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Abstract

It is common practice in the study of stochastic Galerkin methods for boundary
value problems depending on random fields to truncate a series representation of
this field prior to the Galerkin discretization. We show that this is unnecessary;
the projection onto a finite dimensional subspace automatically replaces the infinite
series expansion by a suitable partial sum. We construct tensor product polynomial
bases on infinite dimensional parameter domains, and use these to recast a random
boundary value problem as a countably infinite system of deterministic equations.
The stochastic Galerkin method can be interpreted as a standard finite element
discretization of a finite section of this infinite system.

Introduction

Several numerical methods have emerged recently for solving boundary value problems
in which some coefficients in the differential operator are random fields. The solution is
then also a random field, and quantities of interest include statistics of this solution, or
a parametric representation, for example in terms of polynomials of random variables
appearing in a series representation of the input random field.

Stochastic Galerkin methods were introduced in [DBO01, XK02, BTZ04], and have
been analyzed for example in [WK05, MK05, FST05, WK06, TS07, BS09, BAS10]. They
approximate the random solution by a Galerkin projection onto a finite dimensional
space of random fields. This requires the solution of a single coupled system of de-
terministic equations for the coefficients of the Galerkin projection with respect to a
predefined set of basis functions on the parameter domain.

Stochastic collocation was studied e.g. in [XH05, BNT07, Bie09, WK09] as an alternative
which requires only the solution of independent deterministic equations, and maintains

∗Research supported in part by the Swiss National Science Foundation grant No. 200021-120290/1.
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similar convergence properties. The coefficients that are computed directly by stochastic
Galerkin can be obtained by evaluating certain integrals in a post-processing step, see
[Xiu07].

For both methods, it is common practice to expand the input random field in a series,
such as the Karhunen–Loève series, and then to truncate this expansion prior to any
other approximation. This is often referred to as the finite dimensional noise assumption.
Such an assumption is necessary in the stochastic collocation approach since, as in
other sampling methods, individual realizations of the input random field must be
approximated.

However, the finite dimensional noise assumption is superfluous in combination
with the stochastic Galerkin method. For suitably chosen Galerkin subspaces, the
approximate solution only depends on a partial sum of the series expansion of the
input random field. It is therefore unnecessary to truncate this series prior to Galerkin
approximation.

Keeping the full series introduces the problem of constructing an orthonormal basis on
an infinite dimensional parameter domain. It turns out that the usual finite dimensional
tensor product construction extends to countably infinite products by a straightforward
limit argument, which is given in Section 2.2.

Passing to the coefficients of the solution with respect to an orthonormal basis on the
parameter domain transforms the random boundary value problem into an equivalent
countably infinite system of deterministic equations. The stochastic Galerkin method
can be interpreted as a standard finite element approximation of a finite section of this
infinite system.

This approach to stochastic Galerkin discretization combines all approximations into
a single step: the choice of a finite dimensional subspace. It avoids errors in the
representation of the random input, and is not affected by quadrature on the parameter
domain. In particular, there is no need to equilibrate errors from various sources.

The countably infinite system of deterministic equations which represents a random
boundary value problem with respect to an orthonormal basis on the parameter domain
is analogous to the representation of a boundary value problem as a bi-infinite matrix
equation using a wavelet basis. Adaptive methods for selecting a finite section of
such bi-infinite matrix equations have been studied in [CDD01, GHS07, DSS09]. These
techniques carry over to random boundary value problems, and allow the adaptive
construction of Galerkin subspaces, see [Git11b, Git11c, Git11a].

Section 1 begins with a discussion of the isotropic diffusion equation with a stochastic
diffusion coefficient. This example of a random boundary value problem motivates an
abstract framework for such equations. We derive a weak formulation in this general
setting, and define the Galerkin projection.

In Section 2, the weak formulation is recast as a countably infinite system of equa-
tions. We discuss orthonormal polynomials in one dimension, and tensorization of such
polynomials to construct an orthonormal basis on an infinite dimensional parameter
domain. Subsequently, we derive systems of deterministic equations that are equiva-
lent to the original random boundary value problem and its Galerkin approximation,
respectively.

2



Finally, in Section 3, we discuss some algorithmic aspects of the stochastic Galerkin
method. We interpret the finite system of deterministic equations that determines the
coefficients of the Galerkin approximation as a single operator-matrix equation, and
consider the preconditioned conjugate gradient method as a solver.

1 Stochastic Operator Equations

1.1 The Isotropic Diffusion Equation

As an illustrative example, we consider the isotropic diffusion equation on a bounded
Lipschitz domain G ⊂ Rd with homogeneous Dirichlet boundary conditions. For any
uniformly positive a ∈ L∞(G) and any f ∈ L2(G), we have

−∇ · (a(x)∇u(x)) = f (x) , x ∈ G ,

u(x) = 0 , x ∈ ∂G .
(1.1)

We view f as fixed, but allow a to vary, giving rise to a parametric operator

A0(a) : H1
0(G)→ H−1(G) , v (→ −∇ · (a∇v) , (1.2)

which depends continuously on a ∈ L∞(G).
We model the permeability a as a L∞(G)-valued random variable ã on a probability

space (Ω,F ,P). The resulting stochastic diffusion equation is

A0(ã(ω))U(ω) = f ∀ω ∈ Ω . (1.3)

The solution is a random variable U on (Ω,F ) with values in H1
0(G). For all ω ∈ Ω, U(ω)

is the weak solution of (1.1) with a = ã(ω).
We assume that ã(ω) is uniformly bounded from above and away from 0,

0 < ǎ ≤ ã(ω, x) ≤ â < ∞ ∀x ∈ G , ∀ω ∈ Ω . (1.4)

Let ā ∈ L∞(G) be some uniformly positive deterministic approximation of ã. For exam-
ple, ā can be the mean field

ā : G→ R , ā(x) !

∫

Ω
ã(ω, x) dP(ω) , (1.5)

or simply a constant ā ! (â + ǎ)/2, ā !
√

âǎ, or ā ! 1.
For a countable set M, let (ϕm)m∈M be a frame of L2(G) with dual frame (ϕ∗m)m∈M,

which we interpret also as a sequence in L2(G). Define the random variables

Ym(ω) !
1

αm

∫

G
(ã(ω, x) − ā(x))ϕ∗m(x) dx , m ∈M . (1.6)

Note that Ym is bounded due to Hölder’s inequality and (1.4). We assume that αm is
chosen such that Ym(Ω) ⊂ [−1, 1] for all m ∈M. For example, this holds for

αm ! sup
ω∈Ω
‖ã(ω) − ā‖L∞(G)

∥

∥

∥ϕ∗m
∥

∥

∥

L1(G)
, m ∈M . (1.7)
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Abbreviating am ! αmϕm, we have

ã(ω, x) = ā(x) +
∑

m∈M

Ym(ω)am(x) (1.8)

for all ω ∈ Ωwith convergence in L2(G). Let Γ ! [−1, 1]M and

a(y, x) ! ā(x) +
∑

m∈M

ymam(x) , y = (ym)m∈M ∈ Γ . (1.9)

Then ã(ω, x) = a(Y(ω), x) for all ω ∈ Ω, where Y ! (Ym)m∈M.
Convergence of (1.9) is assured in L∞(G) if the series

∑

m∈M |am| converges in L∞(G).
Furthermore, (1.9) defines a continuous map from Γ to L∞(G), see [Git11a, Lemma 7.1.6].
This permits us to replace the parameter domain L∞(G) by the product space Γ =
[−1, 1]M.

