term
treating the iterated stochastic integrals has to be added. In this paper, we use a similar
scheme for the time discretization, where the driving noise is a continuous, square integrable
martingale.

For the approximation in space, we project the solution on a finite dimensional subspace
of the infinite dimensional solution space H. This approach can be numerically realized by
a Galerkin projection. These approximations are typically implemented as Finite Element
methods. So far Galerkin methods are mainly used for partial differential equations (cf. [36, 13,
35]) but first applications to stochastic partial differential equations have been done e.g. in [2,
6, 8, 9, 26] and references therein. The approximation of mild solutions with colored noise has
been treated e.g. in [2, 14, 17, 18, 25, 27, 28, 30, 38] and references therein. First approaches
to higher order approximation schemes using Taylor expansions were done e.g. in [19] with
additive space-time white noise. Galerkin methods lead to pathwise approximations, also
called strong approximations. Here, we combine this type of discretization with a higher
order time discretization. Those approximations exhibit high order of convergence of the
fully discrete Milstein approximation, while the regularity assumptions are minimal.

In most of these references, parabolic equations with (possibly) nonlinear terms are studied.
Here we study an advection-diffusion type equation. An additive nonlinearity would not give
rise to any additional difficulty in the approximation, as long as certain linear growth and
Lipschitz conditions are fulfilled and the driving noise process is a continuous martingale.

The main result in this paper is: Assume that Equation (1.1) is approximated by a scheme
which converges for the corresponding homogeneous, parabolic, deterministic problem with

accuracy O((h + k1/2n )α), for α ∈ N, to the solution of the homogeneous problem. Here,
h denotes the space discretization step size and α is a regularity parameter. Then, the

approximated stochastic partial differential equation converges with order O(hα+kmin(α/2,1)
n )

in Lp. Further, it converges almost surely to the mild solution of Equation (1.1) with order
O((h2 + kn)1−ε) for any ε > 0 and the optimal choice α = 2. Namely, we prove convergence
results with minimal regularity assumptions on the initial condition. Higher regularity leads
to higher order of convergence up to a convergence of order O(kn) in time, which is the
maximal convergence of a Milstein approximation.

The advection-diffusion type of the equation studied in this paper appears, among various
phenomena in physics, in the study of Zakai’s equation (cf. [39]). The stochastic partial
differential equation of Zakai type, which was introduced by Zakai for a nonlinear filtering
problem, reads, extended to continuous square integrable martingales,

(1.2) dut(x) = L∗ut(x) dt+G(ut(x)) dMt(x).
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In the framework of this paper, the equation is considered on a bounded domain D ⊂ Rd,
with zero Dirichlet boundary conditions on the Lipschitz boundary ∂D and initial condition
u0(x) = v(x). L∗ is a second order elliptic differential operator of the form

L∗u =
1

2

d∑

i,j=1

∂i∂jaiju−
d∑

i=1

∂ifiu,

for u ∈ C2
c (D) and it can be split into the operators A and B in Equation (1.1) for convenience

of possible simulations. Originally, the operator G in Equation (1.2) denotes a pointwise
multiplication with a suitable function g ∈ H. This setting is included in the more general
assumptions on G in Equation (1.1), which we introduce in detail in the next section.

This work is organized as follows: Section 2 sets up the framework of this paper and
contains a detailed analysis of Equation (1.1). The introduction of the used discretization
schemes for the space, time, and noise approximation is given in Section 3. In Section 4,
a proof that the semidiscrete approximation (discretized in space) converges in Lp of order
O(hα) and almost surely of order O(hα−ε) is provided. To have a more general result, we derive
convergence rates in dependence of a regularity parameter α. Finally, Lp convergence of order

O(hα+kmin(α/2,1)
n ) of the fully discrete Milstein type scheme including the noise approximation

is proven in Section 5, as well as almost sure convergence of order O((h2 + kn)1−ε).

2. Framework

Let H denote the Hilbert space L2(D), where D ⊂ Rd, d ∈ N, is a bounded domain
with piecewise smooth boundary ∂D and let the subspaces Hα be the corresponding Sobolev
spaces for α ∈ N and Hα

0 those with elements that satisfy zero Dirichlet boundary conditions,
respectively. To simplify the notation we set for α = 0, H0 = H. We are interested in
developing a numerical algorithm to estimate the solution of the stochastic partial differential
equation

(2.1) dX(t) = (A+B)X(t) dt+G(X(t)) dM(t)

on the time interval τ := [0, T ], where T < +∞, with initial condition X(0) = X0 and
zero Dirichlet boundary conditions on ∂D. M is a continuous, square integrable martingale
on a filtered probability space (Ω,F , (Ft)t≥0,P), which satisfies the “usual conditions”, with
values in a separable Hilbert space (U, (·, ·)U ). The space of all continuous, square integrable
martingales on U with respect to (Ft)t≥0 is denoted by M2

c(U). We restrict ourselves to the
following class of square integrable martingales

M2
b,c := {M ∈ M2

c(U) : ∃Q ∈ L+
1 (U) s.t. ∀t ≥ s ≥ 0, 〈〈M,M〉〉t − 〈〈M,M〉〉s ≤ (t− s)Q},

where L+
1 (U) denotes the space of all linear, nuclear, symmetric, nonnegative-definite opera-

tors acting on U . The operator angle bracket process 〈〈M,M〉〉t is defined as

〈〈M,M〉〉t :=
∫ t

0
Qs d〈M,M〉s,

where 〈M,M〉t denotes the unique angle bracket process from the Doob–Meyer decomposition.
The process (Qs, s ≥ 0) is called the martingale covariance.

Since Q ∈ L+
1 (U), there exists an orthonormal basis (en, n ∈ N) of U consisting of eigenvec-

tors of Q. Therefore we have the representation Qen = γnen, where γn ≥ 0 is the eigenvalue
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corresponding to en. The square root of Q is defined as

Q1/2ψ :=
∑

n

(ψ, en)U γ1/2n en,

for ψ ∈ U , and Q−1/2 is the pseudo inverse of Q1/2. Let us denote by (H, (·, ·)H) the Hilbert
space defined byH := Q1/2(U) endowed with the inner product (ψ,φ)H = (Q−1/2ψ, Q−1/2φ)U ,
for ψ,φ ∈ H. Let LHS(H, H) refer to the space of all Hilbert–Schmidt operators from H to
H and ‖ · ‖LHS(H,H) denote the corresponding norm. The canonical example of a process that
belongs to M2

b,c is a Q-Wiener process, but, in general, a stochastic covariance process would
be possible.

In what follows, we introduce a Burkholder–Davis–Gundy type inequality as a general-
ization of the Itô isometry for square integrable martingales of class M2

b,c. Let L2
H,τ (H) :=

L2(Ω × τ ; LHS(H, H)) be the space of integrands, defined over the probability space (Ω ×
τ, Pτ , P ⊗ dλ), where Pτ denotes the σ–field of predictable sets in Ω × τ and dλ is the
Lebesgue measure. Then, by Equation (1.6) in [16], we have as a generalization of Propo-
sition 8.16 in [33], for p > 0 and for every Ψ ∈ L2

H,τ (H), a Burkholder–Davis–Gundy type
inequality

(2.2) E
(
sup
t∈τ

‖
∫ t

0
Ψ(s) dM(s)‖pH

)
≤ Cp E

(
(

∫ T

0
‖Ψ(s)‖2LHS(H,H) ds

)p/2)
.

For a full introduction to Hilbert-space-valued stochastic differential equations, we refer the
reader to [33, 11, 7, 34].

The operators A and B in Equation (2.1) are defined as follows. We assume that the
functions aij , for i, j = 1, . . . , d, are twice continuously differentiable on D with continu-
ous extension to the closure D̄. The operator A is the unique self-adjoint extension of the
differential operator

1

2

d∑

i,j=1

∂i(aij ∂ju), u ∈ C2
c (D).

