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Abstract We analyze parabolic PDEs with certain type of weakly singular
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of weak solutions in an appropriate sense. A localization of the PDEs to a
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1 Introduction

This work aims at the analysis of certain type of degenerate linear parabolic
differential equations and the design of an efficient algorithm for their numer-
ical treatment. The numerical analysis of degenerate parabolic Kolmogorov
equations with weakly singular or degenerate coefficients is of independent
interest. We present the pricing of European type options under a fractional
Brownian Motion (FBM) market model as our main application.
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2 O. Reichmann

The arising PDE reads as follows:

∂tu− tγLu = f on I ×D (1.1)

u(0) = g, (1.2)

where L denotes a diffusion operator, g the sufficiently smooth initial data, γ
a constant with γ ∈ (−1, 1), I = [0, 1] and a Lipschitz domain D ⊂ Rd for
d ≥ 1. Note that negative exponents γ lead to an explosion at t = 0, while
positive γ lead to a degeneracy of the diffusion coefficients. Therefore the ini-
tial condition has to be imposed in an appropriate sense.
We consider a weak space-time formulation in the sense of [3,34], as a possible
singularity or degeneracy of the diffusion coefficients impedes the application
of classical parabolic theory, cf. [2,30]. The use of appropriate wavelet bases in
the space-time domain leads to Riesz bases for the ansatz and test spaces, cf.
[6,34]. As pricing problems are typically posed on unbounded spatial domains,
a localization for the PDE with different boundary conditions and the arising
truncation estimates are presented.
The use of Riesz bases in conjunction with the compressibility of the corre-
sponding operator enables us to prove the optimality of the solution process
for the arising bi-infinite linear system.
The fractional Brownian motion was introduced by Kolmogorov [25] under
the name “Wiener Spiral”. The current name is due to the pioneer work of
Mandelbrot and Van Neus [26]. Theoretical properties such as stochastic in-
tegration with respect to FBM and stochastic differential equations driven by
FBM have received a lot of attention, cf. [5,21,20,24] and the monograph [7].
Applications of fractional Brownian motion are not restricted to finance [29],
but an extensive amount of literature is devoted to applications in modeling
foreign exchange options, weather derivatives and other types of products. For
simple contracts such as plain vanilla European options closed form solutions
can be derived, for instance [28,5]. In general these are not available and nu-
merical methods have to be employed. Though there exists literature on path
simulation for FBM, eg. [1,26,31,36], deterministic solution methods have, to
our knowledge, not been analyzed so far.
The remainder of the paper is structured as follows. In the following section we
present two uniqueness and existence results for degenerate parabolic PDEs in
a weak space-time formulation with different enforcement of the initial condi-
tions. In Section 3 the discretization of the PDEs is presented using space-time
wavelets. Section 4 presents an optimality result for the solution of the aris-
ing bi-infinite systems using the algorithm of [11] or [12]. Subsequently, the
application of the derived theory to the pricing of European options under an
FBM market model is described. Finally, we conclude and bring up some open
questions.
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2 Weak formulation

In this section we derive two weak space-time formulations for degenerate
parabolic equations such as (1.1)-(1.2) in arbitrary space dimensions. The main
difference between the two formulations described lies in the enforcement of
the initial condition. Well-posedness results as well as a-priori estimates can
be obtained based on eigenfunction expansion of the operator L.

2.1 Essential initial condition

We consider the following degenerate parabolic problem:

∂tu− tγLu = f on I ×D, (2.1)

u(0) = g, (2.2)

where L is defined by

L :=
γ + 1

2

d∑

j,k=1

∂

∂xj
aj,k(x)

∂

∂xk
,

for γ = 2H − 1, H ∈ (0, 1), a bounded Lipschitz domain D ⊂ Rd, finite time
interval I := (0, T ) and smooth functions a ≥ aj,k(x) ≥ a > 0, 1 ≤ j, k ≤ d.
The bilinear form a(·, ·) associated with L reads

a(u, v) : V × V → R, a(u, v) = 〈Lu, v〉, ∀u, v ∈ V. (2.3)

To state the variational formulation of (2.1)-(2.2) we introduce the following
spaces

X := H1
t−γ/2(I;V

∗) ∩ L2
tγ/2(I;V ) (2.4)

∼=
(
H1

t−γ/2(I)⊗ V ∗
)
∩
(
L2
tγ/2(I)⊗ V

)
,

Y := L2
tγ/2(I;V ) ∼= L2

tγ/2(I)⊗ V, (2.5)

X(0 := {w ∈ X : w(0, ·) = 0 in V ∗}, (2.6)

X0) := {w ∈ X : w(T, ·) = 0 in V ∗}, (2.7)

where V := H1
0 (D), V ∗ = H−1(D), L2

tγ/2(I) = C∞(0, 1)
‖·‖L2

tγ/2
(I)

and

H1
tγ/2(I) = C∞(0, 1)

‖·‖H1
tγ/2

(I)
. The weighted norms are given by

‖u‖2L2

tγ/2
(I) :=

∫

I
u2tγ dt, ‖u‖2H1

tγ/2
(I) :=

∫

I
u2tγ dt+

∫

I
u̇2tγ dt.

We now show the following result.

Theorem 2.1 For every f ∈ Y∗, g = 0 (2.1) admits a unique solution u ∈ X(0

and there holds the a-priori error estimate

‖u‖X ≤
√
2 ‖f‖Y∗ .
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The proof follows from the inf-sup condition, the surjectivity and the conti-
nuity of the corresponding bilinear form using, eg. [4] or [8, III, Theorem 4.3].
These properties will be proved in the following. For the subsequent result we
set bλ : X × Y → R, with X :=

{
u ∈ L2

tγ/2(I) ∩H1
t−γ/2(I) : u(0) = 0

}
and

Y := L2
tγ/2(I),

bλ(u, v) =

∫

I
tγ/2v

(
λ− 1

2 t−γ/2u̇+ λ
1
2 tγ/2u

)
dt, λ > 0.

We remark that H1
t−γ/2(I) ⊂ C0(I) holds, this follows as in Lemma 2.4. For u

in X we define the seminorm:

‖u‖Xλ :=
∥∥∥λ− 1

2 t−γ/2u̇+ λ
1
2 tγ/2u

∥∥∥
L2(I)

.

Lemma 2.1 For λ > 0 and u ∈ X, define the norm ‖u‖λ by

‖u‖2λ := λ−1
∥∥∥t−γ/2u̇

∥∥∥
2

L2(I)
+ λ

∥∥∥tγ/2u
∥∥∥
2

L2(I)
.

Then, for all u ∈ X holds:

‖u‖λ ≤ ‖u‖Xλ ≤
√
2 ‖u‖λ .

Proof Let u ∈ X , then

‖u‖2Xλ = λ−1
∥∥∥t−γ/2u̇

∥∥∥
2
+ λ

∥∥∥tγ/2u
∥∥∥
2
+ 2

∫

I
uu̇ dt = ‖u‖2λ + |u(T )|2 ≥ ‖u‖2λ .

