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Ridgelet-type Frame Decompositions for Sobolev
Spaces related to linear Transport
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Abstract

In this paper we study stability properties of ridgelet and curvelet frames for
mixed-smoothness Sobolev spaces with norm ‖f‖s = ‖f‖L2(Rd)+ ‖s ·∇f‖L2(Rd). Here

s ∈ Sd−1 is a transport direction and ∇ denotes the gradient of f . Such spaces arise
as domains of linear, first order transport equations. The main result of this paper is
that ridgelet frames are stable in ‖ · ‖s regardless of s, while curvelet frames are not.
To show the second statement we explicitly construct functions f, g whose curvelet
coefficients have all the same modulus but ‖f‖s < ∞ and ‖g‖s = ∞.
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1 Introduction

Motivated by the fact that classical isotropic representation systems like wavelets do not
perform well for high dimensional functions with singularities along hypersurfaces, a whole
arsenal of new representation systems for L2(Rd) have enriched the field of harmonic analysis
in the last decades, specifically for the case d = 2, 3. To give an incomplete picture of these
developments we only mention ridgelets [2], curvelets [4], contourlets [9], bandlets [16],
shearlets [13], wedgelets [11],. . . . The main goal of all these representation systems is to
properly handle data with anisotropic features.

A breakthrough in this direction has been obtained in [6] with the introduction of
curvelets. There it is shown that one can construct a nonadaptive representation system
that can approximate piecewise C2-functions away from C2 curves with an (almost) optimal
rate in terms of nonlinear approximation.

Shortly afterwards shearlets have been introduced in [13]. They share the desirable
properties of Curvelets with the additional advantage of a ’faithful digital transform’, see
e.g. [15] for details.

Curvelets have evolved from two ideas. The first one comes from the work of Hart Smith
[19], who constructed curvelet-like systems to construct parametrices for hyperbolic PDEs.
The second idea is based on a refinement of so-called ridgelets which are essentially ridge
functions with oscillations across the ridge [2].

While most existing work on directional representation systems focuses on problems
in image processing, essentially nothing is known regarding their applicability for solving
operator equations in the spirit of [8].

In view of the superior treatment of anisotropic features by directional representation
systems, it seems natural to aim at solving operator equations whose solutions typically
exhibit anisotropic features.

A first (and essential) step in such a programme is to study stability properties of
these systems with respect to the energy norm of the operator. For very simple transport
problems this is carried out in the present paper where we investigate stability properties
of curvelets and ridgelets in so-called mixed-smoothness Sobolev spaces, see below for the
definition of these spaces.

1.1 Motivation

The theory of wavelets shows us that, in order to fully understand the properties of a repre-
sentation system like curvelets or ridgelets, it is crucial to understand their approximation
spaces. Not much is known in this direction for curvelets and ridgelets, we are only aware
of the studies [2, 1]. However, if one wants to use e.g. a curvelet system for the solution of
a partial differential equation, one usually needs to investigate stability properties in terms
of certain Sobolev norms. To give an example, we consider the simple transport equation

s ·∇f + κf = g,

where s ∈ Sd−1, ∇ is the gradient of f ∈ L2(Rd) and κ is (say) a Lipschitz function,
bounded from above and below. Given g we would like to find f satisfying certain boundary
conditions. Of course this is a very simple equation but in order to solve it e.g. with a
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Petrov-Galerkin-type scheme, it is necessary to study the stability properties of our system
of functions with respect to the norm ‖f‖2s := ‖f‖22+‖s·∇f‖22. We refer to norms of this type
as mixed-smoothness Sobolev norm. A more interesting equation arises if f ∈ L2(Rd×Sd−1)
is also a function of s and s varies in Sd−1. Equations of this type govern the radiation
intensity in radiative transfer theory [18] and also arise in several other places. Clearly for
such an equation, it would be desirable to have a representation system of functions that
is simultaneously stable with respect to all angles s ∈ Sd−1. In view of the directionality
present in the norm ‖ · ‖s it is clear that a stable representation cannot be isotropic. For
instance, wavelet systems are not stable with respect to the norm ‖ · ‖s for all s. Therefore,
natural candidates for stable systems are given by curvelet or ridgelet systems.

