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‡ Seminar for Applied Mathematics, ETH Zürich, Switzerland, (schwab@math.ethz.ch)

1



1. Introduction. Multi-parametric eigenvalue problems (EVPs) arise in numer-
ous applications: we mention only engineering (parametric design optimization of the
spectrum of structures in solids, fluids and electromagnetics), uncertainty quantifica-
tion, stability analysis of engineering systems and the like. Other applications arise in
the perturbation analysis in physics. Accordingly, there is a sizable body of references
devoted to eigenvalue perturbation analysis. The mathematical theory of perturba-
tion evolved in close connection to these applications; seminal works are by Rellich
and Kato, see [27, 22] and references therein.
In recent years, much attention has been devoted to the computational analysis of
so-called complex systems; in the context of the results in the present paper, such en-
gineering systems could be deterministic initial boundary value problems depending
on possibly a large number of design parameters. Alternatively, one could consider
spectral problems for partial differential equations with random field input such as,
e.g. diffusion problems with random heat conductivity. Adopting parametric represen-
tations of input random fields (e.g. by Karhunen-Loève expansions) renders the EVP
of interest deterministic but depending on possibly a countable number of parameters.
We develop the numerical analysis in an abstract setting, where we consider para-
metric operator families A(y) ∈ L(V, V ∗) depending on a vector of real parameters
y = (y1, y2, . . .), which cover differential- and integral operators acting in separable
Hilbert spaces V and also parametric matrices.

2. Parametric eigenvalue problems. We present a class of abstract eigen-
value problems for parametric self-adjoint families of operators with real-analytic de-
pendence on on a vector of parameters and discuss the dependence of their eigenpairs
on these parameters. This will be the foundation of the design and the analysis of
sparse tensor approximation methods in subsequent sections.
We will specialize on operators of the particular form

A(y) = Ā + y1B1 + y2B2 + . . .

with a self-adjoint “principal part” Ā. In first order approximation, the affine depen-
dence of A(y) on the parameter vector y = (y1, y2, . . .) will also appear in the case of
general smooth nonlinear dependence y "→ A(y).
Specific examples are also provided in the next section. In particular, operators
depending on a countable number of parameters arise in applications such as PDEs
with spatially inhomogeneous random coefficients.

2.1. Variational eigenvalue problems. Let V and H be separable Hilbert
spaces over R (or C) with inner products (·, ·)V and (·, ·)H and norms ‖ · ‖V and
‖ · ‖H , respectively. Unless stated otherwise, V and H are assumed to be infinite-
dimensional. We assume V and H form the Gel’fand triple V ⊂ H ∼= H∗ ⊂ V ∗ with
dense and compact injections, where H ∼= H∗ indicates identification of the “pivot
space” H with its dual H∗. By 〈·, ·〉V ×V ∗ we denote the duality pairing on V and V ∗.
Let b : V ×V → C be a bilinear (or sesquilinear) form for which there exist constants
γ > 0 and C1 > 0 such that

∀u, v ∈ V : |b(u, v)| ≤ C1||u||V ||v||V , (2.1)

inf
0#=u∈V

sup
0#=v∈V

|b(u, v)|
||u||V ||v||V

≥ γ > 0 (2.2)
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and

∀0 -= v ∈ V : sup
u∈V

|b(u, v)| > 0. (2.3)

We denote by A ∈ L(V, V ∗) the operator corresponding to the form b(·, ·) via the
identification b(u, v) = 〈v, Au〉V ×V ∗ for all u, v ∈ V . Then (2.1)–(2.3) imply that
both, A and its adjoint A∗ are isomorphisms between the space V and its dual V ∗.
We call λ ∈ C eigenvalue of the form b(·, ·) if there exists an eigenvector 0 -= w ∈ V
associated to λ, such that

∀v ∈ V : b(w, v) = λ (w, v)H , (2.4)

in which case the pair (λ, w) ∈ C × V is called eigenpair of b(·, ·).
By σ(A) we denote the spectrum of an operator A [25, Ch. VI]. Conditions (2.1)–(2.3)
and compactness of the embedding V ⊂ H imply the existence of a unique compact
linear operator T ∈ L(V, V ) such that

