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ABSTRACT

It is by now classical that various anisotropic frame decompo-
sitions such as curvelets or shearlets guarantee (almost) opti-
mal N -term approximation rates for functions which are C2

apart from a C2 discontinuity curve. However, if no structure is
present in the set of retained indices, the cost of transmitting the
location of the indices might dominate the cost of transmitting
the actual coefficients. Therefore, as far as bit rate coding is
concerned, simply storing the N largest (curvelet- or shearlet-)
coefficients possibly leads to non-optimal codes. In the wavelet
case this issue can be resolved by requiring that the set of in-
dices which are kept possesses a tree structure which can be
encoded more efficiently. In the present work we show how an
analogous procedure can be carried out for curvelets or shear-
lets. The main result is that the N -term approximation rate can
be essentially retained while imposing the additional constraint
that the set of indices is a tree.

Keywords— Shearlets, Curvelets, Tree Approximation, Op-
timal Encoding, Kolmogorov Entropy

1. INTRODUCTION

A simple and popular method to transform a function f ∈
L2(Rd) into a discrete sequence of numbers of length N is to
expand f in a frame Φ := (ψλ)λ∈Λ (see [2] for information
about frames) satisfying

‖f‖22 ∼
∑

λ∈Λ

|〈f,ψλ〉|2 (1)

and keeping only the N largest (in modulus) coefficients
(〈f,ψλ〉)λ∈Λ(N)(f) of the sequence (〈f,ψλ〉)λ∈Λ. It is well
known that every frame Φ possesses a dual frame Φ̃ :=(
ψ̃λ

)

λ∈Λ
such that

f =
∑

λ∈Λ

〈f,ψλ〉ψ̃λ

in L2(Rd). If (1) holds with ’=’ instead of ’∼’ we call Φ
a Parseval frame. In this case Φ̃ =Φ . Given the sequence

This work has been funded by the European Research Council under
Project STAHDPDE No. 247277.

(〈f,ψλ〉)λ∈Λ(N)(f) one can compute an approximation of f by
fN :=

∑
λ∈Λ(N)(f)〈f,ψλ〉ψ̃λ. A central question in nonlinear

approximation is to determine the rate at which fN converges
to f in L2(Rd) (or in more general function space norms). For
univariate functions f which are smooth except for pointwise
discontinuities, it can be shown that the N -term approximation
fN in a wavelet basis converges to f at an optimal rate [5, 4].
Unfortunately, this optimality property does not hold anymore
for bivariate functions which are smooth apart from curvilinear
singularities. Such functions serve as popular models for im-
ages. To be more specific, we define the class

F := {f0 + f1χB : supp f0, supp f1 ⊂ [0, 1]2,

‖f0‖C2 , ‖f1‖C2 ≤ 1 and χB

is the indicator function of a domain B with non-
selfintersecting boundary curve with curvature ≤ 1}.

We regard F as a reasonably realistic model for images and
would like to encode its elements as efficiently as possible.
In a wavelet basis, the N -term approximation error decays of
order N−1/2 which is far from the optimal rate of N−1 [7].
In a breakthrough work, Candes and Donoho constructed so-
called curvelet frames which reach this optimal approximation
rate if one disregards logarithmic terms [1]. The amazing thing
about this result is the simplicity of the approximation proce-
dure, namely hard thresholding of the frame coefficients in a
fixed, nonadaptive frame. Following this work, in [12, 9] shear-
let systems were constructed which satisfy the same approxima-
tion properties but also a number of other desirable properties,
such as compact support, see [11].

Despite these strong results, in view of constructing a cod-
ing scheme for functions in f ∈ F , this solves only part of
the problem: If we want to store the N -term approximation fN
e.g. in a shearlet frame, we first need to transform the coeffi-
cients 〈f,ψλ〉, λ ∈ Λ(N)(f) into bit sequences of finite length
(quantization). Further, we also need to store the locations of
the coefficients Λ(N)(f). This latter task may actually be quite
costly, and even dominate the cost of storing the coefficients. A
way out of this problem is to impose the additional constraint,
that the index set Λ(N)(f) possesses a tree structure, in which
case it can be encoded much more efficiently. The central ques-
tion to answer in this regard is whether this additional constraint
deteriorates the approximation rate of the N -term approxima-



tion. For the case of wavelets (and functions f in certain Besov
spaces) this has been carried out in [3], where it is shown that
the approximation rate can be retained. In the present paper we
describe analogous results obtained in [8] for encoding func-
tions in F using curvelets or shearlets. The main outcome is
a close-to-optimal encoding/decoding pair in the sense of rate-
distortion coding.

