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SPECTRAL PERFORMANCE OF RKDG METHODS

V. WHEATLEY, H. KUMAR AND R. JELTSCH

Abstract. The spectral properties of RKDG schemes are investigated by computing their
approximate modified wavenumber behavior and by comparing numerically obtained spectra
to that of an exact solution. The modified wavenumber behavior of high-order unlimited
RKDG schemes is found to be excellent. In particular, the dispersive performance of the
fourth-order scheme is remarkably good, with very little deviation from spectral behavior over
the complete range of numerically resolved wavenumbers. The dissipation of this scheme is
also very low, even at high wavenumbers. This behavior is confirmed by spectra from smooth
numerical solutions. When limiting is required, however, the spectral performance of RKDG
schemes tends to that of the first-order method at high wavenumbers. Thus in the vicinity of
discontinuities, high-order RKDG methods exhibit high numerical dissipation due to the use
of a limiter that reduces the polynomial order of the approximate solution to at most one.

1. Introduction

To simulate flows with small-scale features such as turbulence, high-order accurate, low dissi-
pation numerical methods are required. Runge-Kutta Discontinuous Galerkin (RKDG) methods
are high-order finite element methods for nonlinear hyperbolic conservation laws, which also in-
corporate many features of finite volume schemes. To the best of our knowledge their dissipation
properties have not been rigorously assessed. Such an analysis is important, because high order
accuracy does not ensure good dissipation properties. For example, WENO schemes (see [1]) are
formally high order accurate, but because they exhibit high numerical dissipation at high wave
numbers, In [2] authors find that they are not suitable for their large eddy simulations (LES).

The discontinuous galerkin methods were first introduced by Hill et al.(see [3]) for neutron
transport equations (linear hyperbolic equations). In [4] authors proved a rate of convergence
of (∆x)k for general triangulation and of (∆x)k+1 for Cartesian meshes. In case of general
triangulation the result was then improved in [5] to have order of convergence of (∆x)k+1/2,
which was confirmed to be optimal in [6]. These methods were then generalized for system
of hyperbolic conservation laws by Cockburn et al. in series of papers (see [7], [8], [9], [10],
[11]). In DG methods, the solution is approximated by piecewise polynomial in each cell for
space discretization. For the computation of the numerical flux, exact or approximated Riemann
solvers from finite volume methods are used. The limiters (see [12]) are used to achieve non-
oscillatory behavior of the solution, if it containing shocks. Due to this, DG methods can be seen
as a generalization of finite volume methods to higher order. Due to the assumed discontinuity
of the solution at element interfaces, DG methods can easily handle adaptive strategies and can
be easily parallelized. For time discretization total variation diminishing (TVD) explicit Rung-
Kutta (RK) methods proposed by [13] are used. These methods are known as Runge-Kutta
Discontinuous Galerkin (RKDG) methods.

One quantity that can be used to assess the spectral properties of a scheme is the modified
wavenumber. The imaginary part of the modified wavenumber provide information related to
the spectral dissipation, whereas the real part provide information about the spectral dispersion
of the numerical scheme.

1
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While the modified wavenumber contains a wealth of information on the spectral properties
of a spatial discretization scheme, it is not always possible to analytically compute the modified
wavenumber for all schemes. Notably, shock capturing schemes use conservative approximations
for the spatial derivative,

u′j =
1
h

(ũj+1/2 − ũj−1/2),

that require the definition of numerical fluxes ũj±1/2 = ũ(uj−q+1, ... , uj+r). The flux function
ũ is generally a nonlinear function of its arguments even for linear equations, due to limiting.
This nonlinearity prohibits the analytical calculation of the modified wavenumber. However, for
nonlinear schemes, Pirozzoli in [14] has devised a method to compute the approximate modified
wavenumber behavior numerically. As RKDG methods also use nonlinear limiting, we will use
the approximated modified wavenumber to investigate the spectral performance of the RKDG
methods

This is article is organized as follows: In the following Section 2 we present the ideal MHD
equations. In Section 3 we describe the variational formulation for the DG methods and RK time-
stepping. In Section 4 we introduce the approximated modified wavenumber for the nonlinear
schemes. In Section 5 we investigate the dissipation and dispersion of the RKDG methods by
computing the approximated modified wavenumber of an isolated Fourier mode. We also analyze
the effects of the limiters. We then compare these results with other shock-capturing schemes.
In Section 6 we first present the convergence rates of the RKDG methods using the smooth
solution of a simple wave problem. We then analyze the spectra of a simple wave to investigate
the spectral performance of the RKDG methods in nonlinear simulations.