∀u, v ∈ V : b(Tu, v) = (u, v)H . (2.5)

The pair (λ, w) ∈ C × V satisfies (2.4) if and only if λTw = w -= 0, i.e., if and only if
the pair (λ−1, w) is an eigenpair of the compact operator T . Note that by (2.2), the
eigenvalue λ is non-zero.
Let µ ∈ σ(T ), µ -= 0. The number λ = µ−1 is an eigenvalue of the form b(·, ·). The
smallest integer α such that Ker((µ−T )α) = Ker((µ−T )α+1) is called ascent of µ−T .
The dimension m = dimKer((µ − T )α) is finite and is called algebraic multiplicity of
λ. Vectors in Ker((µ − T )α), the generalized eigenspace of T corresponding to λ are
called generalized eigenvectors of T corresponding to λ. The geometric multiplicity
of µ is equal to dimKer(µ − T ). The b-adjoint of T , denoted by T∗ is defined by
b(Tu, v) = b(u, T∗v) for all u, v ∈ V . A pair (λ, v) ∈ C × V is called adjoint eigenpair
of the form b(·, ·) if and only if (λ−1, v) is an eigenpair of T∗, i.e., v -= 0 and b(u, v) =
λ (u, v)H for all u ∈ V . In this case v is called adjoint eigenvector corresponding
to λ. Generalized adjoint eigenvectors of T are exactly the generalized eigenvectors
of T∗. An eigenvalue λ ∈ σ(A) is called isolated if dist(λ, σ(A) \ {λ}) > 0. It is
called discrete if it is isolated and if for self-adjoint A: it is of finite multiplicity,
i.e., dim{u ∈ V : Au = λu} < ∞ see [25, Theorem VII.10]; for non-selfadjoint A: the
spectral projection Pλ = − 1

2πi

∮
|µ−λ|=r(A−µ)−1dµ, is finite dimensional [26, Ch. XII].

An eigenvalue λ ∈ σ(A) is called nondegenerate if the respective dimension equals one.

2.2. Abstract parametric eigenvalue problems. We consider a family of
real, parametric eigenvalue problems, and assume until further specification that V
and H are Hilbert spaces over R (rather than over C). Assume we are given a family
of bounded self-adjoint operators A(y) ∈ L(V, V ∗) parameterized by a vector y =
(y1, y2, ...) of real numbers, which we assume to take values in bounded intervals,
after rescaling ym ∈ [−1, 1]. In many applications, we deal with a finite, but possibly
large number M of parameters, whereas for applications from elliptic PDEs with
random coefficients we allow countably many parameters. Accordingly, we assume
y ∈ U , where

U =

{
[−1, 1]M , M < ∞,

[−1, 1]N, M = ∞.
(2.6)
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For M = ∞ the summation “
∑M

m=1” is understood an (unconditionally) convergent
infinite sum. For U we consider a Hausdorff topology, i.e., the euclidean topology if
U is finite-dimensional; if U is infinite-dimensional we equip U with the topology and
metric of %∞(N). This setting fits the abstract framework of [20]. For all y ∈ U we
associate to A(y) the bilinear form

b(y; ·, ·) : V × V → R, (u, v) "→ b(y; u, v) := 〈u, A(y)v〉V ×V ∗ (2.7)

We assume that y "→ A(y) is uniformly bounded on U :

∀u, v ∈ V : 〈u, A(y)v〉V ×V ∗ ≤ sup
y∈U

||A(y)||L(V,V ∗)||u||V ||v||V , (2.8)

with supy∈U ‖A(y)‖L(V,V ∗) < ∞, and uniformly elliptic on U :

∃α > 0 : ∀y ∈ U : ∀v ∈ V : 〈v, A(y)v〉V ×V ∗ ≥ α||v||2V . (2.9)