B is a first order differential operator given by

Bu :=
d∑

i=1

∂i(biu), u ∈ C1
c (D),

with elements bi that are defined as

bi :=
1

2

d∑

j=1

∂jaij − fi,

where the functions fi, i = 1, . . . , d, are continuously differentiable on D with continuous
extension to D̄. Defined this way, we also include the differential operator L∗ in Equation (1.2).

With the following assumptions, the right hand side of Equation (2.1) is well defined and
its solution has certain regularity properties which are shown later. From here on, let the
smoothness parameter α ∈ N be fixed.

Assumption 2.1. The coefficients of A and B, the operator G, and the initial condition X0

satisfy the following conditions:

(a) For i, j = 1, . . . , d, the elements aij belong to C
α+1
b (D) and fi to Cα

b (D) with continuous
extensions to D̄,
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(b) there exists δ > 0 such that for all x ∈ D and ξ ∈ Rd

d∑

i,j=1

aij(x)ξiξj ≥ δ‖ξ‖2Rd ,

(c) X0 is F0–measurable and E(‖X0‖pHα) < +∞ for chosen p > 0,
(d) G is a linear mapping from H into L(U,H) that satisfies for C > 0 that for 0 ≤ β ≤ α

and φ ∈ Hβ

‖G(φ)‖LHS(H,Hβ) ≤ C ‖φ‖Hβ .

Assumption 2.1(b) implies that the operator A is dissipative, see e.g. [23]. Then, by the
Lumer–Phillips theorem, e.g. [12], A generates a strongly continuous contraction semigroup
on H which we denote by S = (S(t), t ≥ 0). Furthermore, by Corollary 2 in [22], S is analytic
in the right half-plane. Therefore, fractional powers of −A are well defined, cf. [12], and we
denote for simplicity A−β = (−A)−β and Aβ = A−1

−β for β > 0.
In this context we shall make use of the following lemma — whose statement is also known

as Kato’s conjecture — which was proven in [1].

Lemma 2.2. The domain of A1/2 is D(A1/2) = H1
0 and the norm ‖A1/2 · ‖H is equivalent to

‖ · ‖H1, i.e., there exists C > 0 such that

‖A1/2 φ‖H ≤ C ‖φ‖H1 and ‖φ‖H1 ≤ C ‖A1/2 φ‖H ,

for all φ ∈ H1.

To simplify the notation in the preceding, we introduce the following norm for an H-valued
random variable Φ with finite p-th moment

‖Φ‖H,Lp :=
(
E
(
‖Φ‖pH

))1/p
.

Furthermore, we abbreviate for p > 0 the norm in C(τ ;Lp(Ω;H)) with

‖Ψ‖H,Lp,∞τ := sup
t∈τ

‖Ψ(t)‖H,Lp

and the one in Lp(Ω;C(τ ;H)) with

‖Ψ‖H,∞τ ,Lp := E
(
sup
t∈τ

‖Ψ(t)‖pH
)1/p

,

for a stochastic process Ψ = (Ψ(t), t ∈ τ) with finite p-th moment for all t ∈ τ . For φ : τ → H,
we set

‖φ‖H,∞τ := sup
t∈τ

‖φ(t)‖H ,

accordingly. We refer to subintervals of τ by τs := [0, s] for s ≤ T .
Assumption 2.1 also implies by results in Chapter 9 in [33], that Equation (2.1) has a

unique mild solution in Hα, i.e.,

‖X(t)‖Hα,L2,∞[0,T ]
< +∞,

for all T ∈ (0,+∞), and the stochastic partial differential equation can be rewritten for all
t > 0 in mild form

(2.3) X(t) = S(t)X0 +

∫ t

0
S(t− s)BX(s) ds+

∫ t

0
S(t− s)G(X(s)) dM(s).
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Those assumptions even ensure that Equation (2.1) has a unique strong solution in H2 by
Theorem 2.3 in [31]. Furthermore, we have similarly to [15, 37, 16] that Equation (2.2) implies
for all Ψ ∈ L2

H,τ (H)

(2.4) ‖
∫ t

0
S(t− s)Ψ(s) dM(s)‖pH,∞τ ,Lp ≤ Cp E

(
(

∫ T

0
‖Ψ(s)‖2H ds)p/2

)
.

Before we introduce the approximation schemes, we provide two lemmas on the properties of
the solution of Equation (2.1) that are needed in later proofs. The first gives some insight
on the space regularity of the mild solution. Under certain regularity assumptions on the
initial condition of the stochastic partial differential equation, we have regularity of the mild
solution. The second lemma gives a regularity result for the mild solution in time, i.e., Hölder
continuity of order 1/2 is shown. This result is necessary for the convergence proof of the
approximation schemes.

Lemma 2.3. Under Assumptions 2.1, the mild solution satisfies for p > 0 and β ≤ α

‖X‖Hβ ,Lp,∞τ
≤ ‖X‖Hβ ,∞τ ,Lp < +∞.

Proof. From here on, C denotes varying constants depending on p and T . We consider p > 2,
for p ≤ 2 the result follows by Hölder’s inequality. We estimate

‖X‖p
Hβ ,∞τ ,Lp = ‖S(t)X0 +

∫ t

0
S(t− s)BX(s) ds+

∫ t

0
S(t− s)G(X(s)) dM(s)‖p

Hβ ,∞τ ,Lp

≤ C
(
‖X0‖pHβ ,Lp + ‖

∫ t

0
S(t− s)BX(s) ds‖p

Hβ ,∞τ ,Lp

+ ‖Aβ/2

∫ t

0
S(t− s)G(X(s)) dM(s)‖pH,∞τ ,Lp

)

≤ C
(
‖X0‖pHβ ,Lp + E(sup

t∈τ
(

∫ t

0
‖S(t− s)BX(s)‖Hβ ds)p)

+ E((
∫ T

0
‖Aβ/2G(X(s))‖2LHS(H,H) ds)

p/2)
)

≤ C
(
‖X0‖pHβ ,Lp + E(sup

t∈τ
(

∫ t

0
(t− s)−1/2‖X(s)‖Hβ ds)p)

+ E((
∫ T

0
‖X(s)‖2Hβ ds)

p/2)
)

≤ C
(
‖X0‖pHβ ,Lp + 2

∫ T

0
‖X‖p

Hβ ,∞τs ,L
p ds

)
,

where we used the boundedness of the contraction semigroup in the first and Equation (2.4) in
the second step, Lemma 2.2, Theorem 6.13 in [32], and the definition of the Bochner integral
in the third one, and Hölder’s inequality in the fourth. Finally, we apply Gronwall’s inequality
which yields

‖X‖p
Hβ ,∞τ ,Lp ≤ C ‖X0‖pHβ ,Lp exp(2CT ) < +∞,

since ‖X0‖Hβ ,Lp is finite by Assumption 2.1(c). !
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Lemma 2.4. If X is the mild solution of Equation (2.1), then for p > 2 and 0 ≤ r ≤ R ≤ T

‖X(R)−X(r)‖pH,Lp ≤ C ‖X‖pH1,Lp,∞τ
(R− r)p/2.

Proof. We employ Assumption 2.1, Theorem 6.13 in [32], Equation (2.4), and Lemma 2.2 to
estimate

‖X(R)−X(r)‖pH,Lp ≤ 3p−1
(
‖(S(R− r)− 1)X(r)‖pH,Lp + ‖

∫ R

r
S(R− s)BX(s) ds‖pH,Lp

+ ‖
∫ R

r
S(R− s)G(X(s)) dM(s)‖pH,Lp

)

≤ C
(
‖A1/2X(r)‖pH,Lp + 2 · ‖X‖pH,Lp,∞τ

)
(R− r)p/2

≤ C ‖X‖pH1,Lp,∞τ
(R− r)p/2. !

3. Approximation schemes

In this section, we derive a semidiscrete and a fully discrete approximation scheme for
Equation (2.1). The convergence properties of these schemes are proven in Section 4 and 5.