2. Governing equations

The governing equations for the simulations presented here are the ideal MHD equations.
The equations of ideal MHD govern the evolution of a quasi-neutral conducting fluid and the
magnetic field within it, neglecting the magnetization of individual particles, the hall current,
ion slip and the time rate of change of the electric field in Maxwell’s equations. The complete
details about these equations can be found in [15].

The ideal MHD equations are a system of hyperbolic partial differential equations. Numerical
discretization of these equations is complicated task due to the presence of nonlinearities in the
convection flux. In conservative form, they can written as,

∂ρ

∂t
+∇ · (ρv) = 0,(1a)

∂(ρv)
∂t

+∇ ·
(
ρvv −BB +

(
p +

1
2
|B|2

))
= 0,(1b)

∂B
∂t

+∇×
(
v ×B

)
= 0,(1c)

∂E

∂t
+∇ ·

(
(E + p)v +

(1
2
|B|2I−BB

)
· v

)
= 0(1d)

∇ · B = 0.(1e)

The plasma is assumed to be ideal with constant specific heats, allowing the following equation
of state to be used to close the set of equations:

(2) E =
p

γ − 1
+

1
2
ρ|v|2 +

1
2
|B|2

Here ρ is the density, v is the velocity, p is the pressure, B is the magnetic field, E is the
total energy of the plasma. The Eqn. (1a) is the equation for the mass conservation. Eqns.
(1a)-(1d) are equations of balance laws for the momentum, the magnetic field and the total
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energy respectively. Eqn. (1e) is the divergence free condition for magnetic field representing
nonexistence of magnetic monopoles.

Eqns.(1) can be written in conservation form as follows:

(3)
∂U

∂t
+

∂Fj(U)
∂xj

= 0,

where the vector of conserved variables U ≡ U(xi, t) is,

U = {ρ, ρvi, Bi, E}T ,

and the flux vectors Fj(U) are,

Fj(U) =
{

ρvj , ρvivj + (p +
1
2
BkBk)δij −BiBj ,

vjBi − viBj , (E + p +
1
2
BkBk)vj −Bj(Bkvk)

}T

.

3. Runge-Kutta Discontinuous-Galerkin Method

For hyperbolic problems, solutions may be piecewise continuous, meaning that they are smooth
in regions separated by discontinuities. This behavior is mimicked by DG methods as they allow
L2 jumps at the boundaries of subdomains even for operators of higher than first order. This
allows any complete set of trial functions to be used to represent the solution on each subdomain.
This is not the case in the standard Galerkin formulation where for second order operators, C0

continuity is required across subdomains.

3.1. Variational Form. Consider a domain Ω ∈ Rn. Let us define a triangulation M of Ω as a
finite collection {Ei}m

i=1, m ∈ N, of non-degenerate polygons such that,

Ω̄ =
⋃

{Ēi, i = 1, ...,m},(4)

Ei

⋂
Ej = Ø⇔ i '= j,(5)

and for all i, j ∈ {1, ...,m}, i '= j, the intersection Ēi
⋂

Ēj is either Ø or a vertex, edge or face of
both Ei and Ej . For two-dimensional quadrilateral elements, we introduce a reference element
Σ ≡ [−1, 1]× [−1, 1] and the mapping,

(6) Ψ : E → Σ

that maps quadrilateral elements to the reference element. The mapping Ψ is a bilinear mapping.
It is sufficient for us to consider the following generic scalar advection equation:

(7)
∂u

∂t
+∇ · F = 0,

where u a conserved variable and F is the inviscid flux vector. The variational form used in
the RKDG method is derived by multiplying by the test function v and integrating over each
element separately. After using integration by parts on the divergence term, we obtain,

(8)
∫

E

∂u

∂t
v dx +

∫

∂E
vn · F (u) ds−

∫

E
∇v · F (u) dx = 0.

