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Reconstructing Acoustic Obstacles

by Planar and Cylindrical Waves

Jingzhi Li∗, Hongyu Liu†, Hongpeng Sun‡, Jun Zou§

Abstract

Following the spirit of the linear sampling method due to Colton and Kirsch,
we develop a novel method of reconstructing acoustic obstacles in R2. There
are two major new ingredients in our study. First, the reconstruction scheme
makes use of the near-field measurements encoded into the boundary Dirichlet-
to-Neumann (DtN) map or the Neumann-to-Dirichlet (NtD) map. Second, both
the plane waves and cylindrical waves are shown to meet the reconstruction
purpose. Numerical experiments are provided to illustrate the effectiveness of
the proposed reconstruction scheme.

1 Introduction

This work is concerned with the inverse problem of imaging obstacles located in the
homogeneous space by acoustic wave measurements. Consider an impenetrable scat-
terer D, which is assumed to be the open complement of an unbounded domain of
C2 class in R2. The scatterer is allowed to have more than one (but finitely many)
obstacle component. The time-harmonic wave propagation in R2\D̄ is governed by
the celebrated Helmholtz equation

(∆ + k2)u = 0 in R
2\D̄, (1.1)

where u represents the pressure of the wave. On the boundary ∂D of the obstacle, the
wave exhibits various behaviors depending on the physical properties of the underlying
obstacle. We have u = 0 on ∂D for a sound-soft D, ∂u/∂ν = 0 on ∂D for a sound-hard
D, and ∂u/∂ν + iλu = 0 on ∂D for a scatterer D of impedance type. Here ν is the
exterior unit normal to ∂D and λ ∈ C1(∂D) is a positive function. We shall write

B(u) = 0 on ∂D (1.2)
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to denote either of the aforementioned three boundary conditions or of mixed type.
We would like to stress that the reconstruction method developed in the present paper
is independent of the specific boundary condition. However, for the ease of exposi-
tion we stick mostly to Dirichlet or Neumann boundary conditions in our subsequent
discussions.

In non-invasive probing, one intends to determine the target obstacle D by the
knowledge of the waves away from the object. This inverse problem forms the basis of
many areas of science and technology; see e.g. [12, 23, 24] and the references therein.
There are two types of wave measurements that were widely employed and investigated
in the literature for this inverse problem: the scattering measurement encoded into
the far-field pattern, and the boundary measurement encoded into the DtN or NtD
map. Correspondingly, many reconstruction schemes have been developed in different
settings, among which we would like to mention two: the linear sampling method
originated from Colton and Kirsch (see, e.g., [11]) and the enclosure method due to
Ikehata (see, e.g., [20–22]). These two schemes have received significant attention in
the last decade due to their qualitative aspects. Particularly, these methods require no
a priori knowledge of the underlying target obstacles. This is of essential importance
from a practical viewpoint. There are many developments along this line; see, e.g.
[2, 3, 7, 10, 13, 14, 17, 19, 24, 25, 28–30] and the references therein.

In this paper, we are mainly interested in using the boundary measurements for the
reconstruction of unknown obstacles, since we have more choices on the probing waves
other than planar waves. To that end, we let Ω be an artificial domain containing
D. It is assumed that the origin belongs to Ω, and Ω is star-shaped with respect
to the origin and of C2 class. For the convenience of our subsequent study, we let
∂Ω be parametrically represented by ∂Ω := r(d)d with d ∈ S1 and S1 being the unit
circle in R2. For the Helmholtz equation (1.1)–(1.2) confined over Ω\D̄, we impose
the following boundary condition on the exterior boundary

u = f ∈ H1/2(∂Ω) on ∂Ω. (1.3)

It is assumed that 0 is not an eigenvalue to the problem (1.1)–(1.3. Hence, we have a
well-defined Dirichlet-to-Neumann map ΛD defined as

ΛD(f) =
∂u

∂ν

∣

∣

∣

∣

∂Ω

, (1.4)

where u ∈ H1(Ω\D̄) is the unique solution to (1.1)–(1.3) and ν denotes the exterior
unit normal to ∂Ω. The method we shall develop is to reconstruct D from the knowl-
edge of ΛD. The crucial ingredient is to introduce the following first kind integral
equation

∫

∂Ω
(ΛD − Λ0)u(x; d)g(d)ds(d) =

∂G(x, z)

∂ν(x)
, (1.5)

where u(x; d) is a class of solutions to the Helmholtz equation (1.1) depending on a
parameter d ∈ S1, Λ0 denotes the DtN map without the inclusion D, and G(x, z) is a
Green’s function for the Helmholtz equation in Ω with a vanishing Dirichlet boundary
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value on ∂Ω. We shall show that g(d) will exhibit different behaviors depending on
whether z belongs to the interior or exterior of D. Therefore, we could make use of
g as an indicator function to identify D. The idea of using an indicator function over
the unit sphere to identify an obstacle was first proposed in [11]. As we mentioned
earlier, there are a lot of developments along this line, but mostly based on far-field
measurements corresponding to planar incident waves. There are relatively few studies
based on the near-field data following the linear sampling spirit, and we refer to [9]
for a near-field reconstruction method by using the Cauchy data and by combining
the linear sampling method and the reciprocal gap functional. The integral equation
(1.5) is also similar to the one used in the enclosure method originated by Ikehata in
[21] and [22]. However, the decaying properties of the integral are directly utilized
as an indicator function, and to achieve such properties, more complicated complex
geometric optics (CGO) waves must be implemented.

The main contribution in this work is to propose a linear sampling type method
based on the near-field measurement data using either the DtN map or the NtD map.
In our proposed method, we shall show that both the time-harmonic planar waves
and the cylindrical waves can meet the reconstruction purpose. On the other hand,
we would like to remark that the current study shall pave the way for implementing
more sophisticated waves, e.g. the complex spherical waves in [16] to extract more
information about the target obstacles. Finally, we would like to emphasize that the
indicator function g(d) in (1.5) exhibits some completely new behaviors than those
having been considered in literature on linear sampling methods.

Alternatively, our method could be modified to make use of theNtD map. Actually,
for the Helmholtz equation (1.1)–(1.2) confined over Ω\D̄, one imposes the following
boundary condition on the exterior boundary

∂u

∂ν
= g ∈ H−1/2(∂Ω) on ∂Ω. (1.6)

Again we assume that 0 is not an eigenvalue to the problem (1.1)–(1.3). The NtD
map ΥD is defined by

ΥD(g) = u|∂Ω, (1.7)

where u ∈ H1(Ω\D̄) is the unique solution to (1.1), (1.2) and (1.6). The counterpart
to (1.5) is given by

∫

∂Ω
(ΥD − Υ0)u(x; d)g(d)ds(d) = GN (x, z), (1.8)

where Υ0 is the NtD map without the inclusion D. The function GN (x, z) is a Green’s
function for the Helmholtz equation on Ω with a vanishing Neumann boundary value
on ∂Ω.