We define the parametric operator A(y) ! A0(a(y)) for y ∈ Γ. Due to the linearity of
A0,

A(y) = D + R(y) , R(y) !
∑

m∈M

ymRm ∀y ∈ Γ (1.10)

with convergence in L(H1
0(G),H−1(G)), for

D ! A0(ā) : H1
0(G)→ H−1(G) , v (→ −∇ · (ā∇v) ,

Rm ! A0(am) : H1
0(G)→ H−1(G) , v (→ −∇ · (am∇v) , m ∈M .

This leads to the parametric operator equation

A(y)u(y) = f ∀y ∈ Γ (1.11)

with A(y) from (1.10). The solution is related to the solution U of (1.3) by U(ω) = u(Y(ω))
for all ω ∈ Ω.

Lemma 1.1. If there is a γ ∈ [0, 1) such that

ess sup
x∈G

∑

m∈M

|am(x)|
ā(x)

≤ γ , (1.12)

then −γD ≤ R(y) ≤ γD for all y ∈ Γ, in the sense of symmetric operators on H1
0(G).

Proof. For all v ∈ H1
0(G) and all y ∈ Γ,

∣

∣

∣

〈

R(y)v, v
〉

∣

∣

∣ ≤
∫

G















∑

m∈M

|am(x)|















|∇v(x)|2 dx ≤ γ
∫

G
ā(x) |∇v(x)|2 dx = γ 〈Dv, v〉 . !
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1.2 Abstract Setting

Let K ∈ {R,C} and let V be a separable Hilbert space over K. Let D ∈ L(V,V∗) be a
positive symmetric operator, i.e. a bounded linear map from V to V∗ for which 〈D·, ·〉 is
an inner product on V. Furthermore, let γ ∈ [0, 1) and let R(y) ∈ L(V,V∗) be symmetric
with −γD ≤ R(y) ≤ γD for all y ∈ Γ = [−1, 1]M. We define the parametric operator

A(y) ! D + R(y) , y ∈ Γ . (1.13)

By definition, A(y) is symmetric for all y ∈ Γ. Furthermore, D is boundedly invertible
since it is positive. By the following proposition, the assumptions on the perturbation
R(y) ensure that A(y) is also boundedly invertible, uniformly in y ∈ Γ.

Proposition 1.2. For all y ∈ Γ, A(y) is boundedly invertible; A(y) and A(y)−1 satisfy

(1 − γ)D ≤ A(y) ≤ (1 + γ)D , (1.14)

1

1 + γ
D−1 ≤ A(y)−1 ≤

1

1 − γ
D−1 . (1.15)

Proof. Due to R(y) ≤ γD, for any v ∈ V,

〈

A(y)v, v
〉

= 〈Dv, v〉 +
〈

R(y)v, v
〉

≤ (1 + γ) 〈Dv, v〉 ,

which shows the second inequality in (1.14). The first follows by a similar estimate
using −γD ≤ R(y).

Consequently, the spectrum of D−1/2A(y)D−1/2 is in [1 − γ, 1 + γ]. Due to the spectral
mapping theorem, the spectrum of D1/2A(y)−1D1/2 is in [(1 + γ)−1, (1 − γ)−1]. This is
equivalent to the statement (1.15). !

As in (1.11), we consider the parametric operator equation

A(y)u(y) = f (y) ∀y ∈ Γ , (1.16)

where, for the sake of generality, we allow the right hand side f (y) ∈ V∗ to depend on
the parameter y ∈ Γ. Motivated by (1.10), we are particularly interested in parametric
operators of the form

R(y) =
∑

m∈M

ymRm , ∀y ∈ Γ , (1.17)

with convergence in L(V,V∗), for symmetric operators Rm ∈ L(V,V∗).

1.3 Weak Formulation

Let π be a probability measure on the parameter domain Γwith Borel σ-algebraB(Γ). In
the example from Section 1.1, π could be the image of the physical probability P under
the map Y, or it may be any other probability measure. We derive a weak formulation
of (1.16) by integrating over Γwith respect to π.
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Let the map Γ / y (→ A(y)v(y) be measurable for any measurable v : Γ→ V. Then due
to (1.14),

A : L2
π(Γ; V)→ L2

π(Γ; V∗) , v (→ [y (→ A(y)v(y)] , (1.18)

is well-defined and continuous with norm at most (1+γ) ‖D‖V→V∗ . We assume also that
f ∈ L2

π(Γ; V∗).
The weak formulation of (1.16) is to find u ∈ L2

π(Γ; V) such that

∫

Γ

〈

A(y)u(y), v(y)
〉

dπ(y) =

∫

Γ

〈

f (y), v(y)
〉

dπ(y) ∀v ∈ L2
π(Γ; V) . (1.19)

The left term in (1.19) is the duality pairing in L2
π(Γ; V) of Au with the test function v,

and the right term is the duality pairing of f with v. We follow the convention that the
duality pairing is linear in the first argument and antilinear in the second.

Before turning to existence and uniqueness of the solution u of the linear variational
problem (1.19), we introduce some additional notation. Let

(v,w)A !

∫

Γ

〈

A(y)v(y),w(y)
〉

dπ(y) and ‖v‖A !
√

(v, v)A (1.20)

for v,w ∈ L2
π(Γ; V), and let (·, ·)D and ‖·‖D be defined analogously, with A(y) replaced by

D.

Lemma 1.3. The sesquilinear form (·, ·)A is an inner product on L2
π(Γ; V), and the norm ‖·‖A

is equivalent to the standard norm on L2
π(Γ; V), with

(1 − γ) ‖v‖2D ≤ ‖v‖
2
A ≤ (1 + γ) ‖v‖2D ∀v ∈ L2

π(Γ; V) , (1.21)
∥

∥

∥D−1
∥

∥

∥

−1

V∗→V
‖v‖2

L2
π(Γ;V)

≤ ‖v‖2D ≤ ‖D‖V→V∗ ‖v‖2L2
π(Γ;V)

∀v ∈ L2
π(Γ; V) . (1.22)

Proof. Let v ∈ L2
π(Γ; V). By Proposition 1.2,

∫

Γ

〈

A(y)v(y), v(y)
〉

dπ(y) ≤ (1 + γ)

∫

Γ

〈

Dv(y), v(y)
〉

dπ(y) ≤ (1 + γ) ‖D‖V→V∗ ‖v‖2L2
π(Γ;V)

,

and similarly,

∫

Γ

〈

A(y)v(y), v(y)
〉

dπ(y) ≥ (1− γ)

∫

Γ

〈

Dv(y), v(y)
〉

dπ(y) ≥ (1− γ)
∥

∥

∥D−1
∥

∥

∥

−1

V∗→V
‖v‖2

L2
π(Γ;V)

.