To derive a semidiscrete form of Equation (2.1) first, we project H onto a finite dimensional
subspace Vh of H, for instance a Finite Element space. This can for example be done by
first discretizing D by a triangulation defined over a finite number of points. Then, let
(Sh, h > 0) denote a family of Finite Element spaces, consisting of piecewise linear, continuous
polynomials with respect to the family of triangulations (Th, h > 0) of D, with mesh width
h, such that Sh → H for h → 0 and furthermore Sh ⊂ H1

0 (D) for h > 0. In the general
framework, let V := (Vh, h > 0) be a family of finite dimensional subspaces of H1

0 with
refinement sizes h, H-orthogonal projection Ph and norm derived from H. For h → 0 the
sequence V is supposed to be dense in H in the following sense: For all φ ∈ H it holds that

lim
h→0

‖Phφ− φ‖H = 0.

The semidiscrete problem is to find Xh(t) ∈ Vh such that for t ∈ τ

dXh(t) = (Ah + PhB)Xh(t) dt+ PhG(Xh(t)) dM(t), Xh(0) = PhX0.

Here, we define the approximate operator Ah : Vh → Vh through the bilinear form

(Ahϕh,ψh)H = BA(ϕh,ψh) :=
d∑

i,j=1

(aij∂jϕh, ∂iψh)H ,

for all ϕh,ψh ∈ Vh. The operator Ah is the generator of an analytic semigroup Sh = (Sh(t), t ≥
0) defined formally by Sh(t) = exp(tAh), for t ≥ 0. The semidiscrete mild solution is then
given by

(3.1) Xh(t) = Sh(t)PhX0 +

∫ t

0
Sh(t− s)PhBXh(s) ds+

∫ t

0
Sh(t− s)PhG(Xh(s)) dM(s).

By Assumption 2.1, Sh is self-adjoint, positive-semidefinite on H and positive-definite on Vh.
We prove in Section 4 that Equation (3.1) converges in Lp and almost surely to the mild
solution of Equation (2.3) with order O(hα) resp. O(hα−ε), for any ε > 0.

For the time approximation, we introduce a combination of a first order time stepping
method, e.g., a backward Euler approximation, and a Milstein scheme. To this end, we
consider, for n ∈ N, equidistant partitions 0 = tn0 < . . . < tnn = T of the interval τ with step
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size kn := T/n. We set Tn = {tnj , j = 0, . . . , n} and refer to the norm C(Tn;H) with the
subscript ∞Tn . For i < n, the subset {tnj , j = 0, . . . , i} of Tn is denoted by Tn

i . For n ∈ N, we
define the map πn : τ → {tnj , j = 0, . . . , n} by πn(s) = tnj , if t

n
j ≤ s < tnj+1. Furthermore, we

set ιn(j) = tnj for j = 0, . . . , n. Then, ιn is a bijective map and κn = ι−1
n ◦πn is well defined and

gives for t ∈ τ the index of the next smaller grid point in Tn. The approximations introduced
in the following and its convergence results also apply to nonequidistant partitions as used
in [3], but for the sake of simplicity, we present here an equidistant time stepping. Inserting
Equation (2.3) recursively into itself yields

X(tnj+1) = S(tnj+1 − tnj )X(tnj )

+

∫ tnj+1

tnj

S(tnj+1 − s)B
(
S(s− tnj )X(tnj )

+

∫ s

tnj

S(s− r)BX(r) dr +

∫ s

tnj

S(s− r)G(X(r)) dM(r)
)
ds

+

∫ tnj+1

tnj

S(tnj+1 − s)G
(
S(s− tnj )X(tnj )

+

∫ s

tnj

S(s− r)BX(r) dr +

∫ s

tnj

S(s− r)G(X(r)) dM(r)
)
dM(s).

(3.2)

To provide some intuition regarding the structure of the approximation, we analyze the follow-
ing deterministic partial differential equation with source term following [36]. We demonstrate
the method for a backward Euler time stepping scheme. We remark that we are not restricted
to this time stepping scheme; any scheme fulfilling certain approximation properties, as spec-
ified in Equations (4.1), resp. (5.1) could be used. For simplicity, we omit details on the
boundary or initial conditions, since the following are just heuristics. Consider

dX(t)

dt
= AX(t) + f(X(t)).

The time derivative is approximated by

dX(t)

dt
≈

Xn
j+1 −Xn

j

kn

and AX(t) on the right hand side by

AX(t) ≈ AXn
j+1,

where Xn
j := X(tnj ), for j = 0, . . . , n. The source term is approximated by

f(X(t)) ≈ f(Xn
j ),

which is called linearization. Overall the scheme takes the following form:

Xn
j+1 −Xn

j

kn
= AXn

j+1 + f(Xn
j ),

which can be transformed into

Xn
j+1 = r(knA)Xn

j + kn r(knA)f(Xn
j ).
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Here, r denotes the rational approximation of the semigroup which is given by r(λ) := (1 −
λ)−1, for λ 2= 1. If we apply this approximation scheme in projected form to Equation (3.2),
we may write

Xn
j+1 = r(knAh)X

n
j +

∫ tnj+1

tnj

r(knAh)PhBXn
j ds

+

∫ tnj+1

tnj

r(knAh)PhG(Xn
j ) dM(s)

+

∫ tnj+1

tnj

(
r(knAh)PhG

(∫ s

tnj

G(Xn
j ) dM(r)

))
dM(s).

(3.3)

The three terms from Equation (3.2)
∫ tnj+1

tnj

S(tnj+1 − s)B

∫ s

tnj

S(s− r)G(X(r)) dM(r) ds,

∫ tnj+1

tnj

S(tnj+1 − s)B

∫ s

tnj

S(s− r)BX(r) dr ds,

∫ tnj+1

tnj

S(tnj+1 − s)G
(∫ s

tnj

S(s− r)BX(r) dr
)
dM(s)

have been omitted since they for themselves converge as fast as the overall achieved conver-
gence rate of the approximation scheme, which is shown in Section 5. There, we prove that
this approximation converges in Lp and almost surely to the mild solution of Equation (2.1)

with order O(hα + kmin{α/2,1}
n ) resp. O((h2 + kn)1−ε), for all ε > 0 and the optimal choice

α = 2. Equation (3.3) can be rewritten with respect to the functions πn and κn, which were
introduced with the time discretization, by

Xn
κn(t) = r(knAh)X

n
κn(t)−1 +

∫ πn(t)

πn(t)−kn

r(knAh)PhBXn
κn(t)−1 ds

+

∫ πn(t)

πn(t)−kn

r(knAh)PhG(Xn
κn(t)−1) dM(s)

+

∫ πn(t)

πn(t)−kn

(
r(knAh)PhG

(∫ s

πn(t)−kn

G(Xn
κn(t)−1) dM(r)

))
dM(s)

= r(knAh)
κn(t)PhX0 +

∫ πn(t)

0
r(knAh)

κn(t)−κn(s)PhBXn
κn(s) ds

+

∫ πn(t)

0
r(knAh)

κn(t)−κn(s)PhG(Xn
κn(s)) dM(s)

+

∫ πn(t)

0

(
r(knAh)

κn(t)−κn(s)PhG
(∫ s

πn(s)
G(Xn

κn(s)) dM(r)
))

dM(s),

for all t ∈ [kn, T ].
Note that all random variables involved in Equation (3.3) can be simulated in the following

way. If U = H and Vh contains a finite subset of the eigenbasis ofM , the noise is automatically
finite dimensional. Otherwise this approximation might not be suitable for simulations. In [4],
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it is shown for a class of Lévy processes which choices of noise approximations imply that the
overall order of convergence is preserved. We follow this approach here. Therefore, let

〈〈M,M〉〉t − 〈〈M,M〉〉s = (t− s)Q,

i.e., M is a Q-Wiener process (see [33, 21]). Let us denote the Itô integral to be simulated by
∫ b

a
PhΨ(s) dM(s)

with a < b, a, b ∈ τ and Ψ ∈ L2
H,τ (H). This expression can be rewritten using the Karhunen–

Loève representation of M , to
∞∑

i=1

√
γi

∫ b

a
PhΨ(s)ei dMi(s).