The rest of the paper is organized as follows. In Section 2, we develop our re-
construction method based on the DtN map. In Section 3, we show how to modify
our reconstruction scheme to the case with the NtD map. Section 4 is devoted to
the derivation of the explicit forms of Green’s functions implemented in our method
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when Ω is a disk with radium R. In Section 5, we shall conduct extensive numerical
experiments to illustrate the effectiveness of the proposed method. In Section 6, we
conclude the work and point out some further directions in the future.

2 Reconstruction by the DtN map

In this section, we develop our reconstruction scheme based on the DtN map using
near-field flux measurements. The discussion will be concurrent for both plane waves
and cylindrical waves.

The plane wave is of the form

w(x, d) = eikx·d x ∈ R
2,

where d ∈ S1. The corresponding (planar) Herglotz wave function is introduced as

(Hg)(x) := wg(x) =

∫

S1

eikx·dg(d)ds(d) x ∈ R
2, (2.1)

where g(d) ∈ L2(S1). We also define

Up :=

{

wg(x) | wg(x) =

∫

S1

eikx·dg(d)ds(d), g(d) ∈ L2(S1)

}

. (2.2)

In two dimensions, the cylindrical wave, which has been extensively addressed in [5]
and [6], is of the form

w(x, d) = Jn(k|x − y|)einφ̂ x ∈ R
2, (2.3)

where Jn(t), t ∈ R is the n-th order Bessel function, and in polar coordinates, y =

|y|eiφ′ ∈ ∂Ω, d = y/|y| = eiφ′ ∈ S1, x = |x|eiφ ∈ R2, x − y = |x − y|eiφ̂.
In the sequel, we simply choose the artificial domain Ω = B(0, R), namely a

central disk of radius R, and focus on the development of the new reconstruction
scheme. However, all our subsequent results hold with only slight modifications when
Ω is a star-shaped C2 domain as described in the Introduction. It is worth noting

that when n is relatively large, Jn(k|x−y|)einφ̂ decreases quickly in the vicinity of the
fixed source point y ∈ ∂Ω, and if the obstacle is very small compared with the effective
interaction size of the cylindrical wave, the interaction between cylindrical wave and
the obstacle will be very weak. Hence, the cases with the orders being n = 0, 1, 2, or
3 are of more practical importance, even though our method is irrelevant of these.

Define the Bessel-Herglotz wave function as follows

(Bg)(x) := wg(x) =

∫

S1

Jn(k|x − y|)einφ̂g(d)ds(d) x ∈ R
2, (2.4)

where g(d) ∈ L2(S1). Similar to (2.2), we define

Ub :=

{

wg(x) | wg(x) =

∫

S1

Jn(k|x − y|)einφ̂g(d)ds(d), g(d) ∈ L2(S1)

}

. (2.5)
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Note that knowing ΛD is equivalent to knowing the Cauchy data (u|∂Ω, ∂u
∂ν |∂Ω). In

the following, we shall make use of the linear plane waves u|∂Ω := eikx·d|∂Ω as inputs

or cylindrical waves u|∂Ω = Jn(k|x − y|)einφ̂|∂Ω as injected boundary sources.
In light of the linear superposition of the Helmholtz system, we establish another

pair of solutions to the Helmholtz equation.

Lemma 2.1. Let u(x; d) ∈ H1(Ω\D̄) be the solution to the Helmholtz equation (1.1)–
(1.3) associated with the Dirichlet boundary value f(x, d) = w(x, d)|∂Ω with w(x, d) =

eikx·d or w(x, d) = Jn(k|x − y|)einφ̂. Let wg be a Herglotz wave function (planar or
Bessel, resp.). Then the solution to

{

(∆ + k2)u = 0 in Ω\D̄,

u|∂D = 0, u|∂Ω = wg|∂Ω,
(2.6)

is given by

ug(x) =

∫

S1

u(x; d)g(d)ds(d).

The proof of Lemma 2.1 is a direct consequence of the well-posedness and linearity
of the involved boundary value problems. We shall also need to consider the following
boundary value problem,

{

(∆ + k2)v(x, d) = 0 in Ω\D̄,

v|∂D = −f(x, d), v|∂Ω = 0.
(2.7)

It is straightforward to see that v(x, d) = u(x, d) − w(x, d). Similarly to Lemma 2.1,
we have

Lemma 2.2. Let v(x; d) ∈ H1(Ω\D̄) be the solution to the Helmholtz equation (2.7)

associated with f(x, d) = eikx·d or f(x, d) = Jn(k|x − y|)einφ̂. Let wg be a Herglotz
wave function ( planar or Bessel, resp.). Then the solution to

{

(∆ + k2)v = 0 in Ω\D̄,

v|∂D = −wg|∂D, v|∂Ω = 0,
(2.8)

is given by

vg(x) =

∫

S1

v(x; d)g(d)ds(d).

Since v(x; d) = u(x; d)−w(x, d) in Ω\D̄, we point out the following pivotal relation
for our subsequent discussion

∂v(x; d)

∂ν(x)

∣

∣

∣

∣

∂Ω

= ΛD(f(x; d)) − Λ0(f(x, d)). (2.9)

Next we introduce some function spaces:

H1
∆(Ω\D̄) :={u ∈ H1(Ω\D̄) | (∆ + k2)u = 0 in Ω\D̄ and u|∂Ω = 0 };

H−1/2
∆ (∂Ω) :=

{

∂u

∂ν

∣

∣

∣

∣

∂Ω

| u ∈ H1
∆(Ω\D̄)

}

,
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where the boundary values ∂u
∂ν |∂Ω and u|∂Ω are all understood in the sense of traces.

Both H1
∆(Ω\D̄) and H−1/2

∆ (∂Ω) are Banach spaces. Then we introduce two operators.
We define S : L2(S1) → H1

∆(Ω\D̄) by

Sg(x) :=

∫

S1

v(x; d)g(d)ds(d) (2.10)

and L : L2(S1) → H−1/2
∆ (∂Ω) by

Lg(x) :=

∫

S1

∂v(x; d)

∂ν(x)
g(d)ds(d). (2.11)

Noting equation (2.8), we see Sg(x)|∂D = −vg(x)|∂D and Sg(x)|∂Ω=0. Also by the

definitions of S and L we have
∂Sg

∂ν
(x)

∣

∣

∣

∣

∂Ω

= Lg(x).

The following theorem plays a key role in the mathematical justification of our
proposed reconstruction scheme.

Theorem 2.3. The operator L : L2(S1) → H−1/2
∆ (∂Ω) is a compact linear operator.

If k2 is not a Dirichlet eigenvalue for −∆ in Ω\D̄, Ω and D respectively, then L is

injective and has a dense range in H−1/2
∆ (∂Ω).

Before preceding with our proof of Theorem 2.3, we first show the following im-
portant result.