1.2 Contributions

Our first result, Theorem 10, is that ridgelets satisfy the desired stability property. The
second main result, Theorem 18, of this paper is that curvelets are not stable with respect
to ‖ · ‖s, regardless of s. We show the latter by giving explicit counterexamples for d = 2.
In view of solving operator equations these results have two main implications:

• Ridgelet-based methods are promising candidates for developing Petrov-Galerkin-type
solvers for transport problems, and

• Curvelet-based methods cannot be used to solve transport problems, at least with
conventional Petrov-Galerkin schemes.

Our results also remain valid for more general norms of the following type: Given a finite
sequence (s,α) = (si,αi)ni=1, α ∈ R+, si ∈ Sd−1 we define

‖f‖(s,α) := ‖f‖2 +
n∑

i=1

‖ (si ·∇)αi f‖2,

where (si ·∇)αi should be interpreted in the sense of pseudodifferential calculus [14], see
Definition 11. Theorem 12 says that ridgelets are also stable w.r.t. these more general
norms.

1.3 Notation

We fix a dimension d ≥ 2 with d ∈ N. For two vectors u, v ∈ Rd we denote their inner
product by u · v. For f ∈ L1(Rd) ∩ L2(Rd) we denote by f̂ its Fourier transform f̂(ξ) :=(

1
2π

)d/2 ∫
Rd f(x) exp(ix · ξ)dx and extend this operation to L2(Rd). We shall frequently use

the notation A ! B to indicate that the quantity A is bounded by a constant times B.
If A ! B and B ! A we shall also write A ∼ B. For a function f we denote by ∇f its
gradient. We will also use the notation δjj′ for the Kronecker function which is one if j = j′

and zero otherwise. The symbol BSd−1(s, r) shall denote the geodesic ball of radius r in
Sd−1 around s ∈ Sd−1. The symbol | · | will be used to denote the absolute value on C, the
Euclidean norm on Rd and the cardinality of a set.
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2 Ridgelet Tight Frames

We start by constructing a tight frame of ridgelets for L2(Rd). Recall that a system (ψλ)λ∈Λ
of L2 functions is called a tight frame of L2(Rd) if

‖f‖22 =
∑

λ∈Λ

|〈f,ψλ〉|2 for all f ∈ L2(Rd). (1)

If (1) only holds with ∼ instead of =, we speak of a frame. The main property of a frame is
that any f ∈ L2(Rd) can be stably decomposed into, and reconstructed from the sequence
(〈f,ψλ〉)λ∈Λ – with some possible redundancy in the decomposition [7].

2.1 Preliminaries on Ridgelets

We begin by describing what we understand as ridgelets. In [2], a ridgelet transform
has been introduced using a univariate (oscillatory) function ψ by mapping a function
f ∈ L2(Rd) to its transform coefficients

〈f(x), a1/2ψ (as · x− t)〉, s ∈ Sd−1, t ∈ R, a ∈ R+. (2)

The function x -→ a1/2ψ (as · x− t) is a ridge function (hence the name ridgelet) which
only varies in the direction s. In particular this function is not in L2(Rd) and therefore,
(2), as it stands, makes no sense. For continuously varying parameters (a, s, t) one can still
provide a stable reconstruction formula as it is the case with the Fourier transform but
when we would like to discretize the parameters a, s, t e.g. to a = 2j, j ∈ N, t ∈ Z and s in
some discrete and uniformly distributed subset of Sd−1 with cardinality ∼ 2j, we need to
evaluate (2) pointwise which makes no sense for general f ∈ L2(Rd). Nevertheless, Candes
showed in [2] that for compactly supported functions f ∈ L2([0, 1]d) a stable reconstruction
can be given from the transform coefficients sampled on a discrete set. In other words for
f ∈ L2([0, 1]d) discrete ridgelet frames can be constructed.