Further,

2

∣∣∣∣

∫

I
uu̇ dt

∣∣∣∣ ≤ 2λ1/2
∥∥∥tγ/2u

∥∥∥
L2(I)

λ−1/2
∥∥∥t−γ/2u̇

∥∥∥
L2(I)

≤ λ
∥∥∥tγ/2u

∥∥∥
2

L2(I)
+ λ−1

∥∥∥t−γ/2u̇
∥∥∥
2

L2(I)

and therefore ‖u‖2Xλ ≤ 2 ‖u‖2λ.

Lemma 2.2 We have

inf
0%=u∈X(0

sup
0%=v∈Y

B(u, v)

‖u‖X ‖v‖Y
≥

1√
2
, (2.8)

∀ 0 0= v ∈ Y : sup
u∈X(0

B(u, v) > 0 (2.9)

and

sup
0%=u∈X(0,0%=v∈Y

|B(u, v)|
‖u‖X ‖v‖Y

< ∞, (2.10)

where

B(u, v) :=

∫ T

0
(〈v, u̇〉+ tγa(u, v)) dt, (2.11)

for u ∈ X(0 and v ∈ Y.
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Proof Let u ∈ X . Then u =
∑

λ∈σ uλφλ, v ∈ Y, v =
∑

λ∈σ vλφλ, where
φλ are the eigenfunctions of L and σ ⊂ R+ denotes the countable family of
eigenvalues of L, where the (φλ)λ∈σ are assumed to form an orthonormal basis
of L2(D), then

B(u, v) =

∫ T

0
(〈v, u̇〉+ tγa(u, v)) dt

=
∑

λ∈σ

∫ T

0
λ1/2vλt

γ/2
(
λ−1/2t−γ/2u̇λ + λ1/2tγ/2uλ

)
dt.

Therefore,

|B(u, v)| ≤

(
∑

λ∈σ

λ

∫ T

0
tγ |vλ|2 dt

)1/2

×

(
∑

λ∈σ

∫ T

0

∣∣∣λ−1/2t−γ/2u̇λ + λ1/2tγ/2uλ

∣∣∣
2
dt

)1/2

= ‖v‖L2

tγ/2(I;V )

(
∑

λ∈σ

‖uλ‖2Xλ

)1/2

≤ ‖v‖L2

tγ/2(I;V )

√
2

(
∑

λ∈σ

‖uλ‖2λ

)1/2

=
√
2 ‖u‖X ‖v‖Y .

This implies (2.10). Next given u ∈ X(0, we define vu =
∑

λ∈σ φλvλ by

vλ = λ−1t−γ u̇λ + uλ,

then

‖vu‖2Y =
∑

λ∈σ

λ

∫ T

0
tγ
(
λ−1t−γ u̇λ + uλ

)2
dt

=
∑

λ∈σ

∫ T

0

(
λ−1/2u̇λt

−γ/2 + λ1/2uλt
γ/2
)2

dt

=
∑

λ∈σ

‖uλ‖2Xλ ≤ 2 ‖u‖2X . (2.12)

B(u, vu) =

∫ T

0
〈vu, u̇〉+ tγa(u, vu) dt

=
∑

λ∈σ

∫ T

0
〈λ−1t−γ u̇λ + uλ, u̇λ〉+ λtγ

(
λ−1t−γ u̇λ + uλ, uλ

)
dt

=
∑

λ∈σ

∫ T

0

(
λ−1t−γ |u̇λ|2 +

d

dt
|uλ|2 + λtγ |uλ|2 dt

)

= ‖u‖2X + ‖u(T )‖2L2(D) − ‖u(0)‖2L2(D) .
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This implies (2.8) using (2.12). Let now v =
∑

λ∈σ vλφλ be given, we define
uv =

∑
λ uλφλ, where (uλ)λ∈σ is given as solutions of the following sequence

of initial value problems.

λ−1t−γ u̇λ + uλ = vλ for t ∈ (0, T ), uλ(0) = 0.

In the following it will be shown that v ∈ Y implies uv ∈ X . We have

‖v‖2Y =
∑

λ∈σ

∫ T

0
tγλ |vλ|2 dt

=
∑

λ∈σ

∫ T

0
λ
∣∣∣λ−1/2t−γ u̇λ + λ1/2uλ

∣∣∣
2

=
∑

λ∈σ

‖uλ‖2Xλ ≥
∑

λ∈σ

‖uλ‖2λ = ‖uv‖2X .

We are now able to prove statement (2.9).

B(uv, v) =

∫ T

0
〈v, u̇v〉+ tγa(uv, v) dt

=
∑

λ∈σ

∫ T

0
vλu̇λ + λuλvλt

γ dt

=
∑

λ∈σ

∫ T

0
λtγ |vλ|2 dt = ‖v‖2Y > 0.

Theorem 2.2 For every f ∈ Y∗ the problem (2.1)-(2.2) with g = 0 admits a
unique solution u ∈ X(0 satisfying

u ∈ X(0 : B(u, v) = 〈f, v〉, ∀v ∈ Y.

With X and Y as in (2.4)-(2.5) and B(·, ·) as in Lemma 2.2, we have the
a-priori estimate

‖u‖2X ≤ 2 ‖f‖2Y .

The existence of a unique weak solution for non-homogeneous initial data fol-
lows via the following change of variable ṽ(t, x) = v(t, x) − g, for g ∈ V . The
function ṽ(t, x) satisfies the same PDE as v(t, x) with homogeneous initial
conditions and a different right hand side.

2.2 Natural initial condition

As we assume non-homogeneous initial conditions, we can either transform
the problem into a homogeneous setting as described in Section 2.1 or impose
natural conditions as follows:

∫ T

0
(v, u̇)dt = −

∫ T

0
(v̇, u)dt+ (u, v)|T0 for v, u ∈ C∞(I).
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For u(0) 0= 0 we impose homogeneous Dirichlet conditions on v, i.e. we require
v(T ) = 0. The variational formulation with weak enforcement of the initial
conditions then reads: given f ∈ X ∗

0), g ∈ V :

u ∈ Y : B∗(u, v) = 〈v, f〉+ 〈v(0), g〉, ∀v ∈ X0), (2.13)

where B∗(·, ·) is given by

B∗(u, v) =

∫ T

0
(−〈v̇, u〉+ a(u, v)) dt, for u ∈ Y, v ∈ X0), (2.14)

with a(·, ·) given in (2.3). We define the functional l∗(v) on X as follows:

l∗(v) := 〈v, f〉+ 〈v(0), g〉.

Lemma 2.3 For f ∈ X ∗
0) and for g ∈ V , l∗ is a continuous, linear functional

on X0), i.e., there exists a C > 0 s.t.

∀v ∈ X0) : |l∗(v)| ≤ C
(
‖f‖X ∗

0)
+ ‖g‖V

)
‖v‖X0)

.

Proof For f ∈ X ∗
0) we have:

|〈v, f〉| ≤ ‖v‖X0)
‖f‖X ∗

0)
.

By the embedding given in (2.15) we obtain for v ∈ X0)

‖v(0)‖V ∗ ≤ ‖v‖C0(I,V ∗) ≤ C ‖v‖X ,

which implies,

|〈v(0), g〉| ≤ ‖g‖V ‖v(0)‖V ∗ ≤ C ‖g‖V ‖v‖X .

This implies the claimed result.

We need the following embedding result.