The flux vector F (u) in the second term must be evaluated on the boundary of the element where
u may be discontinuous and thus has two possible values; ui on the interior of the element under
consideration and ue on the exterior. To account for this, we replace F (u) with the numerical
flux function F̂ (ui, ue), which can be computed taking upwind considerations into account. We
refer to [20] for the description of the approximated Riemann solvers used in this article. The
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order αil βil

2 1 1
1/2 1/2 0 1/2

3 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

Table 1. Parameters for Runge-Kutta time marching schemes.

final variational from is derived by using integration by parts once more on the third term to
eliminate the gradient of the test function,

(9)
∂

∂t

∫

E
uv dx +

∫

∂E
v

(
F̂ (ui, ue)− F (ui)

)
· n ds +

∫

E
∇ · F (u)v dx = 0.

3.2. Basis Functions. In the RKDG method, the unknowns and data within each element are
expanded in terms of a suitable set of basis functions φpq(x),

f(x, y) =
∑

p

∑

q

apqφpq(ξ1, ξ2),

Here, (ξ1, ξ2) is a local coordinate system associated with that element. The RKDG method
we use is based on the Nektar code by [16][17][18]. The original code has been extended to
include Runge-Kutta time stepping, slope limiters and accurate Riemann solvers, amongst other
features. The set of polynomial basis functions used in Nektar was proposed by [19] in two
dimensions and extended to three dimensions in [16].

In order for the RKDG method to be stable in the nonlinear case, we require an entropy
inequality and the uniform boundedness of the total variation of the discrete solution uh. In
general, a limiter function is required for the second condition to hold. In this article we will
use two limiters namely, Minmod and Less Restrictive (LR) limiter. We refer [20] for the detail
description of these limiters.

3.3. Runge-Kutta Time Discretization. To advance solutions in time, the RKDG method
uses a Runge-Kutta (RK) time marching scheme. In this report we present the results of second-,
third- and fourth-order accurate RKDG schemes, thus we limit ourselves to presenting the RK
schemes used in these cases. For second- and third-order simulations, we use the TVD RK
schemes of [21]. For fourth-order simulations we use the classic scheme.

Consider the semi-discrete ODE,
duh

dt
= Lh(uh).

Let un
h be the discrete solution at time tn, and let ∆tn = tn+1 − tn. In order to advance a

numerical solution from time tn to tn+1, the RK algorithm is as follows:

1. Set u(0)
h = un

h.
2. For i = 1, ...., k + 1, compute,

u(i)
h =

i−1∑

l=0

αilu
(l)
h + βil∆tnLh(u(l)

h ).

3. Set un+1
h = u(k+1)

h .
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The values of the coefficients used are shown in Table 1. For the linear advection equation, it was
proved by [22] that the RKDG method is L∞-stable for piecewise linear (k = 1) approximate
solutions if a second-order RK scheme is used with a time-step that satisfies,

a
∆t

∆x
≤ 1

3
,

where a is the constant advection speed. The numerical experiments show that when approximate
solutions of polynomial degree k are used, an order (k+1) RK scheme must be used, which simply
corresponds to matching the temporal and spatial accuracy of the RKDG scheme. In this case
the L∞-stability condition is

a
∆t

∆x
≤ 1

2k + 1
.

For the nonlinear case, the same stability conditions are used but with c replaced by the maximum
eigenvalue of the system.

4. Modified Wave Number

Consider the one-dimensional linear advection equation on an infinite domain with a sinusoidal
initial condition with wavenumber k.

(10)
∂u

∂t
+ a

∂u

∂x
= 0, −∞ < x <∞, u(x, 0) = û0e

ikx.

Here, we assume a > 0. Applying separation of variables, it is clear that the exact solution to
Eqn.(10) has the form,

(11) u(x, t) = û(t)eikx.

Inserting this into Eqn.(10) we obtain,

(12)
dû(t)

dt
+ iakû(t) = 0, û(0) = û0.

Solving this and substituting it in (11) we get,

(13) u(x, t) = û0e
ik(x−at).

