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Abstract

The reduced basis method is an offline/online process for the approximation
of functional outputs of parameterized mathematical models. The offline process
is for solutions of the models for a reduced finite set of parameters and the online
process provides the option of quickly obtaining the functional outputs for an infinite
choice of parameters in the model. For reliability of the offline/online process, it
is important to establish convergence analysis of the reduced basis method and
provide a practical estimate for optimal reduction of parameters. The choice of
reduced parameters is usually obtained using some optimization technique.

For wave propagation models, with the parameters being incident waves and
directions, the celebrated T-matrix method is an optimization-free reduced basis
method. However, establishing convergence analysis and providing practical esti-
mates of truncation parameters for the T-matrix method has remained an open
problem for several decades. In this work we solve this open problem, for time-
harmonic acoustic scattering in two and three dimensions, with an optimization-free
reduced basis T-matrix method. We numerically demonstrate the convergence anal-
ysis and parameter estimates for both point-source and plane-wave incident waves.
Our approach can be used in conjunction with any numerical method for solving
the forward wave propagation problem.
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1 Introduction

The fast simulation of wave propagation induced by various types of incident waves,
impinging on a fixed bounded three dimensional configuration (scatterer) from several
directions, is fundamental to several applications. In modern applications, the type of
incident wave and associated incident directions are chosen by the end user, who requires
certain online information quickly, while the shape of the configuration remains fixed (or
based on a few prototype shapes). That is, the end users are given infinite parameter
options. The online requirements are typically functional outputs (such as the intensity
or radar cross section) of mathematical models describing the wave propagation.

In such cases, independent of the user input, it is efficient to a priori construct and store
certain tools that completely characterize (up to certain accuracy) the essential scattering
properties of the prototype configurations (using offline computations of appropriately
discretized mathematical models) so that online information can be simulated very quickly
by end users, for example using simple matrix-vector multiplications, for any parameter
choice. Here, the matrix describes the essential properties of the configuration and the
vector is the input chosen by the end user.

In general, full mathematical models of physical processes contain some user input
parameters. A framework that provides the end user with infinite (online) choice of input
parameters by first solving (offline) the full model for only a reduced class of finite number
parameters is known as the reduced basis method, see [2, 16] and extensive references
therein for various applications. For a chosen application/model, fundamental questions
in the reduced basis method are: (i) which choice of basis sets should be used to represent
the functional outputs of the full models and the input functions (so that the output and
input functions can be represented by vectors); (ii) how to provide a robust and practical
a priori (or a posteriori) estimate of the cardinality of the reduced basis sets; and (iii)
how to establish a full convergence analysis of the associated reduced basis method.

In this work we propose a class of spectral reduced basis method for time-harmonic
acoustic scattering in two and three dimensions, with user input parameters being the
practically important types of incident wave:

(i) a plane wave with arbitrary incident direction;

(ii) the field generated by a point-source with arbitrary location.

The standard reduced basis methods for most applications require some form of expen-
sive optimization procedures to choose the reduced set of parameters. However, for the
application considered in this work, the optimization cost can be completely avoided.

The T-matrix method is an optimization-free reduced basis method for our application.
The T-matrix was first introduced for wave propagation over half a century ago in [17]
and the standard truncated T-matrix method has been widely used since then, see [5, 13,
14, 15] and extensive references therein. The basis sets for the standard T-matrix method
consist of the classical wave functions.

It is well known that the standard T-matrix method, which uses the null field method,
is numerically unstable and for large obstacles can become divergent [15, p. 543]. There
are several approaches to tackle this problem [5, 13, 14, 15], such as using slow extended
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precision arithmetic to minimize the effect of round-off errors. The numerical instability
arises mainly due to the use of near-fields to compute entries of the reduced basis T-
matrix and fast growth of Hankel functions in the basis sets. In a recent work for acoustic
scattering [13, §7.9.4] it was suggested that the instability could be avoided by using far
fields, and the instability was computationally avoided in a robust way in [9, 10] using far
fields of the Hankel functions.

The standard T-matrix method has been investigated in the literature mainly for
plane-wave incidence, with the end user supplied parameter being the arbitrary incident
direction. Despite being widely used over the last five decades, it has been an open-
problem to establish a robust convergence analysis of any T-matrix method and to provide
a precise a priori parameter estimates to efficiently truncate the T-matrix, even for plane-
wave incidence. While there have been several advances in the convergence analysis and
parameter estimates for several optimization-based reduced basis methods [2, 16], the lack
of convergence analysis and parameter estimates for the optimization-free reduced basis
T-matrix method has been considered a major disadvantage.

The main aim of this work is to avoid this major disadvantage by answering all three
fundamental questions, for an optimization-free reduced basis method with practically
important point-source and plane-wave incidence with their source locations or wave di-
rections as free user input parameters. In addition to providing a priori estimates for the
truncation parameters and proving exponential convergence of the reduced basis T-matrix
method, we demonstrate the theory and estimates using several numerical experiments
for two and three dimensional acoustic scattering.

2 Acoustic obstacle scattering

We consider the model problem of time-harmonic exterior acoustic obstacle scattering in
Rd for d = 2, 3. Let D ⊂ Rd be a bounded sound-soft or sound-hard or absorbing scatterer
in a homogeneous medium. The coordinate system is chosen so that the origin 0 is inside
D. Let ρD > 0 be the radius of the scatterer with respect to the origin, so that D ⊂ BρD ,
where BρD ⊂ Rd denotes the ball with center 0 and radius ρD.