Lemma 2.4 For X := H1
t−γ/2(I;V

∗) ∩ L2
tγ/2(I;V ) the following continuous

embedding holds:

X ⊂ C0(I,D(Λ
1
2−

|γ|
2 )), (2.15)

where Λ denotes the operator Λ = L1/2, as defined in [14, Chapter VIII, §3,
Definition 8]. The operator Λθ denotes the holomorphic interpolant between V
and V ∗.

Proof Consider first γ ∈ (−1, 0), then L2
tγ/2(I, V ) ⊂ L2

t−γ/2(I, V ). For the
spaceH1

t−γ/2(I, V ∗)∩L2
t−γ/2(I, V ), the claimed result follows from [15, Chapter

XVIII, §1, Remark 6]. Let now γ ∈ (0, 1). Then H1
t−γ/2(I, V ∗) ⊂ H1

tγ/2(I, V ∗),
therefore we can again apply [15, Chapter XVIII, §1, Remark 6] and conclude.
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Remark 2.1 (i) The space H1
t−γ/2(I, V

∗) ∩ L2
t−γ/2(I, V ), for γ ∈ (0, 1), is

continuously embedded in
C0(I,D(Λ

1
2+

γ
2 )), cf.[15, Chapter XVIII, §1, Remark 6].

(ii) The elementary embedding of X in C0(I, V ∗) can be shown as follows,
cf. [23, Proposition 1.1],

∫ T

0
‖v(t)‖V ∗ dt ≤

(∫ T

0
‖v(t)‖2V ∗ t−γdt

)1/2(∫ T

0
tγdt

)1/2

.

Therefore the mapping K : u → u′, K : X → L1
loc(I, V

∗) is continuous.
This implies that v is absolutely continuous on I with values in V ∗. Note
that this does not imply the continuity of the embedding.

(iii) We obtain an analogous result for the weight function (T − t)γ instead
of tγ .

(iv) To our knowledge, it is not known if the embedding given in Lemma 2.4
is sharp.

Theorem 2.3 Let B∗(·, ·) be given as in (2.14) and X , Y as in (2.4)-(2.5).
Then the following estimates hold

inf
0%=u∈Y

sup
0%=v∈X0)

B∗(u, v)

‖u‖Y ‖v‖X0)

≥
1√
2
,

∀0 0= v ∈ X0) : sup
u∈Y

B∗(u, v) > 0,

sup
0%=v∈X0),0%=u∈Y

|B(u, v)|
‖uY‖ ‖v‖X

< ∞.

Proof The proof is analogous to the proof of Lemma 2.2.

Corollary 2.1 For every g ∈ V and f ∈ X ∗
0), there exists a unique weak

solution u ∈ Y in the sense that u satisfies (2.13).

Remark 2.2 Note that for this formulation smoothness of the initial data is
required, i.e. g ∈ V . This is stronger than in the standard parabolic setting,
as in this situation g ∈ L2(D) is sufficient in order to prove well-posedness
of the corresponding weak formulation. This stronger condition stems from

the fact that in the setup only the continuous embedding X ⊂ C0(I,Λ
1
2−

|γ|
2 )

can be proved, while in the standard parabolic case
(
L2(I, V ) ∩H1(I, V ∗)

)
⊂

C0(I, L2(D)) holds.

Remark 2.3 Alternatively the following formulation with natural initial con-
ditions could also be considered. Find w ∈ X such that

B†(w, v) = f †(v), for all v := (v1, v2) ∈ Y × V, where (2.16)

B†(w, v) =

∫ T

0
(〈ẇ, v1〉+ a(w, v1)) dt+ 〈w(0), v2〉,

f †(v) = 〈v1, f〉+ (g, v2).
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The well-posedness of (2.16) follows as in Lemma 2.2. The advantage of for-
mulation (2.16) is the absence of any boundary conditions in the temporal
domain, therefore the bases presented in the next section can be used for the
discretization without any additional considerations.

3 Discretization

For the space-time discretization of the degenerate parabolic PDE, given by
(2.1), we follow [34] and [3]. A crucial role for the efficient discretization is
the use of tensor product Riesz bases on the space-time domain. We construct
appropriate bases in the following and prove the necessary norm equivalences.

3.1 Wavelets

To present the space-time discretization, we briefly recapitulate basic defini-
tions and results on wavelets from, e.g., [10] and the references therein. For
specific spline wavelet constructions on a bounded interval I, we refer to e.g.
[16], [32] and [35]. Our use of compactly supported, piecewise polynomial mul-
tiresolution systems (rather than the more commonly employed B-spline finite
element spaces) for the Galerkin discretization of corresponding equations is
motivated by the following key properties of these spline wavelet systems: a)
the approximation properties of the multiresolution sytems equal those of the
B-spline systems, b) the spline wavelet systems form Riesz bases on the corre-
sponding spaces allowing for simple and efficient preconditioning of the arising
matrices, c) the spline wavelet systems can be designed to have a large number
of vanishing moments. We recapitulate the basic definitions from, e.g., [10,35]
to which we also refer for further references and additional details, such as the
construction of higher order wavelets.
Our wavelet systems are two-parameter systems {ψl,k}l=−1,...,∞,k∈∇l of com-
pactly supported functions ψl,k, where ∇l denotes the set of wavelet indices on
level l. Here the first index, l, denotes “level” of refinement resp. resolution:
wavelet functions ψl,k with large values of the level index are well-localized
in the sense that diam(suppψl,k) = O(2−l). The second index, k ∈ ∇l, mea-
sures the localization of wavelet ψl,k within the interval I at scale l and ranges
in the index set ∇l. In order to achieve maximal flexibility in the construc-
tion of wavelet systems (which can be used to satisfy other requirements,
such as minimizing their support size or to minimize the size of constants
in norm equivalences), we consider wavelet systems for the spatial discretiza-
tion which are biorthogonal in L2(I), consisting of a primal wavelet system
{ψl,k}l=−1,...,∞,k∈∇l which is a Riesz basis of L2(I) and a corresponding dual

wavelet system {ψ̃l,k}l=−1,...,∞,k∈∇l (which will never be used explicitly in our
algorithms).
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The primal wavelet bases ψl,k span finite dimensional spaces

W l := span {ψl,k : k ∈ ∇l} , VL :=
L−1⊕

l=−1

W l l = −1, 0, 1 . . . .

The dual spaces are defined analogously in terms of the dual wavelets ψ̃l,k by

W̃ l := span {ψ̃l,k : k ∈ ∇l} , ṼL :=
L−1⊕

l=−1

W̃ l l = −1, 0, 1 . . . .

In the sequel we require the following properties of the wavelet functions to be
used on our Galerkin discretization schemes, we assume without loss of gener-
ality I = (0, 1) for the time interval and D = (0, 1)d for the physical domain.
The use of a hypercube as the spatial domain enables us to construct the ba-
sis functions for the discretization of the physical space as tensor products of
univariate basis functions. Besides, we could also use sparse tensor products
to overcome the curse of dimension, cf. [17] for the elliptic case. Domains of
this form arise naturally in the discretization of pricing equations due to local-
ization, cf. Section 5. We now state the requirements for the temporal wavelet
basis Θ = {θλ : λ ∈ ∇Θ}, where ∇Θ denotes the set of all wavelet indices.

