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An Adaptive Stochastic Galerkin Method
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Abstract

We derive an adaptive solver for random elliptic boundary value problems, using
techniques from adaptive wavelet methods. Substituting wavelets by polynomials
of the random parameters leads to a modular solver for the parameter dependence,
which combines with any discretization on the spatial domain. We show optimality
properties of this solver, and present numerical computations.

Introduction

Stochastic Galerkin methods have emerged in the past decade as an efficient solution
procedure for boundary value problems depending on random data, see [DBO01, XK02,
BTZ04, WK05, MK05, FST05, WK06, TS07, BS09, BAS10]. These methods approximate
the random solution by a Galerkin projection onto a finite dimensional space of random
fields. This requires the solution of a single coupled system of deterministic equations
for the coefficients of the Galerkin projection with respect to a predefined set of basis
functions on the parameter domain.

A major remaining obstacle is the construction of suitable spaces in which to compute
approximate solutions. These should be adapted to the stochastic structure of the equa-
tion. Simple tensor product constructions are infeasible due to the high dimensionality
of the parameter domain in case of input random fields with low regularity.

Parallel to but independently from the development of stochastic Galerkin methods,
a new class of adaptive methods has emerged, which are set not in the continuous
framework of a boundary value problem, but rather on the level of coefficients with
respect to a hierarchic Riesz basis, such as a wavelet basis. Due to the norm equivalences
constitutive of Riesz bases, errors and residuals in appropriate sequence spaces are
equivalent to those in physically meaningful function spaces. This permits adaptive
wavelet methods to be applied directly to a large class of equations, provided that a
suitable Riesz basis is available.

For symmetric elliptic problems, the error of the Galerkin projection onto the span of
a set of coefficients can be estimated using a sufficiently accurate approximation of the

∗Research supported in part by the Swiss National Science Foundation grant No. 200021-120290/1.
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residual of a previously computed approximate solution, see [CDD01, GHS07, DSS09].
This results in a sequence of finite-dimensional linear equations with successively larger
sets of active coefficients.

We use techniques from these adaptive wavelet methods to derive an adaptive solver
for random symmetric elliptic boundary value problems. In place of wavelets, we use
an orthonormal polynomial basis on the parameter domain. The coefficients of the
random solution with respect to this basis are deterministic functions on the spatial
domain.

Adaptive wavelet methods extend to this vector setting, and lead to a modular solver
which can be coupled with any discretization of or solver for the deterministic problem.
We consider adaptive finite elements with a residual-based a posteriori error estimator.

We review random operator equations in Section 1. In particular, we derive the weak
formulation of such equations, construct orthonormal polynomials on the parameter
domain, and recast the weak formulation as a bi-infinite operator matrix equation for
the coefficients of the random solution with respect to this polynomial basis. We refer
to [Git11c] for further details.

A crucial ingredient in adaptive wavelet methods is the approximation of the residual.
We study this for the setting of stochastic operator equations in Section 2. The resulting
adaptive solver is presented in Section 3. We show convergence of the method, and
provide a reliable error bound. Optimality properties are discussed in Section 4.

Finally, in Section 5, we apply the method to a simple elliptic equation. We discuss
a suitable a posteriori finite element error estimator, and present numerical computa-
tions. These demonstrate the convergence of our solver and compare the adaptively
constructed discretizations with the a priori adapted sparse tensor product construction
from [BAS10]; we refer to [Git11b] for a comparison with other adaptive solvers. We
discuss the empirical convergence behavior in the light of the theoretical approximation
results in [CDS10b, CDS10a].

1 Stochastic Operator Equations

1.1 Pointwise Definition

LetK ∈ {R,C} and let V be a separable Hilbert space overK. We denote by V∗ the space
of all continuous antilinear functionals on V. Furthermore,L(V,V∗) is the Banach space
of bounded linear maps from V to V∗.

We consider operator equations depending on a parameter in Γ ! [−1, 1]∞. Given

A : Γ→ L(V,V∗) and f : Γ→ V∗ , (1.1)

we wish to determine

u : Γ→ V , A(y)u(y) = f (y) ∀y ∈ Γ . (1.2)

Let D ∈ L(V,V∗) be the Riesz isomorphism, i.e. 〈D·, ·〉 is the scalar product in V. We
decompose A as

A(y) = D + R(y) ∀y ∈ Γ (1.3)
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and assume that R(y) is linear in y ∈ Γ,

R(y) =
∞
∑

m=1

ymRm ∀y = (ym)∞m=1 ∈ Γ , (1.4)

as in e.g. [BAS10, BS09, CDS10b, CDS10a, TS07]. Here, each Rm is inL(V,V∗). We assume
(Rm)m ∈ "1(N;L(V,V∗)), and there is a γ ∈ [0, 1) such that

∥

∥

∥R(y)
∥

∥

∥

V→V∗
≤ γ for all y ∈ Γ.

By [Git11c, Proposition 1.2], this ensures existence and uniqueness of the solution of
(1.1). For simplicity, we also assume that the sequence (‖Rm‖V→V∗)

∞
m=1 is nonincreasing.

1.2 Weak Formulation

Let π be a probability measure on the parameter domain Γ with Borel σ-algebra B(Γ).
We assume that the map Γ + y ,→ A(y)v(y) is measurable for any measurable v : Γ→ V.
Then

A : L2
π(Γ; V)→ L2

π(Γ; V∗) , v ,→ [y ,→ A(y)v(y)] , (1.5)

is well-defined and continuous. We assume also that f ∈ L2
π(Γ; V∗).

The weak formulation of (1.2) is to find u ∈ L2
π(Γ; V) such that

∫

Γ

〈

A(y)u(y), v(y)
〉

dπ(y) =

∫

Γ

〈

f (y), v(y)
〉

dπ(y) ∀v ∈ L2
π(Γ; V) . (1.6)

The left term in (1.6) is the duality pairing in L2
π(Γ; V) of Au with the test function v,

and the right term is the duality pairing of f with v. We follow the convention that the
duality pairing is linear in the first argument and antilinear in the second.

By [Git11c, Theorem 1.4], the solution u of (1.2) is in L2
π(Γ; V), and it is the unique

solution of (1.6). In particular, the operatorA is boundedly invertible.
We define the multiplication operators

Km : L2
π(Γ)→ L2

π(Γ) , v(y) ,→ ymv(y) , m ∈N . (1.7)

Since ym is real and
∣

∣

∣ym

∣

∣

∣ is less than one, Km is symmetric and has norm at most one.

By separability of V, the Lebesgue–Bochner space L2
π(Γ; V) is isometrically isomorphic

to the Hilbert tensor product L2
π(Γ) ⊗ V, and similarly for V∗ in place of V. Using these

identifications, we expandA asA = D + R with

D ! idL2
π(Γ) ⊗D and R !

∞
∑

m=1

Km ⊗ Rm . (1.8)

This sum converges inL(L2
π(Γ; V), L2

π(Γ; V∗)) by the assumption (Rm)m ∈ "1(N;L(V,V∗)).

Lemma 1.1. ‖R‖L2
π(Γ;V)→L2

π(Γ;V∗) ≤ γ < 1.

Proof. We note that, as in (1.5), (Rv)(y) = R(y)v(y) for all v ∈ L2
π(Γ; V) and y ∈ Γ.

Therefore, using the assumption
∥

∥

∥R(y)
∥

∥

∥

V→V∗
≤ γ,

‖Rv‖2
L2
π(Γ;V∗)

=

∫

Γ

∥

∥

∥R(y)v(y)
∥

∥

∥

2

V∗
dπ(y) ≤

∫

Γ

∥

∥

∥R(y)
∥

∥

∥

2

V→V∗

∥

∥

∥v(y)
∥

∥

∥

2

V
dπ(y) ≤ γ2 ‖v‖2

L2
π(Γ;V)

. !
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1.3 Orthonormal Polynomial Basis

In order to construct an orthonormal polynomial basis of L2
π(Γ), we assume that π is a

product measure. Let

π =
∞
⊗

m=1

πm (1.9)

for probability measures πm on ([−1, 1],B([−1, 1])); see e.g. [Bau02, Section 9] for a
general construction of arbitrary products of probability measures. We assume that the
support of πm in [−1, 1] has infinite cardinality.

For all m ∈ N, let (Pm
n )∞n=0 be an orthonormal polynomial basis of L2

πm
([−1, 1]), with

deg Pm
n = n. Such a basis is given by the three term recursion Pm

−1 ! 0, Pm
0 ! 1 and

βm
n Pm

n (ξ) ! (ξ − αm
n−1)Pm

n−1(ξ) − βm
n−1Pm

n−2(ξ) , n ∈N , (1.10)

with

αm
n !

∫ 1

−1
ξPm

n (ξ)2 dπm(ξ) and βm
n !

cm
n−1

cm
n
, (1.11)

where cm
n is the leading coefficient of Pm

n , βm
0 ! 1, and Pmn is chosen as normalized in

L2
πm

([0, 1]) with a positive leading coefficient. This basis is unique e.g. if cm
n is chosen to

be positive.
We define the set of finitely supported sequences inN0 as

Λ !
{

ν ∈NN0 ; # supp ν < ∞
}

, (1.12)

where the support is defined by

supp ν ! {m ∈N ; νm " 0} , ν ∈NN0 . (1.13)

Then countably infinite tensor product polynomials are given by

P ! (Pν)ν∈Λ , Pν !
∞
⊗

m=1

Pm
νm
, ν ∈ Λ . (1.14)

Note that each of these functions depends on only finitely many dimensions,

Pν(y) =
∞
∏

m=1

Pm
νm

(ym) =
∏

m∈supp ν

Pm
νm

(ym) , ν ∈ Λ , (1.15)

since Pm
0 = 1 for all m ∈N.