Here, the elements γi denote the eigenvalues of the covariance operator Q and ei the corre-
sponding eigenfunctions. To evaluate this expression, we might have to simulate an infinite
number of continuous one-dimensional martingalesMi. One possibility to overcome this prob-
lem is to approximate the infinite dimensional process by a truncation of the series expansion,
i.e., set

Mκ(t) :=
κ∑

i=1

√
γiMi(t) ei.

Let (Mκ,κ ∈ N) be the sequence of truncated series expansions with covariance Qκ that
converges almost surely to the martingale M with covariance Q. We set

M cκ(t) := M(t)−Mκ(t) =
∞∑

i=κ+1

√
γiMi(t) ei

with covariance Qcκ := Q −Qκ, which converges almost surely to zero. This implies for the
Itô integral of Ψ ∈ L2

H,τ (H) that
∫ b

a
Ψ(s) dM(s)−

∫ b

a
Ψ(s) dMκ(s) =

∫ b

a
Ψ(s) dM cκ(s).(3.4)

This difference converges to zero depending on the decay of the eigenvalues (γi, i ∈ N), which
is shown in the following lemma. We omit the proof, since it is equivalent to Lemma 3.1
in [4].

Lemma 3.1. If ‖Ψ‖L(U,H),∞[a,b],Lp < +∞ and there exist constants Cν , C, µ > 0 and ν > 1

such that the eigenvalues satisfy γi ≤ Cν i−ν and κ ≥ C h−µ, then

E( sup
t∈[a,b]

‖
∫ t

a
Ψ(s) dM(s)−

∫ t

a
Ψ(s) dMκ(s)‖pH) ≤ Cp h

µ(ν−1)p
2 ,

for a constant Cp.

We use Lemma 3.1 to derive an error bound for the approximation of the Milstein term in
Equation (3.3)

(3.5)

∫ tnj+1

tnj

(
r(knAh)PhG

(∫ s

tnj

PhG(Xn
j ) dM(r)

))
dM(s).
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To simplify the notation we introduce the separable Hilbert spaces H and U . The Hilbert
space H is for example L2(D) or some approximation space Vh. Further, we consider a linear
map Γ : H → L(U,H) satisfying Assumption 2.1(d) for β = 0 and the norm in L(U,H). In
addition, we have a bounded map σ : τ → L(H,H). For 0 ≤ a < b ≤ T and an H-valued
adapted stochastic process ψ = (ψ(t), t ∈ τ), we rewrite Equation (3.5) more generally as

∫ b

a
σ(a)Γ

(∫ s

a
Γ(ψ(a)) dM(r)

)
dM(s).

The following error bound is proven similarly to Lemma 4.2 in [3].

Lemma 3.2. For n ∈ N, let σ : Tn → L(H,H), Γ : H → LHS(H, H) be linear and satisfy
Assumption 2.1(d) for β = 0 and the norm in L(U,H) as well as

Γ(Γ(ψ)ei)ej = Γ(Γ(ψ)ej)ei,

for i, j ∈ N. Further, let ψ = (ψ(t), t ∈ Tn) be an adapted H-valued stochastic process. If

E(
∫ T

0
‖ψ(πn(s))‖pH ds) < +∞

and there exist constants Cν , C > 0 such that the eigenvalues of the covariance operator Q
of M satisfy γi ≤ Cν i−ν , for some ν > 1 and all i ∈ N, and κ ≥ C h−µ, for some µ > 0, then
there exists a constant Cp such that

E(sup
t∈τ

‖
∫ t

0
σ(πn(s))Γ

( ∫ s

πn(s)
Γ(ψ(πn(s))) dM(r)

)
dM(s)

−
∫ t

0
σ(πn(s))Γ

(∫ s

πn(s)
Γ(ψ(πn(s))) dM

κ(r)
)
dMκ(s)‖pH)

≤ Cp (kn h
µ(ν−1))p/2.

To get optimal convergence rates, the noise approximation should have the same order of
convergence as the spacial and temporal approximations. We couple all error contributions
in Section 5. In the next section, we derive error bounds for the semidiscrete approximation.

4. Convergence of the semidiscrete approximation

In this section, we present an Lp and an almost sure convergence result for the semidiscrete
approximation. We assume that for α ≥ β ≥ 0 with φ ∈ Hα and t ∈ τ , we have that

(4.1) ‖(S(t)− Sh(t)Ph)φ‖H ≤ C hαt−β/2‖φ‖Hα−β .

This is for example satisfied by the Finite Element spaces (Sh, h > 0) as introduced before for
α = 2 (see Theorem 3.5 in [36]). In the more general setting of piecewise polynomials of degree
at most α− 1, Theorem 5.7 in [13] as well as Proposition 11.2.2 in [35] imply Equation (4.1).
We note that in the proofs of Theorem 4.1 and Theorem 4.2, Equation (4.1) just has to be
satisfied for β = 0 and β = 1. If it only holds for β = 0, the theorems stay true when the
mild solution satisfies ‖X‖Hα+1,Lp,∞τ

< +∞.
The proposed space discretized equation converges uniformly, almost surely with order

O(hα−ε) and with order O(hα) in Lp to the mild solution of Equation (2.1), which is stated
in the following two theorems.
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Theorem 4.1. The sequence of semidiscrete mild solutions (Xh, h > 0) defined in Equa-
tion (3.1) converges in Lp to the mild solution X of Equation (2.1) of order O(hα), i.e., for
all p > 0

‖X −Xh‖H,∞τ ,Lp ≤ Cp h
α ‖X‖Hα,∞τ ,Lp .

Proof. We first assume that p > 2. It holds that

‖X−Xh‖pH,∞τ ,Lp

≤3p−1
(
‖(S − ShPh)X0‖pH,∞τ ,Lp

+ E(sup
t∈τ

‖
∫ t

0
S(t− s)BX(s) ds−

∫ t

0
Sh(t− s)PhBXh(s) ds‖pH)

+ E(sup
t∈τ

‖
∫ t

0
S(t− s)G(X(s)) dM(s)−

∫ t

0
Sh(t− s)PhG(Xh(s)) dM(s)‖pH)

)
,

(4.2)

where we applied Hölder’s inequality. The first term satisfies for β = 0 by Equation (4.1)

‖(S − ShPh)X0‖pH,∞τ ,Lp ≤ C hpα ‖X0‖pHα,Lp .

The second one is split into

‖
∫ t

0
S(t− s)BX(s) ds−

∫ t

0
Sh(t− s)PhBXh(s) ds‖pH,∞τ ,Lp

≤ 2p−1
(
‖
∫ t

0
(S(t− s)− Sh(t− s)Ph)BX(s) ds‖pH,∞τ ,Lp

+ ‖
∫ t

0
Sh(t− s)PhB(X(s)−Xh(s)) ds‖pH,∞τ ,Lp

)
.

The first of these expressions is bounded by the properties of the Bochner integral, Equa-
tion (4.1) for β = 1, Hölder’s inequality, Fubini’s theorem, and Lemma 2.2 by

‖
∫ t

0
(S(t− s)− Sh(t− s)Ph)BX(s) ds‖pH,∞τ ,Lp

≤ Chpα sup
t∈τ

(

∫ t

0
(t− s)−p/2(p−1) ds)p−1 ‖BX‖pHα−1,Lp,∞τ

≤ Chpα ‖X‖pHα,Lp,∞τ
.

Furthermore, the second term satisfies

‖
∫ t

0
Sh(t− s)PhB(X(s)−Xh(s)) ds‖pH,∞τ ,Lp

≤ C E(sup
t∈τ

(

∫ t

0
(t− s)−1/2‖X(s)−Xh(s)‖H ds)p)

by the properties of the Bochner integral and Theorem 6.13 in [32]. Hölder’s inequality for
p > 2 leads to

‖
∫ t

0
Sh(t− s)PhB(X(s)−Xh(s)) ds‖pH,∞τ ,Lp ≤ C

∫ T

0
‖X −Xh‖pH,∞τs ,L

p ds.
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So overall, we have for the second term on the right hand side in Equation (4.2)

‖
∫ t

0
S(t− s)BX(s) ds−

∫ t

0
Sh(t− s)PhBXh(s) ds‖pH,∞τ ,Lp

≤ C(hpα ‖X‖pHα,Lp,∞τ
+

∫ t

0
‖X −Xh‖pH,∞τs ,L

p ds).