By relaxing the definition of a ridgelet a little, it is even possible to construct frames
for L2(Rd). The idea is that ψ (as · x− t) can also be written as a1/2ρ (DaRsx− t), where
Da = diag(a, 1, . . . , 1), Rs an orthogonal transform mapping s ∈ Sd−1the vector (1, 0, . . . , 0),
t ∈ Rd and

ρ(x) = ψ(x1). (3)

If we allow the function ρ to vary also a little in the other coordinate directions besides
(1, 0, . . . , 0) so as to make ρ ∈ L2(Rd), it can be shown that the parameters a, s, t can be
sampled discretely to yield a frame for L2(Rd). In this spirit, one might define a ridgelet
system as a system of functions which are of the form

a1/2ρ (DaRsx− t) (4)

with some ρ ∈ L2(Rd), which is oscillatory in the first coordinate, and for the parameters
(a, s, t) ranging in some discrete set – typically a = 2j, j ∈ N, t ∈ Zd and s in a uniformly
distributed subset of Sd−1 of cardinality ∼ 2j.

A yet more general viewpoint is to characterize ridgelets by their localization properties
in space and frequency – without enforcing the rigid condition of being a frame of functions
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exactly of the form (4). This is the viewpoint that we shall take in this paper. For us,
a ridgelet system is a system of functions that is adapted to the partitioning of frequency
space outlined in Figure 1, left.

This partitioning consists of polar wedges with opening angle ∼ 2−j and contained in the
dyadic corona 2j ≤ |ξ| < 2j+1. An easy computation that takes in to account the oscillatory
behaviour of ρ in the first coordinate, reveils that indeed the functions as defined in (4)
have approximate frequency support in these wedges.

This viewpoint, which goes by the name of decomposition spaces [12], has been taken
before for wavelet, Gabor, curvelet or shearlet systems.

The main advantage of this approach is that it allows for particularly simple tight frame
constructions. On the other hand, the desirable approximation properties of the original
definitions still remain valid in the more general context based on decomposition spaces.

It should be noted that yet another definition of ridgelets is given in [10].

2.2 A new Construction

In this section we present a novel construction of a ridgelet tight frame. For us, a ridgelet
system is a system of functions which is adapted to the frequency tiling outlined in Figure
1 into angular wedges of opening angle ∼ 2−j and height ∼ 2j, j ∈ N. Therefore, the
first step in our construction is to find a partition-of-unity which is adapted to this tiling.
Since we are interested in discrete systems we need to find discrete sampling points on
the sphere. The following lemma shows that one can always find reasonable uniformly
distributed points on the sphere with a prescribed distance. A proof can be found e.g. in
[1, Lemma 7]

Lemma 1. Let Sd−1 be the unit sphere equipped with the geodesic metric inherited from the
Euclidean ambient space Rd. Then for any r > 0 there exist L ∼ r−1, points (sl)Ll=1 on Sd−1

and a constant A (independent of r) such that

L⋃

l=1

BSd−1(sl, r) = Sd−1, (5)

and
L

max
l=1

|{l′ 0= l : BSd−1(sl, 2r) ∩BSd−1(sl′ , 2r) 0= 0}| ≤ A. (6)

In what follows we will construct a partition-of-unity for the ridgelet frequency tiling.
We denote by e1 the unit vector (1, 0, . . . , 0) ∈ Sd−1

Definition 2. We fix smooth, nonnegative functions V (j) : Sd−1 → R, j ∈ N, W : R+ → R
and W (0) : R+ → R with the following properties:

(i) supp V (j) ⊂ BSd−1(e1, 2 · 2−j),

(ii) V (j)(s) ≥ 1 for all s ∈ BSd−1(e1, 2−j),

(iii) V (j)(s) ≤ 2 for all s ∈ BSd−1(e1, 2 · 2−j),

(iv) supp W ⊂ (1/2, 2),
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(v) W (r) ≥ 1 for all r ∈ (3/4, 3/2),

(vi) supp W (0) ⊂ [0, 2),

(vii) W (0)(r) ≥ 1 for all r ≤ 1.