Lemma 2.4. With respect to the H1/2(∂D)-norm, the traces of Herglotz wave func-
tions (or the Bessel Herglotz wave functions) are dense in the space of the traces of
the solutions to the Helmholtz equation on ∂D.

Proof. Consider a solution u ∈ H1(D) to the Helmholtz equation ∆u + k2u = 0 in
D. By Theorem 7.3 in [24], for every ε > 0, there exists a Herglotz wave function wg

such that ‖wg − u‖H1(D) ≤ ε, which implies

‖wg − u‖H1/2(∂D) ≤ C1‖wg − u‖H1(D) ≤ C1ε

for some positive constant C1 by the trace theorem, hence proves the desired density.
For the case with cylindrical waves and the corresponding Bessel-Herglotz wave

functions, it suffices for us to show that Ub is dense in H1(Ω). Then by the Runge’s
approximation result (cf. [24, Theorem 7.2]), we can conclude that Ub is dense in
H1(D), and hence by the trace theorem we obtain the desired denseness result for the
Bessel-Herglotz wave functions. We shall make use of the additional theorem to prove
the denseness of Ub (cf. [8, Appendix D.3]),

Jn(k|x − y|)einφ̂ =
∞
∑

m=−∞

Jm−n(k|y|)Jm(k|x|)eimφ−i(m−n)φ′
, (2.12)

where x = |x|eiφ, y = |y|eiφ′
, x − y = |x − y|eiφ̂. Since Up is dense in H1(Ω) (cf.

[24]), we only need to prove that Ub is dense in Up with respect to the H1(Ω)-norm.
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To that end, we first note that v(x) ∈ Up iff v(x) =
∑∞

n=−∞ anJn(k|x|)einφ with
{an, n ∈ Z} ∈ l2 (cf. [4] and [12]). For arbitrary fixed ε > 0, let N be a sufficiently
large integer such that

‖v(x) −
N

∑

n=−N

anJn(k|x|)einφ‖H1(Ω) ≤ ε. (2.13)

Next, set

g(d) =
N

∑

l=−N

alei(l−n)φ′

2πJl−n(kR)
.

It is straightforward to calculate that

‖g(d)‖2
L2(S1) =

N
∑

l=−N

a2
l

Jl−n(kR)2

and hence g(d) ∈ L2(S1). Furthermore, by using (2.12), together with direct calcula-
tions, one can show

u(x) :=

∫

S1

Jn(k|x − y|)einφ̂g(d)ds(d) =
N

∑

n=−N

anJn(k|x|)einφ, (2.14)

which by (2.13) gives
‖u − v‖H1(Ω) < ε. (2.15)

Clearly, u ∈ Ub and hence (2.15) indicates that Ub is dense in Up with respect to the
H1(Ω)-norm. This completes the proof of Lemma 2.4.

Proof of Theorem 2.3. We first prove the compactness of operator L. Consider a
function g ∈ L2(S1) and set h = Lg. Noting that D and Ω are respectively of C2

and C∞ class, and −wg is infinitely differentiable on ∂D, we know Sg ∈ H2(Ω\D̄)
and h ∈ H1/2(∂Ω) by the well-posedness of system (2.8). Then we need only to
prove the existence of a constant Ĉ such that ‖Lg‖H1/2(∂Ω) ≤ Ĉ‖g‖L2(S1), since the

natural injection from H1/2(∂Ω) to H−1/2(∂Ω) is compact. By the trace theorem
we have ‖h‖H1/2(∂Ω) < C2‖Sg‖H2(Ω\D̄) for some constant C2. Then by the a pri-
ori estimate of the solution to (2.8) there exists a positive constant C1 such that
‖Sg‖H2(Ω\D̄) ≤ C1‖wg‖H3/2(∂D). Noting that wg is also a solution of the Helmhlotz

equation in H2(D), and hence by the trace theorem, there exists a constant C3, such

that ‖wg‖H3/2(∂D) ≤ C3‖wg‖H2(D). Noting that both eikx·d and Jn(k|x−y|)einφ̂ are an-

alytic, it is straightforward to see the boundedness of the mapping g &→ wg from L2(S1)
into H2(D), that is, there exists a constant C4, such that ‖wg‖H2(D) ≤ C4‖g‖L2(S1).

This proves the boundedness of L by the constant Ĉ = C2C1C3C4.
Next we show the injectivity of L. Suppose g ∈ L2(S1) and Lg = 0. Clearly,

Sg|∂Ω = 0 and ∂Sg
∂ν |∂Ω = Lg = 0. Hence, by the unique continuation, we know Sg = 0
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in Ω\D̄. Therefore, wg|∂D = −Sg|∂D = 0. Then, noting wg is a solution for the
Helmholtz equation in H1(D) and k2 is not a Dirichlet eigenvalue, we see wg = 0 in
D. By unique continuation again, we see wg = 0 in R2. If wg ∈ Up, then by Theorem
3.15 in [12], g(d) = 0. If wg ∈ Ub, we can write g(d) =

∑∞
l=−∞ aleilφ′

with {al}l∈Z ∈ l2

by Fourier expansion, then it follows from direct calculations that

wg(x) =
∞
∑

l=−∞

2πal−nJl−n(kR)Jl(k|x|)eilφ. (2.16)

It is straightforward to verify by using the asymptotic properties of Bessel functions
that

∑N
l=−N 2πal−nJl−n(kR)Jl(k|x|)eilφ is absolutely convergent in H1(Ω) as N → ∞.

Then by (2.16) and wg|∂Ω = 0, we see al−nJl−n(kR)Jl(kR) = 0. By further noting
k2 is not an Dirichlet eigenvalue for Ω, which implies Jn(kR) (= 0 for arbitrary n, we
have al = 0 for all l ∈ Z. That is, g = 0.

Finally, we show that L has a dense range in H−1/2
∆ (∂Ω). For every φ ∈ H−1/2

∆ (∂Ω),
let u ∈ H1

∆(Ω\D̄) be such that ∂u
∂ν |∂Ω = φ|∂Ω. Then by Lemma 2.4, there exists a

(planar or Bessel, resp.) Herglotz wave function wg such that for arbitrary small ε > 0,
‖wg − u‖H1/2(∂D) ≤ ε. By the well-posedness of the boundary value problem (2.8),
we see ‖Sg − u‖H1(Ω\D̄) ≤ C1ε. By the trace theorem, we further have a constant
C2 > 0 such that ‖Lg − φ‖H−1/2(∂Ω) < C2‖Sg − u‖H1(Ω\D̄) ≤ C2C1ε. This proves
Theorem 2.3.