2. SHEARLETS

Shearlets have had a big impact in the field of applied har-
monic analysis in the past few years due to their ability to rep-
resent anisotropic features efficiently. Compared to curvelets,
they have the additional property of being defined over a uni-
form grid which will also turn out to be beneficial when we
introduce the tree structure on the index set below. Shearlets
are built using the operations of translation, anisotropic dila-
tion and shearing. We follow [9] in defining a shearlet Parseval

frame for L2(R2). Let A0 :=

(
4 0
0 2

)
, A1 :=

(
2 0
0 4

)
,

B0 :=

(
1 1
0 1

)
and B1 :=

(
1 0
1 1

)
. In [9] it is shown

that there exist functions ϕ,ψ(0),ψ(1) such that with

ψ(j,l,k,d) := 23j/2ψ(d)
(
Bl

dA
j
d ·−k

)
, ϕk := ϕ(· − k),

the system

{ϕk : k ∈ Z}∪
{
ψ(j,k,l,d) : j ≥ 0,−2j ≤ 2j − 1, k ∈ Z2, d = 0, 1

}

constitutes a Parseval frame for L2(R2) which means that (1)
holds with ’∼’ replaced by ’=’. With Λ−1 := Z2 and Λj :={
(j, l, k, d) : −2j ≤ l ≤ 2j − 1, k ∈ Z2, d = 0, 1

}
, the shearlet

index set Λ =
⋃̇

j≥−1Λj carries a natural tree structure which
we will now describe. For an index λ ∈ Λ we write |λ| to denote
the unique integer j with λ ∈ Λj . Further we write

E0 := {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)}

and

E1 := {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)} .

Definition 1. An index (0, l, k, d) ∈ Λ0 is called a child of
m ∈ Λ−1 if k = Bl

dm. An index (j, l, k, d) ∈ Λj is called a
child of (j′, l′, k′, d′) if d = d′, j = j′+1, l ∈ {2l′, 2l′+1} and
k ∈ B%l/2&−l′

d (Adk′ + Ed) (see Figure 1). We can transitively
extend this relation and write λ′ + λ if either λ = λ′ or λ′ is a
child of λ.

Every λ ∈ Λj possesses a unique parent in Λj−1, j ≥ 0 and
16 children in Λj+1 for j ≥ 0 and 4 children for j = −1. We
call a subset T ⊂ Λ a tree if for every λ ∈ T also its parent is
contained in T .

Fig. 1. Top left: Essential support of ψλ with j = 3, l = 3, d =
0, k = (2, 1). Top right: Essential support of its children with
l = 6. Bottom left: Essential support of its children with l = 7.

3. NONLINEAR APPROXIMATION

Recall that we want to approximate the class F as defined in the
introduction with as few as possible bits. One central concept in
this direction is the N -term approximation rate which is defined
by

σN (F) := sup
f∈F

inf
g∈ΣN

‖f − g‖2,

where ΣN :=
{∑

λ∈Λ(N) cλψλ : card Λ(N) ≤ N
}

and ψλ de-
notes the shearlet corresponding to the index λ. A central result
(see [10]) is that

σN (F) ! N−1+ε for any ε > 0

which gives a nearly optimal rate, see [6].
Essentially this means that one can encode any f ∈ F with

N coefficients up to an error which is approximately bounded
by N−1. Moreover, the best approximation of f in ΣN can be
constructed by only using the N terms 〈f,ψλ〉ψλ in the rep-
resentation f =

∑
λ∈Λ〈f,ψλ〉ψλ with the largest coefficients

|〈f,ψλ〉|. This method has the drawback that the overall cost
of storing the indices of the N largest coefficients may actually
dominate the total cost of storing the coefficients themselves.
For wavelet methods it can be shown that this problem can be
circumvented if one imposes the additional requirement that the
set of stored indices possesses a tree structure. Indeed, it can
be easily seen that encoding a tree with N elements is in gen-
earal much cheaper than encoding an arbitrary set without any
structure. The main question is whether one has to sacrifice ap-
proximation power if one approximates with trees. We show
that this is not the case. First some definitions. For N ≥ 1 let

Σt
N :=

{
∑

λ∈T
cλψλ : T ⊂ Λ is a tree with ≤ N elements

}

and
tN (F) := sup

f∈F
inf

g∈Σt
N

‖f − g‖2.



Our main result is the following:

Theorem 2 ([8]). For any ε > 0 we have the approximation
rate

tN (F) ! N−1+ε.

Proof (sketch). We give a rough sketch of the proof. For f ∈
F define Λ(f, η) := {λ ∈ Λ : |〈f,ψλ〉| ≥ η} and T (f, η) the
smallest tree containing Λ(f, η). The main task is to bound the
growth of the function card T (f, η). Indeed, we can show that

card T (f, η) ! η−2/3−ε for any ε > 0. (2)

Using this fact, one can then show that the approximant
S(f, η) :=

∑
λ∈T (f,η)〈f,ψλ〉ψλ satisfies the approximation

rate
‖f − S(f, η)‖2 ! η2/3−ε for all ε > 0. (3)

Together, (2) and (3) establish the desired claim.

We would like to add that this result remains valid also for
curvelets and for other shearlet systems [8]. In particular one
gets the same approximation results for compactly supported
shearlet frames as constructed in [11]. Actually, the compact
support will turn out to be crucial in the next section where we
construct (almost) optimal encoding schemes for functions f ∈
F .

4. OPTIMAL IMAGE CODING

An encoding scheme for F consists of an encoder E which
maps an f ∈ F to a bitstream E(f), i.e. a sequence of ze-
ros and ones. A decoder maps a bitstream onto a function
f ∈ L2([0, 1]2).