By e.g. [Git11c, Theorem 2.8], P is an orthonormal basis of L2
π(Γ). By Parseval’s identity,

this is equivalent to the statement that the map

T : "2(Λ)→ L2
π(Γ) , (cν)ν∈Λ ,→

∑

ν∈Λ
cνPν , (1.16)

is a unitary isomorphism. The inverse of T is

T−1 = T∗ : L2
π(Γ)→ "2(Λ) , g ,→

(
∫

Γ
g(y)Pν(y) dπ(y)

)

ν∈Λ
. (1.17)
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1.4 Bi-Infinite Operator Matrix Equation

We use the isomorphism T from (1.16) to recast the weak stochastic operator equation
(1.6) as an equivalent discrete operator equation. Since T is a unitary map from "2(Λ)
to L2

π(Γ), the tensor product operator TV ! T ⊗ idV is an isometric isomorphism from
"2(Λ; V) to L2

π(Γ; V). By definition, w ∈ L2
π(Γ; V) and w = (wν)ν∈Λ ∈ "2(Λ; V) are related

by w = TVw if

w(y) =
∑

ν∈Λ
wνPν(y) or wν =

∫

Γ
w(y)Pν(y) dπ(y) ∀ν ∈ Λ , (1.18)

and either of these properties implies the other. The series in (1.18) converges un-
conditionally in L2

π(Γ; V), and the integral can be interpreted as a Bochner integral in
V.

Let A ! T∗VATV and f ! T∗V f . Then u = TVu for u ∈ "2(Λ; V) with

Au = f (1.19)

since u ∈ L2
π(Γ; V) satisfiesAu = f .

By definition, A is a boundedly invertible linear map from "2(Λ; V) to "2(Λ; V∗). It can
be interpreted as a bi-infinite operator matrix

A = [Aνµ]ν,µ∈Λ , Aνµ : V → V∗ , (1.20)

with entries

Aνν = D +
∞
∑

m=1

αm
νm

Rm , ν ∈ Λ ,

Aνµ = β
m
max(νm,µm)Rm , ν, µ ∈ Λ , ν − µ = ±εm ,

(1.21)

and Aνµ = 0 otherwise, where εm denotes the Kronecker sequence with (εm)n = δmn. If
πm is a symmetric measure on [−1, 1] for all m ∈ N, then αm

n = 0 for all m and n, and
thus Aνν = D. We refer to [Git11c, Git11a] for details.

Similarly, the operator R ! T∗VRTV can be interpreted as a bi-infinite operator matrix
R = [Rνµ] with Rνν = Aνν −D and Rνµ = Aνµ for ν " µ.

Let Km = T∗KmT ∈ L("2(Λ)). Due to the three term recursion (1.10),

(Kmc)µ = β
m
µm+1cµ+εm + α

m
µm

cµ + β
m
µm

cµ−εm , µ ∈ Λ , (1.22)

for c = (cµ)µ∈Λ ∈ "2(Λ), where cµ ! 0 if µm < 0 for any m ∈ N. Furthermore, K∗m = Km

and ‖Km‖"2(Λ)→"2(Λ) ≤ 1.
Using the maps Km, R can be written succinctly as

R =
∞
∑

m=1

Km ⊗ Rm , (1.23)
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with unconditional convergence inL("2(Λ; V), "2(Λ; V∗)). By Lemma 1.1,

‖R‖"2(Λ;V)→"2(Λ;V∗) ≤ γ < 1 . (1.24)

In particular, ‖A‖ ≤ (1 + γ) and
∥

∥

∥A−1
∥

∥

∥ ≤ (1 − γ)−1.
We also define the operator D ! T∗VDTV. This is just the Riesz isomorphism from

"2(Λ; V) to "2(Λ; V∗). By [Git11c, Proposition 2.10],

(1 − γ)D ≤ A ≤ (1 + γ)D and
1

1 + γ
D−1 ≤ A−1 ≤

1

1 − γ
D−1 . (1.25)

In particular, using A = AA−1A, we have

1

1 + γ
AD−1A ≤ A ≤

1

1 − γ
AD−1A . (1.26)

1.5 Galerkin Projection

LetW be a closed subspace of L2
π(Γ; V). The Galerkin solution ū ∈W is defined through

the linear variational problem
∫

Γ

〈

A(y)ū(y),w(y)
〉

dπ(y) =

∫

Γ

〈

f (y),w(y)
〉

dπ(y) ∀w ∈W . (1.27)

Existence, uniqueness and quasi-optimality of ū follow sinceA induces an inner product
on L2

π(Γ; V) that is equivalent to the standard inner product, see [Git11c, Proposition 1.5].
For all ν ∈ Λ, let Wν be a finite dimensional subspace of V, such that Wν " {0} for only

finitely many ν ∈ Λ. It is particularly useful to consider spacesW of the form

W !

∑

ν∈Λ
WνPν . (1.28)

The Galerkin operator on such a space has a similar structure to (1.20), with Aνµ replaced
by its representation on suitable subpsaces Wν of V, see [Git11c, Section 2].

2 Approximation of the Residual

2.1 Adaptive Application of the Stochastic Operator

We construct a sequence of approximations of R by truncating the series (1.23). For all
M ∈N, let

R[M] !

M
∑

m=1

Km ⊗ Rm , (2.1)

and R[0] ! 0. For all M ∈N, let ēRRR,M be given such that
∥

∥

∥R − R[M]

∥

∥

∥

"2(Λ;V)→"2(Λ;V∗)
≤ ēRRR,M . (2.2)

6



For example, these bounds can be chosen as

ēRRR,M !

∞
∑

m=M+1

‖Rm‖V→V∗ . (2.3)

We assume that (ēRRR,M)∞M=0 is nonincreasing and converges to 0, and also that the sequence
of differences (ēRRR,M − ēRRR,M+1)∞M=0 is nonincreasing.

We consider a partitionaing of a vector w ∈ "2(Λ) into w[p] ! w|Λp , p = 1, . . . ,P,
for disjoint index sets Λp ⊂ Λ. This can be approximate in that w[1] + · · · + w[P] only
approximates w in "2(Λ). We think of w[1] as containing the largest elements of w, w[2]

the next largest, and so on.
Such a partitioning can be constructed by the approximate sorting algorithm

BucketSort[w, ε] ,→
[

(w[p])
P
p=1, (Λp)P

p=1

]

, (2.4)

which, given a finitely supported w ∈ "2(Λ) and a threshold ε > 0, returns index sets

Λp !

{

µ ∈ Λ ;
∣

∣

∣vµ
∣

∣

∣ ∈ (2−p/2 ‖w‖"∞ , 2−(p−1)/2 ‖w‖"∞]
}

(2.5)

and w[p] ! w|Λp , see [Met02, Bar05, GHS07, DSS09]. The integer P is minimal with

2−P/2 ‖w‖"∞(Λ)

√

# supp w ≤ ε . (2.6)

By [GHS07, Rem. 2.3] or [DSS09, Prop. 4.4], the number of operations and storage
locations required by a call of BucketSort[w, ε] is bounded by

# supp w +max(1, /log(‖w‖"∞(Λ)

√

# supp w/ε)0) . (2.7)

This analysis uses that every wµ, µ ∈ Λ, can be mapped to p with µ ∈ Λp in constant
time by evaluating

p !



















1 + 2 log2















‖w‖"∞(Λ)
∣

∣

∣wµ
∣

∣

∣

































. (2.8)

Alternatively, any standard comparison-based sorting algorithm can be used to con-
struct the partitioning of w, albeit with an additional logarithmic factor in the complex-
ity.

The routine ApplyRRR[v, ε] adaptively approximates Rv in three distict steps. First, the
elements of v are grouped according to their norm. Elements smaller than a certain
tolerance are discarded. This truncation of the vector v produces an error of at most
δ ≤ ε/2.

Next, a greedy algorithm is used to assign to each segment v[p] of v an approximation
R[Mp] of R. Starting with R[Mp] = 0 for all p = 1, . . . , ", these approximations are refined
iteratively until an estimate of the error is smaller than ε − δ.

Finally, the operations determined by the previous two steps are performed. Each
multiplication Rmvµ is performed just once, and copied to the appropriate entries of z.
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ApplyRRR[v, ε] ,→ z

[·, (Λp)P
p=1]←− BucketSort

[

(
∥

∥

∥vµ
∥

∥

∥

V
)µ∈Λ,

ε
2ēRRR,0

]

for p = 1, . . . ,P do v[p] ←− (vµ)µ∈Λp

Compute the minimal " ∈ {0, 1, . . . ,P} s.t. δ ! ēRRR,0

∥

∥

∥

∥

∥

∥

∥

∥

v −
"
∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

"2(Λ;V)

≤
ε
2

for p = 1, . . . ,P do Mp ←− 0

while
∑"

p=1 ēRRR,Mp

∥

∥

∥v[p]

∥

∥

∥

"2(Λ;V)
> ε − δ do

q←− argmaxp=1,...,"(ēRRR,Mp − ēRRR,Mp+1)
∥

∥

∥v[p]

∥

∥

∥

"2(Λ;V)
/#Λp

Mq ←−Mq + 1

z = (zν)ν∈Λ ←− 0
for p = 1, . . . , " do

forall µ ∈ Λp do
for m = 1, . . . ,Mp do

w←− Rmvµ
zµ+εm ←− zµ+εm + β

m
µm+1

w

if µm ≥ 1 then zµ−εm ←− zµ−εm + β
m
µm

w
if αm

µm
" 0 then zµ ←− zµ + αm

µm
w

Proposition 2.1. For any finitely supported v ∈ "2(Λ; V) and any ε > 0, ApplyRRR[v, ε]
produces a finitely supported z ∈ "2(Λ; V∗) with

# supp z ≤ 3
"
∑

p=1

Mp#Λp (2.9)

and

‖Rv − z‖"2(Λ;V∗) ≤ δ + ηMMM ≤ ε , ηMMM !