This implies that for every y ∈ U the operator A(y) is boundedly invertible, i.e., for
its inverse holds ||A−1(y)||L(V ∗,V ) ≤ α−1. The compactness of the embedding V ↪→ H
implies that the parametric EVP: given y ∈ U , find

λ(y) ∈ R and 0 -= w(y) ∈ V s.t. A(y)w(y) = λ(y)w(y) (2.10)

or, in variational form: given y ∈ U , find

λ(y) ∈ R, 0 -= w(y) ∈ V : ∀v ∈ V : b(y; w(y), v) = λ(y) (w(y), v)H (2.11)

admits, for every y ∈ U , countably many real eigenvalues (λj(y))j≥1 ⊂ R of finite
multiplicity. Here, and in the following, we always assume the eigenvalue sequences
to be numbered in increasing magnitude, counting multiplicities, i.e., an eigenvalue of
multiplicity k is listed k times. The corresponding set of eigenfunctions {wj(y)}j≥1 ⊂
V forms a countable dense set in V , and therefore, by compact and dense embedding
V ↪→ H , we assume w.l.o.g. that for every y ∈ U the sequence (wj(y))j≥1 forms a
countable orthonormal basis of H .

2.3. Analyticity. We are particularly interested in the case where the depen-
dence of A(y) on the parameters ym is analytic in suitable sense and, more specifically,
in the case when the dependence of A(y) on each coordinate ym is affine, possibly after
linearization of A(y) given smooth dependence on the parameter vector y: there exist
Ā, Bm ∈ L(V, V ∗), m ≥ 1, such that

∀y = (y1, y2, . . .) ∈ U : A(y) = Ā +
M∑

m=1

ymBm (2.12)

with convergence in L(V, V ∗).
Remark 2.1. To ensure coercivity (2.9) of A(y) in (2.12), it is sufficient that in
(2.12) the “mean operator” Ā and the “fluctuations” Bm satisfy

∃ᾱ > 0 and ∃κ < 1 :






〈v, Āv〉V ×V ∗ ≥ ᾱ‖v‖2
V ∀v ∈ V,

M∑

m=1

‖Bm‖L(V,V ∗) ≤ κᾱ.
(2.13)
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Indeed, condition (2.13) implies (2.9) with α = ᾱ(1 − κ) > 0: for any y ∈ U and
v ∈ V we have

b(y; v, v) ≥ b(0; v, v) −
(

M∑

m=1

‖Bm‖L(V,V ∗)

)

‖v‖2
V ≥ ᾱ(1 − κ)‖v‖2

V .

As we will show, under certain conditions the eigenpairs (λm(y), wm(y))m≥1 depend
analytically on the parameter vector y. To make this precise, we first recall definitions
and facts on Hilbert space valued analytic functions. To this end, from now on we as-
sume that V and H are complex separable Hilbert spaces and extend all inner products
and duality pairings sesquilinearly for complex valued arguments. We emphasize that
this extension is for purposes of analysis only; the parametric eigenvalue problems
under consideration here are real and self-adjoint (for non-selfadjoint operators some
of our results require essential modifications in their statement and proof).
We recall some definitions. Assume initially that M < ∞. Let X be a Banach space
over C and let E ⊂ CM be an open, bounded and connected domain, M ∈ N. A
function x : E → X is said to be

• (strongly jointly) analytic in E if for each a ∈ E there is {ck}k∈NM
0

⊂ X such

that the Taylor series
∑

k∈NM
0

ck
∏M

m=1(zm − am)km is summable to x(z) for
z ∈ E sufficiently close to b.

• (strongly) holomorphic in E if for each a ∈ E each first order partial derivative
lim0#=h→0(x(a + hem) − x(a))/h exists in X where em ∈ CM is the m-th
standard unit vector.

• weakly analytic in E if for each % ∈ X∗ the function %(x(·)) is a C-valued
analytic function in E (equivalently, holomorphic by Hartogs’ theorem [21,
Theorem 2.2.8]).