(t1) Biorthogonality: the basis functions θl,k, θ̃l,k satisfy

〈θl,k, θ̃l′,k′〉 = δl,l′δk,k′ . (3.1)

(t2) Local support: the diameter of the support is proportional to the meshsize
2−l,

diam supp θl,k ∼ 2−l , diam supp θ̃l,k ∼ 2−l. (3.2)

(t3) Piecewise polynomial of order pt, where piecewise means that the singular
support consists of a uniformly bounded number of points over all levels.

(t4) Vanishing moments: The primal basis functions θl,k are assumed to satisfy
vanishing moment conditions up to order pt > 1

〈θl,k, xα〉 = 0 , α = 0, . . . , d = pt, l ≥ 0. (3.3)

The dual wavelets are assumed to satisfy

〈θ̃l,k, xα〉 = 0 , α = 0, . . . , d̃, l ≥ 0, (3.4)

for d̃ ≥ d.
(t5) We assume the following norm equivalences, for all 0 ≤ s ≤ κ and a κ ≥ 1

‖u‖2s ∼
∞∑

l=−1

∑

k∈∇l

22ls
∣∣ul

k

∣∣2 , ul
k = 〈θ̃k,l, u〉,

where ‖·‖s denotes the Hs(0, 1)-norm.
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Further we require that the wavelets and the dual wavelets for the time domain
belong to W 1,∞(0, 1) and the boundary wavelets for the time discretization
satisfy:

∣∣θlk(x)
∣∣ ≤ Cθ2

l/2(2lx)β ,
∣∣(θlk)′(x)

∣∣ ≤ Cθ2
3l/2(2lx)β−1, x ∈ [0, 2−l], β ∈ N0, k ∈ ∇L

l ,∣∣∣θ̃lk(x)
∣∣∣ ≤ CθCθ2

l/2(2lx)
eβ ,

∣∣∣(θ̃lk)′(x)
∣∣∣ ≤ Cθ2

3l/2(2lx)
eβ−1, x ∈ [0, 2−l], β̃ ∈ N0, k ∈ ∇̃L

l ,

where γ/2+ β > − 1
2 and −γ/2+ β̃ > − 1

2 with γ as in (2.1). The sets ∇L
l and

∇̃L
l are given as follows, ∇L

l := {k ∈ ∇l : 0 ∈ suppθlk} and ∇̃L
l := {k ∈ ∇̃l :

0 ∈ suppθ̃lk}. We refer to [13] for explicit constructions.
The spatial basis is constructed as follows: we define the subspace VL ofH1

0 (D),
for D = [0, 1]d, as the full tensor product of d univariate approximation spaces,
i.e. VL :=

⊗
1≤i≤d V li , which can be written as

VL = {σl,k : −1 ≤ li ≤ L− 1, ki ∈ ∇li , i = 1, . . . , d} ,

with basis functions σl,k = σl1,k1 · · ·σld,kd , −1 ≤ li ≤ L − 1, ki ∈ ∇li , i =
1, . . . , d, where ∇li denotes the set of wavelet coefficients in the i-th coordinate
on level li. We can write VL in terms of increment spaces

VL =
⊕

−1≤li≤L−1

W l1 ⊗ . . .⊗W ld .

We denote by Σ = {σµ : µ ∈ ∇Σ} =
⊗d

i=1 Σi, Σi = {σµi : µi ∈ ∇Σi}. The
tensor product spatial basis satisfies the following assumptions, where ∇Σ is
the set of all wavelet multi-indices and ∇Σi denotes the set of all wavelet
indices in the i-th coordinate.

(s1) Local support: the diameter of the support is proportional to the meshsize
2−l,

diam supp σl,k ∼ 2−l. (3.5)

(s2) Continuity: the primal basis function are assumed to be elements in
Crx(0, 1), with rx ≤ px − 2.

(s3) Piecewise polynomial of order px, where piecewise means that the singular
support consists of a uniformly bounded number of points.

(s4) Vanishing moments: The primal basis functions σl,k are assumed to satisfy
vanishing moment conditions up to order for px > 1

〈σl,k, x
α〉 = 0 , α = 0, . . . , d = px, l ≥ 0. (3.6)

(s5) Orthonormality in L2(0, 1).
(s6) Riesz basis property in L2(0, 1) and renormalized in H1

0 (0, 1) and
H−1(0, 1).

We refer to [18] and [19] for explicit constructions.
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3.2 Time Discretization

Using the wavelet constructions of the previous section we are now able to
obtain Riesz bases for the spaces L2

tγ/2(0, 1) and H1
tγ/2(0, 1)

Theorem 3.1 The norm ! · !L2

tγ/2(0,1)
is given as

!u!2
L2

tγ/2(0,1)
:=

∞∑

l=−1

∑

k∈∇l

(2−lk)γ
∣∣ul

k

∣∣2 , (3.7)

where u ∈ L2
tγ/2(0, 1) admits the unique representation

u =
∞∑

l=−1

∑

k∈∇l

ul
kθ

l
k, u

l
k = 〈θ̃k,l, u〉.

Then the following norm equivalence holds for all functions u ∈ L2
tγ/2(0, 1):

‖u‖2L2

tγ/2
(0,1) ∼ !u !2

L2

tγ/2(0,1)
. (3.8)

Proof The result follows from [6, Theorem 3.3] setting ω = tγ/2 and checking
Assumption 3.1 and 3.2 in [6].

A similar result can be obtained for H1
tγ/2(0, 1) using the following theorem:

Theorem 3.2 Let Θ be as above and let u ∈ H1
tγ/2(0, 1), then

‖u′‖2L2

tγ/2(0,1)
∼
∑

l

22l
∑

k

(2−lk)γ
∣∣ul

k

∣∣2 .

Proof See [6, Theorem 5.1].

Therefore Θ forms after diagonal scaling a Riesz basis of H1
tγ/2(0, 1).

Remark 3.1 Note that analogous results can be obtained for the weight func-
tion w(t) =

∏k
j=1(tk − t)γk .

3.3 Space-time discretization

We are now able to construct a Riesz basis for the spaces X and Y in the case
of a bounded spatial domain. The spaces have the following tensor product
structure:

X = (L2
tγ/2(I)⊗ V ) ∩ (H1

t−γ/2(I)⊗ V ∗) and Y = L2
tγ/2 ⊗ V,

where V = H1
0 (D). Let Σ and Θ be given as above, then we obtain from [22,

Proposition 1 and 2] that the collection Θ ⊗Σ normalized in X , i.e.,



(t, x) →
θλ(t)σµ(x)√

‖σµ‖2V + ‖θλ‖2H1

t−γ/2(I)
‖σµ‖2V ∗

: (λ, µ) ∈ ∇X := ∇Θ ×∇Σ
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is a Riesz basis for X and that Θ ⊗Σ normalized in Y, i.e.,
{
(t, x) →

θλ(t)σµ(x)

‖σµ‖V
: (λ, µ) ∈ ∇X

}

is a Riesz basis for Y.

4 Optimality

We are interested in optimality of the approximation of the solution process
of the bi-infinite linear system, which arises from the discretization of (2.1)
using the bases as described in the previous section. We derive estimates for
the work requiered to solve of the arising linear systems, under the assumption
that the best N -term approximation of the solution vector u converges with a
certain rate s. This class of elements in l2(∇X ) is formalized in the following
definition.