Let uinc be an incident wave with wavelength λ = 2π/k, where k is the wavenumber,
impinging on the scatterer D. The resulting time-harmonic radiating acoustic scattered
field us scattered by D satisfies the Helmholtz equation [4, Sect. 2.1],

#u(x) + k2u(x) = 0 , x ∈ Rd \D , (2.1)

and one of the following boundary conditions (properties of the scatterer)

us(x) = −uinc(x) , (sound-soft) (2.2)

∂us

∂n
(x) = −∂uinc

∂n
(x) , (sound-hard) (2.3)

us(x) + λ
∂us

∂n
(x) = −uinc(x)− λ

∂uinc

dn
(x) , Im(λ) > 0, (absorbing) (2.4)

for x ∈ ∂D, and the Sommerfeld radiation condition

lim
|x|→∞

|x|(d−1)/2

(
∂u

∂|x| − iku

)
= 0, (2.5)

3



where the limit holds uniformly in all directions x̂ = x/|x| ∈ Sd−1, and Sd−1 is the unit
sphere in Rd for d = 2, 3. Furthermore, the radiating solution us has the asymptotic
behaviour of an outgoing spherical wave [4, Theorem 2.5]:

us(x) =
eik|x|

|x|(d−1)/2

{
u∞(x̂) +O

(
1

|x|

)}
, (2.6)

as |x| → ∞ uniformly in all directions x̂ = x/|x|. The function u∞ defined on Sd−1

in (2.6) is known as the far field pattern of u. Thus the far field u∞ ∈ L2(Sd−1) has the
representation

u∞(x̂) = lim
|x|→∞

|x|(d−1)/2e−ik|x|us(x), x̂ = x/|x|. (2.7)

Computation of the far field pattern plays an important role in inverse scattering to
identify the shape of the scatterer [4, Ch. 5].

For expanding the incident, scattered, and far fields using a new class of elementary
regular and radiating functions, and to unify notation in two and three dimensions, we
introduce the infinite index sets

Id =






{! = % : % ∈ Z}, for d = 2,

{! = (%, j) : % ∈ N0, |j| ≤ %}, for d = 3,

and finite subsets

Id,N =






{! = % : −N ≤ |%| ≤ N}, for d = 2,

{! = (%, j) : 0 ≤ % ≤ N, |j| ≤ %}, for d = 3,

where N0 = N ∪ {0}. For ! ∈ Id, with ! = % or ! = (%, j), we use the notation |!| = |%|.
Let Nd denote the cardinality of Id,N . We have

Nd =






2N + 1 d = 2,

(N + 1)2, d = 3.
(2.8)

Throughout the paper, for ! ∈ Id, the functions J|!|, j|!|, H
(1)
|!| , and h(1)

|!| are respectively
the Bessel, spherical-Bessel, Hankel, and spherical-Hankel functions of degree |!|. For
! = (%, j) ∈ I3, we denote by Yl,j the spherical harmonic of degree l, given by

Y",j(x̂) = (−1)(j+|j|)/2

√
2l + 1

4π

(l − |j|)!
(l + |j|)!P

|j|
" (cos θ)eijφ , x̂ ∈ S2, (2.9)

where P |j|
" is the associated Legendre function of degree % and index j. Here we have used

the spherical polar coordinates representation of the unit vector x̂ with polar angle θ and
azimuth φ. Formally, for x ∈ R2 we write

x = x(θ) = |x|x̂ = |x|(cos θ, sin θ)T
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and for x ∈ R3 we write

x = x(θ,φ) = |x|x̂ = |x|(sin θ cosφ, sin θ sinφ, cos θ)T .

We consider the orthonormal basis functions in L2(Sd−1) given by

Y!(x̂) =






1√
2π

exp(i%θ), d = 2,

Y",j(x̂), d = 3,
x̂ ∈ Sd−1, % ∈ Id. (2.10)

In applications, the incident field uinc is frequently an incident plane wave with propaga-
tion direction d̂ ∈ Sd−1, and the far field pattern u∞ is the functional output of interest.
In particular, one might like to know the acoustic cross section (ACS) of the scatterer at
any user chosen direction x̂ ∈ Sd−1, defined by

σ(x̂; d̂) = 4π|u∞(x̂)|2. (2.11)

A derived quantity of interest is the monostatic ACS, which is computed with d̂ = −x̂. For
the monostatic ACS , especially for non-convex configurations, the full wave propagation
model needs to be solved for thousands of incident directions d̂ (representing the ACS
from all directions). This requires a fast implementation of the far field mapping d̂ *→ u∞.
Another practically important class of incident waves are the circular and spherical waves
generated by a point-source (located outside but possibly close to the configuration).

In this work, using a new class of basis functions, we first design an efficient offline
computation to construct a matrix that is independent of the user input uinc and that
characterizes scattering properties of the configuration pair (∂D, k) so that, given a user
input uinc, an approximate functional-output, the ACS, can be quickly computed online
using cheap matrix-vector multiplication.

2.1 Basis functions for expansion of fields

The unknown quantity in the ACS formula (2.11) is the far-field u∞. Using (2.6) and
the orthonormal basis in (2.10), since the far field u∞ ∈ L2(Sd−1), there exists a sequence
a = (a!′)!′∈Id such that

u∞(x̂) =
∑

!′∈Id

a!′Y!′(x̂), x̂ ∈ Sd−1. (2.12)

An approximate far field pattern can be obtained by truncating the expansion (2.12) to
N ′

d terms, that is, reducing the basis to N ′
d functions. A priori error bounds may guide

the choice of N ′
d and to establish them is the goal of this paper.

Hereafter let R > ρD be a fixed positive number to be read as the radius of a ball
strictly containing D, see Figure 1 (and Figures 11–12). The incident field uinc solves the
Helmholtz equation (2.1) everywhere inside BR.

To motivate our approach, we first consider the incident field uinc induced by a point-
source located at x0 ∈ R3, with |x0| > R. Using [4, Theorem 2.10], we have the series
representation

uinc(x) =
exp(ik|x− x0|)

k|x− x0|
=

∑

!∈Id

p! j|!|(k|x|) Y!(x̂), (2.13)

5



D

R

0

Figure 1: Geometric arrangement for the acoustic scattering problem (d = 2).

with expansion coefficients

p! = 4πik h(1)
|!| (k|x0|) Y!(x̂0). (2.14)

A similar expansion holds for any point-source radiation in two dimensions, using Graf’s
addition theorem [1, 9.1.79]. Also, truncation to Nd terms, that is, those terms satisfying
|%| ≤ N , may be employed in (2.13).

In this article we provide a precise a priori bound for the error caused by the simultane-
ous truncation of (2.12) and (2.13). We establish exponential convergence of the resulting
approximation error as both N ′ and N tend to ∞. Throughout the paper C stands for
a generic positive constant, whose value may differ between different occurrences. The
constant may depend only on the shape of D, the boundary conditions, the separation
distance R, and the wavenumber k. The constant does not depend on the truncation
indices N and N ′ nor on the excitation uinc.