This shows positivity of (·, ·)A, and the estimates (1.21). Symmetry of (·, ·)A follows from
the symmetry of A(y) for all y ∈ Γ. !

Theorem 1.4. For any f ∈ L2
π(Γ; V∗), the solution u of (1.16) is in L2

π(Γ; V) and u is the unique
element of this space satisfying (1.19).
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Proof. It is tempting to simply multiply (1.16) by v(y) integrate against π. However,
we do not know a priori that u is measurable. We therefore first show that (1.19) has a
unique solution in L2

π(Γ; V), and then that this solution coincides with that of (1.16).
By assumption, the right hand side of (1.19) is a continuous linear functional on

L2
π(Γ; V). Since by Lemma 1.3, (·, ·)A is an inner product on L2

π(Γ; V) which induces a
norm equivalent to the standard norm on this space, the Riesz isomorphism ensures
existence and uniqueness of the weak solution u of (1.19).

For w ∈ V and E ∈ B(Γ), let v(y) ! w1E(y). By linearity, (1.19) implies

∫

E

〈

A(y)u(y) − f (y),w
〉

dπ(y) = 0 .

Since this holds for all measurable sets E, the integrand is zero π-a.e. in Γ for any w ∈ V,
and therefore the solution u of (1.19) satisfies (1.16) forπ-a.e. y ∈ Γ. This implies that the
solution of (1.16) is a version of the solution of (1.19), i.e. the two are equal in L2

π(Γ; V). !

Since V is a separable Hilbert space, the Lebesgue–Bochner space L2
π(Γ; V) is isomet-

rically isomorphic to the Hilbert tensor product L2
π(Γ)⊗V, and L2

π(Γ; V∗) is isometrically
isomorphic to L2

π(Γ) ⊗ V∗. By Theorem 1.4, A is a boundedly invertible linear map
between these spaces.

We define the multiplication operators

Km : L2
π(Γ)→ L2

π(Γ) , v(y) (→ ymv(y) , m ∈M . (1.23)

Since ym is real and
∣

∣

∣ym

∣

∣

∣ is less than one, Km is symmetric and has norm at most one.
In the case (1.17),A can be expanded as

A = idL2
π(Γ) ⊗D +

∑

m∈M

Km ⊗ Rm . (1.24)

We decompose this asA = D + R with

D ! idL2
π(Γ) ⊗D and R !

∑

m∈M

Km ⊗ Rm . (1.25)

We focus on this setting in the following.

1.4 Galerkin Projection

LetW be a closed subspace of L2
π(Γ; V). The Galerkin solution ū ∈W is defined through

the linear variational problem

∫

Γ

〈

A(y)ū(y),w(y)
〉

dπ(y) =

∫

Γ

〈

f (y),w(y)
〉

dπ(y) ∀w ∈W . (1.26)
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Proposition 1.5. There is a unique ū ∈W satisfying (1.26). Furthermore,

‖ū − u‖L2
π(Γ;V) ≤

√

1 + γ

1 − γ
κ(D) inf

w∈W
‖w − u‖L2

π(Γ;V) , (1.27)

where κ(D) ! ‖D‖V→V∗
∥

∥

∥D−1
∥

∥

∥

V∗→V
is the condition number of D.

Proof. Existence and uniqueness of ū are ensured by Lemma 1.3 since ū is just the ‖·‖A-
orthogonal projection of u onto the closed subspaceW of L2

π(Γ; V). Furthermore, (1.21)
implies

(1 − γ)
∥

∥

∥D−1
∥

∥

∥

−1

V∗→V
‖ū − u‖2

L2
π(Γ;V)

≤ ‖ū − u‖2A ≤ ‖w − u‖2A ≤ (1 + γ) ‖D‖V→V∗ ‖w − u‖2
L2
π(Γ;V)

for any w ∈W, and (1.27) follows by taking the infimum over all such w. !

2 Transformation to a System of Deterministic Equations

2.1 Orthonormal Polynomials

Let µ be a Borel measure on [−1, 1]. Let ∆ ! {0, 1, . . . ,N − 1} if the support of µ has
cardinality N ∈N, and ∆ !N0 otherwise. Let P−1 ! 0, P0 ! 1 and

βnPn(ξ) ! (ξ − αn−1)Pn−1(ξ) − βn−1Pn−2(ξ) , n ∈ ∆ \ {0} , (2.1)

with

αn !

∫ 1

−1
ξPn(ξ)2 dµ(ξ) and βn !

cn−1

cn
, (2.2)

where cn is the leading coefficient of Pn, β0 ! 1, and Pn is chosen as normalized
in L2

µ([0, 1]), with a positive leading coefficient. The values (αn)n∈∆ and (βn)n∈∆ are
conveniently tabulated for many common distributionsµ; see Table 1 for the coefficients
of a few classical polynomials, or e.g. [Gau04], which tabulates β2

n in place of βn. The
following proposition is shown e.g. in [Gau04, Sze75].

Proposition 2.1. The sequence (Pn)n∈∆ is an orthonormal basis of L2
µ([−1, 1]). Furthermore,

Pn is a polynomial of degree n for all n ∈ ∆.

Remark 2.2. The above construction generalizes to Borel measures µ on R. The poly-
nomials Pn are well-defined by (2.1) if the moments

Mn !

∫

ξn dµ(ξ) , n ∈N0 , (2.3)

are finite, and they are orthonormal by construction. They form an orthonormal basis
of L2

µ(R) if the measure µ is uniquely characterized by its moments (Mn)n∈N0 , see e.g.
[EMSU10, Theorem 3.2], [Fre71, Theorem 4.3], [Ber96, Theorem 2.1] and [Rie23] for
details. We note that the construction in Section 2.2 below also goes through in this
setting. "
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Table 1: Recursion coefficients of orthonormal polynomials on [−1, 1] w.r.t. w(ξ) dξ.
Name w(ξ) αn βn

Legendre 1
2 0 1√

4−n−2

Chebyshev #1 1
π (1 − ξ2)−1/2 0 1√

2
, n = 1

1
2 , n ≥ 2

Chebyshev #2 2
π (1 − ξ2)1/2 0 1

2
Chebyshev #3 1

π (1 − ξ)−1/2(1 + ξ)1/2 1
2 , n = 0 1

2
0, n ≥ 1

Chebyshev #4 1
π (1 − ξ)1/2(1 + ξ)−1/2 − 1

2 , n = 0 1
2

0, n ≥ 1

Gegenbauer, λ > − 1
2

Γ(λ+1)√
πΓ(λ+ 1

2 )
(1 − ξ2)λ−1/2 0 1√

2+2λ
, n = 1

1
2

√

n(n+2λ−1)
(n+λ)(n+λ−1)

Example 2.3 (Legendre Polynomials). If µ is the uniform probability measure on
[−1, 1], i.e. dµ(ξ) = 1

2 dξ, then (Pn)n∈N0 consists of the normalized Legendre polynomials
defined by Rodrigues’ formula

Pn(ξ) = Ln(ξ) !