For any x ∈ Ω̄ and z ∈ Ω, let G(x, z) be a Green’s function associated with the
Helmholtz equation with a vanishing Dirichlet value on ∂Ω. For our reconstruction
algorithm developed in the sequel, we take G(x, z) = Φ(x, z)−u(x, z), where Φ(x, z) =
i
4H(1)

0 (k|x−z|) is the fundamental solution to the operator−∆−k2 and u(x, z) satisfies

(∆ + k2)u(x, z) = 0 in Ω, u(x, z)|∂Ω = Φ(x, z)|∂Ω, (2.17)

for any fixed z ∈ Ω. For the case with Ω being a central disk, an explicit form of
G(x, z) can be derived in the way demonstrated in Section 4. It is clear to see that

G(x, z) ∈ H1
∆(Ω\D̄) if z ∈ D, which further implies ∂G(x,z)

∂ν(x) |∂Ω ∈ H−1/2
∆ (∂Ω) if z ∈ D.

Now we are ready to present the first main theorem and establish the reconstruc-
tion algorithm. To that end, we introduce the following crucial first kind integral
equation for gz ∈ L2(S1):

(Lgz)(x) =
∂G(x, z)

∂ν(x)
, x ∈ ∂Ω, z ∈ Ω, (2.18)

which by (2.9) is equivalent to

∫

∂Ω
(ΛD − Λ0)(f(x; d))gz(d)ds(d) =

∂G(x, z)

∂ν(x)
, x ∈ ∂Ω, z ∈ Ω . (2.19)

Theorem 2.5. For gz in (2.18) or (2.19), we have
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(i) If z ∈ D, then for every ε > 0, there exists gz,ε ∈ L2(S1) such that

‖Lgz,ε(x) −
∂G(x, z)

∂ν(x)
‖H−1/2(∂Ω) ≤ ε. (2.20)

Moreover, for every z∗ ∈ ∂D and every choice of gz,ε ∈ L2(S1) in (2.20),

lim
z→z∗

‖gz,ε‖L2(S1) = ∞ and lim
z→z∗

‖vgz,ε‖H1(D) = ∞. (2.21)

(ii) If z ∈ Ω\D̄, we can solve (2.18) by the Tiknonov regularization to have a
regularized solution gz,ε in L2(S1), depending on a regularizer ε > 0. That is, gz,ε is
the unique solution to the regularized system

(εI + L∗L) g = L∗∂G(·, z)

∂ν
. (2.22)

Moreover, only one of the following two possibilities occurs to the sequence {gz,ε}:
either there exists a sequence εn → 0+ such that

lim
εn→0+

‖Lgz,εn(x) −
∂G(x, z)

∂ν(x)
‖H−1/2(∂Ω) = 0, (2.23)

and
lim

εn→0+
‖gz,εn‖L2(S1) = ∞; (2.24)

or, there exists a constant C > 0 such that for all ε > 0,

‖Lgz,ε(x) −
∂G(x, z)

∂ν(x)
‖H−1/2(∂Ω) ≥ C. (2.25)

Remark 2.6. Part (ii) of Theorem 2.5 tells that the following situation would not
happen: there exists a sequence εn → 0+ such that

lim
εn→0+

‖Lgz,εn(x) −
∂G(x, z)

∂ν(x)
‖H−1/2(∂Ω) = 0, (2.26)

and
lim inf
εn→0+

‖gz,εn‖L2(S1) < ∞. (2.27)

More precisely, we may interpret it as follows: for any point z lying outside the obsta-
cle, either the magnitude of its indicator function gz,εn blows up, or the magnitude of

the residual Lgz,εn − ∂G(·,z)
∂ν(x) is bounded from below by a positive constant.

Proof of Theorem 2.5. We first verify (i). For z ∈ D, we obviously have G(·, z)|∂D ∈
H1/2(∂D). Hence by Lemma 2.4, for any ε > 0 there exists gz,ε ∈ L2(S1) such that

‖vgz,ε − G(·, z)‖H1/2(∂D) ≤ ε . (2.28)
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In the rest of the proof, we let C denote a generic positive constant, which may differ
at different estimates but is fixed and finite in a single relation. Since vgz,ε = Sgz,ε

on ∂D and G(·, z) ∈ H1
∆(Ω\D̄), by the well-posedness of problem (2.8) we have

‖Sgz,ε − G(·, z)‖H1(Ω\D̄) ≤ Cε. This, along with the trace theorem and the fact that
∂Sg/∂ν = Lg on ∂Ω, leads to the desired estimate (2.20).

We next show (2.21). By the trace theorem again,

‖Sgz,ε − G(·, z)‖H1/2(∂D) ≤ C‖Sgz,ε − G(·, z)‖H1(Ω\D̄). (2.29)

Assume contrarily that there exists z∗ ∈ ∂D, 0 < M < ∞ and a sequence zn → z∗

such that ‖vn‖H1(D) ≤ M , where we write vn := vgzn,ε . Then by (2.28) we have

‖G(·, zn)‖H1/2(∂D) ≤ ‖G(·, zn) − vn‖H1/2(∂D) + ‖vn‖H1/2(∂D) ≤ C(ε + M) (2.30)

for all n > 0. However, noting that G(·, z) has the same singularity as the fundamental
solution Φ(·, z), we have ‖G(·, zn)‖H1(U\D̄) → ∞ as n → ∞ for any bounded region U
containing D. This contradicts to (2.30), thus proves the second statement in (2.21).
The first statement follows directly from the boundedness of the mapping g &→ vg|D
from L2(S1) into H1(D).

Next, we demonstrate (ii). For a point z ∈ Ω \ D and small ε > 0, we introduce
the Tiknonov functional Jz,ε : L2(S1) → R by

Jz,ε(g) = ‖Lg −
∂G(·, z)

∂ν
‖2

H−1/2(∂Ω) + ε‖g‖2
L2(S1)

for g ∈ L2(S1). By the classical result on the regularities of solutions to (2.7) (cf. [18]),
we know the operator L has a continuous kernel and hence L∗L is compact from
L2(S1) to L2(S1). Moreover, L∗L + εI is positive since L is injective by Theorem 2.3.
Therefore for any ε > 0, there exists a unique minimizer gz,ε ∈ L2(S1) to functional
Jz,ε, which is given by (2.22). Now it suffices for us to show that (2.26) and (2.27)
can not hold simultaneously. Assume contrarily that both (2.26) and (2.27) are true,
then we have a sequence {gz,εn} such that εn → 0+ as n → ∞, and ‖gz,εn‖L2(S1) ≤ C
for all n and (2.26) also holds. Then there exists a subsequence gz,εn′ which converges
weekly to some g ∈ L2(S1). By the compactness of L, we have Lgz,εn′ → Lg in

H−1/2
∆ (∂Ω), which implies Lg(x) = ∂G(x,z)

∂ν(x) |∂Ω by means of (2.26). Therefore we obtain
∂Sg
∂ν = Lg and Sg(x) = G(x, y) on ∂Ω. Using Holmgren’s uniqueness theorem, we see

Sg(x) = G(x, z) in a neighborhood of ∂Ω. By the unique continuation principle,
we further have Sg(x) = G(x, z) in Ω\(D̄

⋃

{z}). However this is impossible, since
Sg(x) ∈ H1(Ω\D̄)∪H1(Ω\(D̄

⋃

{z}), but G(x, z) does not belong to H1(Ω\(D̄
⋃

{z})
for z ∈ Ω\D. This proves (ii), hence completes the proof of Theorem 2.5.