"
∑

p=1

ēRRR,Mp

∥

∥

∥v[p]

∥

∥

∥

"2(Λ;V)
, (2.10)

where Mp refers to the final value of this variable in the call of ApplyRRR. The total number

of products Rmvµ computed in ApplyRRR[v, ε] is σMMM !
∑"

p=1 Mp#Λp. Furthermore, the vector

M = (Mp)"
p=1

is optimal in the sense that if N = (Np)"
p=1

with σNNN ≤ σMMM then ηNNN ≥ ηMMM, and if

ηNNN ≤ ηMMM, then σNNN ≥ σMMM.

Proof. The estimate (2.9) follows from the fact that each Km has at most three nonzero
entries per column, see (1.22). Since ‖R‖"2(Λ;V)→"2(Λ;V∗) ≤ ēRRR,0,

∥

∥

∥

∥

∥

∥

∥

∥

Rv − R
"
∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

"2(Λ;V∗)

≤ ēRRR,0

∥

∥

∥

∥

∥

∥

∥

∥

v −
"
∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

"2(Λ;V)

= δ ≤
ε
2
.
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Due to (2.2) and the termination criterion in the greedy subroutine of ApplyRRR,

"
∑

p=1

∥

∥

∥Rv[p] − R[Mp]v[p]

∥

∥

∥

"2(Λ;V∗)
≤

"
∑

p=1

ēRRR,Mp

∥

∥

∥v[p]

∥

∥

∥

"2(Λ;V)
≤ ε − δ .

For the optimality property of the greedy algorithm, we refer to the more general
statement [Git11a, Theorem 4.1.5]. !

2.2 Computation of the Residual

We assume a solver for D is available such that for any g ∈ V∗ and any ε > 0,

SolveD[g, ε] ,→ v ,
∥

∥

∥v −D−1g
∥

∥

∥

V
≤ ε . (2.11)

For example, SolveD could be an adaptive wavelet method, see e.g. [CDD01, CDD02,
GHS07], an adaptive frame method, see e.g. [Ste03, DFR07, DRW+07], or a finite element
method with a posteriori error estimation, see e.g. [Dör96, MNS00, BDD04].

Furthermore, we assume that a routine

RHS fff [ε] ,→ f̃ (2.12)

is available to compute approximations f̃ = ( f̃ν)ν∈Λ of f with # supp f̃ < ∞ and
∥

∥

∥ f − f̃
∥

∥

∥

"2(Λ;V∗)
≤ ε (2.13)

for any ε > 0.
The routine ResidualAAA, fff approximates the residual f −Av up to a prescribed relative

tolerance.

ResidualAAA, fff [ε, v, η0,χ,ω,α, β] ,→ [w, η, ζ]

ζ←− χη0

repeat
h = (hν)ν∈Λ ←− RHS fff [β(1 − α)ζ] − ApplyRRR[v, (1 − β)(1 − α)ζ]
w = (wν)ν∈Λ ←− (SolveD[hν,αζ(# supp h)−1/2])ν∈Λ
η←− ‖w − v‖"2(Λ;V)

if ζ ≤ ωη or η + ζ ≤ ε then break
ζ←− ω1−ω

1+ω (η + ζ)

Proposition 2.2. For any finitely supported v = (vν)ν∈Λ ∈ "2(Λ; V), ε > 0, η0 ≥ 0, χ > 0,
ω > 0, 0 < α < 1 and 0 < β < 1, a call of ResidualAAA, fff [ε, v, η0,χ,ω,α, β] computes

w ∈ "2(Λ; V), η ≥ 0 and ζ ≥ 0 with
∣

∣

∣η − ‖r‖"2(Λ;V∗)

∣

∣

∣ ≤
∥

∥

∥w − v −D−1r
∥

∥

∥

"2(Λ;V)
=
∥

∥

∥w −D−1( f − Rv)
∥

∥

∥

"2(Λ;V)
≤ ζ , (2.14)

where r = (rν)ν∈Λ ∈ "2(Λ; V∗) is the residual r = f − Av, and ζ satisfies either ζ ≤ ωη or
η + ζ ≤ ε.
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Proof. By construction,
∥

∥

∥h − ( f − Rv)
∥

∥

∥

"2(Λ;V∗)
≤
∥

∥

∥h − ( f − Rv)
∥

∥

∥

"2(Λ;V∗)
≤ (1 − α)ζ .

Furthermore, using
∥

∥

∥w −D−1h
∥

∥

∥

"2(Λ;V)
≤ αζ,

∥

∥

∥w −D−1( f − Rv)
∥

∥

∥

"2(Λ;V)
≤
∥

∥

∥w −D−1h
∥

∥

∥

"2(Λ;V)
+
∥

∥

∥h − ( f − Rv)
∥

∥

∥

"2(Λ;V∗)
≤ ζ .

The rest of (2.14) follows by triangle inequality with ‖r‖"2(Λ;V∗) =
∥

∥

∥D−1r
∥

∥

∥

"2(Λ;V)
. !

Remark 2.3. The tolerance ζ in ResidualAAA, fff is initialized as the product of an initial
estimate η0 of the residual and a parameter χ. The update

ζ←− ω
1 − ω
1 + ω

(η + ζ) # ζ1 (2.15)

ensures a geometric decrease of ζ since if ζ > ωη, then

ζ1 = ω
1 − ω
1 + ω

(η + ζ) <
1 − ω
1 + ω

(ζ + ωζ) = (1 − ω)ζ . (2.16)

Therefore, the total computational cost of the routine is proportional to that of the final
iteration of the loop. Furthermore, if ζ > ωη, then also

ζ1 = ω
1 − ω
1 + ω

(η + ζ) > ω(1 − ω)η > ω(η − ζ) . (2.17)

The term η − ζ in the last expression of (2.17) is a lower bound for the true residual
‖r‖"2(Λ;V∗

D
). In this sense, the prescription (2.15) does not select an unnecessarily small

tolerance.
Finally, if ζ ≤ 2ω(1 − ω)−1η, then ζ1 ≤ ωη. If the next value of η is greater than

or equal to the current value, this ensures that the termination criterion is met in the
next iteration. For example, under the mild condition ζ ≤ (1 + 4ω − ω2)(1 − ω)−2η, we
have ζ1 ≤ 2ω(1 − ω)−1η. The loop can therefore be expected to terminate within three
iterations. "

Remark 2.4. In ResidualAAA, fff , the tolerances of SolveD are chosen such that the error
tolerance αζ is equidistributed among all the nonzero indices of w. This property is not
required anywhere; Proposition 2.2 only uses that the total error in the computation of
D−1h is no more than αζ. Indeed, other strategies for selecting tolerances, e.g. based
on additional a priori information, may be more efficient. Equidistributing the error
among all the indices is a simple, practical starting point. "

10



3 An Adaptive Solver

3.1 Refinement Strategy

We use the approximation of the residual described in Section 2 to refine a Galerkin
subspace W ⊂ L2

π(Γ; V) of the form (1.28). For some approximate solution v with
TVv ∈W, let w be the approximation of D−1( f − Rv) computed by ResidualAAA, fff . We
construct a space

W̄ !

∑

µ∈Λ
W̄µPµ ⊃W , (3.1)

with W̄µ ⊂ V finite dimensional, such that w can be approximated sufficiently in W̄. A
simple choice is W̄µ ! Wµ + span wµ, whereW =

∑

µWµPµ.

We consider a multilevel setting. For each µ ∈ supp w ⊂ Λ, let Wµ # W0
µ ⊂ W1

µ ⊂ · · ·
be a scale of finite dimensional subspaces of V such that

⋃∞
i=0 Wi

µ is dense in V. To

each space, we associate a cost dim Wi
µ and an error

∥

∥

∥wµ −Πi
µwµ
∥

∥

∥

2

V
, where Πi

µ denotes

the orthogonal projection in V onto Wi
µ. In the construction of W̄, we use a greedy

algorithm to minimize the dimension of W̄ under a constraint on the approximation
error of w.

RefineD[W,w, ε] ,→ [W̄, w̄, 2]
forall µ ∈ supp w do jµ ←− 0

while
∑

µ∈suppwww

∥

∥

∥

∥

wµ −Π
jµ
µ wµ

∥

∥

∥

∥

2

V
> ε2 do

ν←− argmax
µ∈suppwww

∥

∥

∥

∥

Π
jµ+1
µ wµ −Π

jµ
µ wµ

∥

∥

∥

∥

2

V

dim(W
jµ+1
µ \W

jµ
µ )

jν ←− jν + 1

forall µ ∈ supp w do

W̄µ ←−W
jµ
µ

w̄µ ←− Π
jµ
µ wµ

2←−
(

∑

µ∈supp www

∥

∥

∥wµ − w̄µ
∥

∥

∥

2

V

)1/2

Proposition 3.1. If for every µ ∈ supp w,

∥

∥

∥Πi+1
µ wµ −Πi

µwµ
∥

∥

∥

2

V

dim(Wi+1
µ \Wi

µ)
≥

∥

∥

∥

∥

Π
j+1
µ wµ −Π

j
µwµ

∥

∥

∥

∥

2

V

dim(W
j+1
µ \W

j
µ)

∀i ≤ j , (3.2)

then for any ε ≥ 0, a call of RefineD[W,w, ε] constructs a space W̄ of the form (3.1) and
TVw̄ ∈ W̄ satisfying

2 = ‖w − w̄‖"2(Λ;V) ≤ ε . (3.3)

11



Furthermore, dimW̄ is minimal among all spaces of the form (3.1) with W̄µ = Wi
µ and

satisfying (3.3).