After fixing N ′ and N , the offline task in this work is to compute an N ′
d ×Nd matrix

so that the unknown reduced N ′
d coefficients a!′ of the far-field in (2.12) can be computed

online using any Nd input incident field coefficients p! via a cheap matrix vector product.
Motivated by (2.13), we introduce a new class of scaled elementary wave functions:

Ẽ!(x) =






H(1)
|!| (kR)J|!|(k|x|)Y!(x̂), d = 2,

h(1)
|!| (kR)j|!|(k|x|)Y!(x̂), d = 3,

! ∈ Id. (2.15)

The scaled wave functions are unbounded entire solutions of the Helmholtz equation (2.1)
and can be regarded as “incident circular/spherical waves”. The scaling factors applied to
the usual regular wave functions are introduced in (2.15) to ensure boundedness of coef-
ficients in the incident field expansion for incident point source waves. The waves (2.15)
decay exponentially towards the origin.

Lemma 2.1 With constants C depending only on D and kR,
∥∥∥Ẽ!!∂D

∥∥∥
L2(∂D)

≤ C
(ρD
R

)|!|
, ∀! ∈ Id , (2.16)

∥∥∥∇Ẽ!!∂D
∥∥∥
L2(∂D)

≤ C
(ρD
R

)|!|−1

|!|d/2−1, ∀! ∈ Id, |!| > 0 . (2.17)
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Proof. We make use of the fact [4, Sect. 2.4, 3.4] that, with C > 0 depending on kR ,

max
{
|H(1)

|!| (kR)J|!|+σ(kR)|, |h(1)
|!| (kR)j|!|+σ(kR)|

}
≤ C|!|σ−1 ∀! ∈ Id ,

σ ∈ {−1, 0, 1} ,

σ + |!| ≥ 0 ,
(2.18)

and of the estimate (see [4, Page 31] for d = 3, and [4, (3.57), (3.58)] for d = 2)

∣∣∣∣
J|!|(k|x|)
J|!|(kR)

∣∣∣∣ ,
∣∣∣∣
j|!|(k|x|)
j|!|(kR)

∣∣∣∣ ≤ C

(
|x|
R

)|!|

∀! ∈ Id, |x| ≤ R . (2.19)

We combine this with (2.18) and the bound (see [6, Lemma 3.1.5] for d = 3)

|Y!(x̂)| ≤ C|!|d/2−1, x̂ ∈ Sd−1, (2.20)

in (2.15) to obtain

|Ẽ!(x)| ≤ C

(
|x|
R

)|!|

∀! ∈ Id, |x| < R , (2.21)

which immediately yields the estimate for
∥∥∥Ẽ!!∂D

∥∥∥
L2(∂D)

in (2.16).

The proof of the second estimate starts from
∥∥∥∇Ẽ!!∂D

∥∥∥
L2(∂D)

≤ |∂D|1/2
∥∥∥∇Ẽ!!∂D

∥∥∥
L∞(∂D)

, (2.22)

where |∂D| denotes the surface area of ∂D, and the polar/spherical coordinate represen-
tation for |!| > 0

∇Ẽ!(x) =

{
H(1)

|!| (kR)
(
kJ ′

|!|(k|x|)Y!(x̂)x̂+ 1
|x|J|!|(k|x|)∇

∗Y!(x̂)
)
, d = 2 ,

h(1)
|!|
(
kR)(kj′|!|(k|x|)Y!(x̂)x̂+ 1

|x|j|!|(k|x|)∇
∗Y!(x̂)

)
, d = 3 ,

(2.23)

where ∇∗ is the Sd−1 surface gradient. For |!| > 0, using the formulas [1]

2J ′
|!| = J|!|−1 − J|!|+1 , j|!|(t) =

√
π

2t
J|!|+1/2(t), t ≥ 0 , (2.24)

we get the surface gradient bound (see [6, Lemma 12.6.7] for d = 3 and note the scaling
term in [6, Equation (12.2.1)])

|∇∗Y!(x̂)| ≤ C|!|d/2, x̂ ∈ Sd−1. (2.25)

Substituting (2.18) and (2.19) in (2.23), yields the estimate

|∇Ẽ!(x)| ≤ C
(ρD
R

)|!|−1

|!|d/2−1 ∀! ∈ Id, |!| > 0, |x| < R . (2.26)

"
Using (2.15), we represent the incident wave uinc as

uinc =
∑

!∈Id

p!Ẽ!. (2.27)
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Details of such expansions and weights for the physically important plane-wave and point-
source incidence are discussed in § 3.1 and §3.2.

As with most error estimates, our truncation error bounds will depend on a measure
of the “smoothness” of the data, which is expressed through requiring that suitable norms
be bounded. Here, we assume that the incident wave uinc with uinc!∂D ∈ L2(∂D) is such
that there exists a weight sequence w = (w!)!∈Id with

0 < w ≤ w! ∀! ∈ Id and some w > 0 , (2.28)

such that uinc ∈ Xw, where

Xw =

{
ψ =

∑

!∈Id

q!Ẽ! : ‖ψ‖2Xw
:=

∑

!∈Id

w!|q!|2 < ∞
}
. (2.29)

Remark 2.2 Lemma 2.1 implies that for uinc ∈ Xw suitable restrictions of the expan-
sion (2.27) converge in both L2(∂D) and L2(BR). From the estimates in the proof of
Lemma 2.1 we also infer

Xw!BR
⊂ L2(BR) with continuous embedding. (2.30)

We also introduce a new class of scaled radiating waves

E!(x) =






√
πk

(−i)|!|(1− i)
H(1)

|!| (k|x|)Y!(x̂), d = 2,

k

(−i)|"|+1
h(1)
|!| (k|x|)Y!(x̂), d = 3,

! ∈ Id. (2.31)

The scaling factors in (2.31) are applied to the usual outgoing wave functions so that their
associated far-fields {E∞

! : ! ∈ Id} form an orthonormal basis for L2(Sd−1). In particular,
using the asymptotics of the Hankel and spherical Hankel functions as |x| →∞ , see [4,
Equations (3.59) and (2.41)], in (2.31) we get

E∞
! (x̂) = Y!(x̂), ! ∈ Id, x̂ ∈ Sd−1, d = 2, 3. (2.32)

Hence using (2.12),

u∞(x̂) =
∑

!′∈Id

a!′E
∞
!′ (x̂), x̂ ∈ Sd−1. (2.33)

In view of the above, it is natural to represent the radiating scattered field us outside
the ball BR as

us(x) =
∑

!′∈Id

a!′E!′(x), x ∈ Rd \BR. (2.34)
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2.2 Infinite basis: scattering matrix, far-field, scattered-field

We introduce bounded linear operators S∞
∂ : Z(∂D) → L2(Sd−1), where

Z(∂D) :=

{
H1/2(∂D) for a sound-soft scatterer (2.2),

L2(∂D) for boundary conditions (2.3), (2.4).