√
2n + 1

2nn!

dn

dξn
(ξ2 − 1)n , n ∈N0 . (2.4)

Normalized Legendre polynomials satisfy the three term recursion

n + 1
√

2n + 3
√

2n + 1
Ln+1(ξ) = ξLn(ξ) −

n
√

2n + 1
√

2n − 1
Ln−1(ξ) , n ∈N0 , (2.5)

with L−1 ! 0. In particular, αn = 0 for all n ∈N0 and

βn =
n

√
2n + 1

√
2n − 1

=
1

√
4 − n−2

∈
(

1

2
,

1
√

3

]

, n ∈N . (2.6)

The first few Legendre polynomials are

L0(ξ) = 1 , L1(ξ) =
√

3 ξ , L2(ξ) =

√
5

2
(3ξ2 − 1) . (2.7)

Note that these polynomials differ from the standard definition of Legendre polynomials
by a constant factor. "

Example 2.4 (Jacobi Polynomials). Jacobi polynomials generalize Legendre polyno-
mials to certain nonuniform distributions on [−1, 1]. For parameters a > −1 and b > −1,
we consider the probability measure dµ(ξ) = w(ξ) dξ for the weight function

w(ξ) = 2−(a+b+1) Γ(a + b + 1)

Γ(a + 1)Γ(b + 1)
(1 − ξ)a(1 + ξ)b , ξ ∈ [−1, 1] . (2.8)
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The Jacobi polynomials can be constructed through the recursion (2.1) with the coeffi-
cients

α0 =
b − a

a + b + 2
, αn =

b2 − a2

(2n + 1 + b)(2n + a + b + 2)
, n ≥ 1 , (2.9)

and

βn =







































√

4(a + 1)(b + 1)

(a + b + 2)2(a + b + 3)
if n = 1,

√

4n(n + a)(n + b)(n + a + b)

(2n + a + b)2(2n + a + b + 1)(2n + a + b − 1)
if n ≥ 2.

(2.10)

See Table 1 for the coefficients of a few particular cases of Jacobi polynomials. "

2.2 Tensor Product Bases

We return to the parameter domain Γ = [−1, 1]M from Section 1. Let π be a probability
measure on (Γ,B(Γ)); further assumptions will be made on π below, as they are needed.

LetF (M) denote the set of finite subsets ofM. For any I ∈ F (M), we define the finite
product domain ΓI ! [−1, 1]I . The coordinate maps yI : Γ → ΓI are continuous, and
thus in particular Borel measurable. They generate σ-algebras on Γ, which we denote
by BI ! σ(yI). We define L2

π|I(Γ) to be the space of BI-measurable elements of L2
π(Γ).

Furthermore, we denote by πI ! yI(π) the image of π under the map yI, which is a
probability measure on (ΓI,B(ΓI)).

Lemma 2.5. For all I ∈ F (M), the map

L2
πI

(ΓI)→ L2
π(Γ) , v (→ v ◦ yI , (2.11)

is an isometry with range L2
π|I(Γ).

Proof. Let I ∈ F (M) and v ∈ L2
πI

(ΓI). Then v ◦ yI ∈ L2
π(Γ) and v ◦ yI is BI = σ(yI)-

measurable, so v ◦ yI ∈ L2
π|I(Γ). Conversely, let w ∈ L2

π|I(Γ). By the Doob–Dynkin lemma,

there is a measurable function v on (ΓI,B(ΓI)) such that w = v ◦ yI. Furthermore, since
πI = yI(π),

∫

ΓI

|v|2 dπI =

∫

Γ

∣

∣

∣v ◦ yI

∣

∣

∣

2
dπ =

∫

Γ
|w|2 dπ .

This shows v ∈ L2
πI

(ΓI) and that the map is an isometry. !

We recall the monotone class theorem, see for example [Pro05, Theorem I.8]. A setM
of real-valued functions on Γ is multiplicative if v,w ∈ M implies vw ∈ M. A monotone
vector space over Γ is a real vector space H of bounded, real-valued functions on Γ such
that all constants are in H and if (vn)n∈N is a sequence in H with 0 ≤ vn ≤ vn+1 for all
n ∈N and v ! supn vn is a bounded function on Γ, then v ∈ H.
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Theorem 2.6 (Monotone Class Theorem). Let M be a multiplicative class of bounded,
real-valued functions on Γ, and letH be a monotone vector space containingM. ThenH contains
all bounded σ(M)-measurable functions.

Proposition 2.7.
⋃

I∈F (M) L2
π|I(Γ) is a dense subspace of L2

π(Γ).

Proof. LetV !
⋃

I∈F (M) L2
π|I(Γ) ⊂ L2

π(Γ) and define H ! V ∩ L∞π (Γ) as the vector space of

bounded functions inV. LetM ! {1S ; S ∈
⋃

I∈F (M)BI} be the set of indicator functions

that are in L2
π|I(Γ) for some I ∈ F (M). Then M ⊂ H, 1 ∈ H, and M is closed under

multiplication. Let 0 ≤ v1 ≤ v2 ≤ · · · be a pointwise monotonic sequence in H and
v ! supn vn its supremum. If v ∈ L∞π (Γ) ⊂ L2

π(Γ), then (vn)n converges to v in L2
π(Γ) by

dominated convergence. SinceV is closed in L2
π(Γ), v ∈ V and therefore v ∈ H. Thus H is

a monotone vector space and, using B(Γ) = σ(M), the monotone class theorem implies
H = L∞π (Γ).

If v ∈ L2
π(Γ), then for any N ∈ N, v1{|v|≤N} ∈ L∞π (Γ) = H ⊂ V and v ∈ V by dominated

convergence. !