We define Rs as an orthogonal transform which maps the point s ∈ Sd−1 to e1. We
also pick a sequence of sampling points (sj,l)

Lj

l=1 satisfying the conditions of Lemma 1 with
r = 2−j, j ≥ 1.

Lemma 3. There exist positive constants C1, C2 so that

C1 < Φ(ξ) :=
∑

j,l

W (2−j|ξ|)2V
(
Rsj,l

ξ

|ξ|

)2

+W (0)(|ξ|)2 < C2 for all ξ ∈ Rd. (7)

Proof. We first show the existence of the constant C1: since by (5), for any ξ ∈ Rd there

exists j, l such that ξ has the representation
(
|ξ|, ξ

|ξ|

)
with |ξ| ∈ 2j[3/4, 3/2] and ξ

|ξ| ∈
BSd−1(sj,l, 2−j). From properties (ii), (v) it follows that

Φ(ξ) ≥ W (2−j|ξ|)2V (j)

(
ξ

|ξ|

)2

≥ 1

which gives the lower bound. The upper bound C2 follows by noting that by (iii) and (6) any
x ∈ Rd lies at most in the support of finitely many summands with bounded magnitude.

The previous definitions enable us to finally define the frequency windows which are
adapted to the ridgelet tiling.

Definition 4. We define the following functions in terms of their Fourier transforms:

ψ̂j,l(ξ) :=
W (2−j|ξ|)V (j)

(
Rsj,l

ξ
|ξ|

)

√
Φ(ξ)

, j ≥ 1, l = 1, . . . , Lj,

and

ψ̂0(ξ) :=
W (|ξ|)√
Φ(ξ)

.

Observe that by (7) the division by Φ is well-defined and the functions ψj,l, ψ0 are in L2(Rd).

Definition 5. We define the wedges

P0 := {ξ : |ξ| ≤ 2} , Pj,l :=

{
ξ : 2j−1 < |ξ| ≤ 2j+1,

ξ

|ξ| ∈ BSd−1(sj,l, 2
−j2)

}
.

It follows that
supp ψ̂0 ⊂ P0 and supp ψ̂j,l ⊂ Pj,l.

We can now derive a semidiscrete representation formula for L2(Rd).
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Proposition 6. We have

‖f‖22 = ‖f ∗ ψ0‖22 +
∑

j,l

‖f ∗ ψj,l‖22. (8)

Proof. The proof follows standard arguments, therefore we will ignore technical details like
convergence issues. From the definition of ψ0,ψj,l and Φ it follows that

ψ̂2
0(ξ) +

∑

j,l

ψ̂j,l(ξ)
2 = 1.

Therefore we have

‖f‖22 =

∫

Rd

|f̂(ξ)|2dξ =

=

∫

Rd

∑

j,l

ψ̂j,l(ξ)
2|f̂(ξ)|2 +

∫

Rd

ψ0(ξ)
2|f̂(ξ)|2dξ

= ‖f ∗ ψ0‖22 +
∑

j,l

‖f ∗ ψj,l‖22.

We go on to construct a tight frame decomposition of L2(Rd) by discretizing the trans-
lational parameter in the convolutions in (8). To this end define the functions

ρj,l,k(x) := 2−j/2Txj,l,k
ψj,k, ϕk := Tkψ0,

k = (k1, . . . , kd) ∈ Zd, xj,l,k := R∗
sj,k

(2−jk1, k2, . . . , kd)T , and Tyf(·) := f(·− y).

Theorem 7. The system

(ϕk)k∈Zd ∪ (ρj,k,l)j≥1,l∈[0,Lj ],k∈Zd

constitutes a tight frame for L2(Rd).