Proof. Equation (3.3) follows from the termination criterion in RefineD. Convergence
is ensured by (3.2) and Wi

µ ↑ V for all µ. For the optimality property of the greedy
algorithm, we refer to the more general statement [Git11a, Theorem 4.1.5]. !

3.2 Adaptive Galerkin Method

Let ‖·‖AAA denote the energy norm on "2(Λ; V), i.e. ‖v‖AAA !
√

〈Av, v〉. We assume that a
routine

GalerkinAAA, fff [W, ũ0, ε] ,→ [ũ, τ] (3.4)

is available which, given a finite dimensional subspaceW of L2
π(Γ; V) of the form (1.28),

and starting from the initial approximation ũ0, iteratively computes ũ ∈ "2(Λ; V) with
TVũ ∈W and

‖ũ − ū‖AAA ≤ τ ≤ ε , (3.5)

where TVū is the Galerkin projection of u ontoW. An example of such a routine, based
on a preconditioned conjugate gradient iteration, is given in [Git11c].

We combine the method ResidualAAA, fff for approximating the residual, RefineD for
refining the Galerkin subspace and GalerkinAAA, fff for approximating the Galerkin projec-
tion, to an adaptive solver SolveGalerkinAAA, fff similar to [CDD01, GHS07, DSS09].

SolveGalerkinAAA, fff [ε,γ,χ,ϑ,ω, σ,α, β] ,→ uε

W(0) ←− {0}
ũ(0) ←− 0
δ0 ←−

√

(1 − γ)−1
∥

∥

∥ f
∥

∥

∥

"2(Λ;V∗)

for k = 0, 1, 2, . . . do

[wk, ηk, ζk]←− ResidualAAA, fff [ε
√

1 − γ, ũ(k), δk,χ,ω,α, β]

δ̄k ←− (ηk + ζk)/
√

1 − γ
if min(δk, δ̄k) ≤ ε then break

[W(k+1), w̄k, 2k]←− RefineD[W(k),wk,
√

η2
k
− (ζk + ϑ(ηk + ζk))2]

ϑ̄k ←− (
√

η2
k
− 22

k
− ζk)/(ηk + ζk)

[ũ(k+1), τk+1]←− GalerkinAAA, fff [W(k+1), w̄k, σmin(δk, δ̄k)]

δk+1 ←− τk+1 +
√

1 − ϑ̄2
k
(1 − γ)(1 + γ)−1 min(δk, δ̄k)

uε ←− ũ(k)

3.3 Convergence of the Adaptive Solver

The convergence analysis of SolveGalerkinAAA, fff is based [CDD01, Lemma 4.1], which
generalizes to our vector setting for Galerkin spaces W of the form (1.28). Let ΠW
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denote the orthogonal projection in "2(Λ; V) onto T−1
V W, and let Π̂W ! DΠWD−1 be

the orthogonal projection in "2(Λ; V∗) onto DT−1
V W = T∗VDW.

Proposition 3.2. LetW be as in (1.28), and ϑ ∈ [0, 1]. Let v ∈W with
∥

∥

∥Π̂W( f − Av)
∥

∥

∥

"2(Λ;V∗)
≥ ϑ
∥

∥

∥ f − Av
∥

∥

∥

"2(Λ;V∗)
. (3.6)

Then the Galerkin projection ū of u ontoW satisfies

‖u − ū‖AAA ≤

√

1 − ϑ2
1 − γ
1 + γ

‖u − v‖AAA . (3.7)

Proof. Due to (3.6),

‖ū − v‖AAA ≥ ‖A‖−1/2 ‖A(ū − v)‖"2(Λ;V∗) ≥ ‖A‖
−1/2

∥

∥

∥Π̂W( f − Av)
∥

∥

∥

"2(Λ;V∗)

≥ ‖A‖−1/2 ϑ
∥

∥

∥ f − Av
∥

∥

∥

"2(Λ;V∗)
≥ ‖A‖−1/2

∥

∥

∥A−1
∥

∥

∥

−1/2
ϑ ‖u − v‖AAA .

By Galerkin orthogonality,

‖u − ū‖2AAA = ‖u − v‖2AAA − ‖ū − v‖2AAA ≤ (1 − ϑ2 ‖A‖−1
∥

∥

∥A−1
∥

∥

∥

−1
) ‖u − v‖2AAA .

The assertion follows using the estimates ‖A‖ ≤ (1 + γ) and
∥

∥

∥A−1
∥

∥

∥ ≤ (1 − γ)−1, which
follow from (1.24). !

Lemma 3.3. Ifϑ > 0,ω > 0, andω+ϑ+ωϑ ≤ 1, then the spaceW(k+1) in SolveGalerkinAAA, fff
is such that

∥

∥

∥Π̂W(k+1)rk

∥

∥

∥

"2(Λ;V∗)
≥ ϑ̄k ‖rk‖"2(Λ;V∗) (3.8)

where rk ! f − Aũ(k) is the residual at iteration k ∈N0, and ϑ̄k ≥ ϑ.

Proof. We abbreviate z ! wk − ũ(k). Due to ζk ≤ ωηk, the assumption ω + ϑ + ωϑ ≤ 1
implies ζk + ϑ(ηk + ζk) ≤ ηk. Thus the tolerance in RefineD is nonnegative. Since
ũ(k) ∈W(k) ⊂W(k+1), Proposition 3.1 implies

2k = ‖wk − w̄k‖"2(Λ;V) =
∥

∥

∥wk −ΠW(k+1)wk

∥

∥

∥

"2(Λ;V)
=
∥

∥

∥z −ΠW(k+1)z
∥

∥

∥

"2(Λ;V)
.

Consequently,

∥

∥

∥ΠW(k+1)z
∥

∥

∥

2

"2(Λ;V)
= ‖z‖2"2(Λ;V) −

∥

∥

∥z −ΠW(k+1)z
∥

∥

∥

2

"2(Λ;V)
= η2

k − 2
2
k .

Furthermore, since ΠW(k+1) has norm one, Proposition 2.2 implies
∥

∥

∥ΠW(k+1)z
∥

∥

∥

"2(Λ;V)
−
∥

∥

∥Π̂W(k+1)rk

∥

∥

∥

"2(Λ;V∗)
≤
∥

∥

∥ΠW(k+1)(z −D−1rk)
∥

∥

∥

"2(Λ;V)

≤
∥

∥

∥z −D−1rk

∥

∥

∥

"2(Λ;V)
≤ ζk .
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Combining these estimates, we have
∥

∥

∥Π̂W(k+1)rk

∥

∥

∥

"2(Λ;V∗)
≥
∥

∥

∥ΠW(k+1)z
∥

∥

∥

"2(Λ;V)
− ζk =

√

η2
k
− 22

k
− ζk ,

and (3.8) follows using ‖rk‖"2(Λ;V∗) ≤ ηk + ζk. Finally, 22
k
≤ η2

k
− (ζk + ϑ(ηk + ζk))2 implies

√

η2
k
− 22

k
≥ ζk + ϑ(ηk + ζk), and therefore ϑ̄k = (

√

η2
k
− 22

k
− ζk)/(ηk + ζk) ≥ ϑ. !

Theorem 3.4. If ε > 0, χ > 0, ϑ > 0, ω > 0, ω + ϑ + ωϑ ≤ 1, 0 < α < 1, 0 < β < 1 and

0 < σ < 1−
√

1 − ϑ2(1 − γ)(1 + γ)−1, then SolveGalerkinAAA, fff [ε,γ,χ,ϑ,ω, σ,α, β] constructs

a finitely supported uε ∈ "2(Λ; V) with

‖u − uε‖AAA ≤ ε . (3.9)

Moreover,
√

1 − γ
1 + γ

1 − ω
1 + ω

δ̄k ≤
∥

∥

∥u − ũ(k)
∥

∥

∥

AAA
≤ min(δk, δ̄k) (3.10)

for all k ∈N0 reached by SolveGalerkinAAA, fff .

Proof. Due to the termination criterion of SolveGalerkinAAA, fff , it suffices to show (3.10).

For k = 0, since ‖u‖"2(Λ;V) ≤
∥

∥

∥A−1
∥

∥

∥

1/2 ‖u‖AAA,
∥

∥

∥u − ũ(0)
∥

∥

∥

2

AAA
= ‖u‖2AAA =

〈

f , u
〉

"2(Λ;V) ≤
∥

∥

∥ f
∥

∥

∥

"2(Λ;V∗)
‖u‖"2(Λ;V) ≤ δ0 ‖u‖AAA .

Let
∥

∥

∥u − ũ(k)
∥

∥

∥

AAA
≤ δk for some k ∈ N0. Abbreviating rk ! f − Aũ(k), using (1.26) then

(2.14), we have
∥

∥

∥u − ũ(k)
∥

∥

∥

AAA
≤

1
√

1 − γ
‖rk‖"2(Λ;V∗) ≤

ζk + ηk
√

1 − γ
= δ̄k .

If min(δk, δ̄k) > ε, then ζk ≤ ωηk by Proposition 2.2. Due to Lemma 3.3, Proposition 3.2
implies

‖u − ū‖AAA ≤

√

1 − ϑ̄2
k

1 − γ
1 + γ

min(δk, δ̄k) ,

where ū is the exact Galerkin projection of u ontoW(k+1). By (3.5), ũ(k+1) approximates
ū up to an error of at most τk+1 ≤ σmin(δk, δ̄k) in the norm ‖·‖AAA. It follows by triangle
inequality that

∥

∥

∥u − ũ(k+1)
∥

∥

∥

AAA
≤ δk+1.