Definition 4.1 For s > 0 the approximation class As
∞(l2(∇X )) is defined as

follows:

As
∞(l2(∇X )) := {v ∈ l2(∇X ) : ‖v‖As

∞(l2(∇X )) < ∞},

where ‖v‖As
∞(l2(∇X )) := supε>0

(
ε× [min {N ∈ N0 : ‖v − vN‖l2(∇X ) ≤ ε}]s

)

and vN denotes the best N -term approximation of v.

Let s > 0 be such that u ∈ As
∞(l2(∇X )), in order to be able to bound the

complexity of an iterative solution method for the bi-infinite system Bu = f ,
with appropriate B and f , one needs a suitable bound on the complexity of an
approximate matrix-vector product in terms of the prescribed tolerance. We
formalize this in the notion of s∗-admissibility.

Definition 4.2 B ∈ L(l2(∇X ), l2(∇Y)) is s∗-admissible if there exists a rou-
tine which yields, for any ε > 0 and any finitely supported w ∈ l2(∇X ), a
finitely supported z ∈ l2(∇Y) with ‖Bw − z‖ < ε. For any s ∈ (0, s∗), there
exists an admissibility constant aB,s such that

#suppz ≤ aB,sε
−1/s ‖w‖1/s

A
1/s
∞ (l2(∇X ))

and the number of arithmetic operations and storage locations used by the
call of the routine is bounded by some absolute multiple of

aB,sε
−1/s ‖w‖1/s

A
1/s
∞ (l2(∇X ))

+#suppw + 1.

Next we introduce the concept of s∗-computability.
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Definition 4.3 The mapping B ∈ L(l2(∇X ), l2(∇Y)) is s∗-computable if, for
each N ∈ N there exists a BN ∈ L(l2(∇X ), l2(∇Y)) having in each column at
most N nonzero entries whose joint computation takes an absolute multiple of
N operations, such that the computability constants

cB,s := sup
N∈N

‖B−BN‖1/sl2(∇X )→l2(∇Y )

are finite for any s ∈ (0, s∗).

In the following we assume that for f ∈ Y and any ε > 0 we can compute
fε ∈ l2(∇Y) with

‖f − fε‖l2(∇Y ) ≤ ε and #supp fε ! min{N : ‖f − fN‖ ≤ ε},

with the number of arithmetic operations and storage locations used by the
computation of fε bounded by some absolute multiple of #suppfε+1. The fol-
lowing theorem links the two concepts of s∗-admissibility and s∗-computability,
cf. [34, Theorem 4.10].

Theorem 4.1 An s∗-computable B is s∗-admissible.

We use the following result from [34, Corollary 4.6].

Corollary 4.1 If B ∈ L(l2(∇X ), l2(∇Y)) and C ∈ L(l2(∇Y), l2(∇Z)), then
so is CB ∈ L(l2(∇X ), l2(∇Z))

The adaptive wavelet methods from [11] and [12] can be shown to be optimal

for s∗-admissible B and u ∈ A1/s
∞ (l2(∇X )).

Theorem 4.2 Consider the bi-infinite system Bu = f and let B be s∗-admis-
sible, then for any ε > 0, both adaptive wavelet methods from [11,12] produce
an approximation uε to u with ‖u− uε‖l2(∇X ) ≤ ε. If u ∈ As

∞(l2(∇X )), then

#suppuε ! ε−1/s ‖u‖1/sAs
∞(l2(∇X )) and if, moreover, s < s∗, then the number of

arithmetic operations and storage locations required by a call of either of these
adaptive wavelet solvers with tolerance ε is bounded by some multiple of

ε−1/s(1 + aB,s) ‖u‖1/sAs
∞(l2(∇X )) + 1.

The multiples depend only on s when it tends to 0 or ∞, and on ‖B‖ and∥∥B−1
∥∥ when they tend to infinity.

The following proposition is very useful, as the coefficients in the PDE (2.1)
separate, i.e., using appropriate bases for the discretization leads to linear
systems that possess a tensor product structure, cf. [34, Proposition 8.1].

Proposition 4.1 For some s∗ > 0, let C, D be s∗-computable. Then

(a) C⊗D is s∗-computable with computability constant satisfying, for 0 < s <

s̃ < s∗, cC⊗D,s ! (cC,s̃cD,s̃)
s̃/s and
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(b) for any ε ∈ (0, s∗), C ⊗ D is (s∗ − ε)-computable, with computability
constant cC⊗D,s satisfying, for 0 < s < s∗ − ε < s̃ < s∗, cC⊗D,s !
max (cC,s̃)max (cD,s̃).

Let B(·, ·) be as in Lemma 2.2, then the corresponding bi-infinite matrix reads,
where [Θ ⊗Σ]X and [Θ ⊗Σ]Y are the Riesz bases of X and Y,

B = B([Θ ⊗Σ]X , [Θ ⊗Σ]Y)

=

[
〈Θ′,Θ〉 ⊗ (Σ,Σ) +

∫

I
tγa(Θ ⊗Σ,Θ ⊗Σ) dt

]

×
(
Idt ⊗ ‖Σ‖−1

V

)
‖Θ ⊗Σ‖−1

X (4.1)

=
[
〈[Θ′]H1

t−γ/2
,Θ〉 ⊗ (Σ,Σ)

] (
‖Θ‖H1

t−γ/2 (I)
⊗ ‖Σ‖V

)
(4.2)

×‖Θ ⊗Σ‖−1
X +

∫

I
tγa(Θ ⊗ [Σ]V ,Θ ⊗ [Σ]V ) dt (Idt ⊗ ‖Σ‖V ) ‖Θ ⊗Σ‖−1

X .

The load vector reads:

f =

∫

I
〈f,Θ ⊗ [Σ]V 〉 dt. (4.3)

We remark that the solution algorithms of [11] and [12] are only applicable to
symmetric system matrices B, we therefore consider the normal equations

B∗Bu = B∗f (4.4)

instead, cf. [34, Section 4].
We now show the s∗-computability of B and B∗. First consider the term
〈[Θ]′H1

t−γ/2 (I)
,Θ〉. The∞-computability of the bi-infinite matrix and its adjoint

follows as in [34, Section 8.2] using the properties of the temporal basis. Next
we consider 〈[Σ]V ∗ , [Σ]V 〉. The ∞-computability follows from [34, Section 8.3].
We now consider the s∗-computability of

∫
I t

γa(Θ ⊗ [Σ]V ,Θ ⊗ [Σ]V ). Due to
the properties of the bilinear form, we get:

∫

I
tγa(Θ ⊗ [Σ]V ,Θ ⊗ [Σ]V ) = (Θ,Θ)L2

tγ/2(D) ⊗ a([Σ]V , [Σ]V ).

Therefore is suffices to investigate the s∗-computability of both factors. The∞-
computability of (Θ,Θ)L2

tγ/2(D) follows from [6, Theorem 3.1] as in [34, Section

8.3]. For a([Σ]V , [Σ]V ) we can deduce from [33] that it is s∗-computable with
s∗ = px + 1. We arrive at the following theorem.