The third expression on the right hand side of Equation (4.2) is split into the two following
terms

‖
∫ t

0
S(t− s)G(X(s)) dM(s)−

∫ t

0
Sh(t− s)PhG(Xh(s)) dM(s)‖pH,∞τ ,Lp

≤ 2p−1
(
‖
∫ t

0
(S(t− s)− Sh(t− s)Ph)G(X(s)) dM(s)‖pH,∞τ ,Lp

+ ‖
∫ t

0
Sh(t− s)Ph(G(X(s))−G(Xh(s))) dM(s)‖pH,∞τ ,Lp

)
.

The first of these expressions satisfies by Lemma 4.3, which is proven afterwards, and the
properties of G

‖
∫ t

0
(S(t− s)− Sh(t− s)Ph)G(X(s)) dM(s)‖pH,∞τ ,Lp ≤ Chpα‖X‖pHα,∞τ ,Lp .

Equation (2.4) yields with Hölder’s inequality and Fubini’s theorem for the other term

‖
∫ t

0
Sh(t− s)Ph(G(X(s))−G(Xh(s))) dM(s)‖pH,∞τ ,Lp

≤ C

∫ T

0
‖G(X)−G(Xh)‖pLHS(H,H),∞τs ,L

p ds,

and the properties of G imply that

‖G(X)−G(Xh)‖pLHS(H,H),∞τs ,L
p ≤ C‖X −Xh‖pH,∞τs ,L

p .

So overall, we have due to the finiteness of ‖X‖Hα,∞τ ,Lp with Gronwall’s inequality

‖X −Xh‖pH,∞τ ,Lp ≤ C1h
pα + C2

∫ T

0
‖X −Xh‖pH,∞τs ,L

p ds,≤ Chpα,

for constants C1, C2, and C depending on the regularity of the mild solution, T , and p.
Finally, for p ≤ 2, we have for any p′ > 2 by Hölder’s inequality

‖X −Xh‖H,∞τ ,Lp ≤ ‖X −Xh‖H,∞τ ,Lp′ = O(hα). !

This theorem implies almost sure convergence as stated in the next theorem.

Theorem 4.2. For every ε > 0 and for h > 0 small enough such that h decays to zero with
order O(n−λ), for n ∈ N and fixed λ > 0,

‖X −Xh‖H,∞τ ≤ hα−ε, P–a.s.,

i.e., the family of approximations (Xh, h > 0) introduced in Equation (3.1) converges uni-
formly, almost surely to X of order O(hα−ε), for h → 0.
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Proof. To show almost sure convergence, we use Theorem 4.2 and Chebyshev’s inequality in
the following way:

P
(
‖Xh −X‖H,∞τ ≥ hα−ε

)
≤ h−(α−ε)p ‖Xh −X‖pH,∞τ ,Lp ≤ Cp h

pε.

Since h = O(n−λ), the corresponding series is convergent for any p > (ελ)−1 and therefore,
by the Borel–Cantelli lemma, we have asymptotically

‖X −Xh‖H,∞τ ≤ hα−ε, P–a.s.,

which proves the theorem. !

The proof of Theorem 4.1 required a Burkholder–Davis–Gundy type result on the conver-
gence of the approximated semigroup in combination with a stochastic integral. In this case,
Equation (2.4) cannot be applied, since this leads to a lower order of convergence.

Lemma 4.3. For p > 2 and Ψ ∈ L2
H,τ (H)

‖
∫ t

0
(Sh(t− s)Ph − S(t− s))Ψ(s) dM(s)‖H,∞τ ,Lp ≤ C hα ‖Ψ‖LHS(H,Hα),∞τ ,Lp .

Proof. We closely follow the proof of Theorem 5.12 in [11]. For 0 < ν < 1, the following
identity holds: ∫ t

s
(t− r)ν−1(r − s)−νdr =

π

sin νπ
.

It follows from Fubini’s theorem and the semigroup property that
∫ t

0
S(t− s)Ψ(s) dM(s) =

sin νπ

π

∫ t

0
(

∫ t

s
(t− r)ν−1(r − s)−ν dr)S(t− s)Ψ(s) dM(s)

=
sin νπ

π

∫ t

0
(t− r)ν−1S(t− r)

∫ r

0
(r − s)−νS(r − s)Ψ(s) dM(s) dr

=
sin νπ

π

∫ t

0
(t− r)ν−1S(t− r)Y (r) dr,

where Y (r) =
∫ r
0 (r−s)−νS(r−s)Ψ(s) dM(s). Similar calculations for the semidiscrete version

lead to ∫ t

0
Sh(t− s)PhΨ(s)dM(s) =

sin νπ

π

∫ t

0
(t− r)ν−1Sh(t− r)PhYh(r) dr.

Note that since Ph is a projection Ph = P 2
h . We decompose the equation to be verified in the

following way

∥∥
∫ t

0
(Sh(t− s)Ph − S(t− s))Ψ(s) dM(s)

∥∥p
H,∞τ ,Lp

≤ C
∣∣∣
sin νπ

π

∣∣∣
p(∥∥

∫ t

0
(t− r)ν−1(Sh(t− r)Ph − S(t− r))Y (r) dr

∥∥p
H,∞τ ,Lp

+
∥∥
∫ t

0
(t− r)ν−1Sh(t− r)Ph(Yh(r)− Y (r)) dr

∥∥p
H,∞τ ,Lp

)

=: C
∣∣∣
sin νπ

π

∣∣∣
p
(I+ II).
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For ease of readability C and Cν,p denote varying constants that are independent of h. We
approximate the two expressions separately. By the definition of the Bochner integral and
Hölder’s inequality, we obtain for term I and ν > 1/p

I ≤ E
(
sup
t∈τ

(

∫ t

0
‖(t− r)ν−1(Sh(t− r)Ph − S(t− r))Y (r)‖H dr)p

)

≤ Cν,p E
(
sup
t∈τ

∫ t

0
‖(Sh(t− r)Ph − S(t− r))Y (r)‖pH dr

)

≤ Cν,p h
pα

∫ T

0
‖Y (t)‖pHα,Lp dt,

where we used Equation (4.1) in the third step. Moreover, considering ν < 1/2, Equa-
tion (2.4), Assumption 2.1, the closed graph theorem, and the commutativity of the operator
and the semigroup yield

‖Y (t)‖pHα,Lp ≤ C E(‖Aα/2

∫ t

0
(t− s)−νS(t− s)Ψ(s) dM(s)‖pH)

≤ C E(‖
∫ t

0
(t− s)−νS(t− s)Aα/2Ψ(s) dM(s)‖pH)

≤ C E(
∫ t

0
(t− s)−2ν‖Ψ(s)‖2LHS(H,Hα) ds)

p/2 ≤ Cν,p ‖Ψ‖pLHS(H,Hα),∞τ ,Lp .

Altogether, we obtain

I ≤ Cν,p h
pα ‖Ψ‖pLHS(H,Hα),∞τ ,Lp .

For term II, Hölder’s inequality for ν > 1/p and the fact that Sh(t)Ph is bounded imply

II ≤ E
(
sup

0≤t≤T
(

∫ t

0
(t− r)ν−1‖Sh(t− r)Ph(Yh(r)− Y (r))‖H dr)p

)

≤ Cν,p

∫ T

0
‖Yh(r)− Y (r)‖pH,Lp dr.

We further approximate

‖Yh(r)− Y (r)‖pH,Lp = E(‖
∫ r

0
(r − s)−ν(Sh(r − s)Ph − S(r − s))Ψ(s) dM(s)‖pH)

≤ E
(∫ r

0
(r − s)−2ν‖(Sh(r − s)Ph − S(r − s))Ψ(s)‖2LHS(H,H)ds

)p/2

≤ Cν,p h
pα ‖Ψ‖pLHS(H,Hα),∞τ ,Lp ,

where Equation (2.2) and Equation (4.1) are used. Altogether this gives for term II

II ≤ Cν,p h
pα ‖Ψ‖pLHS(H,Hα),∞τ ,Lp .