For X endowed with a locally convex sequentially complete topology (e.g. Banach
space) these notions coincide, see [20, Theorem 2.1.3], also [25, Theorem VI.4].
In the case M = ∞ we call x : E → X (jointly) analytic on a set E ⊂ CM which is
open w.r.t. %∞(N), if X is locally convex sequentially complete and if the series

f(z) = f(a) +
∑

ν∈NN
0

1

ν!
(Dν

af)(z − a)

is uniformly summable for z − a in any compact subset of the largest balanced subset
of the set E − a (here, Ẽ ⊂ E − a is called balanced if z ∈ Ẽ ∧ |ζ| ≤ 1 ⇒ ζz ∈ Ẽ).

2.3.1. Case M = 1. The case M = 1 is of independent interest, and also
serves as a building block for the multiparameter case. Therefore, we recapitulate the
pertinent results here. For single parameter, regular1 analytic spectral perturbation
theory we refer to [22, Chapters I and II] and [26, Chap. XII]. For M = 1, the
operator A(y) in (2.12) takes the form

A(y) = Ā + yB, y ∈ U = [−1, 1]. (2.14)

We can extend A(·) to an entire, operator-valued function by allowing y ∈ C. In
this case, the dependence of the eigenpairs (λj(y), wj(y))j≥1 on the parameter y is
well understood. Although the dependence of A(y) on y in (2.14) is analytic, the
eigenpairs of A(y) do not necessarily inherit this analytic dependence:

1as opposed to “asymptotic”, see [26], Sect. XII.2 and XII.3
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Example 2.2 ([22], Sect. II.1 or [26], Sect. XII.1). For V = C2 consider

A(y) =

(
1 0
0 −1

)
+ z

(
0 1
1 0

)
∈ L(V, V ∗).

Then A(z) has eigenvalues λ±(z) = ±
√

1 + z2 and is real and self-adjoint for real z.
Evidently, for |z| < 1, the eigenvalues are complex-analytic functions of z. However,
even though the map z "→ A(z) is entire analytic and R 4 z "→ λ±(z) are real-analytic
functions, the maps C 4 z "→ λ±(z) exhibit singularities as complex-analytic functions
at z = ±i. Note that A(z) is symmetric for Im z = 0, but is not Hermitean for any
Im z -= 0, and even not diagonalizable for z = ±i.
We now consider in (2.10) the parametric operator A(y) as restriction to U of the
analytic, L(V, V ∗)-valued function

A : C → L(V, V ∗), z "→ A(z) := Ā + zB. (2.15)

Notice carefully that the extension of the self adjoint A(y), y ∈ R obtained in this
fashion is not necessarily Hermitean (cf. Example 2.2).
We will work under assumption (2.13), which in the case M = 1 becomes the following.
Assumption 2.3. There exist ᾱ > 0 and κ < 1 s.t.

Re〈v, Āv〉V ×V ∗ ≥ ᾱ||v||2V ∀v ∈ V and ||B||L(V,V ∗) ≤ κᾱ. (2.16)

Under (2.16), the variational form of the eigenvalue problem for A(z) in (2.15) satisfies
the assumptions (2.1)–(2.3):
Proposition 2.4. Assume (2.16). Then, for any 0 < δ < 1 and all z ∈ C with |z| ≤
κ−1δ the sesquilinear form b(z; ·, ·) : V × V → C, b(z; u, v) := 〈u, A(z)v〉V ×V ∗satisfies
(2.1)–(2.3) with

γ = ᾱ(1 − δ) > 0, C1 = ||Ā||L(V,V ∗) + κ−1δ||B||L(V,V ∗), (2.17)