These operators map boundary data g ∈ Z(∂D) to the far field pattern u∞ of the solutions
u ∈ H1

loc(Rd \D) of the exterior boundary value problems1

∆u+ k2u = 0 in Rd \D ,






u = g ,

or

∂u

∂n
= g ,

or

u+ λ
∂u

∂n
= g ,

on ∂D

(2.35)

(2.36)

(2.37)

and Sommerfeld radiation condition (2.5) at infinity. Continuity of S∞
∂ follows from the

estimates in [4, Sect. 2.5] and the fact that u ∈ H1
loc(Rd \ BR). Using S∞

∂ we define the
scattered field operators S∞ : C∞(BR) *→ L2(Sd−1) as

S∞ := S∞
∂ ◦B , Bψ :=






ψ!∂D for (2.35) ,

∂ψ

∂n
!∂D for (2.36) ,

ψ + λ
∂ψ

∂n
!∂D for (2.37) .

(2.38)

Using (2.28) and the estimates of Lemma 2.1, we obtain that for uinc the B-restrictions of
the terms of the expansion (2.27) form sequences that converge in Z(∂D), which implies

S∞uinc =
∑

!∈Id

p!
(
S∞Ẽ!

)
in L2(Sd−1) . (2.39)

For each ! ∈ Id, since S∞Ẽ! ∈ L2(Sd−1), there exist coefficients t!′,! such that

(
S∞Ẽ!

)
(x̂) =

∑

!′∈Id

t!′,!E
∞
!′ (x̂) =

∑

!′∈Id

t!′,!Y!′(x̂), x̂ ∈ Sd−1. (2.40)

Using the orthonormality of the basis function in (2.10) with respect to the inner product
〈·, ·〉 in L2(Sd−1), we get

t!′,! = 〈S∞Ẽ!, Y!′〉, !′, ! ∈ Id. (2.41)

1Of course, S∞
∂ will be different for each boundary condition. For the sake of lean notations this

dependence will be suppressed.
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Using (2.40) in (2.39), we obtain

u∞(x̂) = S∞uinc(x̂) =
∑

!′∈Id

[
∑

!∈Id

t!′,!p!

]
E∞

!′ (x̂), x̂ ∈ Sd−1. (2.42)

Comparing (2.42) with (2.33) shows that the incident field and the scattered/far-field
coefficient sequences p = (p!)!∈Id and a = (a!)!∈Id are connected via the (infinite) T-
matrix T =

[
t!′,!

]
!′,!∈Id

according to

a = Tp. (2.43)

2.3 Reduced basis: scattering matrix, far-field, scattered-field

For a fixed pair of truncation parameters N ′, N ∈ N, using the representation (2.41), we
define the truncated N ′

d ×Nd reduced basis acoustic scattering T-matrix as

TN ′,N =
[
t!′,!

]
!′∈Id,N′ ,!∈Id,N

. (2.44)

The N ′
d × Nd truncated T-matrix can be precomputed and stored for any chosen scat-

terer, independent of the incident wave. Using the representation of uinc in (2.27) and
the associated truncated vector p(N) = (p!)!∈Id,N (which is known analytically for the

physically important plane-wave and point-source incident waves), we can compute the

vector a(N ′,N) =
(
a(N

′,N)
!′

)

!′∈I′d,N
using

a(N ′,N) = TN ′,Np
(N). (2.45)

In particular, using (2.33)–(2.42), for an incident field uinc with representation (2.27), our
approximation to the induced far-field is:

u∞
(N ′,N) =

∑

!′∈Id,N′




∑

!∈Id,N

t!′,!p!



E∞
!′ =

∑

!′∈Id,N′




∑

!∈Id,N

t!′,!p!



Y!′ . (2.46)

Our approximation to the scattered field in (2.34) is us
(N ′,N), which is computed similarly,

using the T-matrix with E∞
!′ in (2.46) replaced with E!′ .

3 Convergence analysis with parameter estimates

In this section we prove that u∞
(N ′,N) converges exponentially to u∞ in L2(Sd−1) with

respect to the truncation parameters N,N ′.

Lemma 3.1 Let uinc ∈ Xw. Then
∥∥u∞ − u∞

(N ′,N)

∥∥2

L2(Sd−1)

≤
∥∥uinc

∥∥2

Xw





∑

!∈Id

1

w!

∥∥∥S∞Ẽ! − S∞
N ′Ẽ!

∥∥∥
2

L2(Sd−1)
+

∑

!∈Id\Id,N

1

w!

∥∥∥S∞Ẽ!

∥∥∥
2

L2(Sd−1)




 , (3.1)

where S∞
N ′Ẽ! is the L2(Sd−1)-orthogonal projection of S∞Ẽ! onto span {Y!′ : !

′ ∈ Id,N ′}.
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Proof. Using (2.42) and (2.46),

u∞ − u∞
(N ′,N) =

∑

!′∈Id\Id,N′

[
∑

!∈Id

t!′,!p!

]
Y!′ +

∑

!′∈Id,N′




∑

!∈Id\Id,N

t!′,!p!



Y!′ . (3.2)

Hence, by the orthonormality of the basis functions Y!′ of L
2(Sd−1),

∥∥u∞ − u∞
(N ′,N)

∥∥2

L2(Sd−1)
=

∑

!′∈Id\Id,N′

∣∣∣∣∣
∑

!∈Id

t!′,!√
w!

√
w!p!

∣∣∣∣∣

2

+
∑

!′∈Id,N′

∣∣∣∣∣∣

∑

!∈Id\Id,N

t!′,!√
w!

√
w!p!

∣∣∣∣∣∣

2

.

(3.3)
Hence the Cauchy-Schwarz inequality and (2.27) yield

∥∥u∞ − u∞
(N ′,N)

∥∥2

L2(Sd−1)
≤

∥∥uinc
∥∥2

Xw




∑

!′∈Id\Id,N′

∑

!∈Id

|t!′,!|2

w!
+

∑

!′∈Id,N′

∑

!∈Id\Id,N

|t!′,!|2

w!