Choosing any 1/p < ν < 1/2, we finally get

‖
∫ t

0
(Sh(t− s)Ph − S(t− s))Ψ(s) dM(s)‖pH,∞τ ,Lp ≤ C hpα ‖Ψ‖pLHS(H,Hα),∞τ ,Lp ,

which concludes the proof. !
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5. Convergence of the fully discrete approximation

In this section, we prove Lp and almost sure convergence of the Milstein scheme introduced
in Section 3. With an Euler–Maruyama scheme, in general, only convergence of rate O(

√
kn)

in time can be achieved, whereas a Milstein scheme converges at a rate of order O(kn).
We define the approximation Xn = (Xn

j , j = 0, . . . , n) of Equation (2.3) by the Mil-
stein scheme introduced in Equation (3.3). For the convergence of the approximated semi-
group r(knAh) we assume that it is stable and there exists a constant C such that for all
0 < j ≤ n and fixed α ∈ N and β ∈ {0, 1}

(5.1) ‖(S(tnj )− r(knAh)
jPh)φ‖H ≤ C (h+ k1/2n )α(tnj )

−β/2‖φ‖Hα−β .

This is especially met by a backward Euler scheme, which is shown similarly to Theorem 7.7
in [36] with Theorems 7.3 and 3.5 in the same book. Assumption (5.1) implies similarly to
Lemma 4.3 the convergence of the rational approximation of the semigroup in combination
with a stochastic integral.

Lemma 5.1. For p > 2, it holds that

∥∥
∫ t

0

(
S(t− πn(s))− r(knAh)

κn(t)−κn(s)Ph

)
G(X(s)) dM(s)

∥∥p
H,∞Tn ,Lp

≤ C (h+ k1/2n )pα ‖X‖pHα,∞τ ,Lp .

Proof. Except for the fact that one applies Equation (5.1) instead of Equation (4.1), this
proof is identical to that of Lemma 4.3 and therefore we omit it. !

The order of convergence of the fully discrete approximation to the mild solution is proven
in the following theorem.

Theorem 5.2. For p > 0, the sequence of approximations (Xn, n ∈ N) defined by Equa-
tion (3.3) converges in p-th moment to the mild solution X of Equation (2.1) and satisfies
for constants C1 and C2 that depend on T

‖X −Xn
κn()‖H,∞Tn ,Lp ≤ C1(h+ k1/2n )α‖X‖Hα,∞τ ,Lp + C2 kn‖X‖H1,Lp,∞τ

.

Especially, for α = 2 and X ∈ H2, it holds that

‖X −Xn
κn()‖H,∞Tn ,Lp = O(h2 + kn).

Proof. The proof of the theorem involves numerous estimates, where the same techniques are
used many times. Therefore, we derive the terms to be estimated and choose one of each type
to show the techniques that are employed.
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Equation (2.3) can be rewritten for t ∈ τ as

X(t) = S(t)X0 +

∫ t

0
S(t− s)BS(s− πn(s))X(πn(s)) ds

+

∫ t

0

(
S(t− s)B

∫ s

πn(s)
S(s− r)BX(r) dr

)
ds

+

∫ t

0

(
S(t− s)B

∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

)
ds

+

∫ t

0
S(t− s)G

(
S(s− πn(s))X(πn(s))

)
dM(s)

+

∫ t

0

(
S(t− s)G

(∫ s

πn(s)
S(s− r)BX(r) dr

))
dM(s)

+

∫ t

0

(
S(t− s)G

(∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

))
dM(s)

similarly to Equation (3.2) as done in [28, 29]. We remark that the third, the fourth, and
the sixth term on the right hand side are not approximated in scheme (3.3) because they (for
themselves) converge as fast as the overall approximation scheme.

For fixed n ∈ N, the difference of the mild solution of Equation (2.1) and the fully discrete
approximation (3.3) is split into the initial condition, the Bochner integral, and the Itô integral
terms

X(tnj )−Xn
j = (S(tnj )− r(knAh)

jPh)X0 + ξn(j) + ηn(j).

The Bochner integral part ξn is split again into three parts

ξn := ξn1 + ξn2 + ξn3

with

ξn1 (j) :=

∫ tnj

0

(
S(tnj − s)B S(s− πn(s))X(πn(s))− r(knAh)

j−κn(s)PhBXn
κn(s)

)
ds,

ξn2 (j) :=

∫ tnj

0

(
S(tnj − s)B

∫ s

πn(s)
S(s− r)BX(r) dr

)
ds,

ξn3 (j) :=

∫ tnj

0

(
S(tnj − s)B

∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

)
ds.

Similarly, the stochastic integral is decomposed into

ηn := ηn1 + ηn2 + ηn3
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with

ηn1 (j) :=

∫ tnj

0

(
S(tnj − s)G

(
S(s− πn(s))X(πn(s))

)
− r(knAh)

j−κn(s)PhG(Xn
κn(s))

)
dM(s),

ηn2 (j) :=

∫ tnj

0

(
S(tnj − s)G

(∫ s

πn(s)
S(s− r)BX(r) dr

))
dM(s),

ηn3 (j) :=

∫ tnj

0

(
S(tnj − s)G

(∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

)

− r(knAh)
j−κn(s)PhG

(∫ s

πn(s)
G(Xn

κn(s)) dM(r)
))

dM(s).

We further split three of the terms. We may write

ξn1 (j) =

∫ tnj

0
S(tnj − s)B(S(s− πn(s))− 1))X(πn(s)) ds

+

∫ tnj

0
(S(tnj − s)− S(tnj − πn(s)))BX(πn(s)) ds

+

∫ tnj

0
(S(tnj − πn(s))− r(knAh)

j−κn(s)Ph)BX(πn(s)) ds

+

∫ tnj

0
r(knAh)

j−κn(s)PhB(X(πn(s))−Xn
κn(s)) ds,

and we refer to the terms on the right hand side by ξn1,i(j) for i = 1, . . . , 4. Similarly, ηn1 (j) is
split into the following four terms

ηn1 (j) =

∫ tnj

0
S(tnj − s)G

(
(S(s− πn(s))− 1)X(πn(s))

)
dM(s)

+

∫ tnj

0

(
S(tnj − s)− S(tnj − πn(s))

)
G(X(πn(s))) dM(s)

+

∫ tnj

0

(
S(tnj − πn(s))− r(knAh)

j−κn(s)Ph

)
G(X(πn(s))) dM(s)

+

∫ tnj

0
r(knAh)

j−κn(s)PhG(X(πn(s))−Xn
κn(s))) dM(s),

and ηn3 (j) into five terms

ηn3 (j) =

∫ tnj

0
S(tnj − s)G

(∫ s

πn(s)
(S(s− r)− 1)G(X(r)) dM(r)

)
dM(s)

+

∫ tnj

0
S(tnj − s)G

(∫ s

πn(s)
G(X(r)−X(πn(s))) dM(r)

)
dM(s)

+

∫ tnj

0

(
S(tnj − s)− S(tnj − πn(s))

)
G
(∫ s

πn(s)
G(X(πn(s))) dM(r)

)
dM(s)

+

∫ tnj

0
(S(tnj − πn(s))− r(knAh)

j−κn(s)Ph)G
(∫ s

πn(s)
G(X(πn(s))) dM(r)

)
dM(s)



MILSTEIN METHOD FOR MULTIPLICATIVE ADVECTION-DIFFUSION SPDES 19

+

∫ tnj

0
r(knAh)

j−κn(s)PhG
(∫ s

πn(s)
G(X(πn(s))−Xn

κn(s)) dM(r)
)
dM(s).