Let us now consider the semi-discrete approximation of Eqn.(10) on a uniform grid with nodes
given by xj = jh,

(14)
∂uj

∂t
+ au′j = 0, uj(0) = û0e

ikxj ,

where uj(t) ≈ u(xj , t), u′j is a discrete approximation of the spatial derivative and h (= ∆x) is
the mesh size. If an explicit, linear finite difference approximation of u′j is used i.e. if,

(15) u′j =
1
h

r∑

l=−q

aluj+l.

then the exact solution uj(t) = û(t)eikxj applies. Inserting this into Eqn.(14) we obtain,

(16)
dû(t)

dt
+ a

1
h

r∑

l=−q

ale
iklhû(t) =

dû(t)
dt

+ iakmod(k)û(t) = 0, û(0) = û0,

This is identical to the continuous semi-discrete form given in Eqn.(12) except that the wavenum-
ber k is replaced by the modified wavenumber,

kmod(k) =
1
ih

r∑

l=−q

ale
iklh.
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Hence, the exact solution to the semi-discrete equation is,

uj(t) = û0e
i(kxj−kmod(k)at).

For convenience we introduce the reduced wavenumber φ ≡ kh and reduced modified wavenumber
Φ(φ) ≡ kmod(k)h. Rewriting the above equation in terms of reduced wavenumbers, we obtain,

(17) uj(t) = û(t)eikxj = û0e
i(φj−Φat/h) = û0e

$(Φ)at/hei(φj−%(Φ)at/h).

This illustrates the effects of the modified wavenumber on the solution. ,(Φ(φ)) contains in-
formation on the spectral dissipation properties of the scheme. If ,(Φ(φ)) > 0, the scheme is
unstable at that wavenumber, while if ,(Φ(φ)) < 0, the scheme is dissipative. -(Φ(φ)) contains
information on the spectral dispersion properties of the scheme. If -(Φ(φ)) = φ, disturbances
with that wavenumber will propagate at the correct speed in the semi-discrete evolution.

4.1. The Approximate Modified Wavenumber for Nonlinear Schemes. Following [14],
consider a numerical simulation with the initial condition uj(0) = û0eijφn that is advanced
a single, very small, timestep ∆t such that the error in time integration is negligible. If the
linear, semi-discrete scheme were solved exactly, Eqn.(17) can be rearranged to give the following
expression for Φ(φn):

(18) Φ(φn) =
h

iaτ
log

(
û(φn; τ)

û0

)
,

For a non-linear scheme, we can use a similar expression. However, we must account for the fact
that the nonlinearities produce additional Fourier modes in the numerical solution at time τ .
Thus, the amplitude of the mode associated with the reduced wavenumber φn, û(φn; τ), must
be extracted from the solution by means of a discrete Fourier transform (DFT). On a finite grid
with nodes j = 0, ..., N , the supported Fourier modes have reduced wavenumbers φn = 2πn/N
in the range 0 ≤ φn ≤ π, and the DFT of the solution at φn is given by,

û(φn; τ) =
1
N

N−1∑

j=0

uj(τ)e−ijφn .

Using this in Eqn.(18), the following expression is obtained for the approximate modified wavenum-
ber corresponding to φn:

(19) Φ(φn) =
h

iaτ
log

(
û(φn; τ)
û(φn; 0)

)
.

It is important to note that û(φn; 0) is the DFT of the numerical initial condition, which may
differ from the exact initial condition if, for example, the initial values were converted to cell
averages to initialize a finite volume method. In order to obtain the modified wavenumber
behavior for the complete spectrum, simulations must be carried out for all φn.

It is important to note that in the general case, several Fourier modes of O(1) amplitude will
be present in a simulation. Due to the nonlinearity of shock capturing schemes, these modes
will interact and thus their evolution will not be governed precisely by the approximate modified
wavenumber.

5. Approximate Modified Wavenumber Behavior of DG Methods

In order to compute the approximate modified wavenumber behavior of DG methods for MHD,
a series of simulations were carried out where a sinusoidal transverse magnetic field was advected
with a constant velocity. The initial conditions were as follows:

(ρ, p, u, v, w, Bx, By, Bz) = (1, 1, 1, 0, 0, 0, cos(2πnx), 0).
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Figure 1. Real (top) and imaginary (bottom) parts of the approximate modi-
fied wavenumber for various RKDG schemes.

This differs from the approach of Pirozzoli [14], who carried out simulations of the linear advection
equation. Although the exact solution to our problem is a linearly advected By profile, the
numerical solution will differ from that produced by a discretization of the linear advection
equation due to the presence of additional characteristic speeds. These alter the timestep as
well as the output of most of the Riemann solvers. Our approach should give a more accurate
representation of the behavior of DG methods for MHD. Our simulations were carried out on
a mesh with 100 elements in the x-direction, with element centers xj = jh and h = 0.01.
Simulations were run for 1 < n < 49.