=
∥∥uinc

∥∥2

Xw




∑

!∈Id

1

w!

∑

!′∈Id\Id,N′

|t!′,!|2 +
∑

!∈Id\Id,N

1

w!

∑

!′∈Id

|t!′,!|2




=
∥∥uinc

∥∥2

Xw




∑

!∈Id

1

w!

∑

!′∈Id\Id,N′

|t!′,!|2 +
∑

!∈Id\Id,N

1

w!

∥∥∥S∞Ẽ!

∥∥∥
2

L2(Sd−1)



 ,

where in the last line we used (2.40). Now the result (3.1) follows from using

(
S∞
N ′Ẽ!

)
(x̂) =

∑

!′∈Id,N′

t!′,!Y!′(x̂), x̂ ∈ Sd−1, (3.4)

and the identity ∥∥∥S∞Ẽ! − S∞
N ′Ẽ!

∥∥∥
2

L2(Sd−1)
=

∑

!′∈Id\Id,N′

|t!′,!|2. (3.5)

"
Next we estimate the first term in (3.1). We recall that ρD is the radius of the scatterer

D, that R > ρD is fixed, and that k is the wavenumber of the obstacle scattering problem.

Lemma 3.2 The restrictions of the incident base fields from (2.15) satisfy

∥∥∥Ẽ!!∂D
∥∥∥
Z(∂D)

≤ C
(ρD
R

)|!|
·
{
|!|d/4−1/2, for sound-soft scatterer,

1, for boundary conditions (2.3), (2.4).

Proof. The estimate is an immediate consequence of the bounds (2.16) and (2.17)

from Lemma 2.1 and the standard interpolation estimate ‖u‖H1/2(∂D) ≤ C ‖u‖1/2H1(∂D) ‖u‖
1/2
L2(∂D).

"
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Lemma 3.3 For all ! ∈ Id, and assuming the threshold condition N ′ > Rk/2, we have
the estimate

∥∥∥S∞Ẽ! − S∞
N ′Ẽ!

∥∥∥
2

L2(Sd−1)
=

∑

!′∈Id\Id,N′

|t!′,!|2 ≤ C

(
Rke

2N ′

)2N ′ (ρD
R

)2|!|
|!|d/2−1 . (3.6)

Proof. We introduce the operators SR : Z(∂D) *→ L2(∂BR), SRg := u!∂BR
, where

u ∈ H1
loc(Rd\Ω) is the solution of one of the exterior boundary value problems from (2.35)–

(2.37). Obviously, SR is a bounded linear operator. We denote by ‖SR‖ the norm of SR as
a mapping Z(∂D) *→ L2(∂BR). This norm may be incorporated into constants, whenever
appropriate.

Following the considerations in [4, Sect. 2.5] (for d = 3) and [12, Section 4] (for d = 2),
we find that the coefficients a!′ of the expansion (2.12) of u∞, which is the far field pattern
of the solution u induced by the boundary data g, satisfy

∑

!′∈Id

(
2|!′|
Rke

)2|!′|

|a!′ |2 ≤ C(Rk)1−d ‖u‖2L2(∂BR) ≤ C(Rk)1−d ‖SR‖ ‖g‖Z(∂D) . (3.7)

Thus, defining the Hilbert space

YR =




ψ =
∑

!′∈Id

g!′Y!′ :
∑

!′∈Id

(
2|!′|
Rke

)2|!′|

|g!′ |2 < ∞




 ⊂ L2(Sd−1), (3.8)

equipped with norm ‖ψ‖2YR
=

∑
!′∈Id

(
2|!′|
Rke

)2|!′|
|g!|2, we find that S∞

∂ : Z(∂D) → YR is

a bounded linear operator. Note that the t!′,! are the expansion coefficients of S∞Ẽ!.
Consequently, using (3.5),

∥∥∥S∞Ẽ! − S∞
N ′Ẽ!

∥∥∥
2

L2(Sd−1)
=

∑

!′∈Id\Id,N′

|t!′,!|2

=
∑

!′∈Id\Id,N′

(
Rke

2|!′|

)2|!′| (2|!′|
Rke

)2|!′|

|t!′,!|2

=
∑

!′∈Id\Id,N′

fRke(2|!′|)
(
2|!′|
Rke

)2|!′|

|t!′,!|2, (3.9)

where for a fixed a > 0,
fa(x) = (a/x)x , x > 0. (3.10)

It is easy to check that limx→0 fa(x) = 1, that limx→∞ fa(x) = 0, that fa(x) attains its
maximum at x∗ = a/e, and that fa(x) is a decreasing function for x > x∗. Using these
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properties in (3.9), for N ′ > Rk/2,

∥∥∥S∞Ẽ! − S∞
N ′Ẽ!

∥∥∥
2

L2(Sd−1)
≤

(
Rke

2N ′

)2N ′ ∑

!′∈Id\Id,N′

(
2|!′|
Rke

)2|!′|

|t!′,!|2

≤
(
Rke

2N ′

)2N ′ ∥∥∥S∞Ẽ!

∥∥∥
2

YR

≤ C

(
Rke

2N ′

)2N ′

C ‖SR‖
∥∥∥Ẽ!

∥∥∥
2

Z(∂D)

≤ C ‖SR‖
(
Rke

2N ′

)2N ′ (ρD
R

)2|!|
|!|d/2−1 .

where in the last step we invoked the estimates Lemma 3.2 and used a common upper
bound. "
Lemma 3.4 For all R > ρD and ! ∈ Id,

∥∥∥S∞Ẽ!

∥∥∥
2

L2(Sd−1)
≤ C

(ρD
R

)2|!|
|!|d/2−1. (3.11)

Proof. Appealing to the continuity of S∞
∂ : Z(∂D) *→ L2(Sd−1), the estimate is

immediate from Lemma 3.2. "
Using (3.6) and (3.11) in (3.1), we get the following result.

Theorem 3.5 Let uinc ∈ Xw. Assuming the threshold condition N ′ > Rk/2, there holds
∥∥u∞ − u∞

(N ′,N)

∥∥2

L2(Sd−1)

≤ C
∥∥uinc

∥∥2

Xw






(
Rke

2N ′

)2N ′ ∑

!∈Id

|!|d/2−1

w!