in particular, for any κ < δ. Moreover, for all z ∈ C with |z| ≤ κ−1δ the operator
A(z) is boundedly invertible with sup|z|≤κ−1δ ||A−1(z)||L(V ∗,V ) ≤ (ᾱ(1 − δ))−1.
By compactness of the embedding V ↪→ H , for every y ∈ U , the spectrum σ(A(y)) of
the self-adjoint operator A(y) is discrete and consists of at most countably many real
eigenvalues λj(y), j = 1, 2, . . . of finite multiplicity which accumulate only at infinity.
As A(y) is symmetric, the algebraic and geometric multiplicities of λj(y) coincide.
We are interested in the relation of λ(y) ∈ σ(A(y)) to eigenvalues λ(z) ∈ C of the
complex extension A(z) in (2.15) of A(y).
Theorem 2.5. For z ∈ C, consider the family (2.15) of linear operators where Ā, B
satisfy (2.16). Fix y ∈ U = [−1, 1]. Let λ(y) ∈ σ(A(y)) ⊂ R be a discrete eigenvalue
of A(y) of multiplicity m ∈ N. Then the following holds:

a) There exist m (not necessarily distinct) complex-valued functions of z which
are single-valued and analytic near z = y, denoted by λ(1), λ(2), . . . , λ(m),
such that λ(j)(y) = λ(y), j = 1, . . . , m and λ(j)(z), j = 1, . . . , m are discrete
eigenvalues of A(z) near z = y,

b) there are no other eigenvalues of A(z) near λ(z),
c) there are m complex-analytic V -valued functions w(1), . . . , w(m), such that

w(1)(z), . . . , w(m)(z) are corresponding eigenvectors of A(z),
d) the domains of analyticity contain discs {z ∈ C : |z − y| < ε} where ε =

ε(κ) ∼ κ−1 as κ → 0.
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Proof. Parts a) and b) is Theorem XII.13 in [26]. Part c) is Problem 17 in Sect. XII
of [26] applied to the projector P (β) with β = z − y in Theorem XII.13 of [26]. Part
d) follows by a scaling argument.
The following quantitative bound on the parameter range ensuring ellipticity will be
useful later for obtaining uniform bounds on convergence radii.
Theorem 2.6. Assume (2.16). Fix y ∈ U . Let λ(y) ∈ σ(A(y)) be isolated and
nondegenerate. Define the spectral gap γ = γ(y, λ(y)) = dist(λ(y), σ(A(y)) \ {λ(y)}).
Then there exists z "→ λy(z) ∈ σ(A(z)) with λy(y) = λ(y) which is complex-analytic in

the disc E(y, κ, γ/λ(y)) = {z ∈ C : |z − y| < 1
2

κ−1−|y|
1+λ(y)/γ }. Moreover, λy(z) ∈ σ(A(z))

is isolated and nondegenerate for each z ∈ E(y, κ, γ/λ(y)).
Proof. We have ||Bv||V ∗ ≤ κᾱ||v||V ≤ κ

1−κ|y| ||A(y)v||V ∗ for all v ∈ V by coercivity

||A(y)v||V ∗ ≥ ᾱ(1 − |y|κ)||v||V . Theorem XII.8 of [26] (Kato-Rellich) and Theorem
XII.11 of [26] show the claimed analyticity inside the circle of radius

r = [a + ε−1[b + a(λ(y) + ε)]]−1 =
1

2

κ−1 − |y|
1 + λ(y)/γ

(2.18)

with a = κ
1−κ|y| , b = 0 and ε = 1

2γ.
Remark 2.7. Note that

1

1 + δ−1
=

{
δ + O(δ2), for δ → 0,

1 − δ−1 + O(δ−2), for δ → ∞.
(2.19)

Thus, as the ratio δ = γ/λ(y) becomes small, the size of the domain analyticity is
critically restricted by γ being relatively small. If γ is large compared to λ(y), the size
of the domain of analyticity is essentially given by κ−1, cf. Theorem 2.5.
An analytic continuation argument yields the “y-uniform” version of Theorem 2.6.
Corollary 2.8. Suppose that U 4 y "→ λ(y) ∈ σ(A(y)) is continuous and such that
for each y ∈ U , λ(y) is isolated and nondegenerate. Let δ > 0 be such that

∀y ∈ U : dist(λ(y), σ(A(y)) \ {λ(y)}) ≥ δλ(y).