The distortion of the encoding/decoding pair (E,D) is de-
fined as

d(E,D) := sup
f∈F

‖f −D(E(f))‖2. (4)

For an encoder E we define its runlength as

M(E) := sup
f∈F

|E(f)|,

where |E(f)| denotes the length of the bitstream E(f). A gen-
eral encoding/deconding scheme for wavelets is constructed in
[3]. The main property that is used is the fact that a general
tree can be encoded much less expensively than an unstructured
set of indices, provided that the number of roots in the tree is
uniformly bounded. In order to construct good shearlet coding
procedures for F it is therefore essential to establish the fact
that the set

D0 := {λ ∈ Λ−1 : ∃f ∈ F ,λ′ + Λ : 〈f,ψλ′〉 -= 0}

of possible roots is finite. This is the case if the shearlet frame
consists of compactly supported functions:

Lemma 3. If ϕ,ψ(0),ψ(1) are compactly supported, then
card D0 < ∞.

Proof. We show that for all m ∈ Z2, there exists a bounded set
D in Z2 such that for all λ + m we have supp ψλ ⊂ m + D.
Since all f ∈ F are supported in [0, 1]2, this implies that only
a finite number of indices m ∈ Λ−1 can occur as possible
root. For any λ = (j, l, k, d) ∈ Λ it is not hard to see that the
compact support of the basis functions implies that supp ψλ ⊂
A−j

d B−l
d k + 2−jB, where B is some bounded set in R2. We

will now write Aλ for the dilation matrix Bl
dA

j
d associated with

an index λ = (j, l, k, d). The children of m in Λ0 are given
by all indices λ0 = (0, l0, k0, d0) with k0 ∈ Bl0

d0
A0

d0
m. We

shall now drop the subscript d for the matrices A,B and E . The
children of m in Λ1 are given by all indices λ1 = (1, l1, k1, d1)
with k1 ∈ BνAk0+BνE , where ν ∈ {0, 1} and k0 ∈ Bl0A0m
for some l0 and therefore k1 ∈ Aλ1m + Aλ1A

−1
λ0

A−1E . Iter-
ating this argument shows that λn ∈ Λn is a child of m only if
kn ∈ Aλn

(
m+

∑n+1
i=2 A−1

µi
E
)

with some indices µi ∈ Λi. An
elementary computation shows that ‖A−1

µi
‖ ! 2−i uniformly

for all µi ∈ Λi. It follows that for λn ∈ Λn we have supp ψλn ⊂⋃
e∈E m+

∑n+1
i=2 A−1

µi
e+2−nB ⊂ m+

∑
i∈N 2−i[0, 4]2+B. It

follows that for all children λ of m we have supp ψλ ⊂ m+D
with a bounded set D. This proves the assertion.

Moreover, as we have mentioned in the previous section, the
conclusion of Theorem 2 remains valid for compactly supported
shearlet frames.

Using the fact that the set D0 of roots is finite, we can per-
form the exact same encoding construction as in [3, Section
6] and construct an encoder EN which has length M(EN ) !
2(2/3+ε)N for all ε > 0 and N ∈ N and a decoder DN with

d(EN , DN ) ! 2−(2/3−ε)N .

It follows that

d(EN , DN ) ! M(EN )−1+ε

for all ε > 0, a result that is optimal if we disregard the arbitrar-
ily small ε, compare [6].

Having a close-to-optimal bit rate coding procedure allows
us to draw some conclusions regarding the Kolmogorov entropy
of F . We equip F with the metric inherited from L2(R2). It is
not difficult to see that F is contained in a compact subset of
L2(R2). For any ν > 0 there exists a minimal number Nν

such that F can be covered by Nν balls with diameter ν. The
Kolmogorov ν-entropy Hν is defined by

Hν := logNν .

Corollary 4. For any ε > 0 the Kolmogorov ν-entropy satisfies

Hν ! ν−1+ε

Proof. Using the encoding/decoding pair described above, we
can consider the image of F under the mapping EN which has
cardinality ! 2M(EN ). Now consider the system of balls with
midpoints {DN (EN (f)) : f ∈ F} and radius ∼ M(EN )−1+ε.
By the fact that d(EN , DN ) ! M(EN )−1+ε, it follows that this



system is a covering of F . On the other hand, the number of ele-
ments in this covering is 2M(EN ) and therefore HM(EN )−1+ε !
M(EN ). This proves the statement.

Of course it is known that Hν ∼ ν−1, see e.g. [7]. How-
ever, the method outlined in this section provides a particularly
simple proof. Also the coding procedure which we presented
is very simple: It is based on simple hard thesholding of the
frame coefficients of f with respect to a nonadaptive frame.
This stands in contrast to other adaptive methods like for in-
stance bandelets [13].

5. CONCLUSION

In this short note we have demonstrated the ability of shearlets
to perform nearly optimally for bit-rate image coding. The same
results also hold for curvelet systems but due to the fact that they
are not defined over a uniform grid things become considerably
more cumbersome. A more detailed exposition of these results
together with the full proofs is given in [8].
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