Theorem 2.5 suggests a possible procedure to determine if a point z ∈ Ω lies in D
or not. To do so, we may choose two cut-off values c1, c2 > 0. Then one can first find
a Tikhonov regularized solution gz,ε to (2.18). If ‖gz,ε‖L2(S1) > c1, we count z ∈\D;
Otherwise we further compute the residual Lgz,ε − ∂G(·, z)/∂ν. If the norm of this
residual is less than c2, we count z ∈ D, or z ∈\D otherwise.
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The above discussion leads us to the following numerical reconstruction scheme.

Numerical Reconstruction Scheme (DtN)
Select two cut-off values c1, c2 > 0.

Step 1. Collect the measurement data ∂u(x;d)
∂ν on ∂Ω corresponding to the

excitation f(x, d) on ∂Ω for different d’s .

Step 2. Select a sampling mesh Th over the domain Ω.

Step 3. For each sampling mesh point z ∈ Th, compute a Tikhonov regu-
larized solution gz,ε to (2.18).

Step 4. If ‖gz,ε‖L2(S1) > c1, we count z ∈\D; otherwise we compute the
residual Lgz,ε − ∂G(·, z)/∂ν. If the norm of this residual is less than c2,
we count z ∈ D; otherwise we count z ∈\D.

3 Reconstruction by the NtD map

We proposed a reconstruction scheme of a unknown obstacle in the previous section by
the DtN map. Similar ideas work as well for the NtD map. In this section we present
some necessary modifications for the case with the NtD map. Let u(x, d) ∈ H1(Ω\D̄)
be the unique solution to the system

{

(∆ + k2)u(x, d) = 0 in Ω\D̄,

u = 0 on ∂D; ∂u/∂ν = ∂w(·, d)/∂ν on ∂Ω,
(3.1)

where w(x, d) is the (planar or cylindrical) incident wave as introduced in Section 2.
Here it is assumed that k2 is not a Neumann eigenvalue to −∆ in Ω and 0 is not an
eigenvalue to the problem (3.1). We also set v(x, d) = u(x, d) − w(x, d), then v(x, d)
satisfies

{

(∆ + k2)v(x, d) = 0 in Ω\D̄,

v = −w(x, d) on ∂D; ∂v/∂ν = 0 on ∂Ω.
(3.2)

The NtD map associated with (3.1) is given by

ΥD

(

∂w(x, d)

∂ν

∣

∣

∣

∣

∂Ω

)

= u(x, d)|∂Ω.

When the inclusion D is empty, we shall write ΥD as Υ0.
Similarly to Lemmata 2.1 and 2.2, we have the following result by linear superpo-

sition.

Proposition 3.1. Let u(x, d) and v(x, d) ∈ H1(Ω\D̄) be the solution to (3.1) and
(3.2) respectively associated with w(x, d), and wg be a Herglotz wave function (planar
and Bessel resp.). Then the solutions to the system

{

(∆ + k2)u(x, d) = 0 in Ω\D̄,

u|∂D = 0, ∂u
∂ν |∂Ω = ∂wg

∂ν |∂Ω
(3.3)
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and
{

(∆ + k2)v(x, d) = 0 in Ω\D̄,

v|∂D = −wg|∂D, ∂v
∂ν |∂Ω = 0

(3.4)

are respectively given by

ug(x) =

∫

S1

u(x; d)g(d)ds(d) and vg(x) =

∫

S1

v(x; d)g(d)ds(d) .

For the subsequent analysis, we introduce the following function spaces

Ĥ1
∆(Ω\D̄) :={u ∈ H1(Ω\D̄); (∆ + k2)u = 0 in Ω\D̄ and

∂u

∂ν
|∂Ω = 0 },

Ĥ1/2
∆ (∂Ω) :={u|∂Ω; u ∈ Ĥ1

∆(Ω\D̄) }

and the operator Ŝ : L2(S1) → Ĥ1/2
∆ (∂Ω) defined by

Ŝg(x) := vg(x)|∂Ω =

∫

S1

v(x; d)g(d)ds(d)|∂Ω , (3.5)

where vg(x) is the solution to (3.4). Similarly to Theorem 2.3, we have

Theorem 3.2. The operator Ŝ : L2(S1) → Ĥ1/2
∆ (∂Ω) is compact and has a dense

range. Furthermore, Ŝ is injective provided that k2 is not a Dirichlet eigenvalue to
−∆ in both D and Ω.

Let GN (x, z), x ∈ Ω̄, z ∈ Ω, be a Green’s function for the Helmholtz equation
with a homogeneous Neumann condition on ∂Ω. For the convenience, we will take
GN (x, z) = Φ(x, z) − u(x, z), where Φ(x, z) is the fundamental solution to −∆ − k2

for any fixed z, and u(x, z) satisfies

(∆ + k2)u(x, z) = 0 in Ω;
u(x, z)

∂ν
=

∂Φ(x, z)

∂ν
on ∂Ω (3.6)

for any fixed z ∈ Ω. When Ω is a simple disk, we will derive the explicit expression of
GN (x, z) in Section 4.

Now we are ready to present a major theorem of this section, a counterpart to
Theorem 2.5 based on the NtD map; and its proof follows the one of Theorem 2.5,
with slight modifications. The governing equation involved in the theorem is now
given by

Ŝgz(x) = GN (x, z), x ∈ ∂Ω, z ∈ Ω, (3.7)

or equivalently,

∫

∂Ω
(ΥD − Υ0)(

∂w(x; d)

∂ν

∣

∣

∣

∣

∂Ω

)gz(d)ds(d) = GN (x, z), x ∈ ∂Ω, z ∈ Ω.
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Theorem 3.3. For gz in (3.7), we have
(i) If z ∈ D, then for every ε > 0 there exists gz,ε to (3.7) such that

‖Ŝgz,ε(x) − GN (x, z)‖H1/2(∂Ω) ≤ ε. (3.8)

Moreover, for every z∗ ∈ ∂D and every choice of gz,ε ∈ L2(S1) in (3.8),

lim
z→z∗

‖gz,ε‖L2(S1) = ∞ and lim
z→z∗

‖vgz,ε‖H1(D) = ∞. (3.9)

(ii) If z ∈ Ω\D̄, we can solve(3.7) by the Tiknonov regularization to have a
regularized solution gz,ε in L2(S1), depending on a regularizer ε. That is, gz,ε is the
unique solution to the system

(εI + Ŝ∗Ŝ)g = Ŝ∗GN (·, z). (3.10)

Moreover, only one of the following two possibilities occurs to the sequence {gz,ε}:
either there exists a sequence εn → 0+ such that

lim
εn→0+

‖Ŝgz,εn(x) − GN (x, z)‖H1/2(∂Ω) = 0 (3.11)

and
lim

εn→0+
‖gz,εn‖L2(S1) = ∞ ; (3.12)

or, there exists a positive constant C such that for all ε > 0,

‖Ŝgz,ε(x) − GN (x, z)‖H1/2(∂Ω) ≥ C. (3.13)

Similarly to our discussion in Section 2 for the motivation of the Numerical Recon-
struction Scheme (DtN) by Theorem 2.5, Theorem 3.3 above suggests us the following
reconstruction scheme by using the NtD map.