Proof. In view of (8) we need to show that

‖f ∗ ψj,l‖22 =
∑

k∈Zd

|〈f, ρj,l,k〉|2 (9)

and
‖f ∗ ψ0‖22 =

∑

k∈Zd

|〈f,ϕk〉|2 . (10)

Since

‖f ∗ ψj,l‖22 =
∫

R2

|f̂(ξ)||ψ̂j,l(ξ)|2dξ =

∫

Pj,l

|f̂(ξ)||ψ̂j,l(ξ)|2dξ

equation (9) is shown by noting that the system
(
2−j/2 exp (ixj,l,k · ξ)

)
k∈Zd constitutes an

ONB of L2(Pj,l) (compare also Lemma 4.2 in [6]). Equation (10) is proven in the same
way.
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Remark 8. Perhaps the best way to think of the functions ρj,l,k is to write them as

ρj,l,k(·) := 2j/2m(j,l,k)
(
DjRsl,k ·−k

)
,

where Dj = diag(2j, 1, . . . , 1). This way, the resemblance to (4) is seen. In our construction
the functions m(j,l,k) are different for different indices but it is not difficult to show that this
difference is only minor. To make this precise one would have to introduce the concept of
ridgelet molecules as has been done in [3] for curvelets and in [17] for wavelets (the latter
construction goes by the name ’Vaguelettes’). In Figure 1 the localization properties of the
ridgelet elements in space and frequency are depicted for the case d = 2.

Remark 9. In applications, where data is given as a discrete function defined on a digital
grid, it is very inconvenient to work with the operation of rotation. For curvelets the same
problem arises and a solution has been proposed with the introduction of so-called shearlets
[15]. The main idea is to replace the rotation operations by approperiate shear operations,
the latter being also defined on digital data. These same adaptions can also be carried out
for ridgelets.

Figure 1: Left: Frequency space decomposition as indicated by the ridgelet frame. The
essential support of ψ̂3,3 is colored. Right: Translational grid of the frame elements ρ3,3,k,
k ∈ Z2. The aspect ratio of the tiles is 1 ∼ 2−3.

3 Stability Properties

3.1 Main Result

This section contains our first main result, namely the stability of the ridgelet tight frame
with respect to the norm ‖ · ‖s as defined in the introduction. Our main stability theorem
is as follows:

Theorem 10. Let s ∈ Sd−1. Then we have the norm equivalence

‖f‖22 + ‖s ·∇f‖22 ∼
∑

k∈Zd

|〈f,ϕk〉|2 +
∑

j,l

(
1 + 22j|s · sj,l|2

) ∑

k∈Zd

|〈f, ρj,l,k〉|2. (11)
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Proof. We have

‖f‖22 + ‖s ·∇f‖22 ∼
∫

Rd

(
1 + (s · ξ)2

)
|f̂(ξ)|2dξ

=

∫

R2

(
1 + (s · ξ)2

)
|f̂(ξ)|2|ψ̂0(ξ)|2dξ

+
∑

j,l

∫

Rd

(
1 + (s · ξ)2

)
|f̂(ξ)|2|ψ̂j,l(ξ)|2dξ

=

∫

P0

(
1 + (s · ξ)2

)
|f̂(ξ)|2|ψ̂0(ξ)|2dξ

+
∑

j,l

∫

Pj,l

(
1 + (s · ξ)2

)
|f̂(ξ)|2|ψ̂j,l(ξ)|2dξ (12)

The theorem is proven if we can show that

(i)
1 + (s · ξ)2 ∼ 1, ξ ∈ P0,

and

(ii)
1 + (s · ξ)2 ∼ 1 + 22j|s · sj,l|2, ξ ∈ Pj,l, j ≥ 1.

Equivalence (i) is a simple consequence of the Cauchy-Schwartz inequality. We now prove
(ii). Let us split the set of indices j, l into

I0 :=
{
(j, l) : |s · sj,l| ≤ 2−j20

}

and
I1 :=

{
(j, l) : |s · sj,l| > 2−j20

}
.

Note that we always have
|s− s′| < σ(s, s′), (13)

σ denoting the geodesic metric in Sd−1.