In order to construct an orthonormal polynomial basis of L2
π(Γ), we assume that π is

a product measure. Let

π =
⊗

m∈M

πm (2.12)

for probability measures πm on ([−1, 1],B([−1, 1])); see e.g. [Bau02, Section 9] for a
general construction of arbitrary products of probability measures. Then π{m} = πm and
πI =
⊗

m∈I πm for any I ∈ F (M).
For all m ∈M, let (Pm

n )n∈Λm denote the orthonormal polynomial basis of L2
πm

([−1, 1])
from Proposition 2.1, with recursion coefficients (αm

n )n∈Λm and (βm
n )n∈Λm . We define the

set of finitely supported sequences inN0, indexed byM, as

Λ !
{

ν ∈NM0 ; νm ∈ Λm ∀m ∈M , # supp ν < ∞
}

, (2.13)

where the support is defined by

suppν ! {m ∈M ; νm " 0} , ν ∈NM0 . (2.14)

Dropping all zeros, Λ can also be interpreted as the set of sequences ν inN indexed by
any I ∈ F (M), with νm ∈ Λm \ {0} for all m ∈ I.

We define the countable tensor product polynomials

P ! (Pν)ν∈Λ , Pν !
⊗

m∈M

Pm
νm
, ν ∈ Λ . (2.15)

Note that each of these functions depends on only finitely many dimensions,

Pν(y) =
∏

m∈M

Pm
νm

(ym) =
∏

m∈supp ν

Pm
νm

(ym) , ν ∈ Λ , (2.16)

since Pm
0 = 1 for all m ∈M.
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Theorem 2.8. P is an orthonormal basis of L2
π(Γ).

Proof. By Proposition 2.1, (Pm
n )n∈Λm is an orthonormal basis of L2

πm
([−1, 1]) for all m ∈M.

Consequently, for any I ∈ F (M), the products

⊗

m∈I
Pm
νm
, ν = (νm)m∈I , νm ∈ Λm ∀m ∈ I ,

form an orthonormal basis of L2
πI

(ΓI). By Lemma 2.5, interpreting these functions on Γ
rather than ΓI, they form an orthonormal basis of L2

π|I(Γ). Proposition 2.7 implies that

the union P of all of these bases spans L2
π(Γ). !

Theorem 2.8 is similar to [EMSU10, Theorem 3.6]. The latter is formulated in a more
general setting, but does not provide an explicit construction for an orthonormal basis.
It uses [Bob05, Corollary 3.6.8], which is very close to Proposition 2.7.

By Parseval’s identity, Theorem 2.8 is equivalent to the statement that the map

T : 12(Λ)→ L2
π(Γ) , (cν)ν∈Λ (→

∑

ν∈Λ
cνPν , (2.17)

is a unitary isomorphism. The inverse of T is

T−1 = T∗ : L2
π(Γ)→ 12(Λ) , g (→

(
∫

Γ
g(y)Pν(y) dπ(y)

)

ν∈Λ
. (2.18)

2.3 Discrete Operator Equation

We use the isomorphism T from (2.17) to recast the weak stochastic operator equation
(1.19) and the equation (1.26) for the Galerkin approximation as an equivalent discrete
operator equation.

For all ν ∈ Λ, let Wν be a closed subspace of V, and let

S !















∏

ν∈Λ
Wν















∩ 12(Λ; V) . (2.19)

Since coordinate projections are continuous on 12(Λ; V) and Wν ⊂ V is closed for all
ν ∈ Λ, S is an intersection of closed subspaces of 12(Λ; V), and as such is again a closed
subspace of 12(Λ; V). The dimension of S is

dimS =
∑

ν∈Λ
dim Wν . (2.20)

Consequently,S is finite dimensional if and only if Wν is finite dimensional for all ν ∈ Λ,
and Wν = {0} for all but finitely many ν ∈ Λ. If Wν = V for all ν ∈ Λ, then S = 12(Λ; V).

Since T from (2.17) is a unitary map from 12(Λ) to L2
π(Γ), the tensor product operator

T ⊗ idV is an isometric isomorphism from 12(Λ; V) to L2
π(Γ; V). We define TV as the

12



restriction of T ⊗ idV to S. Since S is a closed subspace of 12(Λ; V), its range W !

range(TV) is a closed subspace of L2
π(Γ). The inverse of TV is the restriction of T−1 ⊗ idV

toW. By definition, w ∈W and w = (wν)ν∈Λ ∈ S are related by w = TVw if

w(y) =
∑

ν∈Λ
wνPν(y) or wν =

∫

Γ
w(y)Pν(y) dπ(y) ∀ν ∈ Λ , (2.21)

and either of these properties implies the other. The series in (2.21) converges un-
conditionally in L2

π(Γ; V), and the integral can be interpreted as a Bochner integral in
V.

Proposition 2.9. The Galerin solution ū ∈ W from Proposition 1.5 satisfies ū = TVū for
ū ∈ S with

Aū = f for A ! T∗VATV and f ! T∗V f . (2.22)

In particular, (2.22) has a unique solution ū ∈ S.

Proof. By Parseval’s identity, T ⊗ idV is an isometric isomorphism from 12(Λ; V) to
L2
π(Γ; V). Therefore, its restriction TV to S is an isometric isomorphism onto its range
W, and T∗V is an isomorphism fromW∗ to S∗. This shows the equivalence of (2.22) to
(1.26), and existence and uniqueness of ū ∈ S follows from Proposition 1.5. !

Proposition 2.9 implies that A is an isomorphism from S to S∗. It can be written as
A = D + R for D ! T∗VDTV and R ! T∗VRTV. We note that D is a boundedly invertible
linear map from S to S∗ due to Proposition 2.9 for D in place of A, i.e. if R = 0.

Proposition 2.10. The operators A and D satisfy

(1 − γ)D ≤ A ≤ (1 + γ)D , (2.23)

1

1 + γ
D−1 ≤ A−1 ≤

1

1 − γ
D−1 . (2.24)

Proof. We first show that −γD ≤ R ≤ γD. For all w ∈ S, if w ! TVw ∈W,

〈Rw,w〉 =
∫

Γ

〈

R(y)w(y),w(y)
〉

dπ(y) ≤ γ
∫

Γ

〈

Dw(y),w(y)
〉

dπ(y) = γ 〈Dw,w〉 ,

and a similar estimate implies 〈Rw,w〉 ≥ −γ 〈Dw,w〉. Since A = D + R, this shows
(2.23), and (2.24) follows from the spectral mapping theorem as in Proposition 1.2. !

In particular, using A = AA−1A, (2.24) leads to

1

1 + γ
AD−1A ≤ A ≤

1

1 − γ
AD−1A . (2.25)

Proposition 2.10 implies that A and D induce equivalent norms on S, which we denote

by ‖w‖AAA !
√

〈Aw,w〉 and ‖w‖DDD !
√

〈Dw,w〉. By definition, ‖w‖AAA = ‖TVw‖A and
‖w‖DDD = ‖TVw‖D for all w ∈ S. Therefore, Lemma 1.3 implies that these norms are
equivalent to the standard 12(Λ; V)-norm on S.
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2.4 System of Deterministic Equations

We interpret the discrete operator equation (2.22) as a system of deterministic equations
for ū = (ūµ)µ∈Λ.