Then we can extend y "→ λ(y) to a functions z "→ λ(z) which is analytic on E(κ, δ) =⋃
y∈U E(y, κ, δ), s.t. λ(z) ∈ σ(A(z)) is isolated and nondegenerate for all z ∈ E(κ, δ).

Proof. We need the following special case of Lemma 2.11 below: for all y ∈ U there
exists r > 0 s.t. for any two continuous functions f1, f2 : Br(y) → σ(A(z)) holds

f1(y) = λ(y) = f2(y) ∀y ∈ Br(y) ∩ U =⇒ f2(z) = f2(z) ∀z ∈ Br(y),

where Br(y) = {z ∈ C : |z − y| < r}.
We only sketch the rest of the proof of the theorem, omitting the technical details.
Let U ⊂ K1 ⊂ K2 ⊂ . . . ⊂ E(κ, δ) be a monotonic sequence of compact sets such
that E(κ, δ) =

⋃
n∈N

Kn. On every Kn an extension λn of λ can be constructed using
Theorem 2.6 which is complex-analytic on any open B ⊂ Kn and unique by Lemma
2.11. Moreover, all λn agree on their respective domains of definition, giving rise to
a complex-analytic extension of λ to E(κ, δ), again unique by Lemma 2.11.

2.3.2. Case M ≥ 1. In generalizing the above results to M ≥ 2 parameters,
care is necessary, as the following example due to Rellich shows, cf. [26, p. 60].
Example 2.9. Consider the two-parameter family of symmetric 2 × 2 matrices

A(y1, y2) = y1

(
1 0
0 −1

)
+ y1

(
0 1
1 0

)
.
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Then A is linear, hence entire analytic in y1 and y2, and symmetric for real y; how-
ever, its eigenvalues λ(y1, y2) = ±

√
y2
1 + y2

2 are not real-analytic with respect to y1, y2

in any vicinity of the origin. Notice also that A(0, 0) has a double eigenvalue 0.
In this section we derive sufficient conditions which preclude this kind of singularity.
For technical reasons we focus on eigenvalues which are isolated and nondegenerate.
The following theorem is a local result on holomorphic dependence of an isolated and
nondegenerate eigenvalue on the parameters.
Theorem 2.10. Suppose z ∈ CM is such that A(z) has an isolated and nondegenerate
eigenvalue λ(z). Pick m ∈ N, and write em = (0, . . . , 0, 1, 0, . . .), nonzero in m-th
coordinate. Then ∃εm(z) > 0 s.t. for Em := {ζm ∈ C : |ζm| < εm(z)} holds:

1. there exists a unique complex-analytic function

Em 4 ζm "→ λ(z + emζm) ∈ σ(A(z + emζm)).

2. λ(z + emζm) is isolated and nondegenerate for all ζm ∈ Em.
3. there exists a complex-analytic V -valued function

Em 4 ζ "→ w(z + emζm) ∈ V

such that w(z + emζm) is a corresponding eigenvector for all ζm ∈ Em.
Proof. Note first that for any r > 0 the complex-analytic operator-valued function
ζ "→ A(z + emζ) is uniformly bounded on the closed disk {ζ ∈ C : |ζ| ≤ r}. Thus, by
[26, Exercise XII.8], the Kato-Rellich theorem [26, Theorem XII.8] applies.
We now prove the following lemma ensuring uniqueness of the extension.
Lemma 2.11. Let B ⊂ U be connected by polygonal paths in the following sense: for
any za, zb ∈ B there exist n ∈ N, z0, . . . , zn ∈ B with z0 = za, zn = zb and

[zk−1, zk] := {tzk−1 + (1 − t)zk : t ∈ [0, 1]} ⊂ B for all k = 1, . . . , n.