For now, let p > 2. For better readability, we add tnj resp. j in the terms to be estimated,
although it is not necessary in the norm. The initial condition is bounded by Equation (5.1)
for β = 0

‖(S(tnj )− r(knAh)
jPh)X0‖pH,∞Tn ,Lp ≤ C(h+ k1/2n )pα‖X0‖pHα,Lp .

For ξn and ηn we just give calculations for one term of each type of estimation to demon-
strate the technique. The other terms are treated in a similar way. The first term of ξn1
satisfies by the properties of the Bochner integral, Lemma 2.2, and Theorem 6.13 in [32]

‖ξn1,1(j)‖
p
H,∞Tn ,Lp ≤ C E

(
sup

0≤j≤n
(

∫ tnj

0
(tnj − s)−1/2‖(S(s− πn(s))− 1)X(πn(s))‖H ds)p

)

≤ C E
(
sup

0≤j≤n
(

∫ tnj

0
(tnj − s)−1/2(s− πn(s))

α/2‖X(πn(s))‖Hα ds)p
)

≤ C kpα/2n E
(
sup

0≤j≤n
(

∫ tnj

0
(tnj − s)−1/2‖X(πn(s))‖Hα ds)p

)
.

Hölder’s inequality and Fubini’s theorem imply that

‖ξn1,1(j)‖
p
H,∞Tn ,Lp ≤ C kpα/2n (

∫ T

0
(T − s)−p/(p−1)2 ds)p−1

∫ T

0
‖X(πn(s))‖pHα,Lp ds

≤ C kpα/2n T (p−2)/2‖X‖pHα,Lp,∞τ
.

The property of the semigroup with similar estimates leads to

‖ξn1,2(j)‖
p
H,∞Tn ,Lp + ‖ηn1,1(j)‖

p
H,∞Tn ,Lp + ‖ηn1,2(j)‖

p
H,∞Tn ,Lp

+ ‖ηn3,1(j)‖
p
H,∞Tn ,Lp + ‖ηn3,3(j)‖

p
H,∞Tn ,Lp ≤ Cp k

pα/2
n ‖X‖pHα,Lp,∞τ

,

where Equation (2.4) is used for the terms labeled with η.
The convergence properties of the rational approximation of the semigroup in Equation (5.1)

imply for ξn1,3(j) for β = 1 with similar estimates as before concerning the operator B

‖ξn1,3(j)‖
p
H,∞Tn ,Lp ≤ C T (p−2)/2 (h+ k1/2n )pα

∫ T

0
‖BX(πn(s))‖pHα−1,Lp ds

≤ Cp (h+ k1/2n )pα ‖X‖pHα,Lp,∞τ
.

These estimates are also applied to the following terms and give with Lemma 5.1

‖ηn1,3(j)‖
p
H,∞Tn ,Lp + ‖ηn3,4(j)‖

p
H,∞Tn ,Lp ≤ C(1 + kp/2n )(h+ k1/2n )pα ‖X‖pHα,∞τ ,Lp .

In the end, the difference of the mild solution and the approximation is estimated by their
difference at previous time steps, which stems from the following calculation

‖ξn1,4(j)‖
p
H,∞Tn ,Lp ≤ C E

(
sup

0≤j≤n
(

∫ tnj

0
(tnj − πn(s))

−1/2‖X(πn(s))−Xn
κn(s)‖H ds)p

)

≤ C T (p−2)/2
j−1∑

i=0

kn‖X(tni )−Xn
i ‖

p
H,∞Tn

i
,Lp ,
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where we used Equation (4.2) in [26]. The stability of the semigroup approximation for ηn1,4(j)
and ηn3,5(j) leads to

‖ηn1,4(j)‖
p
H,∞Tn ,Lp + ‖ηn3,5(j)‖

p
H,∞Tn ,Lp ≤ Cp

j−1∑

i=0

kn(1 + kp/2n ) ‖X(tni )−Xn
i ‖

p
H,∞Tn

i
,Lp

≤ Cp (1 + T p/2)
j−1∑

i=0

kn ‖X(tni )−Xn
i ‖

p
H,∞Tn

i
,Lp .

The remaining of the approximated terms cannot be estimated with respect to α. For those,
convergence is limited by the properties of the stochastic integral. We have with the regularity
of the solution from Lemma 2.4, Equation (2.4), Hölder’s inequality, combined with previous
estimates

‖ηn3,2(j)‖
p
H,∞Tn ,Lp ≤ Cp

∫ T

0
(s− πn(s))

(p−2)/2
∫ s

πn(s)
‖X(r)−X(πn(s))‖pH,Lp dr ds

≤ C kpn ‖X‖pH1,Lp,∞τ
.

The convergence for two of the remaining terms that were not approximated in Equation (3.3)
results from the upper and lower limit of the inner integral, i.e., we have

‖ξn2 (j)‖
p
H,∞Tn ,Lp + ‖ηn2 (j)‖

p
H,∞Tn ,Lp ≤ Cp k

p
n ‖X‖pH1,Lp,∞τ

.

Finally, to give estimates on ξn3 (j), we set Πn(r) = tni for tni−1 < r ≤ tni and write

‖ξn3 (j)‖
p
H,∞Tn ,Lp

= ‖
∫ tnj

0

∫ tnj

0
1{πn(s)≤r≤s<Πn(r)}S(t

n
j − s)BS(s− r)G(X(r)) dM(r) ds‖pH,∞Tn ,Lp

= ‖
∫ tnj

0

∫ tnj

0
1{πn(s)≤r≤s<Πn(r)}S(t

n
j − s)BS(s− r)G(X(r)) ds dM(r)‖pH,∞Tn ,Lp

with a stochastic Fubini theorem (see Theorem 8.14 in [33]). Next, we apply Equation (2.4),
the properties of the Bochner integral, Hölder’s inequality, and similar estimates as before to
derive

‖ξn3 (j)‖
p
H,∞Tn ,Lp

= ‖
∫ tnj

0

∫ Πn(r)

r
S(tnj − s)BS(s− r)G(X(r)) ds dM(r)‖pH,∞Tn ,Lp

= ‖
∫ tnj

0
S(tnj −Πn(r))

∫ Πn(r)

r
S(Πn(r)− s)BS(s− r)G(X(r)) ds dM(r)‖pH,∞Tn ,Lp

≤ Cp

∫ T

0
(Πn(r)− r)p−1

∫ Πn(r)

r
‖X(r)‖pH1,Lp ds dr

≤ Cp k
p
n ‖X‖pH1,Lp,∞τ

.
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This concludes the estimates of the terms, and overall we have

‖X −Xn
κn()‖

p
H,∞Tn ,Lp ≤ C1

(
(h+ k1/2n )pα‖X‖pHα,∞τ ,Lp + kpn‖X‖pH1,Lp,∞τ

)

+ C2

j−1∑

i=0

kn‖X −Xn
κn()‖

p
H,∞Tn

i
,Lp .

A discrete version of Gronwall’s inequality (cf. [10]) implies

‖X −Xn
κn()‖

p
H,∞Tn ,Lp ≤ C1

(
(h+ k1/2n )pα‖X‖pHα,∞τ ,Lp + kpn‖X‖pH1,Lp,∞τ

)
·
j−1∏

i=0

(
1 + C2 kn

)

≤ C1

(
(h+ k1/2n )pα‖X‖pHα,∞τ ,Lp + kpn‖X‖pH1,Lp,∞τ

)
· exp(C2 T ),

which concludes the proof for p > 2. Finally, for p ≤ 2, Hölder’s inequality leads for p′ > 2 to

‖X −Xn
κn()‖H,∞Tn ,Lp ≤ ‖X −Xn

κn()‖H,∞Tn ,Lp′ = O((h+ k1/2n )α + kn). !

Theorem 5.3. For every ε > 0

‖X −Xn
κn()‖H,∞Tn ≤ (h2 + kn)

1−ε, P–a.s.

asymptotically for h and kn small enough such that there exists λ > 0 with h2 = O(kλn), i.e.,
the series of approximations (Xn, n ∈ N) defined in Equation (3.3) converges almost surely
to X with order O((h2 + kn)1−ε) for h, kn → 0.