Theorem 4.3 Consider the weak form of the parabolic problem (2.1) on X ,
Y as in (2.4)-(2.5) with bilinear form B(·, ·) as in (2.11) and the right hand
side

∫
I〈f, ·〉 with f as (2.1). Its representation using space-time wavelets as in

Section 3.3 with appropriate boundary conditions reads Bu = f with B as in
(4.2) and f as in (4.3). Then for any ε > 0, the adaptive wavelet methods from
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[11] and [12] applied to the normal equations (4.4) produce an approximation
uε with

‖u− uε‖ ≤ ε.

If for some s > 0, u ∈ As
∞(l2(∇X )), then supp uε ! ε−1/s ‖u‖1/sAs

∞(l2(∇X )). The

constant only depends on s when it tends to 0 or ∞. If for arbitrary s∗ > 0 it
holds that s < s∗, then the number of operations and storage locations required
by one call of the space-time adaptive algorithm with tolerance ε > 0 is bounded
by some multiple of

ε−1/sd2 ‖u‖1/sAs
∞(l2(∇X )) + 1,

where this multiple is uniformly bounded in d and depends only on s ↓ 0 and
s → ∞.

5 Application

We describe the application of the results obtained in the Section 2 and Section
4 to PDEs arising in the context of option pricing under FBM market models.

5.1 Preliminaries

Let (Ω,F ,P) be a complete probability space supporting a real-valued frac-
tional Brownian motion (FBM) BH(t) with Hurst parameter H ∈ (0, 1) and
let FH

t be the σ-algebra generated by BH(s), s ≤ t.

Definition 5.1 For H ∈ (0, 1), a fractional Brownian motion BH is a Gaus-
sian process with mean zero, i.e.,

E[BH(t)] = 0

for all t and covariance:

E[BH(t)BH(s)] =
1

2
{|t|2H + |s|2H − |t− s|2H},

for all s, t ≥ 0. We assume BH(0) = 0. For H = 1
2 we obtain a standard

Brownian motion.

Our market model reads as follows. If S(t) denotes the spot price of the risky
asset, then its dynamics under the real world measure P is given as:

dS(t) = µS(t)dt+ σS(t)dBH(t), t ≥ 0. (5.1)

For the notion of a stochastic integral with respect to a fractional Brownian
motion BH(t) we refer to [24] and [21]. Besides we assume the existence of a
risk free bank account P (t) with risk free interest rate r > 0. With the Girsanov
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theorem for FBM, cf. [5, Theorem 2.8] or [24, Theorem 3.18], we obtain the
risk adjusted dynamics of the stock S(t) under the equivalent measure Q:

dS(t) = rS(t)dt + σS(t)dB̃H(t), t ≥ 0,

where B̃H(t) is a fractional Brownian motion under Q and the discounted
stock is a quasi-martingale under Q, see [5, Definition 2.3] for the definition
of quasi-conditional expectation and quasi-martingales. Note that Q is not a
martingale measure as the stock is not a martingale under Q. Let G(S) be the
payoff of a European type contingent claim V , for sufficiently smooth G. Its
value at time t before maturity is given as the discounted quasi-conditional
expectation:

V (t) = e−r(T−t)ẼQ[G(ST )|FH
t ], (5.2)

cf. [5, Theorem 4.2] and [20, Proposition 1]. The option price V (t) admits a
PDE representation.

Theorem 5.1 Let v ∈ C1,2([0, T ],R) such that v : [0, T ]× R+ → R+ satisfy
the following PDE:

∂tv(t, S) + rSv(t, S) +Hσ2t2H−1vSS(t, S)− rv(t, S) = 0 (5.3)

with terminal condition v(T, S) = G(S), then

v(t, S) = V (t, S) for all t ∈ [0, T ], S ∈ R+.

Proof The result follows from [20, Proposition 2] and [5, Proposition 6.1].

5.2 Weak formulation

5.2.1 Essential initial conditions

Consider the following backward Kolmogorov equation arising in option pric-
ing in the context of fractional Brownian motion models, i.e.,

∂tu(t, S) + rS∂Su(t, S) +Hσ2tγS2∂SSu(t, S) = 0 on (0, T )× R+

u(T, S) = g(S) on R+,

with r > 0, σ > 0 and H ∈ (0, 1). This setup can be reduced to the setting
in Lemma 2.2. Transforming to log-price coordinates and time-to-maturity we
obtain the following strong formulation for ṽ(τ, x) = u(T − τ, ex):

0 = ∂τ ṽ(τ, x)− α(γ)∂xṽ(τ, x)− β(γ)∂xxṽ(τ, x) on (0, T )× R

ṽ(0, x) = g(ex) on R,
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where α(γ) = (r−Hσ2(T − τ)γ) and β(γ) = Hσ2(T − τ)γ . After localization,
removal of the drift and transformation to excess to payoff the formulation

reads as follows v(τ, y) = ṽ
(
τ, y − τr +H

σ2

γ + 1
(T − τ)γ+1

︸ ︷︷ ︸
z(τ,y)

)
− g(ez(τ,y))
︸ ︷︷ ︸

eg(τ,y)

:

∂τ (v(τ, y) + g̃(τ, y))− β(γ)∂yy(v(τ, y) + g̃(τ, y)) = 0 on (0, T )×D (5.4)

v(0, y) = 0 on D. (5.5)

The localization to the bounded interval D = (−R,R) will be justified in
Section 5.4. The weak formulation reads: find v ∈ X(0 such that for all w ∈ Y

B(v, w) = f(v), (5.6)

where

B(v, w) =

∫ T

0
(〈w, v̇〉+ a(τ, v, w)) dτ

a(τ, v, w) = H
σ2

2
(T − τ)γ (∂yv(τ, y), ∂yw(τ, y)) ,

f(v) = −B(g̃, v)

X := H1
(T−τ)−γ/2(I;V ∗

D) ∩ L2
(T−τ)γ/2(I;VD),

Y := L2
(T−τ)γ/2(I;VD),

VD := H1
0 (D).

The well-posedness of this formulation follows analogously to Lemma 2.2.
Instead of localization of the problem to a bounded domain we can also con-
sider the equation in exponentially weighted Sobolev spaces, cf. [27, Section
2.2.]

L2
ν(R) :=

{
v ∈ L1

loc(R) : ve
ν|x| ∈ L2(R)

}
,

H1
ν (R) :=

{
v ∈ L1

loc(R) : ve
ν|x|, v′eν|x| ∈ L2(R)

}
.

To obtain a variational in this setup formulation we consider the pricing equa-
tion before localization:

∂τ (vs(τ, y) + g̃(τ, y))− β(γ)(∂yyvs(τ, y) + g̃(τ, y)) = 0 on (0, T )× R(5.7)

vs(0, y) = 0 on R. (5.8)

We multiply (5.7) by eν|y| and test with weν|y|, w ∈ C∞
0 ((0, T )× R):

∫

R

∂τv(τ, y)w(τ, y)e
2ν|y| dy −H

σ2

2
(T − τ)γ ×

∫

R

[
eν|y|∂y (v(τ, y)) ∂y

(
eν|y|w(τ, y)

)
− (∂ye

ν|y|)(∂yv(τ, y))e
ν|y|w(τ, y)

]
dy

= 〈∂τv(τ, y)w(τ, y)〉ν −H
σ2

2
(T − τ)γ(∂yv, ∂yw)ν = −Bν(g̃, w).
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We obtain existence of a unique solution for the following problem as in (5.6):
Find v ∈ X such that for all w ∈ Y

Bν(v, w) = fν(w), (5.9)

where

Bν(v, w) =

∫ T

0
(〈w, v̇〉ν + aν(τ, v, w)) dτ

aν(τ, v, w) = H
σ2

2
(T − τ)γ [(∂yv, ∂yw)ν ] , fν(v) = −Bν(g, v),

Xν := H1
(T−τ)−γ/2(I;V

∗
ν ) ∩ L2

(T−τ)γ/2(I;Vν), Yν := L2
(T−τ)γ/2(I;Vν),

Vν := H1
ν (R),

for

Bν(g, ·) ∈ H1
ν (R)

∗. (5.10)

Note that (5.10) holds for standard options such as European calls and puts,
for arbitrary ν. For more exotic options, such as digital contracts or barrier
options, with discontinuous payoffs an appropriate smooth approximation of
the payoff has to be employed in order for (5.10) to hold.