Numerical Reconstruction Scheme (NtD)
Select two cut-off values c1, c2 > 0.

Step 1. Collect the measurement data u(x; d) on ∂Ω corresponding to
∂w(x, d)/∂ν on ∂Ω for different d’s.

Step 2. Select a sampling mesh Th over the domain Ω.

Step 3. For each sampling point z ∈ Th, compute a Tikohnov regularized
solution gz,ε to the equation (3.7).

Step 4. If ‖gz,ε‖L2(S1) > c1, we count z ∈\D; otherwise we compute the

residual Ŝgz,εn(x) − GN (x, z). If the norm of this residual is less than c2,
we count z ∈ D; otherwise we count z ∈\D.

Remark 3.4. If the boundary condition of the obstacle is of general type (1.2), all the
results we have obtained in Sections 2 and sec:NtD still hold. In particular, we can
show similar density for the Herglotz wave functions (Up or Ub) in H1(Ω) and similar
results to Theorem 2.5 and 3.3.
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4 Green’s functions

We recall that the Green’s functions G(x, z) and GN (x, z) are involved in our recon-
struction schemes developed in the previous sections. In this section we demonstrate
that one may find their explicit forms for some domains of special geometry. We shall
restrict our discussion on the case that Ω is a disk of radius R centered at the origin.

We first recall the fundamental solution Φ(x, z) = i
4H(1)

0 (k|x− z|) associated with the
Helmholtz operator −∆ − k2 and its special representation (cf. [8]):

Φ(x, z) =
i

4

∞
∑

n=−∞

Jn(k|z|)H(1)
n (k|x|)ein(φ−φ′), (4.1)

where |x| > |z| and x = |x|eiφ, z = |z|eiφ′
in polar coordinates. Here H(1)

n (t) is the
first Hankel function of order n. Noting that G(x, z) = Φ(x, z)−u(x, z), where u(x, z)
solves (2.17). Now we write u(x, z) as

u(x, z) =
∞
∑

n=−∞

anJn(k|x|)einφ. (4.2)

By direct computings using the boundary condition in (2.17) and the representation
(4.1) we obtain

an =
iH(1)

n (kR)Jn(k|z|)e−inφ′

4Jn(kR)
. (4.3)

Next, we show that u(x, z) in (4.2) with the corresponding coefficients given by (4.3)
is well-defined in H1(Ω). Using the following asymptotic behaviors of Jn(t) and Hn(t)
for fixed t and sufficiently large n (cf. [1]),

Jn(t) ∼
1√
2πn

· (
et

2n
)n, H(1)

n (t) ∼ −i

√
2√

πn
· (

2n

et
)n, (4.4)

one can verify that |anJn(k|x|)| ∼
1

4πn
· (

|z|
R

)n · (
|x|
R

)n. Using the relation Jn
′(t) =

1

2
(Jn−1(t) − Jn+1(t)), one sees that anJn

′(k|x|) has a similar asymptotic behav-

ior. Finally, by using these asymptotic results it is straightforward to show that
∑N

n=−N anJn(k|x|)einφ converges to u(x, z) in H1(Ω) as N → ∞. Hence, the Green’s
function G(x, y) is given by

G(x, z) = Φ(x, y) −
∞

∑

n=−∞

iH(1)
n (kR)Jn(k|z|)e−inφ′

4Jn(kR)
Jn(k|x|)einφ (4.5)

for |x| > |z| and x = |x|eiφ, z = |z|eiφ′
.

In a similar manner, one can find GN (x, z) by solving (3.6) that

GN (x, z) = Φ(x, z) −
∞

∑

n=−∞

iH(1)
n

′

(kR)Jn(k|z|)e−inφ′

4Jn
′
(kR)

Jn(k|x|)einφ, (4.6)

for |x| > |z| and x = |x|eiφ, z = |z|eiφ′
.
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5 Numerical experiments and discussions

In this section, we present some numerical experiments to illustrate the new sampling
approach developed in the previous sections to the near-field inverse obstacle scattering
problem with some examples. Here are some parameters to be used in this section: R
for the radius of the surrounding medium, k for the wave number, δ for the noise level,
d = (dx, dy)T for unitary incident direction and c = (cx, cy)T for the object shifting
with displacements cx and cy.

We shall test three different scatterers for system (1.1)-(1.2): a unit disk of radius 1,
a kite-shaped object, which are denoted by B and K, respectively, and a combination
of B and K (possibly at different locations). The specification of these scatterers can
be parameterized as follows:

Ball: x(t) = (cos t, sin t), 0 ≤ t ≤ 2π, (5.1)

Kite: x(t) = (cos t + 0.65 cos 2t − 0.65, 1.5 sin t), 0 ≤ t ≤ 2π. (5.2)

The surrounding medium Ω is always chosen to be a disk with radius R = 5.5 centered
at the origin. Other shapes of surrounding media are also possible provided the
analytical forms of the corresponding Green functions of Dirichlet or Neumann type
are available.

We will carry out three groups of numerical tests. The synthetic near-field data of
the direct problems are generated by solving the variational equation corresponding
to the system (1.1)-(1.2) with isoparametric quadratic finite elements. We solve the
discrete system over a family of increasingly finer meshes over the computational
domain Ω \ D until the relative error is small, e.g., less than 10−3, which, compared
with the noise level we added, is negligible and viewed as noise-free data. Note that
the synthetic data from the NtD map are much more accurate than those from the
DtN map since the flux data ∂u

∂ν converge one order slower in terms of the meshsize
than the potential u using the finite element solver in our numerical test. So the NtD
mapping should be more reliable and stable by our experience. Thus we will mainly
focus on the NtD map afterward.

The near-field measurement data generated along the medium boundary Γ are
then subjected pointwise to certain uniform random noise. The uniform random noise
in magnitude as well as in direction is added according to the following formula,

U = U + δr1|U | exp(iπr2) , (5.3)

where U may denote either kind of measurement data, u or ∂u
∂ν , r1 and r2 are two uni-

form random numbers, both ranging from -1 to 1, and δ represents the noise level. For
each mesh point z, the corresponding integral operator equation is discretized through
the mid-point quadrature method at the equidistantly distributed collocation points
along the medium boundary Γ. It is worth pointing out that the integral kernel is
quite smooth and thus the resulting matrix after discretization is highly ill-posed with
condition number ranging from 1016 − 1018. Hence certain regularization is definitely
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necessary. Here the linear system is solved by using the Tikhonov regularization tech-
nique, with the corresponding regularization parameters determined by the Morozov
discrepancy principle.