Let us first examine the resulting modified wavenumber behavior for unlimited second-, third-
and fourth-order DG methods. In the Fig. 1, the results for unlimited DG methods are compared
to the exact behavior of a spectral method and that of a first order upwind method. The behavior
of the third- and fourth-order methods was computed using both the LF flux and the HLLC flux
(see [20]). All the DG methods are far superior to the first order upwind scheme. The third- and
fourth-order DG schemes have much better spectral properties than the second order scheme:
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Figure 2. Real (top) and imaginary (bottom) parts of the approximate modi-
fied wavenumber for second order limited DG schemes.

-(Φ) departs significantly less from spectral behavior at a much higher wavenumber for the
fourth order scheme, and ,(Φ) is significantly less negative for both third- and fourth-order
schemes, indicating lower dissipation, particularly at high wavenumbers. In particular, it can be
seem that the dispersive performance of the fourth-order schemes is remarkably good, with no
visible deviation of -(Φ) from the spectral line on the scale of the plot.

The main value of these plots, however, is to observe the effect that the Riemann solver has
on the spectral properties of the method. As widely claimed, that the choice of Riemann solver
is unimportant for high order methods. In the behavior of -(Φ), this claim appears to be valid;
there is minimal difference in the dispersion behavior of the third order methods with the HLLC
and LF fluxes. However, when we examine the imaginary part of the modified wavenumber, we
see that when the HLLC flux is used, there is a very significant decrease in the dissipation at
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(a)

(b)

Figure 3. Real (top) and imaginary (bottom) parts of the approximate modi-
fied wavenumber for the first-order upwind method (UW1), second-order TVD
finite volume methods using the minmod (TVD-MM), Superbee (TVD-SB) and
van Leer (TVD-VL) limiters, the third-order centered scheme (CS3), and third-
(WENO3), fifth- (WENO5) and seventh-order (WENO7) WENO schemes [14].

most wavenumbers for both the third- and fourth-order schemes, indicating that the choice of
Riemann solver is important.

Next, we investigate the effect of limiting on the spectral behavior of DG methods. In Fig.
2 the modified wavenumber behavior of minmod and less restrictive limited (see [20]) second-
order DG schemes are compared to the unlimited behavior. Initially, at low wavenumbers, the
behavior of the limited schemes coincides with that of the unlimited schemes. It can be seen that
the effect of the limiters is to force the scheme towards the behavior of the first-order scheme at
high wavenumbers. The choice of limiter has a significant effect on the modified wavenumber of
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the scheme. The minmod limited scheme departs significantly from the behavior of the unlimited
scheme at a significantly lower wavenumber than the less restrictive limited scheme. Interestingly,
for the scheme with the less restrictive limiter, -(Φ) > 0 at the lowest wavenumber, although
its value is so small that it is not visible in the figure. This indicates a linear instability of
the scheme at the lowest wavenumber. Pirozzoli [14] observes similar behavior for the Superbee
limited second-order finite volume scheme, and claims that the nonlinear stability properties of
the scheme compensate for this.

The approximate modified wavenumber behavior obtained in [14] for various schemes is shown
in Fig 3. As expected, the second-order minmod-limited finite volume and DG schemes exhibit
very similar behavior. The behavior of the less restrictive-limited DG scheme resembles that of
the Superbee-limited finite volume scheme. The third-order WENO behavior begins to depart
significantly (by 2%) from spectral at approximately φ = 1.25 for the real part, and φ = 0.6 for
the imaginary part. The unlimited third-order DG scheme performs much better than this, with
significant departures from ideal behavior beginning at φ = 1.8 and φ = 1.25 for the real and
imaginary parts, respectively.

The computation of the approximate modified wavenumber behavior for limited third- and
fourth-order DG schemes was also attempted. However, the analysis predicted that these schemes
would produce very high dissipation, even at low wavenumbers, despite the fact that the schemes
should have, at worst, the same performance as the second-order scheme. The reason for this is
the fact that the limiter function reduces the polynomial order of the representation of the data
to unity where ever limiting is required. For the second-order scheme, this does not cause any
problems as the representation of the data is already piecewise linear. For the third- and fourth-
order schemes, the data is represented by piecewise quadratic and cubic polynomials, respectively.
For wavenumbers higher than k = 1, limiting occurs, locally reducing the polynomial order of
the data from that in the numerical initial condition to unity, which constitutes a large amount
of dissipation in a single timestep. For this reason we believe that the method does not produce
meaningful results for schemes where maximum polynomial order of limited data does not match
the order of the unlimited data.