(ρD
R

)2|!|
+

∑

!∈Id\Id,N

|!|d/2−1

w!

(ρD
R

)2|!|




 . (3.12)

3.1 Convergence analysis for plane-wave incidence

Let uinc(x) = exp(ikx · d̂) be the plane-wave with fixed incident direction d̂ impinging on
the obstacle D ∈ Rd for d = 2, 3. The expansion coefficients of the incident wave in the
expansion (2.27) are [4, Equation (3.66) for d = 2 and Equation (2.45) for d = 3]

p! =






√
2π

i|!|

H(1)
! (kR)

Y!(d̂), for d = 2,

4π
i|!|

h(1)
! (kR)

Y!(d̂), for d = 3.
(3.13)

From (2.20), it is easy to see that the coefficients p! satisfy the decay bound

|p!| ≤ C ·






1

H(1)
|!| (kR)

, for d = 2,

|!|1/2

h(1)
|!| (kR)

, for d = 3,

! ∈ Id. (3.14)
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Hence using the asymptotics of the Hankel and spherical Hankel functions for |!| → ∞
[4, Equations (3.58) and (2.39)], if we choose (see Figure 2)

w! = |!|−d

(
2|!|
Rke

)2|!|

, (3.15)

it is easy to see that uinc ∈ Xw. Also

|!|d/2−1

w!

(ρD
R

)2|!|
= |!|3d/2−1

(
ρDke

2|!|

)2|!|

= g
3d/2−1
Rke (2|!|)

(ρD
R

)2|!|
(3.16)

with
gpa(x) =

(x
2

)p (a
x

)x

, a, p > 0. (3.17)

Figure 2: Weights w! from (3.15).

Figure 3: x∗(p, a) (left) and gpa(x
∗) (right) as functions of a for relevant cases p = 2, 3.5.
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If we write gpa(x) = exp(ϕ(x)), we see that that the derivative ϕ′(x) is a strictly
decreasing function with ϕ′(ae ) = ap

e > 0 and ϕ′(ae + p) < 0. Hence gpa(x) has a single
global maximum at x∗(a, p) with x∗(a, p) ≤ a

e + p (see Fig 3). Thus, we obtain for
N > Rk/2 + 3d

4 − 1
2

∑

!∈Id\Id,N

|!|d/2−1

w!

(ρD
R

)2|!|
≤ g

3d/2−1
Rke (2N)

∑

!∈Id\Id,N

(ρD
R

)2|!|
≤ CN 3d/2−1

(
Rke

2N

)2N (ρD
R

)2N

.

(3.18)
The function ϕ(x) introduced above is concave, increasing for x ≤ a

e and decreasing for
x ≥ a

e + p. It can be bounded by the minimum of the tangent lines at these two sites,
which leads to the estimate gpa(x) ≤ (a/2)p exp(ae ), cf. Figure 3. From it we conclude

∑

!∈Id

|!|d/2−1

w!

(ρD
R

)2|!|
=

∑

!∈Id

g
3d/2−1
Rke (2|!|)

(ρD
R

)2|!|

≤ eRk(Rke/2)3d/2−1
∑

!∈Id

(ρD
R

)2|!|
≤ CeRk(Rke/2)3d/2−1 . (3.19)

Using (3.16), (3.18) and (3.19) in (3.12), we get the following exponential convergence
of the far-field obtained using the truncated T-matrix TN ′,N .

Theorem 3.6 Let uinc(x) = exp(ikx · d̂), d̂ ∈ Sd−1 for d = 2, 3. If the threshold condi-
tions N ′ > Rk/2 and N > Rk/2 + 3d

4 − 1
2 are satisfied, there holds the estimate

∥∥u∞ − u∞
(N ′,N)

∥∥2

L2(Sd−1)
≤ C

{
eRk(Rke/2)3d/2−1

(
Rke

2N ′

)2N ′

+N 3d/2−1

(
ρDke

2N

)2N
}

.

(3.20)

3.2 Convergence analysis for point-source incidence

Let x0 ∈ Rd for d = 2, 3 with |x0| > R. Consider the incident field created by a point-
source located at x0, that is,

uinc(x) =






H(1)
0 (k|x− x0|), d = 2,

exp(ik|x− x0|)
k|x− x0|

, d = 3.
(3.21)

The expansion coefficients of the incident wave in the expansion (2.27) are [4, Equa-
tion (3.65) for d = 2 and Equation (2.42) for d = 3]

p! =






√
2π

H(1)
|!| (k|x0|)

H(1)
|!| (kR)

Y!(x̂0), for d = 2,

4πik
h(1)
|"| (k|x0|)

h(1)
|!| (kR)

Y!(x̂0), for d = 3,

! ∈ Id. (3.22)
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By (2.20) it is easy to see that the coefficients p! satisfy the decay bounds

|p!| ≤ C






∣∣∣∣∣
H(1)

|!| (k|x0|)

H(1)
|!| (kR)

∣∣∣∣∣ , for d = 2,

|!|1/2
∣∣∣∣∣
h(1)
|!| (k|x0|)

h(1)
|!| (kR)

∣∣∣∣∣ , for d = 3,

! ∈ Id. (3.23)

Hence, using the asymptotics of the Hankel and spherical Hankel functions for |!| →∞
we arrive at the bound

|p!| ≤ C|!|d/2−1

(
R

|x0|

)|!|

, ! ∈ Id . (3.24)

Thus, if we choose w0 := 1 and

w! :=
1

|!|d

(
|x0|
R

)2|!|

, ! ∈ Id, |!| > 0 , (3.25)

it is easy to see that uinc ∈ Xw with
∥∥uinc

∥∥
Xw

bounded uniformly in x0 and k. In addition

1

w!

(ρD
R

)2|!|
|!|d/2−1 = |!|3d/2−1

(
ρD
|x0|

)2|!|

, (3.26)

which, using bounds for sums of the form
∞∑

k=N
kpqk, |q| < 1, provides the estimates (N > 1)

∑

!∈Id\Id,N

1

w!

(ρD
R

)2|!|
|!|d/2−1 ≤ C

(
ρD
|x0|

)2N

·






N2

(1− (ρD/|x0|)2)3
for d = 2 ,

N4.5

(1− (ρD/|x0|)2)5.5
for d = 3 .