The measurement data depend on two variables: the observation location x =
(R cos(φ), R sin(φ)) on the medium boundary Γ with φ ∈ [−π,π], and incident di-
rection d = (cos(θ), sin(θ)) from the unit circle in R2 with θ ∈ [−π,π]. We compute
the near-field measurement data at 100 equidistantly distributed observation points
xj = (R cosφj , R sinφj), φj = 2jπ/100 − π, j = 1, 2, . . . , 100, corresponding to 100
equidistantly distributed incident directions dj = (cos θj, sin θj), θj = 2jπ/100 − π,
j = 1, 2, . . . , 100, around the surrounding medium circle. We may identify the ob-
servation points and incident directions with the index sequence {1, 2, . . . , 100} and
illustrate the measurement data by the contour plots of the corresponding 100 × 100
matrices as shown in the following examples.

Hereafter, the norms of the indicator function gz and the residual of the integral
equation GN (x, z) − Sgz in the DtN case (or ∂G(x,z)

∂ν(x) − Lgz in the NtD case) are
denoted by g-norm and res-norm, respectively. Note that theoretically the residuals
are defined in H−1/2-norm or H1/2-norm, which are very difficult to compute at the
discrete level. Therefore for the approximation of H1/2- and H−1/2-norms, one can

use the discrete approximation by multiplying a factor h−1/2
F and h1/2

F (frequently used
in the discontinuous Galerkin finite element analysis), respectively, as follows:

‖w‖2
±1/2,h,Γh

=
∑

F∈Γh

h∓1
F ‖w‖2

L2(F ),

where Γh is the piecewise approximation to the artificial boundary Γ on the finite
element triangulation, F is any line segment on Γh with element size hF . Since we
use equi-distant points along the boundary Γ, which implies all hF in line segments
F ∈ Γh are the same. Therefore there is a fixed scaling factor involving some fixed
meshsize hF between the fractional H1/2-norm (or H−1/2-norm) and L2-norm of the
residual, which guarantees that the blowup pattern of those pairs of norms are actually
the same. Consequently, we can replace the complicated H1/2-norm (or H−1/2-norm)
by simple discrete L2-norm, which is simple to calculate and makes the two indicators
measured in the uniform L2 sense. Furthermore, these indicator norms are plotted by
transformation via 10-based logarithm for better visualization. It is worth noting that
the sampling grid is chosen to be a bit smaller than the surrounding medium disk since
the series of GN (x, z) or ∂G(x,z)

∂ν(x) converges very slow as n increases from 0 to ±∞ when
the interior point z approaches some boundary point x by our numerical experience. In
practice, one can always choose a slightly larger surrounding medium than necessary
to ensure the convergence. In our tests, the fictitious Cartesian grid is chosen to be
101-by-101 uniform grid covering the rectangular region [−R,R]× [−R,R], while only
points within the disk with radius 4

5R and centered at the origin are sampled for
computation, and the other points are specified by a constant value much larger than
the cut-off value.

Example 1 . Unit disk obstacle with c = (−1.5,−1.5)T .
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Figure 1: Contour plots of the real part (a) and imaginary part (b) of the observation
data u with the plane incident wave when k = 1 and no noise in Example 1.

First, we employ the plane incident wave with the NtD map, namely injecting the
Neumann input data to generate the potential u. Figure 1 shows the contour plots
of the real and imaginary parts, respectively, of the near-field potential data u when
k = 1. Except very few clues like self-similar patterns and periodicity, it is very hard
to envisage the shape of the obstacle. The inverse problem we are confronted with is
to reconstruct the obstacle D from those elusive plots.

We show the contour plot of the g-norm of the indicator function in Figure 2(a)
and the buried unit disk can be approximately reconstructed with the cut-off value
Vcut chosen to be −0.388 as shown in Figure 2(b). For the res-norm case, the contour
plot and the identified object with the cut-off value Vcut chosen to be −1.98 are
shown in in Figure 2(c) and (d), respectively. It is emphasized that the identified
object should be understood as the union of two identified objects specified by the
g-norm and res-norm. More precisely, the interior region of the object, according
to Theorems 2.5 and 3.3, consists of two parts : those points with g-norm smaller
than the first cut-off value, or those with res-norm smaller than the second cut-off
value. It is very interesting that both indicators, g-norm and res-norm, yield nearly
similar reconstructed objects independently. This phenomena remains not only for
this example, but also for the rests in the sequel. By taking the set union, we may
complement the identified preliminary results from the respective g-norm and res-norm
with each other to synthesize a better final reconstructed object using postprocessing
techniques from imaging processing, which will be further investigated and reported
elsewhere. For the current stage, we will still focus on the effectiveness of the proposed
reconstruction scheme.

The unknown object can be soundly detected with correct location and approxi-
mate shape and size. The blow-up behavior of the g-norm, predicted by our theoretical
result, is clearly shown in Figure 2(a) . The res-norm indicator function also reveals a
pattern of blow-up. With suitable choice of the threshold value Vcut, the res-norm at
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Figure 2: Example 1 with the plane incident wave when k = 1, the NtD map, and
δ = 1%. Contour plots of the g-norm indicator (a) and res-norm indicator (c). Recon-
structed obstacles from the g-norm (b) and res-norm (d) with the reference obstacle
in the red line and reconstructed one in the blue line.

sampling points outside the obstacle is always larger than Vcut, which further consol-
idate the second part of Theorem 3.3 and make a distinct difference between inverse
far-field and near-field scattering problems. That is, one has two groups of indicator
functions which can be both used for shape reconstruction. It is a good open question
to ask whether they are equivalent and how to combine them together to make better
recovery of obstacles.

It is pointed out that the choice of the cut-off value is crucial for the reconstruction.
The same idea from [26] can be extended here for the determination of cut-off values for
inverse near-field scattering problems by taking advantage of the mutual interaction
between obstacle components. We will further demonstrate the effectiveness of such
choice scheme with the multi-component obstacle case in Example 3.

Next, we keep all the previous setting the same except using the DtN map, namely
enforcing the boundary potential to generate the flux data ∂u

∂ν . Since the DtN map

18



 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

!2.5

!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

2.5

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

!3

!2

!1

0

1

2

3

(a) (b)

Figure 3: Contour plots of the real part (a) and imaginary part (b) of the observation
data ∂u

∂ν with the plane incident wave when k = 1 and no noise in Example 1.

seems very sensitive to noise by our numerical experience, no noise is added to the
measurement data in this case while there are still some inherent error due to discrete
finite element solver. The contour plots of the real and imaginary parts, respectively,
of the near-field flux data ∂u

∂ν are shown in Figure 3.
The contour plots of the g-norm and res-norm indicator functions are presented

in Figure 4(a) and (c), respectively. Then the identified obstacles can be recovered
by choosing the cut-off values Vcut to be 0.247 and −2.94, respectively and shown in
Figure 4(b) and (d), respectively. We see that the res-norm indicator gives a nearly
perfect reconstruction of the disk-shape object while the identified object from the g-
norm indicator is a bit compressed and deformed along the direction emanating from
the origin toward the object.