Despite the fact that we cannot obtain meaningful results for high-order limited DG schemes,
we can make the following statement: Due to the nature of the limiter used in our RKDG method,
in the vicinity of discontinuities the method exhibits high numerical dissipation, similar to that
of second-order finite volume methods. In this region they are inferior to high-order WENO
schemes that can be seen in Fig. 3 to provide improved modified wavenumber behavior. This is
because the reconstructed numerical solution is always a high-order polynomial in the WENO
schemes, it is not limited to a piecewise linear function in the vicinity of discontinuities. This
situation can only be improved by the development of high-order limiter functions for RKDG
methods.

6. Spectral Analysis for Nonlinear Simulations

In the previous section, we examined the approximate spectral behavior of DG schemes by
isolating, as far as possible, single Fourier modes. To determine whether this approximate
behavior is relevant in nonlinear simulations with a broad spectrum, we will compare the spectra
from simulations of the simple wave problem described in [23] to that of the exact, non-linear
smooth solution to the one-dimensional Euler equations (no magnetic field). The solution exists
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Figure 4. L2 errors in element average density versus N for the Euler simple
wave problem at t = 0.5.

if the initial conditions satisfy the following relations:

ρ(x, 0) = ρ0

(
1 +

(γ − 1)ux

2a0

) 2
γ−1

,

p(x, 0) = p0

(
1 +

(γ − 1)ux

2a0

) 2γ
γ−1

,

uy = uz = Bx = By = Bz = 0.

The particular case we will use it with the initial velocity,

ux(x, 0) = u0 sin (πx),

on the domain −1 < x < 1 with the boundary condition u(1, t) = u(−1, t).

6.1. Convergence for the Simple Wave Problem. In Fig. 4, we show how the L2 error
in element average density converges with N for various RKDG schemes. Note that in these
simulation, the LR limiter does not detect that any limiting is required, so there is no need to
present separate LR limited and unlimited results. The solutions from the LR limited third-
order RKDG scheme converge as the expected rate for N ≥ 16. Solutions from the LR limited
fourth-order RKDG schemes exhibit fourth-order convergence from the coarsest discretization
used. On the other hand, the results from the minmod limited fourth-order RKDG scheme show
an order of convergence of between one and two. This is due to the solution being limited to
piecewise linear or piecewise constant on the majority of elements, once again highlighting the
short-comings of this limiter.

To further investigate the importance of using accurate Riemann solvers in high-order schemes,
in Fig. 4 we compare the convergence of solutions from LR limited fourth-order RKDG schemes
using LF and HLLE Riemann solvers. The errors in the LF and HLLE results are indistin-
guishable on the scale of the plot for all discretizations used. This shows that the observation
made in previous subsection, that high-order accuracy solutions to the simple wave problem are
insensitive to the choice of Riemann solver, applies over a broad range of resolutions.
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Figure 5. Solutions (top) and energy spectral density (bottom) from second-
order simulations of the Euler simple wave problem. The HLLC-G flux solver
was used in all simulations shown.

6.2. Spectra of Simple Wave Problem. Observe that the simple wave is initially an isolated
Fourier mode, as the wave steeps the spectrum becomes broad. We examine the results at
t = 0.9, somewhat prior to the formation of a shock at t ≈ 0.95. In Fig. 5, the solution and
energy spectral density (û(k)2) from limited second-order simulations are compared to the exact
solution. The HLLC-G Riemann solver was used for both simulations. During the simulation, the
less restrictive (LR) limiter did not detect that any limiting was required, thus it is unnecessary
to show a separate curve for an unlimited simulation. On the other hand the minmod limiter
detected that limiting was required on the majority of elements. This indicates a major short-
coming of the minmod limiter for high-order simulations: The minmod limiter selects the input
gradient with the minimum modulus. If this is not the gradient of the polynomial representation
of the field internal to the element, then limiting is carried out and the coefficients of the higher
order modes are set to zero. In the RKDG method, the input gradients are the internal gradient,
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Figure 6. Energy spectral density (top) and relative energy spectral density
error (bottom) from third-order simulations of the Euler simple wave problem.
No limiter was used in all simulations shown.