To show the other inequality in (3.10), we note that for any k ∈N0,

∥

∥

∥u − ũ(k)
∥

∥

∥

AAA
≥

1
√

1 + γ
‖rk‖"2(Λ;V∗) ≥

ηk − ζk
√

1 + γ
=

√

1 − γ
1 + γ

ηk − ζk

ηk + ζk
δ̄k ,

and (ηk − ζk)(ηk + ζk)−1 ≥ (1 − ω)(1 + ω)−1.
Finally, since

δk ≤
(

σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1
)k

δ0

and σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1 < 1 by assumption, the iteration does terminate. !
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4 Optimality Properties

4.1 A Semidiscrete Algorithm

We consider the adaptive method from Section 3 with no discretization in V, i.e. with
Galerkin subspaces of the form "2(Ξ; V) ⊂ "2(Λ; V) for a finite subset Ξ ⊂ Λ. Formally
replacingW(k) by a set of active indicesΞ(k), SolveGalerkinAAA, fff naturally extends to this
setting.

In the subroutine ResidualAAA, fff , we assume that SolveD inverts D exactly. The param-
eter α can thus be set to zero.

In the subsequent refinement step, Ξ(k) is augmented by sufficiently many elements
of supp wk to represent wk to the desired accuracy. The method RefineD reduces to
ordering supp wk according to

∥

∥

∥wk,ν

∥

∥

∥

V
and selecting the most important contributions.

In GalerkinAAA, fff , we assume that operations in V can be performed exactly, and that

the Galerkin projection of u onto "2(Ξ(k+1); V) can be approximated e.g. by a conjugate
gradient iteration.

4.2 Optimal Choice of Subspaces

For v ∈ "2(Λ; V) and N ∈ N0, let PN(v) be a best N-term approximation of v, that is,
PN(v) is an element of "2(Λ; V) that minimizes ‖v − vN‖"2(Λ;V) over vN ∈ "2(Λ; V) with
# supp vN ≤ N. For s ∈ (0,∞), we define

‖v‖As(Λ;V) ! sup
N∈N0

(N + 1)s ‖v − PN(v)‖"2(Λ;V) (4.1)

and
As(Λ; V)!

{

v ∈ "2(Λ; V) ; ‖v‖As(Λ;V) < ∞
}

. (4.2)

By definition, an optimal approximation in "2(Λ; V) of v ∈ As(Λ; V) with error tolerance
ε > 0 consists of O(ε−1/s) nonzero coefficients in V.

For anyΞ ⊂ Λ, letΠΞ denote the orthogonal projection in "2(Λ; V∗) onto "2(Ξ; V∗). The
following statement is adapted from [GHS07, Lemma 2.1] and [DSS09, Lemma 4.1].

Lemma 4.1. Let Ξ(0) be a finite subset of Λ and v ∈ "2(Ξ(0); V). If

0 ≤ ϑ̂ <

√

1 − γ
1 + γ

(4.3)

and Ξ(0) ⊂ Ξ(1) ⊂ Λ with

#Ξ(1) ≤ c̄ min
{

#Ξ ; Ξ(0) ⊂ Ξ ,
∥

∥

∥ΠΞ( f − Av)
∥

∥

∥

"2(Λ;V∗)
≥ ϑ̂
∥

∥

∥ f − Av
∥

∥

∥

"2(Λ;V∗)

}

(4.4)

for a c̄ ≥ 1, then

#(Ξ(1) \ Ξ(0)) ≤ c̄ min
{

#Ξ̂ ; Ξ̂ ⊂ Λ , ‖u − û‖AAA ≤ τ ‖u − v‖AAA
}

(4.5)

for τ =
√

1 − ϑ̂2(1 + γ)(1 − γ)−1, where û denotes the Galerkin projection of u onto "2(Ξ̂; V).
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Proof. Let Ξ̂ be as in (4.5) and Ξ̆ ! Ξ(0)∪Ξ̂. Furthermore, let û and ŭ denote the Galerkin
solutions in "2(Ξ̂; V) and "2(Ξ̆; V), respectively. Since Ξ̂ ⊂ Ξ̆, ‖u − ŭ‖AAA ≤ ‖u − û‖AAA, and
by Galerkin orthogonality,

‖ŭ − v‖2AAA = ‖u − v‖2AAA − ‖u − ŭ‖2AAA ≥ (1 − τ2) ‖u − v‖2AAA = ϑ̂
2(1 + γ)(1 − γ−1) ‖u − v‖2AAA .

Therefore, using κ(A) = ‖A‖
∥

∥

∥A−1
∥

∥

∥ ≤ (1 + γ)(1 − γ)−1,

∥

∥

∥ΠΞ̆( f − Av)
∥

∥

∥

"2(Λ;V∗)
= ‖A(ŭ − v)‖"2(Λ;V∗) ≥

∥

∥

∥A−1
∥

∥

∥

−1/2 ‖ŭ − v‖AAA

≥ ϑ̂ ‖A‖1/2 ‖u − v‖AAA ≥ ϑ̂
∥

∥

∥ f − Av
∥

∥

∥

"2(Λ;V∗)
.

By (4.4), #Ξ(1) ≤ c̄#Ξ̆, and consequently

#(Ξ(1) \ Ξ(0)) ≤ c̄#(Ξ̆ \ Ξ(0)) ≤ c̄#Ξ̂ . !

We use Lemma 4.1 to show that, under additional assumptions on the parameters,
the index sets Ξ(k) generated by the semidiscrete version of SolveGalerkinAAA, fff are of
optimal size, up to a constant factor.

Theorem 4.2. If the conditions of Theorem 3.4 are satisfied,

ϑ̂ !
ϑ(1 + ω) + 2ω

1 − ω
<

√

1 − γ
1 + γ

, (4.6)

and u ∈ As(Λ; V) for an s > 0, then for all k ∈N0 reached by SolveGalerkinAAA, fff ,

#Ξ(k) ≤ 2
(2/τ)1/s

1 − 21/s

(

(1 + γ)(1 + ω)

(1 − γ)(1 − ω)

)1/s
∥

∥

∥u − ũ(k)
∥

∥

∥

−1/s

"2(Λ;V)
‖u‖1/sAs(Λ;V)

(4.7)

with 2 = σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1 and τ =
√

1 − ϑ̂2(1 + γ)(1 − γ)−1.

Proof. Let k ∈N0, rk = f −Aũ(k). Also, let ! = (2ν)ν∈Λ, 2ν !
∥

∥

∥wk,ν

∥

∥

∥

V
for the approximation

wk = (wk,ν)ν∈Λ of D−1rk computed in ResidualAAA, fff , and let ∆ ⊂ supp wk denote the active
indices selected by RefineD.

We note that for α ! ω + ϑ + ωϑ, we have ϑ = α−ω1+ω and ϑ̂ = α+ω1−ω . Let Ξ(k) ⊂ Ξ̄ ⊂ Λ
satisfy

∥

∥

∥ΠΞ̄rk

∥

∥

∥

"2(Λ;V∗)
≥ ϑ̂ ‖rk‖"2(Λ;V∗). Then

ϑ̂
∥

∥

∥!
∥

∥

∥

"2(Λ)
≤ ϑ̂ ‖rk‖"2(Λ;V∗) + ϑ̂ω

∥

∥

∥!
∥

∥

∥

"2(Λ)

≤
∥

∥

∥ΠΞ̄rk

∥

∥

∥

"2(Λ;V∗)
+ ϑ̂ω

∥

∥

∥!
∥

∥

∥

"2(Λ)
≤
∥

∥

∥ΠΞ̄!
∥

∥

∥

"2(Λ)
+ (1 + ϑ̂)ω

∥

∥

∥!
∥

∥

∥

"2(Λ)

and since ϑ̂− (1+ ϑ̂)ω = α, it follows that
∥

∥

∥ΠΞ̄!
∥

∥

∥

"2(Λ)
≥ α
∥

∥

∥!
∥

∥

∥

"2(Λ)
. By construction, ∆ is a

set of minimal cardinality with
∥

∥

∥Π∆!
∥

∥

∥

"2(Λ)
≥ ᾱ
∥

∥

∥!
∥

∥

∥

"2(Λ)
for ᾱ ! ζkη−1

k
+ ϑ(1 + ζkη−1

k
) ≤ α.
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Consequently, #(Ξ(k+1) \ Ξ(k)) ≤ #∆ ≤ #Ξ̄. Since this holds for any Ξ̄, using #Ξ(k) ≤ Ξ̄, it
follows that

#Ξ(k+1) ≤ 2 min
{

#Ξ̄ ; Ξ(k) ⊂ Ξ̄ ⊂ Λ ,
∥

∥

∥ΠΞ̄rk

∥

∥

∥

"2(Λ;V∗)
≥ ϑ̂ ‖rk‖"2(Λ;V∗)

}

.

Lemma 4.1 implies

#(Ξ(k+1) \ Ξ(k)) ≤ 2 min
{

#Ξ̂ ; Ξ̂ ⊂ Λ , ‖u − û‖AAA ≤ τ
∥

∥

∥u − ũ(k)
∥

∥

∥

AAA

}

with τ =
√

1 − ϑ̂2(1 + γ)(1 − γ)−1 , where û denotes the Galerkin projection of u onto

"2(Ξ̂; V).
Let N ∈N0 be maximal with ‖u − PN(u)‖"2(Λ;V) > τ(1 + γ)−1/2

∥

∥

∥u − ũ(k)
∥

∥

∥

AAA
, where PN(u)

is a best N-term approximation of u. By (4.1),

N + 1 ≤ ‖u − PN(u)‖−1/s
"2(Λ;V)

‖u‖1/sAs(Λ;V)
≤ τ−1/s(1 + γ)1/2s

∥

∥

∥u − ũ(k)
∥

∥

∥

−1/s

AAA
‖u‖1/sAs(Λ;V)

.