Lemma 2.11. For all m ∈M, the operator Km = T∗KmT ∈ L(12(Λ)) has the form

(Kmc)µ = β
m
µm+1cµ+εm + α

m
µm

cµ + β
m
µm

cµ−εm , µ ∈ Λ , (2.26)

for c = (cµ)µ∈Λ ∈ 12(Λ), where εm is the Kronecker sequence (εm)n = δnm, and cµ ! 0 if µm < 0
for any m ∈M. It satisfies K∗m = Km and ‖Km‖12(Λ)→12(Λ) ≤ 1.

Proof. As noted after (1.23), Km is symmetric and has norm at most one. Since T is
unitary, these properties carry over to Km. Let c = (cµ)µ∈Λ ∈ 12(Λ) and m ∈ M. The
recursion formula (2.1) can be rearranged to read

ξPm
n (ξ) = βm

n+1Pm
n+1(ξ) + αm

n Pm
n (ξ) + βm

n Pm
n−1(ξ) , n ∈ Λm , ξ ∈ [−1, 1] ,

where Pm
n ! 0 for n ∈ Z \ Λm. Therefore,

KmTc =
∑

µ∈Λ
cµKmPµ =

∑

µ∈Λ
cµ(β

m
µm+1Pµ+εm + α

m
µm

Pµ + β
m
µm

Pµ−εm)

=
∑

µ∈Λ
(βm
µm+1cµ+εm + α

m
µm

cµ + β
m
µm

cµ−εm)Pµ .

Equation (2.26) follows since T∗ = T−1. !

Remark 2.12. If πm is a symmetric measure on [−1, 1], then αm
n = 0 for all n ∈ Λm by

symmetry of the integral (2.2). This simplifies (2.26). "

Lemma 2.13. The operator A : S→ S∗ has the form

A = I ⊗D +
∑

m∈M

Km ⊗ Rm , (2.27)

where I ! id12(Λ).

Proof. Since (1.24) holds with convergence inL(L2
π(Γ; V), L2

π(Γ; V∗)),

(T∗ ⊗ idV∗)A(T ⊗ idV) = (T∗ ⊗ idV∗)(idL2
π(Γ) ⊗D)(T ⊗ idV)

+
∑

m∈M

(T∗ ⊗ idV∗)(Km ⊗ Rm)(T ⊗ idV)

= I ⊗D +
∑

m∈M

Km ⊗ Rm .

Equation (2.27) follows by restricting to S. !
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Remark 2.14. Combining Lemmas 2.11 and 2.13, we can interpret A as a bi-infinite
operator matrix. For any ν ∈ Λ, let Iν be the embedding of Wν into V. Its adjoint I∗ν is
the restriction of functionals on V onto the subspace Wν. Then

A = [Aνµ]ν,µ∈Λ , Aνµ : Wµ →W∗
ν , (2.28)

with entries

Aνν = I∗ν















D +
∑

m∈M

αm
νm

Rm















Iν , ν ∈ Λ ,

Aνµ = β
m
max(νm,µm)I

∗
νRmIµ , ν, µ ∈ Λ , ν − µ = ±εm ,

(2.29)

and Aνµ = 0 otherwise. "

Similarly, for f ∈ L2
π(Γ; V∗), we have (T∗ ⊗ idV∗) f = ( fν)ν∈Λ ∈ 12(Λ; V) for

f (y) =
∑

ν∈Λ
fνPν(y) , fν =

∫

Γ
f (y)Pν(y) dπ(y) ∈ V∗ . (2.30)

Restricting fν to Wν, i.e. replacing fν by I∗ν fν, defines a vector f = ( fν)ν∈Λ ∈ S∗.

Theorem 2.15. The Galerkin solution ū = (ūµ)µ∈Λ is the unique solution in S of

Dūν +
∑

m∈M

Rm(βm
νm+1ūν+εm + α

m
νm

ūν + β
m
νm

ūν−εm ) = fν in Wν ∀ν ∈ Λ . (2.31)

Proof. The assertion is a direct consequence of Proposition 2.9, using the structure of A
from Lemma 2.13 as described in Remark 2.14, and the representation (2.30) of f . !

For any ν ∈ Λ, equation (2.31) only holds in Wν, i.e.

〈

Dūν +
∑

m∈M

Rm(βm
νm+1ūν+εm + α

m
νm

ūν + β
m
νm

ūν−εm),w

〉

=
〈

fν,w
〉

∀w ∈Wν . (2.32)

Corollary 2.16. For any f ∈ L2
π(Γ; V∗), u ∈ L2

π(Γ; V) solves (1.19) if and only if u = (T⊗idV)u,
u = (uµ)µ∈Λ ∈ 12(Λ; V), with

Duν +
∑

m∈M

Rm(βm
νm+1uν+εm + α

m
νm

uν + β
m
νm

uν−εm) = fν ∀ν ∈ Λ . (2.33)

Proof. The assertion follows from Theorem 2.15 with Wν = V for all ν ∈ Λ. !
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3 Algorithmic Aspects

3.1 Sparsity of the Operator Matrix

We estimate the number of nonzero entries in A, interpreted as a bi-infinite operator
matrix as in Remark 2.14. For any Ξ ⊂ Λ, let

N (Ξ) !
{

{

µ, ν
}

; µ, ν ∈ Ξ ,
∣

∣

∣µ − ν
∣

∣

∣ = 1
}

. (3.1)

Thus {µ, ν} ∈ N (Ξ) if and only if ν = µ±εm. We call such indices neighbors. Furthermore,
we call a set Ξ ⊂ Λ monotonic if for any µ ∈ Ξ and any ν ∈ Λ, νm ≤ µm for all m ∈ N
implies ν ∈ Ξ. The average length of indices in Ξ,

λ̄(Ξ) !
1

#Ξ

∑

µ∈Ξ
# suppµ , (3.2)

provides a bound for the size ofN (Ξ) compared to the size of Ξ.

Lemma 3.1. For any finite Ξ ⊂ Λ,

#N (Ξ) ≤ λ̄(Ξ) #Ξ . (3.3)

Equality holds if and only if Ξ is monotonic.

Proof. We assume initially thatΞ is monotonic. Then µ ∈ Ξ has the neighbors ν = µ−εm
for all m ∈ suppµ. All neighbor pairs in Ξ are of this form since if ν = µ + εm ∈ Ξ for
some m ∈N, then µ = ν − εm and m ∈ supp ν. Consequently,

#N (Ξ) =
∑

µ∈Ξ
# suppµ = λ̄(Ξ) #Ξ .

If Ξ is not monotonic, then there is a µ ∈ Ξ and an m ∈ suppµ such that ν = µ − εm is
not in Ξ. Therefore,

#N (Ξ) <
∑

µ∈Ξ
# suppµ = λ̄(Ξ) #Ξ . !