Proof. Let ε > 0, then Chebyshev’s inequality implies with Theorem 5.2 for all 0 ≤ j ≤ n
that

P
(
‖X−Xn

κn()‖H,∞Tn ≥ (h2+kn)
1−ε

)
≤ (h2+kn)

−(1−ε)p ‖X−Xn
κn()‖

p
H,∞Tn ,Lp ≤ Cp (h

2+kn)
pε.

Since kn = O(n−1) and h2 = O(kλn) for some λ > 0, the series
∞∑

n=1

P
(
‖X −Xn

κn()‖H,∞Tn ≥ (h2 + kn)
1−ε

)
≤ C

∞∑

n=1

n−pε(1∧λ)

converges for any p > ε−1(1 ∧ λ)−1 and therefore, by the Borel–Cantelli lemma

‖X −Xn
κn()‖H,∞Tn ≤ (h2 + kn)

1−ε, P–a.s.,

which concludes the proof. !
As a final step we combine the approximation of the noise from Lemma 3.1 and Lemma 3.2

with Theorem 5.2.
The fully approximated scheme reads then (see [3])

X̃n
j+1 = r(knAh)X̃

n
j +

∫ tnj+1

tnj

r(knAh)PhBX̃n
j ds

+

∫ tnj+1

tnj

r(knAh)PhG(X̃n
j ) dM

κ(s)

+

∫ tnj+1

tnj

(
r(knAh)PhG

(∫ s

tnj

G(X̃n
j ) dM

√
κ(r)

))
dM

√
κ(s).



22 BARTH AND LANG

To preserve the order of convergence for given ν > 1, we require κ1 ≥ C2 h−4/(ν−1) for the
Euler–Maruyama term and κ2 ≥ C2 h−2/(ν−1) for the Milstein term. For an equilibrated error
we use the first κ terms of the Karhunen–Loève expansion for the Euler–Maruyama term
and

√
κ terms for the Milstein term. In this sense the simulation of the Milstein term is

computationally not more expensive than the Euler term. For the Milstein term we have to
sum over all mixed stochastic processes, i.e., κ22 resp. κ22/2 terms, if we use the symmetry
of Γ. If the simulation of the Euler–Maruyama term needs computational effort O(κ1) and
κ1 = κ22, the overall work for the Milstein term is also O(κ1). By adding the Milstein term,
we increase the order of convergence, but with the correct truncation of the Karhunen–Loève
expansion the overall work does not increase. Then, the next corollary is a consequence of
Theorem 5.2, Lemma 3.1, and Lemma 3.2.

Corollary 5.4. The sequence of fully discrete approximations (X̃n, n ∈ N) converges in Lp

and almost surely to the mild solution X of Equation (2.1) and satisfies for constants C1 and
C2 that depend on T and for κ ≥ C4h−2max(α,2)/(ν−1)5, for fixed C > 0, where ν > 1 with
γi ≤ Cν i−ν , for i ∈ N and Cν > 0,

‖X − X̃n
κn()‖H,∞Tn ,Lp ≤ C1(h+ k1/2n )α‖X‖Hα,∞τ ,Lp + C2 kn‖X‖H1,Lp,∞τ

.

Especially for α = 2 and X ∈ H2, the error is bounded by

‖X − X̃n
κn()‖H,∞Tn ,Lp = O(h2 + kn).

Furthermore, with the same prerequisites as in Theorem 5.3 it holds asymptotically for any
ε > 0 that

‖X − X̃n
κn()‖H,∞Tn ≤ (h2 + kn)

1−ε, P–a.s.

Similar results also hold in the semidiscrete case. In conclusion, we see that the approxi-
mation of the noise by an appropriate truncation of the Karhunen-Loève expansion does not
affect the overall order of convergence of the approximation scheme. Otherwise the conver-
gence of the noise approximation will dominate the errors (see [4]).

References

[1] P. Auscher and P. Tchamitchian, Square roots of elliptic second order divergence operators on strongly
Lipschitz domains: L2 theory, J. Anal. Math., 90 (2003), pp. 1–12.

[2] A. Barth, A finite element method for martingale-driven stochastic partial differential equations, Comm.
Stoch. Anal., 4 (2010), pp. 355–375.

[3] A. Barth and A. Lang, Milstein approximation for advection-diffusion equations driven multiplicative
noncontinuous martingale noises. SAM report 2011-36, May 2011.

[4] , Simulation of stochastic partial differential equations using finite element methods, Stochastics, 84
(2012), pp. 217–231.

[5] D. Braess, Finite Elemente, Springer, Berlin, 3rd ed., 2002.
[6] T. Caraballo and P. E. Kloeden, The pathwise numerical approximation of stationary solutions of

semilinear stochastic evolution equations, Appl. Math. Optimization, 54 (2006), pp. 401–415.
[7] P.-L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC Applied Mathematics and

Nonlinear Science Series. Boca Raton, FL: Chapman & Hall/CRC, 2007.
[8] P.-L. Chow and J.-L. Jiang, Almost sure convergence of some approximate solutions for random par-

abolic equations. Random partial differential equations, Proc. Conf., Oberwolfach/Ger. 1989, ISNM 102,
45–54., 1991.

[9] P.-L. Chow, J.-L. Jiang, and J.-L. Menaldi, Pathwise convergence of approximate solutions to Zakai’s
equation in a bounded domain. Da Prato, G. (ed.) et al., Stochastic partial differential equations and
applications. Proceedings of the third meeting on stochastic partial differential equations and applications



MILSTEIN METHOD FOR MULTIPLICATIVE ADVECTION-DIFFUSION SPDES 23

held at Villa Madruzzo, Trento, Italy, January 1990. Harlow: Longman Scientific & Technical. Pitman
Res. Notes Math. Ser. 268, 111–123, 1992.

[10] D. S. Clark, Short proof of a discrete Gronwall inequality, Discrete Appl. Math., 16 (1987), pp. 279–281.
[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathe-

matics and Its Applications. 44. Cambridge: Cambridge University Press, 1992.
[12] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts

in Mathematics. 194. Berlin: Springer, 2000.
[13] C. Grossmann, H.-G. Roos, and M. Stynes, Numerical Treatment of Partial Differential Equations.

Revised translation of the 3rd German edition of ‘Numerische Behandlung partieller Differentialgleichun-
gen’ by Martin Stynes., Universitext. Berlin: Springer, 2007.

[14] E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003),
pp. 141–186.

[15] E. Hausenblas and J. Seidler, A note on maximal inequality for stochastic convolutions, Czech. Math.
J., 51 (2001), pp. 785–790.

[16] , Stochastic convolutions driven by martingales: Maximal inequalities and exponential integrability,
Stochastic Anal. Appl., 26 (2008), pp. 98–119.

[17] A. Jentzen, Taylor Expansions for Stochastic Partial Differential Equations, PhD thesis, Johann Wolf-
gang Goethe Universität Frankfurt am Main, 2009.

[18] A. Jentzen and P. E. Kloeden, The numerical approximation of stochastic partial differential equations,
Milan Journal of Mathematics, 77 (2009), pp. 205–244.

[19] , Taylor expansions of solutions of stochastic partial differential equations with additive noise, Ann.
Probab., 38 (2010), pp. 532–569.
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[34] C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture
Notes in Mathematics 1905. Berlin: Springer, 2007.

[35] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. 2nd corrected
printing, Springer Series in Computational Mathematics. 23. Berlin: Springer, 1997.

[36] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. 2nd revised and expanded ed.,
Springer Series in Computational Mathematics 25. Berlin: Springer, 2006.



24 BARTH AND LANG

[37] L. Tubaro, An estimate of Burkholder type for stochastic processes defined by the stochastic integral,
Stochastic Anal. Appl., 2 (1984), pp. 187–192.

[38] Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J.
Numer. Anal., 43 (2005), pp. 1363–1384.

[39] M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrsch. verw. Geb., 11 (1969), pp. 230–243.

(Andrea Barth)
ETH, Seminar für Angewandte Mathematik
Rämistrasse 101
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