• We start with (j, l) ∈ I0. By our assumptions on (j, l) we then have

1 + 22j|s · sj,l|2 ∼ 1. (14)

On the other hand for any ξ ∈ Rd with representation (|ξ|, sξ), Equation (13) together
with the fact that

sξ ∈ BSd−1(sj,l, 2
−j2)

and the Cauchy-Schwartz inequality imply that

|s · sj,l − s · sξ| ! 2−j,

and therefore

|s · ξ| ∼ 2j|s · sξ| ≤ 2j (|s · sj,l|+ |s · (sξ − sj,l)|) ! 1.

9



This implies that for ξ ∈ Pj,l, (j, l) ∈ I0 we have

1 + (s · ξ)2 ∼ 1 + 22j(s · sj,l)2 ∼ 1

and that is (i).

• Now we let (j, l) ∈ I1 and ξ ∈ Pj,l with spherical coordinates (r, sξ) =
(
|ξ|, ξ

|ξ|

)
, where

2j−1 < r < 2j+1 and |sξ − sj,l| ≤ 2−j2. Consider

|s · ξ| = r|s · sξ| ∼ 2j|s · sξ|.
We need to show that

|s · sξ| ∼ |s · sj,l|. (15)

We have (note that the division by s·sj,l is permitted since s·sj,l 0= 0 by the assumption
that (j, l) ∈ I1)

|s · sξ| = |s · sj,l + s · (sξ − sj,l)| = |s · sj,l|
∣∣∣∣1 +

s · (sξ − sj,l)

s · sj,l

∣∣∣∣

and therefore it remains to bound the quantity
∣∣∣∣1 +

s · (sξ − sj,l)

s · sj,l

∣∣∣∣

from above and below. We start with the estimate from below:∣∣∣∣1 +
s · (sξ − sj,l)

s · sj,l

∣∣∣∣ ≥ 1−
∣∣∣∣
s · (sξ − sj,l)

s · sj,l

∣∣∣∣

≥ 1− 2−j2

2−j20
≥ 9/10.

On the other hand we have∣∣∣∣1 +
s · (sξ − sj,l)

s · sj,l

∣∣∣∣ ≤ 1 +

∣∣∣∣
s · (sξ − sj,l)

s · sj,l

∣∣∣∣
≤ 11/10.

This shows (15) and therefore we have

1 + (s · ξ)2 ∼ 1 + 22j(s · sj,l)2,
which is (ii).

In view of (12), (9) and (10) we have

‖f‖22 + ‖s ·∇f‖22 ∼
∫

P0

(
1 + (s · ξ)2

)
|f̂(ξ)|2|ψ̂0(ξ)|2dξ

+
∑

j,l

∫

Pj,l

(
1 + (s · ξ)2

)
|f̂(ξ)|2|ψ̂j,l(ξ)|2dξ

∼ ‖f ∗ ψ0‖22 +
∑

j,l

(
1 + 22j(s · sj,l)2

)
‖f ∗ ψj,l‖22

=
∑

k

|〈f,ϕk〉|2 +
∑

j,l,k

(
1 + 22j(s · sj,l)2

)
|〈f, ρj,l,k〉|2.

This proves the theorem.
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3.2 More general Spaces

It is perhaps worth noting that ridgelet systems provide stable decompositions for a whole
scale of spaces which we call mixed-smoothness Sobolev spaces. The definition is as follows:

Definition 11. For α > 0 we define the operator (s ·∇)α acting on tempered distributions
via

f̂ -→ (s · ξ)α f̂ .

For a finite sequence (s,α) := (si,αi)ni=1 ∈
(
Sd−1 × R+

)n
we define the norm

‖f‖(s,α) := ‖f‖2 +
n∑

i=1

‖ (si ·∇)αi f‖2.

We have the following generalization of Theorem 10:

Theorem 12. Given (s,α) ∈
(
Sd−1 × R+

)n
we have the norm equivalence

‖f‖2(s,α) ∼
∑

k

|〈f,ϕk〉|2 +
∑

j,l,k

(
1 +

n∑

i=1

22αij(si · sj,l)2αi

)
|〈f, ρj,l,k〉|2.

The implicit constant depends on n.

Proof. The proof is virtually identical to the proof of Theorem 10 and therefore we omit
it.