Proposition 3.2. If Wν = {0} for all ν ∈ Λ \Ξ, then Aνµ " 0 for no more than (1 + 2λ̄(Ξ))#Ξ
pairs (ν, µ) ∈ Λ × Λ.

Proof. By (2.29), Aνµ " 0 only if Wν " {0}, Wµ " {0} and
∣

∣

∣µ − ν
∣

∣

∣ ≤ 1. Then the assertion
follows from Lemma 3.1. !

Remark 3.3. The average index length λ̄(Ξ) is generally small compared to #Ξ. For
certain monotonic setsΞ, [BAS10, Corollary 4.9] estimates the maximal index length by
log #Ξ. See also [Git11a] for a numerical study, which suggests logarithmic growth also
for adaptively constructed sets Ξ. "
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3.2 Approximation of the Galerkin Solution

Let S ⊂ 12(Λ; V) be as in (2.19), with Ξ ! {ν ∈ Λ ; Wν " {0}} finite. Even if it is possible
to perform operation in V exactly, it is generally infeasible to compute the solution ū of
(2.22).

The source term f may not be accessible. We assume the availability of a routine

InRHS fff [Ξ, ε] (→ f̃ (3.4)

which, for any ε > 0, computes an approximation f̃ ∈ S∗ of f satisfying

∥

∥

∥ f − f̃
∥

∥

∥

S∗ = sup
www∈S\{0}

∣

∣

∣

∣

〈

f − f̃ ,w
〉

∣

∣

∣

∣

‖w‖12(Λ;V)
≤ ε . (3.5)

Iterative solvers for (2.22) require a routine for evaluating Av for any v ∈ S. Such
a method is provided by InApplyAAA. Due to the sparsity of A, we are able to compute
these products efficiently.

InApplyAAA[S, v] (→ z

forall ν ∈ Ξ do zν ←− Aννvν
forall µ ∈ Ξ do

forall ν ∈ Ξ, ν = µ − εm, m ∈ suppµ do

zν ←− zν + βm
µm

I∗νRmIµvµ

forall ν ∈ Ξ, ν = µ + εm, m ∈N do

zν ←− zν + βm
νm

I∗νRmIµvµ

Remark 3.4. In the first line of InApplyAAA[S, v], the diagonal components Aνν of A are
applied to the coefficients of v. These are given by an infinite series in (2.29). If all of
the distributions πm, m ∈ N, are symmetric, then Aνν = D for all ν ∈ Ξ by Remark 2.12.
More generally, we assume that the operators Aνν are available, and can be accessed
without computing the infinite sum in (2.29). For example, in the setting of Section 1.1,

Aνν = I∗νA0















ā +
∑

m∈M

αm
νm

am















Iν , (3.6)

and thus this reduces to evaluating a series to construct the coefficient in the parametric
operator. "

Proposition 3.5. The routine InApplyAAA[S, v] computes Av using one application of Aνν for
each ν ∈ Ξ and a total of no more than 2λ̄(Ξ)#Ξ applications of Rm, m ∈N, for any v ∈ S.

Proof. It follows from (2.29) that InApplyAAA[S, v] does indeed compute Av. The multipli-
cations Aννvν appear in the first line of the algorithm. The total number of subsequent
products Rmvµ is bounded by 2#N (Ξ). Thus the assertion follows using Lemma 3.1. !

17



We assume that an iterative method

PCGAAA[S, f̃ , ũ0, ε] (→ ũ (3.7)

is available which, starting from the initial approximation ũ0 ∈ S, computes ũ ∈ S
satisfying

‖ũ − ũ∗‖AAA ≤
ε
√

1 − γ
, (3.8)

where ũ∗ ! A−1 f̃ . Such a method would call the function InApplyAAA to evaluate the
application of the operator A to a v ∈ S. A realization of PCGAAA by a preconditioned
conjugate gradient iteration is provided in Section 3.3, see Proposition 3.9.

The method GalerkinAAA, fff combines PCGAAA with InRHS fff to approximate ū with an en-
sured error bound in the norm ‖·‖AAA.

GalerkinAAA, fff [S, ũ0, ε,ϑ,γ] (→ ūε

ε f ←− ϑ
√

1 − γ
∥

∥

∥D−1
∥

∥

∥

−1/2

V∗→V
ε

ε↓ ←− (1 − ϑ)
√

1 − γ ε
f̃ ←− InRHS fff [S, ε f ]

ūε ←− PCGAAA[S, f̃ , ũ0, ε↓]

Proposition 3.6. For any ũ0 ∈ S, ε > 0 and ϑ ∈ (0, 1), a call of GalerkinAAA, fff [S, ũ0, ε,ϑ,γ]
computes ūε ∈ S with

‖ūε − ū‖AAA ≤ ε . (3.9)

If f is available, ϑ = 0 is admissible.

Proof. Due to the assumption (3.5),
∥

∥

∥ f − f̃
∥

∥

∥

S∗ ≤ ε f . Since ū = A−1 f and ũ∗ = A−1 f̃ ,
Proposition 2.10 implies

‖ū − ũ∗‖2AAA =
∥

∥

∥A−1( f − f̃ )
∥

∥

∥

2

AAA
=
〈

f − f̃ ,A−1( f − f̃ )
〉

≤
1

1 − γ
〈

f − f̃ ,D−1( f − f̃ )
〉

≤
1

1 − γ
∥

∥

∥D−1
∥

∥

∥ ε2f = (ϑε)2 .

Furthermore, (3.8) implies

‖ūε − ũ∗‖AAA ≤
ε↓
√

1 − γ
= (1 − ϑ)ε .

The assertion follows by triangle inequality. !
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3.3 Conjugate Gradient Iteration

We use the preconditioned conjugate gradient method with preconditioner D−1 to ap-
proximate the Galerkin projection ū onto S.

Theorem 3.7. The conjugate gradient iteration for Aũ∗ = f̃ , f̃ ∈W∗ with initial approxima-
tion ũ0 ∈ S and preconditioner D−1 constructs ũi ∈ S satisfying

‖ũi − ũ∗‖AAA ≤ 2
qi

1 + q2i
‖ũ0 − ũ∗‖AAA , q =

γ

1 +
√

1 − γ2
, (3.10)

for all i ∈N0.

Proof. The assertion follows from [Hac91, Satz 9.4.14], which also holds in separable
Hilbert spaces, with

q =

√

1 + γ −
√

1 − γ
√

1 + γ +
√

1 − γ
=

γ

1 +
√

1 − γ2
,

and using (2.23) from Proposition 2.10. !