Remark 5.1 The well-posedness of the pricing equation for European calls and
puts on weighted spaces Vν for arbitrary positive ν implies a fast decay of the
excess-to-payoff function at infinity. This property will be used to obtain a
localization estimate for the equation in Section 5.4.

5.2.2 Natural initial conditions

Instead of the enforcement of essential initial conditions, we now pose the prob-
lem with natural initial data, cf. Section 2.2. For the backward Kolmogorov

equation (5.7)-(5.8) the formulation reads as follows: given fD ∈
(
XD

0)

)∗
,

f−ν ∈
(
X−ν

0)

)∗
, gD ∈ VD, g−ν ∈ V−ν :

u ∈ YD : B∗
D(u, v) = 〈v, fD〉+ (v(0), gD), ∀v ∈ XD

0) , (5.11)

u ∈ Y−ν : B∗
−ν(u, v) = 〈v, fν〉+ (v(0), gν), ∀v ∈ X−ν

0) , (5.12)
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where

B∗
D(v, w) :=

∫ T

0

(
−〈ẇ, v〉+ aD(τ, v, w)

)
dτ,

B∗
−ν(v, w) :=

∫ T

0

(
−〈ẇ, v〉+ a−ν(τ, v, w)

)
dτ,

aD(τ, v, w) := H
σ2

2
(T − τ)γ (∂yv(τ, y), ∂yw(τ, y)) ,

a−ν(τ, v, w) := H
σ2

2
(T − τ)γ [(∂yv, ∂yw)−ν ] ,

XD
0) := H1

(T−τ)−γ/2,0)(I;V
∗
D) ∩ L2

(T−τ)γ/2(I;VD),

X−ν
0) := H1

(T−τ)−γ/2,0)(I;V
∗
−ν) ∩ L2

(T−τ)γ/2(I;V−ν),

YD := L2
(T−τ)γ/2(I;VD),

Y−ν := L2
(T−τ)γ/2(I;V−ν).

The well-posedness of (5.11) and (5.12) can be shown as in Lemma 2.2.

Remark 5.2 Note that the condition g−ν ∈ V−ν is stronger than (5.10). The
stronger condition is only satisfied for standard payoffs such as European calls
and puts for ν > 1. A localization of the payoff has to be employed for ν ≤ 1.

5.3 Optimality

We apply the results of Section 4 to the derived formulations.

Theorem 5.2 Consider the weak formulation (5.6) on X , Y as above. Its
representation using space-time wavelets as in Section 3.3 with appropriate
boundary conditions reads Bu = f with B as in (4.2) and f as in (4.3). Then
for any ε > 0, the adaptive solution algorithm from [11] and [12] applied to
the normal equations (4.4) produces an approximation uε with

‖u− uε‖ ≤ ε.

If for some s > 0, u ∈ As
∞(l2(∇X )), then supp uε ! ε−1/s ‖u‖1/sAs

∞(l2(∇X )). The

constant only depends on s when it tends to 0 or ∞. If for arbitrary s∗ > 0 it
holds that s < s∗, then the number of operations and storage locations required
by one call of the space-time adaptive algorithm with tolerance ε > 0 is bounded
by some multiple of

ε−1/sd2 ‖u‖1/sAs
∞(l2(∇X )) + 1,

where this multiple is uniformly bounded in d and depends only on s ↓ 0 and
s → ∞.

Remark 5.3 An analogous result can be obtained for (5.11) and (2.16). The
derivation of such results for the global weighted formulations (5.9) and (5.12)
is more involved, as the construction of a Riesz basis for the dual of Vν is
grueling.
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5.4 Localization

In the following we describe two localization methods which lead to a formu-
lation of the pricing problem on a bounded domain. The localization error is
quantified using probabilistic techniques.

5.4.1 Homogeneous Dirichlet Boundary Condition

The localization to a bounded domain and the use of homogeneous Dirichlet
boundary conditions is justified in the following. We follow [27, Section 4.2].

Theorem 5.3 Let uD be the sufficiently smooth solution of (5.4)-(5.5) and
u the sufficiently smooth solution of (5.7)-(5.8) with g(S) = max {(S −K), 0}
for some K > 0, further let eD = uD−u. Then eD satisfies the following error
bound:

‖eD(T )‖2L2(D) + ‖eD‖2L2
(T−t)γ

(H1([−R/2,R/2])) ≤ e−αR,

for some positive constants α and R.

Proof Note that eR satisfies the following equation:
∫ T

0
(
d

dτ
eD(τ), v) + a(τ, eD(τ), v) dτ = 0 ∀v ∈ H1

0 (D), (5.13)

with a(·, ·) given as in (5.6). Denote by φ a cut-off function with the following
properties: φ ∈ C∞

0 (D), φ ≡ 1 on [−R/2, R/2] and ‖φ′‖L∞(D) < C for some

constant C > 0 independent of R. Inserting v = φ2(x)eD(τ, x) into (5.13) leads
to:

‖φeD(T )‖L2(R) +

∫ T

0
a(τ,φeD(τ),φeD(τ)) dτ =

∫ T

0
ρ(τ) dτ,

where the residual ρ(τ) = a(τ,φeD,φeD)− a(eD,φ2eD), with a(τ, ·, ·) is given
in (5.10). The residual admits the following estimate:

∫ T

0
ρ(τ) dτ ≤

∫ T

0

∫

R

H
σ2

2
(T − τ)γ(φ′)2e2D(τ)eν|x|e−ν|x| dxdτ

≤ e−αR
D ‖e(τ)‖L2

(T−t)γ
(L2

ν(R))
,

for some positive constant α and arbitrary ν ∈ R.