and slope estimates based on the difference between the element average fields and the average
fields on the adjacent elements. In general, if the solution has a finite curvature, the internal
gradient will not have the minimum modulus, thus the solution will be limited and will revert
to (at most) second order accuracy. This will occur even if limiting is unnecessary, as is the case
with the solution we are currently examining. From this we must conclude that the minmod
limiter is unsuited for use in a high-order RKDG method. Examining the numerical solutions
shown in Fig. 5, we see that the LR limited solution approximate the exact solution very well,
while the minmod limited solution under-predicts the peak value. Examining the spectra, we see
that both numerical solutions have low dissipation at low wavenumbers, while at intermediate
wavenumbers the minmod limited scheme is more dissipative. This behavior is as predicted by



14 V. WHEATLEY, H. KUMAR AND R. JELTSCH

10
!1

10
0

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

E
n

e
rg

y
 S

p
e

c
tr

a
l 
D

e
n

s
it
y

Reduced Wavenumber

 

 

O(4) LR HLLC

O(4) LR LF

O(4) Minmod HLLC

Exact Solution

Figure 7. Energy spectral density (top) from fourth-order simulations of the
Euler simple wave problem.

the approximate modified wavenumber behavior. However, at the highest wavenumbers there
is far less energy present in the Fourier modes from the LR limited simulation, which was not
predicted. This shows that while the approximate modified wavenumber behavior is a useful
guide, it cannot predict all features of a fully nonlinear simulation.

Fig. 6 shows the energy spectral density from unlimited third-order simulations using the
LF, HLLE and HLLC-G Riemann solvers. The approximation of the energy spectral density
is better than in the second-order simulations, with visible deviations from the exact spectrum
occurring only at the highest wavenumbers. To differentiate the solutions, the relative error in
this quantity,

εû2(k) =
û(k)2exact − ûnumeric(k)2

ûexact(k)2
is also plotted. This shows that as predicted by the approximate modified wavenumber for
unlimited third-order schemes, the LF solution is the most dissipative, and all schemes have
similar dissipation at the highest wavenumbers. What is not predicted is that the LF solution
also has significantly greater dissipation at the low wavenumbers. The HLLE and HLLC-G
solutions cannot be distinguished from each other at the scale of the plot as these Riemann
solvers are very similar to each other in the absence of contact discontinuities. Here we have
not presented the results for third order scheme using limiters. This is because third order
methods perform badly with limiter. We refer to [20] for more details. Spectra from fourth-order
simulations of the simple wave problem are shown in Fig. 7. Contrary to the predicted behavior,
the LR limited (unlimited in this case) LF and HLLC solutions are indistinguishable. This
lends credence to the idea that as the order of a scheme increases, the accuracy of the Riemann
solver becomes less significant, at least for smooth problems. The minmod limited scheme also
approximates the spectra reasonably, even though the solution is limited on almost all elements.

7. Conclusion

The spectral properties of RKDG schemes were investigated by computing their approximate
modified wavenumber behavior and by comparing numerically obtained spectra for the simple
wave problem to that of the exact solution. The modified wavenumber behavior of high-order
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unlimited RKDG schemes was found to be excellent. In particular, the dispersive performance
of the fourth-order scheme is remarkably good, with very little deviation from spectral behavior
over the complete range of numerically resolved wavenumbers. The dissipation of this scheme
is also very low, even at the highest wavenumbers. This indicates that in regions away from
discontinuities, where no limiting is required, RKDG schemes provide the high accuracy and
low numerical dissipation needed, for example, to carry out LES simulations. This behavior
was confirmed by spectra from the simple wave problem. When limiting is required, however,
the spectral performance of RKDG schemes tends to that of the first-order method at high
wavenumbers. Thus in the vicinity of discontinuities, high-order RKDG methods exhibit high
numerical dissipation, similar to that of second-order finite volume methods. In this region they
are inferior to high-order WENO schemes that have been shown to provide improved modified
wavenumber behavior. This is because the reconstructed numerical solution is always a high-
order polynomial in the WENO schemes. This situation can only be improved by the development
of high-order limiter functions for RKDG methods.
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The total least squares problem in AX ≈ B. A new classification with
the relationship to the classical works

10-37 S. Mishra
Robust finite volume schemes for simulating waves in the solar atmo-
sphere