For ΞN+1 ! supp PN+1(u), by maximality of N,

‖u − ūN+1‖AAA ≤ ‖u − PN+1(u)‖AAA ≤ (1 + γ)1/2 ‖u − PN+1(u)‖"2(Λ;V) ≤ τ
∥

∥

∥u − ũ(k)
∥

∥

∥

AAA

for the Galerkin solution ūN+1 in "2(ΞN+1; V), and thus

#(Ξ(k+1) \ Ξ(k)) ≤ 2(N + 1) ≤ 2τ−1/s(1 + γ)1/2s
∥

∥

∥u − ũ(k)
∥

∥

∥

−1/s

AAA
‖u‖1/sAs(Λ;V)

.

Furthermore, by Theorem 3.4,

∥

∥

∥u − ũ(k)
∥

∥

∥

−1/s

AAA
≤

















√

1 − γ
1 + γ

1 − ω
1 + ω

δ̄k

















−1/s

.

We estimate the cardinality ofΞ(k) by slicing it into increments and applying the above
estimates,

#Ξ(k) =

k−1
∑

j=0

#(Ξ( j+1) \ Ξ( j)) ≤ 2τ−1/s(1 + γ)1/2s ‖u‖1/sAs(Λ;V)

k−1
∑

j=0

∥

∥

∥u − ũ( j)
∥

∥

∥

−1/s

AAA

≤ 2

(

τ(1 − γ)1/2(1 − ω)

(1 + γ)(1 + ω)

)−1/s

‖u‖1/sAs(Λ;V)

k−1
∑

j=0

δ̄−1/s
j
.

By definition, δk ≤ 2k− jδ̄ j. Therefore,

k−1
∑

j=0

δ̄−1/s
j
≤ δ−1/s

k

k−1
∑

j=0

2(k− j)/s = δ−1/s
k

k
∑

i=1

2i/s =
21/sδ−1/s

k

1 − 21/s
.

The assertion follows using

(1 − γ)1/2
∥

∥

∥u − ũ(k)
∥

∥

∥

"2(Λ;V)
≤
∥

∥

∥u − ũ(k)
∥

∥

∥

AAA
≤ δk . !
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4.3 Complexity Estimate

We first cite a result due to Stechkin connecting the order of summability of a sequence
to the convergence of best N-term approximations in a weaker sequence norm, see e.g.
[CDS10b, DeV98]. Note that, although it is formulated only for nonnegative sequences,
Lemma 4.3 applies directly to e.g. Lebesgue–Bochner spaces of Banach space valued
sequences by passing to the norms of the elements of such sequences. Also, it applies to
sequences with arbitrary countable index sets by choosing a decreasing rearrangement.

Lemma 4.3. Let 0 < p ≤ q and let c = (cn)∞n=1 ∈ "
2 with 0 ≤ cn+1 ≤ cn for all n ∈N. Then















∞
∑

n=N+1

c
q
n















1/q

≤ (N + 1)−r ‖c‖"p , r !
1

p
−

1

q
≥ 0 (4.8)

for all N ∈N0.

Proof. Due to the elementary estimate

‖c‖p
"p
=

∞
∑

i=1

c
p
i
≥

n
∑

i=1

c
p
i
≥

n
∑

i=1

c
p
n = nc

p
n ,

we have cn ≤ n−1/p ‖c‖"p for all n ∈N. Therefore, using q − p ≥ 0,

∞
∑

n=N+1

c
q
n ≤

∞
∑

n=N+1

c
p
nc

q−p
N+1
≤ ‖c‖p"p (N + 1)−(q−p)/p ‖c‖q−p

"p = (N + 1)−rq ‖c‖q"p

for all N ∈N0, with r as in (4.8). !

Proposition 4.4. Let s > 0. If either

‖Rm‖V→V∗ ≤ sδRRR,s(m + 1)−s−1 ∀m ∈N (4.9)

or














∞
∑

m=1

‖Rm‖
1

s+1

V→V∗















s+1

≤ δRRR,s , (4.10)

then
∥

∥

∥R − R[M]

∥

∥

∥

"2(Λ;V)→"2(Λ;V∗)
≤ δRRR,s(M + 1)−s ∀M ∈N0 . (4.11)

Proof. By (1.23) and (2.1), using ‖Km‖"2(Λ)→"2(Λ) ≤ 1,

∥

∥

∥R − R[M]

∥

∥

∥

"2(Λ;V)→"2(Λ;V∗)
≤

∞
∑

m=M+1

‖Rm‖V→V∗ .

If (4.9) holds, then (4.11) follows using

∞
∑

m=M+1

(m + 1)−s−1 ≤
∫ ∞

M+1
t−s−1 dt =

1

s
(M + 1)−s .
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If (4.10) is satisfied, then

∞
∑

m=M+1

‖Rm‖V→V∗ ≤















∞
∑

m=1

‖Rm‖
1

s+1

V→V∗















s+1

(M + 1)−s

by Lemma 4.3. !

Remark 4.5. If the assumptions of Proposition 4.4 are satisfied for all s ∈ (0, s∗), then
the operator R is s∗-compressible with sparse approximations R[M]. In this case, R
is a bounded linear map from As(Λ; V) to As(Λ; V∗) for all s ∈ (0, s∗), see [CDD01].
This carries over to the routine ApplyRRR in that if v ∈ As(Λ; V) and z is the output of
ApplyRRR[v, ε] for an ε > 0, then

# supp z # ‖v‖1/sAs(Λ;V)
ε−1/s , (4.12)

‖z‖As(Λ;V∗) # ‖v‖As(Λ;V) (4.13)

with constants depending only on s and R. Moreover, (4.12) is an upper bound for
the total number of applications of operators Rm in ApplyRRR[v, ε]. This follows as in the
standard scalar case, see e.g. [DSS09]. "

We make additional assumptions on the routine RHS fff . If f ∈ As(Λ; V∗) and f̃ is the

output of RHS fff [ε] for an ε > 0, then f̃ should satisfy

# supp f̃ #
∥

∥

∥ f
∥

∥

∥

1/s

As(Λ;V∗)
ε−1/s . (4.14)

Note that if u ∈ As(Λ; V) and R is s∗-compressible with s < s∗, then also A is s∗-
compressible, and therefore

∥

∥

∥ f
∥

∥

∥

As(Λ;V∗)
# ‖u‖As(Λ;V).

Lemma 4.6. Under the conditions of Theorem 4.2,
∥

∥

∥ũ(k)
∥

∥

∥

As(Λ;V)
≤ C ‖u‖As(Λ;V) ∀k ∈N0 , (4.15)

with

C = 1 +
21+s2(1 + γ)(1 + ω)

τ(1 − 21/s)s(1 − γ)(1 − ω)
, (4.16)

2 = σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1 and τ =
√

1 − ϑ̂2(1 + γ)(1 − γ)−1.

Proof. Let k ∈N0. For any N ≥ #Ξ(k),
∥

∥

∥ũ(k) − PN(ũ(k))
∥

∥

∥

"2(Λ;V)
= 0. For N ≤ #Ξ(k) − 1,

∥

∥

∥ũ(k) − PN(ũ(k))
∥

∥

∥

"2(Λ;V)
≤
∥

∥

∥ũ(k) −ΠΞN ũ(k)
∥

∥

∥

"2(Λ;V)

≤
∥

∥

∥u −ΠΞN u
∥

∥

∥

"2(Λ;V)
+ 2
∥

∥

∥u − ũ(k)
∥

∥

∥

"2(Λ;V)
,

where ΞN ! supp PN(u), such that ΠΞN u = PN(u) and
∥

∥

∥u −ΠΞNu
∥

∥

∥

"2(Λ;V)
≤ (N + 1)−s ‖u‖As(Λ;V) .
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Furthermore, Theorem 4.2 implies

∥

∥

∥u − ũ(k)
∥

∥

∥

"2(Λ;V)
≤

2s2(1 + γ)(1 + ω)

τ(1 − 21/s)s(1 − γ)(1 − ω)
(#Ξ(k))−s ‖u‖As(Λ;V) ,

and (#Ξ(k))−s ≤ (N + 1)−s by definition of N. Consequently,
∥

∥

∥ũ(k)
∥

∥

∥

As(Λ;V)
= sup

N∈N0

(N + 1)−s
∥

∥

∥ũ(k) − PN(ũ(k))
∥

∥

∥

"2(Λ;V)
≤ C ‖u‖As(Λ;V)

with C from (4.16). !

Theorem 4.7. Let the conditions of Theorem 4.2 be satisfied. If (4.14) and the assumptions of
Proposition 4.4 hold for all s ∈ (0, s∗), then for any ε > 0 and any s ∈ (0, s∗), the total number
of applications of D, Aνν and D−1 in SolveGalerkinAAA, fff [ε,γ,χ,ϑ,ω, σ, 0, β] is bounded by

‖u‖1/sAs(Λ;V)
ε−1/s up to a constant factor depending only on the input arguments other than ε.

The same bound holds for the total number of applications of Rm, m ∈ N, up to an additional
factor of maxµ∈supp uuuε # suppµ.