Lastly, we change the incident wave from plane to cylindrical case with order ν = 1
and use the NtD map while keeping all the other parameters unchanged. The contour
plots of the real and imaginary parts, respectively, of the near-field potential data
u are shown in Figure 5. Based on the contour plots of the g-norm and res-norm
indicator functions in Figure 6(a) and (c), respectively, one can approximately recover
the obstacle by choosing the cut-off values Vcut to be 0.993 and −2.9527, respectively,
(see Figure 6(b) and (d), respectively).

Example 2. Kite obstacle with c = (0, 0)T .

We change the disk obstacle to be a non-convex kite-shaped obstacle in this ex-
ample. First, we try the plane incident wave with the NtD map. Figure 7 shows the
contour plots of the real and imaginary parts, respectively, of the near-field potential
data u when k = 1.

From the contour plots of the g-norm and res-norm indicator functions in Fig-
ure 8(a) and (c), respectively, the obstacle can be reconstructed by choosing the cut-
off values Vcut to be −0.286 and −1.92, respectively, as shown in Figure 8(b) and (d),
respectively. We see again that the res-norm reconstruction performs better than the
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Figure 4: Example 1 with the plane incident wave when k = 1, the DtN map, and δ =
0. Contour plots of the g-norm indicator (a) and res-norm indicator (c). Reconstructed
obstacles from the g-norm (b) and res-norm (d) with the reference obstacle in the red
line and reconstructed one in the blue line.

20



 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

(a) (b)

Figure 5: Contour plots of the real part (a) and imaginary part (b) of the observation
data u, with the cylindrical incident wave with order ν = 1 and no noise in Example
1.

g-norm one, in which case the kite is slightly exaggerated to the left tip part.
Next, we repeat the test using the cylindrical incident wave of higher order ν = 3

with other parameters unchanged. The contour plots of the real and imaginary parts,
respectively, of the near-field potential data u when ν = 3 are shown in Figure 9. It
can be seen from Figure 9 that there are more patterns observed and the magnitude
(around 0.8) of the measured potential u is smaller than previously due to the fast
decay of the cylindrical Bessel wave as ν increases.

The reconstructed obstacles in Figure 10(c) and (d) are similar to those of the
plane wave case by choosing the Vcut to be 0.519 and −1.91, respectively, based on
the contour plots of the g-norm and res-norm indicator functions in Figure 10(a) and
(c), respectively.

Example 3. A combination of ball and kite obstacles with cball = (−2,−2) and
ckite = (2, 2)T .

In this example, we test the multi-component obstacle scattering case with a com-
bination of a unit ball and a kite with some displacement. Here the plane incident
wave with the NtD map is used. Figure 11 shows the contour plots of the real and
imaginary parts, respectively, of the near-field potential data u when k = 1.

On the one hand, due to strong interaction from the close distance, those parts of
different objects facing each other are attracted to a certain degree, which causes those
parts looks a bit deformed. Nevertheless, the identified object is still a reasonable ap-
proximation of the original multi-component unknown obstacle. We show the contour
plot of the g-norm indicator function in Figure 12(a) and the multi-component obsta-
cle can be approximately reconstructed with the cut-off value Vcut chosen to be −0.255
as shown in Figure 12(b). For the res-norm case, the contour plot and the identified
object with the cut-off value Vcut chosen to be −2.34 are shown in in Figure 12(c) and
(d), respectively. In this example, the reconstruction based on the g-norm indicator
seems better than that based on the res-norm, particularly for those parts facing each
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Figure 6: Example 1 with the cylindrical incident wave of order ν = 1, the NtD
map, and δ = 1%. Contour plots of the g-norm indicator (a) and res-norm indicator
(c). Reconstructed obstacles from the g-norm (b) and res-norm (d) with the reference
obstacle in the red line and reconstructed one in the blue line.
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Figure 7: Contour plots of the real part (a) and imaginary part (b) of the observation
data u with the plane incident wave when k = 1 and no noise in Example 2.

other.
On the other hand, this example can be explained in an alternative way, namely

it provides a similar reference idea as in [26] to choose the cut-off value in the inverse
near-field obstacle scattering problems, which is in light of the mutual interaction
between the components of the objects. In this example, the unit disk can be used
as a reference object a priori known, we may pick out the cut-off value from the
isoline which matches best the known component, and then use it to plot the isoline
with the same cut-off value to recover the unknown kite component. We see clearly
that the cut-off values of the two objects are correlated with each other due to the
mutual interaction of wave between the objects. Furthermore, due to the interaction,
those parts of objects facing each other are slightly attracted due to much stronger
interaction effects with smaller distance between those parts.

6 Conclusions and future work

In this work, we develop a linear sampling type method for the inverse near-field
obstacle scattering problem using the DtN or NtD maps with plane or cylindrical
incident waves with resort to the blow-up phenomena of the g-norm or the lower
bound of the res-norm. The method is mathematically justified along the similar line
in view of the dense results of the corresponding integral operators. It is pointed out
that the argument in the present paper can be further generalized to encompass the
point source wave forms, which will be reported elsewhere.

References

[1] Abramowitz, M. and Stegun I. A., Handbook of Mathematical Functions,
New York: Dover Publications, 1965

23



 

 

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

!0.286

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

(a) (b)

 

 

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

!3

!2.5

!2

!1.5

!1

!0.5

!1.92

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

(c) (d)
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δ = 1%. Contour plots of the g-norm indicator (a) and res-norm indicator (c). Recon-
structed obstacles from the g-norm (b) and res-norm (d) with the reference obstacle
in the red line and reconstructed one in the blue line.
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Figure 10: Example 2 with the cylindrical incident wave of order ν = 3 and the NtD
map with δ = 1%. Contour plots of the g-norm indicator (a) and res-norm indicator
(c). Reconstructed obstacles from the g-norm (b) and res-norm (d) with the reference
obstacle in the red line and reconstructed one in the blue line.
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Figure 11: Contour plots of the real part (a) and imaginary part (b) of the observation
data u with the plane incident wave when k = 1 and no noise in Example 3.

26



 

 

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

!0.255

!0.255

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

(a) (b)

 

 

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

!3

!2.5

!2

!1.5

!1

!0.5

!2.34

!2.34

!5 !4 !3 !2 !1 0 1 2 3 4 5

!5

!4

!3

!2

!1

0

1

2

3

4

5

(c) (d)

Figure 12: Example 3 with the plane incident wave and the NtD map with k = 1
with δ = 1%. Contour plots of the g-norm indicator (a) and res-norm indicator (c).
Reconstructed obstacles from the g-norm (b) and res-norm (d) with the reference
obstacle in the red line and reconstructed one in the blue line.
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