PCGAAA[S, f̃ , ũ0, ε] (→ ũ

r0 = (r0
ν)ν∈Ξ ←− f̃ − InApplyAAA[S, ũ0]

s0 = (s0
ν)ν∈Ξ ←− (D−1

ν r0
ν)ν∈Ξ

v0 ←− s0

η0 ←−
〈

r0, s0
〉

12(Ξ;V)

for i ∈N do

if ηi−1 ≤ ε2 then

return ũ = ũi−1

z←− InApplyAAA[S, vi−1]

α←−
〈

z, vi−1
〉

12(Ξ;V)

ũi ←− ũi−1 +
ηi−1

α vi−1

ri ←− ri−1 − ηi−1

α z
si = (si

ν)ν∈Ξ ←− (D−1
ν ri
ν)ν∈Ξ

ηi ←−
〈

ri, si
〉

12(Ξ;V)

vi ←− si +
ηi

ηi−1
vi−1

A version of the preconditioned conjugate gradient method is given in PCGAAA. It
uses a termination criterion based on the following norm equivalence. We abbreviate
Dν ! I∗νDIν : Wν →W∗

ν.

Lemma 3.8. For all i ∈N0,

1

1 + γ
ηi ≤ ‖ũi − ũ∗‖2AAA ≤

1

1 − γ
ηi , (3.11)
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where ũ∗ ∈ S is the solution of Aũ∗ = f̃ .

Proof. By definition, ηi =
〈

ri, si
〉

12(Ξ;V)
, ri = f̃ − Aũi and si = D−1ri. We abbreviate

ei
! ũi − ũ∗. The assertion follows from Proposition 2.10 since

∥

∥

∥ei
∥

∥

∥

2

AAA
=
〈

Aei,A−1Aei
〉

12(Ξ;V)

and
ηi =
〈

Aei,D−1Aei
〉

12(Ξ;V)
. !

Proposition 3.9. The method PCGAAA[S, f̃ , ũ0, ε] terminates and returns ũ satisfying

‖ũ − ũ∗‖AAA ≤
ε
√

1 − γ
. (3.12)

At most

1 +





















log
(

2ε−1
√

1 + γ ‖ũ0 − ũ∗‖AAA
)

log q





















(3.13)

iterations are performed, with q from (3.10). Each iteration contains #Ξ evaluations of D−1,
one application of Aνν for each ν ∈ Ξ, and a total of no more than 2λ̄(Ξ)#Ξ applications of Rm,
m ∈N.

Proof. Equation (3.12) follows from Lemma 3.8. Let the final iterate be ũ = ũN. Then
provided N ≥ 1, using the other inequality in Lemma 3.8,

‖ũN−1 − ũ∗‖AAA ≥
1
√

1 + γ
ηN−1 ≥

ε
√

1 + γ
.

By Theorem 3.7,

ε ≤
√

1 + γ ‖ũN−1 − ũ∗‖AAA ≤ 2
√

1 + γqN−1 ‖ũ0 − ũ∗‖AAA .

Solving for N leads to

N − 1 ≤
log
(

2ε−1
√

1 + γ ‖ũ0 − ũ∗‖AAA
)

log q
.

The final part of the assertion is a consequence of Proposition 3.5. !

3.4 Finite Element Approximation

The above estimates only consider the size and structure of the set of active indices
Ξ ⊂ Λ, and not the finite element spaces Wν, ν ∈ Ξ. We complete the analysis by
studying the cost of InApplyAAA[S, v], taking into account the varying cost of operations
in different Wν.
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Let nν ! #Wν. We assume that the parametric operator A0 is local, as in the example
from Section 1.1. We assume further that the spaces Wν are equipped with local bases,
which is usually the case for finite elements. Then the computational cost of applying
Aνµ is O(max(nν, nµ)). Consequently, the total cost of InApplyAAA[S, v] is on the order of

∑

ν∈Ξ
nν + 2

∑

{ν,µ}∈N(Ξ)

max(nν, nµ) . (3.14)

We make the natural assumption that if µ ∈ Ξ, then for all m ∈ suppµ, ν ! µ − εm ∈ Ξ,
and nν ≥ nµ. Then the second sum in (3.14) is bounded by

∑

µ∈Ξ

∑

m∈suppµ

nµ−εm =
∑

ν∈Ξ
qνnν , qν ! #

{

µ ∈ Ξ ; ν = µ − εm , m ∈N
}

. (3.15)

Consequently, the computational cost of InApplyAAA[S, v] is at most

∑

ν∈Ξ
(1 + 2qν)nν . (3.16)

This sum can be estimated further in various ways. For example, as in Proposition 3.2,

∑

ν∈Ξ
(1 + 2qν)nν ≤ (1 + 2λ̄(Ξ))#Ξmax

ν∈Ξ
nν . (3.17)

Alternatively, we have

∑

ν∈Ξ
(1 + 2qν)nν ≤ (1 + 2 max

ν∈Ξ
qν)
∑

ν∈Ξ
nν . (3.18)

Example 3.10. Let Ξ = {0, ε1, . . . , εM}, with nεm ≤ n0 for all m. Then q0 =M, and qεm = 0
for all m. The compuational cost of InApplyAAA[S, v] is on the order of

∑

ν∈Ξ
(1 + 2qν)nν = (1 + 2M)n0 +

M
∑

m=1

nεm ,

and (3.17) gives the fairly sharp estimate

(1 + 2λ̄(Ξ))#Ξmax
ν∈Ξ

nν = (1 + 3M)n0 ,

whereas (3.18) provides

(1 + 2 max
ν∈Ξ

qν)
∑

ν∈Ξ
nν = (1 + 2M)















n0 +

M
∑

m=1

nεm















,

which is much coarser if nεm are large. "
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Example 3.11. LetM = {1}, and Ξ = {0, . . . , k}, i.e. and ν ∈ Ξ are just integers less than
k. Then qν = 1 for ν ∈ {0, . . . , k − 1}, and qk = 0. Therefore, assuming that (nν)k

ν=0 is
decreasing, the compuational cost of InApplyAAA[S, v] is on the order of

∑

ν∈Ξ
(1 + 2qν)nν = nk + 3

k−1
∑

ν=0

nν .

The estimate (3.18) provides the bound

(1 + 2 max
ν∈Ξ

qν)
∑

ν∈Ξ
nν = 3

k
∑

ν=0

nν ,

which is much sharper than

(1 + 2λ̄(Ξ))#Ξmax
ν∈Ξ

nν = (1 + 3k)n0

from (3.17). "

Remark 3.12. We have not taken into account the possibility that the functions am from
Section 1.1 have local supports. Suppose that (a1,i)1,i forms a doubly indexed multilevel
basis, with 1 ∈ N0 and i ranging from 1 to M1. We assume that the size of the support
of a1,i is on the order of 1/M1. For any ν ∈ Λ, let [ν] consist of all µ ∈ Λ that differ
from ν only by a permutation of the i indices. For simplicity, we suppose that nν = n[ν]

is constant on each of these equivalence classes. Then A[ν],[µ] is a finite section of the
operator A, and the above estimates apply verbatim with ν replaced by [ν], provided
that the support of every a1,i is resolved on each finite element mesh. We will not go
into details here. "
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