Proof. Let k ∈ N0; we consider the k-th iteration of the loop in SolveGalerkinAAA, fff . The

routine ResidualAAA, fff [ε
√

1 − γ, ũ(Ξ(k)), δk,χ,ω, β] begins with #Ξ(k) applications of D. Due
to the geometric decrease in tolerances, the complexity of the loop in ResidualAAA, fff is
dominated by that of its last iteration. By Remark 4.5 and Lemma 4.6, the number of

applications of D−1 and Rm is bounded by ‖u‖1/sAs(Λ;V)
ζ−1/s

k
, and ζk $ δ̄k.

Next, assuming the termination criterion of SolveGalerkinAAA, fff is not satisfied, the rou-

tine GalerkinAAA, fff [Ξ
(k+1),w, σmin(δk, δ̄k)] is called to iteratively approximate the Galerkin

projection onto "2(Ξ(k+1); V). Since only a fixed relative error reduction is required,
the number of iterations remains bounded. Therefore, the number of applications
of D−1 and Aνν is bounded by #Ξ(k+1) and the total number of applications of Rm,
m ∈ N, is bounded by 2λ̄(Ξ(k+1))#Ξ(k+1), where λ̄(Ξ(k+1)) denote the average length of
indices in Ξ(k+1), see [Git11c, Proposition 3.5]. Since the sets Ξ(k) are nested, λ̄(Ξ(k+1)) ≤
maxµ∈suppuuuε # suppµ. Furthermore, by Theorems 3.4 and 4.2, #Ξ(k+1) # ‖u‖1/sAs(Λ;V)

δ̄−1/s
k+1

.

Let k be such that uε = ũ(k). Due to the different termination criterion, the complexity

of the last call of ResidualAAA, fff can be estimated by ‖u‖1/sAs(Λ;V)
ζ−1/s

k
with ζk $ ε. This

bound obviously also holds for #Ξ(k), and thus for the complexity of the final call of
GalerkinAAA, fff .

Combining all of the above estimates, the number of applications of D−1, D, Aνν and
Rm, m ∈N, in SolveGalerkinAAA, fff is bounded by

‖u‖1/sAs(Λ;V)

















ε−1/s +

k−1
∑

j=0

δ̄−1/s
j

















.

Furthermore, δ̄k−1 ≥ ε, and using δk−1 ≤ 2k−1− jδ̄ j for 2 = σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1 < 1,

k−2
∑

j=0

δ̄−1/s
j
≤ δ−1/s

k−1

k−2
∑

j=0

2(k−1− j)/s = δ−1/s
k−1

k−1
∑

i=1

2i/s ≤ δ−1/s
k−1

21/s

1 − 21/s
.
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The assertion follows since δk−1 ≥ ε. !

5 Computational Examples

5.1 Application to Isotropic Diffusion

We consider the isotropic diffusion equation on a bounded Lipschitz domain G ⊂ Rd

with homogeneous Dirichlet boundary conditions. For any uniformly positive a ∈
L∞(G) and any f ∈ L2(G), we have

−∇ · (a(x)∇u(x)) = f (x) , x ∈ G ,

u(x) = 0 , x ∈ ∂G .
(5.1)

We view f as fixed, but allow a to vary, giving rise to a parametric operator

A0(a) : H1
0(G)→ H−1(G) , v ,→ −∇ · (a∇v) , (5.2)

which depends continuously on a ∈ L∞(G).
We model the coefficient a as a bounded L∞(G)-valued random field, which we expand

as a series

a(y, x) ! ā(x) +
∞
∑

m=1

ymam(x) . (5.3)

Since a is bounded, am can be scaled such that ym ∈ [−1, 1] for all m ∈ N. Therefore, a
depends on a parameter y = (ym)∞m=1 in Γ = [−1, 1]∞.

We define the parametric operator A(y) ! A0(a(y)) for y ∈ Γ. Due to the linearity of
A0,

A(y) = D + R(y) , R(y) !
∑

m∈M

ymRm ∀y ∈ Γ (5.4)

with convergence in L(H1
0(G),H−1(G)), for

D ! A0(ā) : H1
0(G)→ H−1(G) , v ,→ −∇ · (ā∇v) ,

Rm ! A0(am) : H1
0(G)→ H−1(G) , v ,→ −∇ · (am∇v) , m ∈M .

To ensure bounded invertibility of D, we assume there is a constant δ > 0 such that

ess inf
x∈G

ā(x) ≥ δ−1 . (5.5)

We refer e.g. to [Git11c, Git11a, SG11] for further details.

5.2 A Posteriori Error Estimation

In SolveGalerkinAAA, fff , a generic solver SolveD is used to approximate D−1gµ to any
desired accuracy, where gµ has the form

gµ = fµ −
k
∑

i=1

κiRmiwi , (5.6)
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with wi ∈ V = H1
0(G) equal to some coefficients ũν of the previous approximate solution.

If D−1gµ is approximated by the finite element method, an a posteriori error estimator
is required to determine whether or not a given approximation attains the desired
accuracy. Due to the unusual structure of gµ, standard error estimators cannot be
applied directly. We derive a reliable residual-based estimator, following the standard
argument from [MNS00, AO00, Ver96].

Let T be a regular mesh of G, and let Wµ be a finite element space of continuous,
piecewise smooth shape functions on T which contains at least the piecewise linear
functions.

We will denote the set of elements of T by T and the set of faces of T by F. The set F
can be decomposed into interior facesF∩G and boundary faces F∩∂G. For any T ∈ T,
let hT be the diameter of T, and similarly, define hF as the diameter of F for any F ∈ F.
Furthermore, for any T ∈ T, let ω̃T ⊂ G consist of all elements of T sharing at least a
vertex with T. Analogously, let ω̃F ⊂ G consist of all elements of T sharing at least a
vertex with the face F ∈ F. Note that each element T ∈ T belongs to only a bounded
number of domains ω̃T′ or ω̃F.

By the above assumptions, there is a Clément interpolant for Wµ, i.e. a continuous
projection Iµ : H1

0(G)→ Wµ such that for all v ∈ H1
0(G),

∥

∥

∥v − Iµv
∥

∥

∥

L2(T)
≤ c1hT |v|H1(ω̃T) ∀T ∈ T (5.7)

and
∥

∥

∥v − Iµv
∥

∥

∥

L2(F)
≤ c2h1/2

F
|v|H1(ω̃F) ∀F ∈ F (5.8)

with constants c1 and c2 depending only on the shape regularity of T, see e.g. [BS02].
Let each of the functions wi from (5.6) itself be an element of a finite element space Wi

of piecewise smooth functions on a mesh Ti, which may differ from T. We assume that
these meshes are compatible in the sense that for any T ∈ T and Ti ∈ Ti, the intersection
T ∩ Ti is either empty, equal to T, or equal to Ti.

Standard error estimators run into problems on faces ofTi that are not in the skeleton
of T, since gµ is singular on these faces. For all i, let w̄i be an approximation of wi that
is piecewise smooth on T. Replacing gµ by

ḡµ ! fµ −
k
∑

i=1

κiRmiw̄i (5.9)

induces an error

∥

∥

∥D−1gµ −D−1 ḡµ
∥

∥

∥

V
≤

k
∑

i=1

|κi|
∥

∥

∥

∥

ami

ā

∥

∥

∥

∥

L∞(G)
‖wi − w̄i‖V # ESTP

µ , (5.10)

since

sup
‖v‖V=1

∣

∣

∣

∣

∣

∫

G
am∇w · ∇v dx

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

am

ā

∥

∥

∥

∥

L∞(G)
sup
‖v‖V=1

∫

G
|ā∇w · ∇v| dx =

∥

∥

∥

∥

am

ā

∥

∥

∥

∥

L∞(G)
‖w‖V
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for all m ∈N and all w ∈ H1
0(G).

Let ūµ ∈Wµ be the Galerkin projection of D−1 ḡµ, i.e.

∫

G
ā∇ūµ · ∇v dx =

∫

G
fµv dx −

k
∑

i=1

κi

∫

G
ami∇w̄i · ∇v dx ∀v ∈Wµ . (5.11)

Abbreviating

σµ ! ā∇ūµ +
k
∑

i=1

κiami∇w̄i , (5.12)

the residual of ūµ is the functional

rµ(ūµ; v) =

∫

G
ḡµ − ā∇ūµ · ∇v dx =

∫

G
fµ − σµ · ∇v dx , v ∈ H1

0(G) . (5.13)

By Galerkin orthogonality, rµ(ūµ; v) = 0 for all v ∈ Wµ. Furthermore, due to the Riesz
isomorphism,

∥

∥

∥D−1 ḡµ − ūµ
∥

∥

∥

V
= sup

v∈H1
0(G)\{0}

∣

∣

∣rµ(ūµ; v)
∣

∣

∣

‖v‖D
≤
√
δ sup

v∈H1
0(G)\{0}

∣

∣

∣rµ(ūµ; v)
∣

∣

∣

|v|H1(G)
, (5.14)

with δ from (5.5).
For all T ∈ T, let

Rµ,T(ūµ) ! hT

∥

∥

∥ fµ + ∇ · σµ
∥

∥

∥

L2(T)
, (5.15)

where the dependence on ūµ is implicit in σµ. Note that ∇ · σµ is given by

∇ · σµ = ∇ā · ∇ūµ + ā∆ūµ +
k
∑

i=1

κi(∇ami · ∇w̄i + ami∆w̄i) . (5.16)

Also, let
Rµ,F(ūµ) ! h1/2

F

∥

∥

∥[[σµ]]
∥

∥

∥

L2(F)
, (5.17)

where [[·]] is the normal jump over the face F ∈ F ∩ G, i.e. if F = T1 ∩ T2, and n1 and n2

are the respective exterior normal vectors, then

[[σµ]] ! σµ|T1 · n1 + σµ|T2 · n2 , (5.18)

and [[σµ]] ! σµ · nG if F ∈ F ∩ ∂G for the exterior unit normal nG of G. These terms
combine to

ESTR
µ(ūµ) !

