(3.27)

Using (3.27) and ρD < R < |x0| in (3.12) in Theorem 3.5, we get the following exponential
convergence of the far-field approximation obtained using the truncated T-matrix TN ′,N .

Theorem 3.7 Let uinc be as in (3.21) with |x0| > R. Under the threshold condition
N ′ > Rk/2,

∥∥u∞ − u∞
(N ′,N)

∥∥2

L2(Sd−1)
≤ C

(1− (ρD/|x0|)2)q+1
·
{(

Rke

2N ′

)2N ′

+N q

(
ρD
|x0|

)2N
}

, (3.28)

with q = 2 for d = 2, and q = 4.5 for d = 3.

Note that the inevitable blow-up as the point source approaches D is reflected in the
estimate (3.28).
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3.3 Convergence analysis with approximate far-fields

The analysis above is based on the assumption that the far-field S∞Ẽ! required to con-
struct entries t!′,! for !

′ ∈ Id,N ′ and ! ∈ Id,N in (2.41) for the reduced basis T-matrix can

computed exactly. In practice, computation of S∞Ẽ! requires numerical algorithms to
solve (offline) the wave propagation model (2.1)–(2.5) with uinc = Ẽ!. In our approach
any numerical method (such as finite element, boundary element, spectral, or fundamental
solution) can be used to solve the model. Let 0 < ε(!) < 1 be the relative approximation
error in the numerically computed far-field with uinc = Ẽ!, ! ∈ Id,N . That is, we assume

that the numerical method is such that the numerical far-field S∞
h Ẽ! approximating S∞Ẽ!

satisfies ∥∥∥S∞
h Ẽ! − S∞Ẽ!

∥∥∥
L2(Sd−1)

≤ ε(!) ≤ ε , ! ∈ Id,N . (3.29)

Different S∞
h may be employed for different incident fields Ẽ!, to obtain a fixed accuracy

0 < ε < 1 so that ε(!) ≤ ε, ! ∈ Id,N .
Let t!′,!,h and u∞

(N ′,N,h), respectively, be the associated approximations to t!′,! and
u∞
(N ′,N). That is, based on (2.41) and (2.46), we have

t!′,! = 〈S∞Ẽ!, Y!′〉, t!′,!,h = 〈S∞
h Ẽ!, Y!′〉, !′ ∈ Id,N ′ , ! ∈ Id,N . (3.30)

u∞
(N ′,N) =

∑

!′∈Id,N′




∑

!∈Id,N

t!′,!p!



Y!′ , u∞
(N ′,N,h) =

∑

!′∈Id,N′




∑

!∈Id,N

t!′,!,hp!



Y!′ . (3.31)

Using (3.30) and (3.29) we get

∑

!′∈Id,N′

∣∣t!′,!,h − t!′,!
∣∣2 ≤

∑

!′∈Id,N′

∣∣∣〈(S∞
h − S∞) Ẽ!, Y!′〉

∣∣∣
2

= ε(!)2 . (3.32)

Again using the L2(Sd−1)-orthonormality of the Y!′ , (3.31) and (3.32), we get

∥∥u∞
(N ′,N,h) − u∞

(N ′,N)

∥∥2

L2(Sd−1)
≤

∑

!∈Id,N

∑

!′∈Id,N′

∣∣t!′,!,h − t!′,!
∣∣2 |p!|2

≤
∑

!∈Id,N

w! |p!|2
∑

!′∈Id,N′

1

w!

∣∣t!′,!,h − t!′,!
∣∣2 ≤ C

∥∥uinc
∥∥2

Xw





∑

!∈Id,N

[ε(!)]2

w!




 . (3.33)

Since

∥∥u∞ − u∞
(N ′,N,h)

∥∥2

L2(Sd−1)
≤ 2

∥∥u∞ − u∞
(N ′,N)

∥∥2

L2(Sd−1)
+ 2

∥∥u∞
(N ′,N,h) − u∞

(N ′,N)

∥∥2

L2(Sd−1)
,

Theorem 3.5 and (3.33) furnish the following result for the fully discrete reduced basis
T-matrix method.
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Theorem 3.8 If uinc ∈ Xw(∂D) and N ′ > Rk/2,

∥∥u∞ − u∞
(N ′,N,h)

∥∥2

L2(Sd−1)
≤ C

∥∥uinc
∥∥2

Xw
·






(
Rke

2N ′

)2N ′ ∑

!∈Id

1

w!

(ρD
R

)2|!|
|!|d/2−1 +

∑

!∈Id\Id,N

1

w!

(ρD
R

)2|!|
|!|d/2−1 +

∑

!∈Id,N

[ε(!)]2

w!




 .

(3.34)

For stable on-line computations, it is important to have a guaranteed accuracy for all
off-line computations, that is, ε(!) ≤ ε for all ! ∈ Id,N . Henceforth, we assume this. Then,
in the case of plane-wave incidence (see Sect. 3.1), by the definition (3.15) of the weights
we obtain analogously to (3.19)

∑

!∈Id,N

1

w!
≤

∑

!∈Id

(
Rke

2|!|

)2|!|

|!|d ≤
∞∑

j=1

(
Rke

2j

)2j

(2j)2d−2 ≤ C((Rk)2 + eRk(Rk)2d−1) .

(3.35)
for C ≈ 10, see Figure 4. The ultimate bound in (3.35) was found by numerical experi-
ments.

Figure 4: Values of
∑

!∈Id

(
ae

2|!|

)2|!|

|!|d with a > 0 and bounds from (3.35) with C = 10.

Hence, from Theorem 3.8 in combination with Theorem 3.6 we get the following con-
vergence result the far-field computed using the fully discrete reduced basis T-matrix
TN ′,N,h.

Theorem 3.9 Let uinc(x) = exp(ikx · d̂), d = 2, 3 and assume N ′ > Rk/2 and N >
RK/2 + d− 1. Then

∥∥u∞ − u∞
(N ′,N,h)

∥∥2

L2(Sd−1)
≤ C

{
eRk(Rke/2)3d/2−1

(
Rke

2N ′

)2N ′

+N 3d/2−1

(
ρDke

2N

)2N

+ ((Rk)2 + eRk(Rk)2d−1)ε2
}
,

(3.36)
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with C > 0 depending only on D and Rk.