4 Curvelets do not provide stable Decompositions for
mixed Smoothness Sobolev Spaces

In this section we prove the second main result, namely that curvelets are not stable with
respect to ‖ · ‖s, regardless of s ∈ Sd−1. We construct our specific counterexample for
d = 2 but a modification along the same lines to arbitrary d is possible, albeit with more
notational overload.

In order to show the instability result, we construct two functions f and g in L(R2)
whose coefficients all have the same magnitude in a curvelet tight frame but ‖f‖s < ∞ and
‖g‖s = ∞. The idea for this construction is depicted in Figure 2.

In what follows we shall identify S1 with the interval [−π, π).
First we give a construction of a curvelet tight frame convenient for our purposes. Similar

to above we start with two window functions.

Definition 13. We define univariate, nonnegative C∞ functions Wc(r), Vc(t) so that

(i) supp Wc ⊂
(
3
4 , 4

)
,

(ii) supp Vc ⊂
(
−3

4 ,
3
4

)
,

(iii)
∑

j∈Z W
2
c (4

−jr) = 1, for all r ∈ R and

11



(iv)
∑

l∈Z V
2
c (t− l) = 1 for all t ∈ R.

The construction of such window functions is standard in wavelet theory. For the conve-
nience of the reader we sketch the construction of Wc: Start with any smooth nonnegative
function W̃ which is supported in [34 , 4] and strictly positive on (34 , 4). Then define

Wc(r) :=
W̃ (r)

(∑
l∈Z W̃

2(4−lr)
)1/2

.

This function satisfies (i). It also satisfies (iii), since

∑

j∈Z

W 2
c (4

−jr) =
∑

j∈Z

W̃ 2(4−jr)
∑

l∈Z W̃
2(4−l4−jr)

=

∑
j∈Z W̃

2(4−jr)
∑

l∈Z W̃
2(4−lr)

= 1.

The construction of Vc is similar. Observe that in view of (i) and (iii) resp. (ii) and (iv)
we have

W (r) = 1 for r ∈ (1, 3) and V (t) = 1 for t ∈ (−1

4
,
1

4
).

Now, similar to the rigelet definitions above we define

sj,l := 2πl2−j, Lj := 2j − 1

and make the following definition:

Definition 14. We write r,ω for the polar variables of the frequency plane and define
functions

ϕ̂c(r,ω)2 :=
−∞∑

j=0

Lj∑

l=0

Wc

(
4−jr

)2
Vc

(
2j

2π
(ω − sj,l)

)2

, (16)

and

ψ̂c
j,l(r,ω) := Wc

(
4−jr

)
Vc

(
2j

2π
(ω − sj,l)

)
, (17)

where j > 0.

Sampling the translational variable on the integer grid yields the following definition.

Definition 15. We define for k = (k1, k2) ∈ Z2 the functions

ϕc
k(·) := ϕc(·− k),

γj,0,k(·) := 2−3j/2ψc
j,l

(
·− (4−jk1, 2

−jk2)
)
,

and
γj,l,k(·) := γj,0,k

(
Rsj,l·

)
.

The same arguments as above for the ridgelet case yield

Theorem 16. The system (ϕc
k)k∈Z2 ∪ (γj,l,k)j>0,l=0,...,Lj ,k∈Z2 constitutes a tight frame for

L2(R2).

12



Definition 17. We call this tight frame a curvelet frame.

Observe that, unlike ridgelets, curvelets are supported in frequency rectangles of aspect
ratio ∼ 4j × 2j. This property is called parabolic scaling in the literature. The parabolic
scaling allows curvelets to be well-localized in space and therefore better suited for applica-
tions where it is important to approximate curved singularities [5]. However, as we shall see,
the increase in angular uncertainty of curvelets compared to ridgelets causes instability of
the curvelet frame in mixed-smoothess Sobolev spaces. Indeed we will show the following:

Theorem 18. There exist two functions f, g ∈ L2(R2) such that

(i)
‖e1 ·∇f‖2 < ∞,

(ii)
‖e1 ·∇g‖2 = ∞, and

(iii)
|〈f, γj,l,k〉| = |〈g, γj,l,k〉| and |〈f,ϕc

k〉| = |〈g,ϕc
k〉| for all indices j, l, k.