Remark 5.4 Theorem 5.3 gives a rigorous justification for the approximation
of the option price (5.2) by the solution of a degenerate parabolic PDE on a
bounded domain. Choosing the computational domain sufficiently large with
respect to the domain of interest yields an negligible truncation error. In con-
trast to the subsequent section the argument is purely deterministic. We do
not rely on the representation of the option price as a quasi-conditional ex-
pectation (5.1).
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5.4.2 Homogeneous Robin Boundary Condition

We make use of a probabilistic argument to approximate the pricing equation
by a local problem with Robin boundary conditions. First the ideas for the case
where the price process is driven by a Brownian motion will be presented and
then extended to the case of a price process driven by a fractional Brownian
motion. The argumentation relies on the following idea. The price process
(5.1) is approximated by a process that behaves similar to (5.1) inside the
computational domain, but does not leave the computational domain D. The
behaviour of the approximating process at the boundary of the computational
domain will be modeled using local times.
Brownian Motion:
The reflected process can be characterized as follows, cf. [9, Theorem 2.1]:

Theorem 5.4 Let (−R,R) = D ⊂ R be a bounded open interval and B a
Brownian motion in R, then there exists a unique pair of continuous stochastic
processes (X̃, L) adapted to the natural filtration of B such that

(i) X̃(t) ∈ D for all t ∈ [0, T ) with X̃ = 0,
(ii) L is a nondecreasing process such that t → L(t) only increases when the

process X(t) is on the boundary,

(iii) X̃(t) = Bt +
∫ t
0 n(X̃(r))dL(r), where −n(x) is the exterior unit normal

vector on D.

The process L(t) is called local time ofX = B. An intuitive characterization of
the local time is given in the following theorem. The result naturally generalizes
when X(0) 0= 0.

Theorem 5.5 Let the assumptions of Theorem 5.4 be satisfied, then

L(t) = lim
ε↓0

1

2ε

∫ t

0
1Dε(X̃r) dr, (5.14)

where Dε = {x ∈ D|d(x, ∂D) < ε} and d(x, ∂D) denotes the Euclidean dis-
tance of x to the boundary of D. Besides the following estimate holds:

E[L(t)] ≤ C(t)e−α|R|2 .

Proof The proof is given in [9, Theorem 2.6].

With these estimates available the localization estimate can now easily be
obtained.

Theorem 5.6 Let g be globally Lipschitz with Lipschitz constant K and let
the assumptions of Theorem 5.4 be satisfied. Then

∣∣∣E[g(X(t))− g(X̃(t))]
∣∣∣ ≤ KE[L(t)] ≤ KC(t)e−α|R|2 , (5.15)

with X̃ and X as in Theorem 5.4.
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This justifies the approximation of E[g(X(T ))] by E[g(X̃(T ))], for sufficiently
large domains of interest. The Kolmogorov equation for
v̂(t, x) = E[g(X̃(T ))|X(t) = x] with X(t) = x+ µt+ σB(t) reads

∂v̂(t, x)

∂t
+ µ

∂v̂(t, x)

∂x
+

σ2

2

∂2v̂(t, x)

∂2x2
= 0 for x ∈ D

lim
x↑R

[
σ2

2

∂v̂(t, x)

∂x
+ µv̂(t, x)

]
= 0 (5.16)

lim
x↓−R

[
σ2

2

∂v̂(t, x)

∂x
+ µv̂(t, x)

]
= 0. (5.17)

The Robin-type boundary conditions (5.16)-(5.17) account for the fact that
no probability mass can leave the domain D.
Fractional Brownian motion:
We proceed as in the Brownian case to approximate the pricing problem on
an unbounded domain by the formulation on a bounded domain. Let σBH(t)

denote a fractional Brownian motion and let X̃t := σBH(t)+
∫ t
0 n(X̃(r))dL(r)

denote the reflected fractional Brownian motion on D, where L(t) is given by
the following definition analogous to (5.14).

Definition 5.2 Let t > 0 and x ∈ R. The local time of σBH up to time t on
D is given by

L(t) = lim
ε→0

∫ t

0

1

2ε
1Dε(σBH(r)) dr, (5.18)

with Dε is as in Theorem 5.5.

We have the following estimate due to [7, Corollary 10.1.12]

∣∣∣Ẽ[L(t)]
∣∣∣ ≤ C(t)e−α(t)R2

,

for some positive time-dependent constants C(t) and α(t). Therefore we have
the following estimate for sufficiently smooth payoffs g.

Theorem 5.7 Let g : R → R be globally Lipschitz with constant K and let
v(t, x) and v̂(t, x) be given as:

v(t, x) = Ẽ[g(σWH(T ))|FH
t ] and v̂(t, x) = Ẽ[g(X̃T )|FH

t ].

Then the following estimate holds:

|v(t, x) − v̂(t, x)| ≤
∣∣∣Ẽ[KL(T )|FH

t ]
∣∣∣ ≤ KC(T )e−α(T )R2

.

Remark 5.5 Theorem 5.7 naturally generalizes to processes driven by FBM
with (non constant) drift and non-homogeneous initial conditions.
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The Kolmogorov equation for v̂(t, x) = Ẽ[g(X̃(T ))|FH
t ] with X(t) = x +∫ t

0 µ(t) dt+ σBH(t) reads:

∂v̂(t, x)

∂t
+ µ(t)

∂v̂(t, x)

∂x
+Hσ2 ∂

2v̂(t, x)

∂2x2
= 0 for x ∈ D

lim
x↑R

[
Hσ2 ∂v̂(t, x)

∂x
+ µ(t)v̂(t, x)

]
= 0 (5.19)

lim
x↓−R

[
Hσ2 ∂v̂(t, x)

∂x
+ µ(t)v̂(t, x)

]
= 0, (5.20)

with final condition v̂(T, x) = g(x). This justifies the use of Robin boundary
conditions for the localization of the pricing equation. The choice of the appro-
priate boundary conditions is strongly related to the behaviour of the process.
Although both localization using Robin and Dirichlet boundary conditions
lead to an exponential decay of the truncation error the constants depend
on the nature of the process, therefore an a priori choice of the boundary
condition, i.e., before the market model is determined, is not meaningful.

6 Conclusion

The aim of this work is to contribute to the analysis of linear degenerate
parabolic equations. For certain types of equations well-posedness results for
weak space-time formulations could be obtained. The space-time domain was
discretized using appropriate wavelets bases. This enabled us to obtain Riezs
bases of the ansatz and test spaces which led in conjunction with the com-
pressibility of the arising operators to an optimality result for a space-time
adaptive solution algorithm of the resulting equivalent bi-infinite linear sys-
tem. An application of the theory to option pricing problems under fractional
Brownain motion market models was presented. For an option pricing problem
in the context of FBM well-posedness results for different formulations could
be obtained and localization of the pricing problem was justified rigorously.
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10-48 M. Swärd and S. Mishra
Entropy stable schemes for initial-boundary-value conservation laws

10-47 F.G. Fuchs, A.D. McMurry, S. Mishra and K. Waagan
Simulating waves in the upper solar atmosphere with Surya:
A well-balanced high-order finite volume code

10-46 P. Grohs
Ridgelet-type frame decompositions for Sobolev spaces related to linear
transport

10-45 P. Grohs
Tree approximation and optimal image coding with shearlets

10-44 P. Grohs
Tree approximation with anisotropic decompositions

10-43 J. Li, H. Liu, H. Sun and J. Zou
Reconstructing acoustic obstacles by planar and cylindrical waves

10-42 E. Kokiopoulou, D. Kressner and Y. Saad
Linear dimension reduction for evolutionary data

10-41 U.S. Fjordholm
Energy conservative and -stable schemes for the two-layer shallow water
equations

10-40 R. Andreev and Ch. Schwab
Sparse tensor approximation of parametric eigenvalue problems

10-39 R. Hiptmair, A. Moiola and I. Perugia
Stability results for the time-harmonic Maxwell equations with
impedance boundary conditions