In the case of point-source incidence (see Sect. 3.2) one finds, cf. (3.27),

∑

!∈Id,N

1

w!
≤

∑

!∈Id

|!|d
(

R

|x0|

)2|!|

≤ C

(1− (R/|x0|)2)2d−1
. (3.37)

Again using Theorem 3.8, for the point-source induced incident waves, we get the following
convergence result for the far-field computed using the fully discrete reduced basis T-
matrix TN ′,N,h.

Theorem 3.10 For d = 2, 3, let uinc be as in (3.21) with |x0| > R. For N ′ > Rk/2,

∥∥u∞ − u∞
(N ′,N,h)

∥∥2

L2(Sd−1)
≤ C

(1− (R/|x0|)2)2d−1

{(
Rke

2N ′

)2N ′

+N q

(
ρD
|x0|

)2N

+ ε2
}

,

(3.38)
with q = 2 for d = 2, q = 4.5 for d = 3.

4 Numerical Results

In this section we investigate numerically the estimates of Theorem 3.6 and Theorem 3.7
by showing exponential convergence of the simulated far-field for several two dimensional
and three dimensional sound-soft scatterers. For each obstacle we simulate scattering of
incident plane-waves and of waves originating from point-sources outside a ball of radius
ρD circumscribing the scatterer.

Our three dimensional obstacles are a sphere and a non-convex obstacle that models
an erythrocyte (a red blood cell) [19]. Our two dimensional obstacles are their two dimen-
sional cross section counterparts, namely, a circle and a peanut shaped Cassini-Oval [11].
All of our scatterers are normalized so that they have unit diameter, that is ρD = 0.5. In
our point-source experiments, we chose |x0| = 3 so that ρD/|x0| = 0.17.

In all our experiments, for various parameter values N ′ = N , we first compute entries
of the reduced basis truncated T-matrix TN,N,h using (3.30), with S∞Ẽ!, ! ∈ Id computed
with high-accuracy using the high-order algorithm in [7] for d = 3 and in [3] for d =
2. In order to demonstrate the exponential convergence of our reduced basis T-matrix
algorithm, the discretization parameters in these high-order algorithms were chosen, based
on various experiments, so that ε in (3.29) is of the order 10−15 for the circle and sphere
and 10−10 for the non-convex obstacles. This ensures that for our experiments, the terms
with ε2 < 10−20 are much smaller than the other terms in (3.36) and (3.38) and hence we
omit the index h.

Using TN,N , we computed the approximate far-field u∞
(N,N) via (3.31), and the scattered-

field us
(N ′,N) with E∞

!′ in (2.46) replaced with E!′ .
For the circle and sphere obstacles, the far-field induced by the incident plane-wave

or point-source is known analytically in (Mie) series form. Using the optimal truncation
parameter in [8, 18] (which depends on kρD), we truncate the Mie series to very high
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accuracy and obtain the true far-field u∞. Thus for these obstacles we are able to compute
the relative error

eN =

∥∥∥u∞ − u∞
(N,N)

∥∥∥
L2(Sd−1)

‖u∞‖L2(Sd−1)

(4.1)

in our approximation u∞
(N,N,h) to the true far field u∞.

The erythrocyte and Cassini-Oval scatterers are considered challenging obstacles for
scattering simulations because they have non-convex regions that give rise to multiple
reflections. The scattered field for these scatterers is not known analytically. For these
scatterers we demonstrate the convergence of the approximation u∞

(N,N) with respect to N
by tabulating

eN =

∥∥∥u∞
(M,M) − u∞

(N,N)

∥∥∥
L2(Sd−1)∥∥∥u∞

(M,M)

∥∥∥
L2(Sd−1)

(4.2)

where u∞
(M,M) is a reference solution, computed using the T-matrix with M fixed suffi-

ciently large so that the reference solution is a highly accurate approximation to the exact
far field. We approximate the L2(Sd−1)-norms in (4.1) and (4.2) using Parseval’s inequal-
ity. Using (3.13) and (3.22), it is easy to see that eN in (4.1) and (4.2) is independent of
the choice of R used in theoretical analysis for estimating errors in (3.20) and (3.28).

Values of eN in Figures 5–8 substantiate the exponential convergence established in
Theorem 3.6 and 3.7 for the plane-wave and point-source incidence, respectively, on a
circle, sphere, peanut, and erythrocyte with k = 10, 100. In addition, these figures
demonstrate that the theoretical bounds are optimal for some appropriate choice of C
and R in (3.20) and (3.28). For each plot in Figures 5–8, the constant C was obtained
by fitting with the last data eN , leading to an appropriate value R closely matching the
experimental observation.

One of the advantages of the offline computation and storage of the reduced basis
T-matrix is the quick online computation of the acoustic cross section for many different
incident fields. In particular, this is very useful to simulate the monostatic ACS, requiring
thousands of incident directions. In Figures 9–10 we visualize our reduced basis T-matrix
based monostatic ACS simulations for k = 100.

In Figures 11–12, for k = 100, we visualize the reduced basis T-matrix based total-
field outside the ball of radius R = ρD + 0.05 circumscribing the non-convex obstacles
of radius ρD for plane-wave (with incident direction x(π/6)) impinging on the Cassini-
Oval and a point-source (located at −x(5π/6, 0)) induced incident wave impinging on the
erythrocyte.
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Figure 5: Error eN in (4.1) and theoretical bounds in (3.20) and (3.28) for plane-wave
and point-source incidence (with k = 10) on a circle (left) and a sphere (right).

Figure 6: Error eN in (4.2) and theoretical bounds in (3.20) and (3.28) for plane-wave
and point-source incidence (with k = 10) on a peanut (left) and an erythrocyte (right).
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Figure 7: Error eN in (4.1) and theoretical bounds in (3.20) and (3.28) for plane-wave
and point-source incidence (with k = 100) on a circle (left) and a sphere (right).

Figure 8: Error eN in (4.2) and theoretical bounds in (3.20) and (3.28) for plane-wave
and point-source incidence (with k = 100) on a peanut (left) and an erythrocyte (right).
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Figure 9: Monostatic ACS of Cassini-Oval (2D) for plane wave incidence with k = 100.

Figure 10: Monostatic ACS of Erythrocyte (3D) for plane wave incidence with k = 100.
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Figure 11: Total exterior field of Cassini-Oval (2D) for plane wave incidence with k = 100.

Figure 12: Total exterior field of erythrocyte (3D) for point source incidence with k = 100.
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