Proof. First we define the rectangles

Qj :=

[
−1

2
2j,

1

2
2j
]
×

[
4j, 24j

]
.

We have the following property for j > 2:

ψ̂c
j,lχQ′

j
= δjj′δl2j−2 . (18)

Indeed this follows immediately from the definition of ψ̂c
j,l. Here, χQj′ denotes the char-

acteristic function of Qj′ . Intuitively, equation (18) simply means that Qj′ only intersects
with the support of ψ̂c

j′,2j′−2 . Therefore, by the partition of unity property of the functions

ϕ̂c, ψ̂c
j,l it follows that the function ψ̂c

j′,2j′−2 restricted to Qj′ must equal 1. Also observe that

sj′,2j′−2 = π/2. Now we are ready to define the functions f and g. Let 0 < ε < 4.

f̂ :=
∑

j>2

2−j−εjχ[0,1]×[4j ,24j ] (19)

and
ĝ :=

∑

j>2

2−j−εjχ[ 122
j−1, 122

j ]×[4j ,24j ]. (20)

It follows that
‖f‖22 =

∑

j>2

4−j−εj4j < ∞

and
‖e1 ·∇f‖22 ≤

∑

j>2

4−j−εj4j < ∞.

13



On the other hand,
‖g‖22 =

∑

j>2

4−j−εj4j < ∞

but

‖e1 ·∇g‖22 ≥
∑

j>2

4−j−εj 1

4
4j4j = ∞.

Now, let us inspect the curvelet coefficients of f . Observe that

[0, 1]×
[
4j, 24j

]
⊂ Qj and

[
1

2
2j − 1,

1

2
2j
]
×

[
4j, 24j

]
⊂ Qj. (21)

We have for j > 2 (for j ≤ 2 we have 〈f, γj,l,k〉 = 0 and also 〈f,ϕc
k〉 = 0)

〈f, γj,l,k〉 = 2−3j/2

∫

R2

f̂(ξ)ψ̂c
j,l(ξ) exp

(
iRsj,l(4

−jk1, 2
−jk2)

t · ξ
)
dξ

= δl2j−22−3j/22−j−jε

∫

[0,1]×[4j ,24j ]

ψc
j,l(ξ) exp

(
i(4−jk1ξ2 + 2−jk2ξ1)

)
dξ

= δl2j−22−3j/22−j−jε

∫

[0,1]×[4j ,24j ]

exp
(
i(4−jk1ξ2 + 2−jk2ξ1)

)
dξ,

where the last two equalities make use of (18) and (21). Similarily, we compute

〈g, γj,l,k〉 = δl2j−22−3j/22−j−jε

∫

[ 122
j−1, 122

j ]×[4j ,24j ]

exp
(
i(4−jk1ξ2 + 2−jk2ξ1)

)
dξ

= δl2j−22−3j/22−j−jε

∫

[0,1]×[4j ,24j ]

exp

(
i(4−jk1ξ2 + 2−jk2(ξ1 +

1

2
2j − 1))

)
dξ

= exp(ik2(1/2− 2−j))〈f, γj,l,k〉.

In particular this implies (iii), which is what we sought.

5 Conclusion

In this paper we studied stability properties of curvelet and ridgelet frames in mixed-
smoothness Sobolev spaces. It turns out that curvelets are not suitable to characterize
such spaces, while ridgelets are. It is straightforward to adapt our results to other systems
based on parabolic scaling like for instance the shearlet transform.
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Figure 2: Left: Illustration of the frequency support of the function f which satisfies
‖e1 · ∇f‖2 < ∞. Right: Illustration of the frequency support of the function g with
‖e1 · ∇g‖2 = ∞. The curvelet decomposition of the frequency plane cannot distinguish
between these two functions. Note that in this figure, as opposed to Figure 1, the aspect
ratio of the angular wedges is 4j ∼ 2j.
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