∑

T∈T
Rµ,T(ūµ)

2 +
∑

F∈F
Rµ,F(ūµ)

2

















1/2

. (5.19)

Note that if d = 1, then hF = 0 for all F ∈ F, and Rµ,F(ūµ) = 0. In this case, the Clément
interpolation operator Iµ is simply the nodal interpolant, and ω̃T can be replaced by T
in (5.7).
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Theorem 5.1. For all v ∈ H1
0(G),

∣

∣

∣rµ(ūµ; v)
∣

∣

∣ ≤ C ESTR
µ(ūµ) |v|H1(G) (5.20)

with a constant C depending only on the shape regularity ofT.

Proof. Let v ∈ H1
0(G). Since Iµv ∈Wµ, by Galerkin orthogonality

rµ(ūµ; v) = rµ(ūµ; v − Iµv) .

We abbreviate w ! v − Iµv, and denote by nT the exterior unit normal of T ∈ T. Using
(5.7), (5.8), integration by parts and the Cauchy–Schwarz inequality,

rµ(ūµ; v − Iµv) =
∑

T∈T

∫

T
fµw − σµ · ∇w dx

=
∑

T∈T

















∫

T
( fµ + ∇ · σµ)w dx −

∑

F∈F∩∂T

∫

F
σµ · nTw dS

















=
∑

T∈T

∫

T
( fµ + ∇ · σµ)w dx −

∑

F∈F

∫

F
[[σµ]]w dS

≤
∑

T∈T

∥

∥

∥ fµ + ∇ · σµ
∥

∥

∥

L2(T)
‖w‖L2(T) +
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F∈F

∥

∥

∥[[σµ]]
∥

∥

∥

L2(F)
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≤ c1
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T∈T
hT
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∥

∥ fµ + ∇ · σµ
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L2(T)
|v|H1(ω̃T) + c2

∑

F∈F
h1/2

F

∥

∥

∥[[σµ]]
∥

∥

∥

L2(F)
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


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
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1/2

|v|H1(G)

≤ C ESTR
µ(ūµ) |v|H1(G) .

This shows (5.20), replacing v by −v if necessary. !

Corollary 5.2. The Galerkin projection ūµ from (5.11) satisfies

∥

∥

∥D−1gµ − ūµ
∥

∥

∥

V
≤ ESTP

µ +
√
δC ESTR

µ(ūµ) (5.21)

for δ from (5.5) and C from Theorem 5.1.

Proof. The assertion follows by triangle inequality using (5.10), (5.14) and (5.20). !
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5.3 Numerical Computations

We consider as a model problem the diffusion equation (5.1) on the one dimensional
domain G = (0, 1). For two parameters k and γ, the diffusion coefficient has the form

a(y, x) = 1 +
1

c

∞
∑

m=1

ym
1

mk
sin(mπx) , x ∈ (0, 1) , y ∈ Γ = [−1, 1]∞ , (5.22)

where c is chosen as

c = γ
∞
∑

m=1

1

mk
, (5.23)

such that
∣

∣

∣a(y, x) − 1
∣

∣

∣ is always less than γ. For the distribution of y ∈ Γ, we consider
the countable product of uniform distributions on [−1, 1]; the corresponding family of
orthonormal polynomials is the Legendre polynomial basis.

In all of the following computations, the parameters are k = 2 and γ = 1/2. A few
realizations of a(y) and the resulting solutions u(y) of (5.1) are plotted in Figure 1.
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Figure 1: Realizations of a(y, x) (left) and u(y, x) (right).

The parameters of SolveGalerkinAAA, fff are set toχ = 1/8, ϑ = 0.57,ω = 1/4, σ = 0.01114,
α = 1/20 and β = 0. These values do not satisfy the assumptions of Theorem 4.2;
however, the method executes substantially faster than with parameters for which the
theorem applies. All computations were performed in Matlab on a workstation with an
AMD Athlon™ 64 X2 5200+ processor and 4GB of memory.

We consider a multilevel discretization in which the a posteriori error estimator from
Section 5.2 is used to determine an appropriate discretization level for each coefficient.
A discretization level jµ, which represents linear finite elements on a uniform mesh
with 2 jµ cells, is assigned to each indexµwith the goal of equidistributing the estimated
error among all coefficients.

In Figure 2, on the left, the errors are plotted against the number of degrees of freedom,
which refers to the total number of basis functions used in the discretization, i.e. the
sum of 2 jµ − 1 over all µ. On the right, we plot the errors against an estimate of the
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Figure 2: Convergence of SolveGalerkinAAA, fff .

computational cost. This estimate takes scalar products, matrix-vector multiplications
and linear solves into account. The total number of each of these operations on each
discretization level is tabulated during the computation, weighted by the number of
degrees of freedom on the discretization level, and summed over all levels. The estimate
is equal to seven times the resulting sum for linear solves, plus three times the value
for matrix-vector multiplications, plus the sum for scalar products. These weights
were determined empirically by timing the operations for tridiagonal sparse matrices
in Matlab.

The errors were computed by comparison with a reference solution, which has an
error of approximately 5 · 10−5. The plots show that the error bounds δk are good
approximations of the error, and only overestimate it by a small factor.
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Figure 3: Comparison of SolveGalerkinAAA, fff and the sparse tensor construction, for a

multilevel discretization (left) and with a fixed finite element mesh (right).

We compare the discretizations generated adaptively by SolveGalerkinAAA, fff with the
heuristic a priori adapted sparse tensor product construction from [BAS10]. Using the

notation of [SG11, Section 4], we set γ = 2 and ηm = 1/(rm +
√

1 + r2
m) for rm = cm2/2 and

26



0

0

1

2

2

3

4

4 6 8 10

m = 1

m
=

2

0

0

1

2

2

3

4

4 6 8 10

m = 1

m
=

2

0

0

1

2

2

3

4

4 6 8 10

m = 1

m
=

2

0

0

1

2

2

3

4

4 6 8 10

m = 1

m
=

2
Figure 4: Slices of index sets generated by SolveGalerkinAAA, fff (left) and [BAS10] (right)

with single level discretization (top) and multilevel discretization (bottom).
All sets correspond to the right-most points in Figure 3. Active indices with
support in {1, 2} are plotted; the level of the finite element discretization is
proportional to the radius of the circle.

c from (5.23). These values are similar to those used in the computational examples of
[BAS10]. The coarsest spatial discretization used in the sparse tensor product contains
16 elements.

In order to isolate the stochastic discretization, we also consider a fixed spatial dis-
cretization, using linear finite elements on a uniform mesh of (0, 1) with 1024 elements
to approximate all coefficients. We refer to these simpler versions of the numerical
methods as single level discretizations.

The single level versions of SolveGalerkinAAA, fff and the sparse tensor method construct
discretizations of equal quality, with only a slight advantage for the adaptive algorithm.
However, with a multilevel discretization, SolveGalerkinAAA, fff converges faster than the
sparse tensor method, with respect to the number of degrees of freedom. At least in
this example, the adaptively constructed discretizations are more efficient than sparse
tensor products.

As index setsΞ ⊂ Λ are infinite dimensional in the sense that they can contain indices
of arbitrary length, they are difficult to visualize in only two dimensions. In Figure 4,
we plot two dimensional slices of sets generated by SolveGalerkinAAA, fff and the sparse
tensor construction from [BAS10]. We consider only those indices which are zero in all
dimensions after the second, and plot their values in the first two dimensions. The upper
plots depict index sets generated using single level discretizations; dots refer to active
indices. The lower plots illustrate the discretizations generated with multilevel finite
element discretizations. The radii of the circles are proportional to the discretization

27



level.
The bottom two plots in Figure 4 illustrate differences between the discretizations

generated by SolveGalerkinAAA, fff and the sparse tensor construction. The former has
many fewer active indices, but higher discretization levels for some of these. For
example, the coefficient of the constant polynomial is approximated on meshes with 4096
and 256 elements, respectively. Also, while the sets constructed by sparse tensorization
appear triangular in this figure, the adaptively generated index sets are somewhat more
convex. All of the sets are anisotropic in the sense that the first dimension is discretized
more finely than the second.

We use the convergence curves in Figures 2 and 3 to empirically determine conver-
gence rates of SolveGalerkinAAA, fff . The convergence rate with respect to the total number
of degrees of freedom is 2/3, which is faster than the approximation of 1/2 rate shown in
[CDS10b, CDS10a]. It also compares favorably to the sparse tensor construction, which
converges at a rate of 1/2. However, when considering convergence with respect to the
computational cost, the rate of SolveGalerkinAAA, fff reduces to 1/2 also. We suspect that
this is due to the approximation of the residual, which is performed on a larger set of
active indices than the subsequent approximation of the Galerkin projection.

The solvers with fixed finite element meshes simulate semi-discrete methods with no
spatial discretization. In this setting, [CDS10b, CDS10a] show an approximation rate of
3/2, wheras we observe a rate of 1 for both SolveGalerkinAAA, fff and sparse tensorization.
In principle, it is possible that SolveGalerkinAAA, fff does not converge with the optimal
rate in this example, since the parameters used in the computations do not satisfy the
assumptions of Theorem 4.2. Alternatively, due to large constants in the approximation
estimates, the asymptotic rate may not be perceivable for computationally accessible
tolerances.
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10-48 M. Swärd and S. Mishra
Entropy stable schemes for initial-boundary-value conservation laws