Take continuous functions f, g : B → C with f(z), g(z) ∈ σ(A(z)) for all z ∈ B such
that f(z) and g(z) are isolated and nondegenerate for all z ∈ B. If f(z) = g(z) for
some z ∈ B, then f(z) = g(z) for all z ∈ B.
Proof. Suppose to the contrary that for some za, zb ∈ B we have f(za) = g(za) and
f(zb) -= g(zb). Let φ : [0, 1] → B be a continuous function with φ(0) = za and
φ(1) = zb. Without loss of generality we can assume that

• φ(t) = za + t(zb − za),
• ∀ε > 0 there exists t ∈ (0, ε) with f(φ(t)) -= g(φ(t)) (to this end notice that
{z ∈ B : f(z) = g(z)} is closed in B),

• the family of operators ζ "→ Ã(ζ) = A(za + ζ(zb − za)), |ζ| < 2 is well-defined
and is complex-analytic.

By the Kato-Rellich theorem [26, Theorem XII.8], there exists exactly one point
E(ζ) ∈ σ(Ã(ζ)) close to E(0) = f(za) = g(za) for ζ small enough, w.l.o.g. for |ζ| < 2
by rescaling (zb − za). But this is a contradiction to f(zb) -= g(zb) if we set ζ = 1.
In the following (Theorem 2.13) we identify the range of z ∈ CM close to the parameter
set U such that the conditions of Theorem 2.10 apply. We start with a Lemma.
Lemma 2.12. Fix y ∈ U = [−1, 1]M and ζ ∈ CM . Assume that for some p ∈ (0, 1]

B(p) :=
∑

m≥1

||Bm||pL(V,V ∗) (2.20)
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is finite. Assume κ := 1
αB(p) supm≥1 |ζm|||Bm||1−p

L(V,V ∗) < ∞, where α > 0 is as in

(2.9). Then

||
∑

m≥1

ζmBm||L(V,V ∗) ≤ B(p) sup
m≥1

|ζm|||Bm||1−p
L(V,V ∗), (2.21)

and moreover, for ᾱ := α, κ, Ā := A(y) and B :=
∑

m≥1 ζmBm we have (2.16).
Proof. Equation (2.21) follows by the triangle and the Hölder inequalities. Thus,
||B||L(V,V ∗) ≤ κᾱ and (2.16) holds by the assumption that ᾱ = α and Ā = A(y) .
The results of this section are now combined in the following theorem.
Theorem 2.13. For the family of operators A(y), y ∈ U assume that i) A(y) is of
the form (2.12), ii) (2.8) and (2.9) hold, iii) for a p ∈ (0, 1] that the perturbations
are p-summable as in (2.20), iv) λ(y) ∈ σ(A(y)) is an isolated and nondegenerate
eigenvalue for all y ∈ U with corresponding eigenfunction w(y) ∈ V , ||w(y)||H = 1
and v) the function U 4 y "→ (λ(y), w(y)) ∈ R × V is continuous. Finally, assume
that vi) there exists δ > 0 such that dist(λ(y), σ(A(y))\{λ(y)}) ≥ δλ(y) for all y ∈ U .

Let ε ∈ (0, 1). Define τm := (1 − ε)
α||Bm||p−1

L(V,V ∗)

2B(p)(1+δ−1) , m ≥ 1 and

E(τ) := {z ∈ CM : dist(zm, [−1, 1]) < τm}. (2.22)

Then (λ, w) can be extended to a jointly complex-analytic function on E(τ).
Proof. For any z ∈ E(τ) we first identify a candidate λ(z) ∈ σ(A(z)) which is isolated
and nondegenerate. Fix z ∈ E(τ). Take y = y(z) ∈ U with |zm − ym| < τm, m ≥ 1.
Define ζ = z − y. Obviously, |ζm| < τm and therefore

B(p) sup
m≥1

|ζm|||Bm||1−p
L(V,V ∗) ≤ (1 − ε)

α

2(1 + δ−1)
.

Thus, for κ := 1
αB(p) supm≥1 |ζm|||Bm||1−p

L(V,V ∗) we have (1−ε)−1 ≤ 1
2κ

1
1+δ−1 . Consider

the complex-analytic operator-valued function t "→ A(y+ tζ) = A(y)+ t
∑

m≥1 ζmBm.

By Corollary 2.8 and Lemma 2.12 there exists a complex-valued function t "→ λ̃(y +
tζ) ∈ σ(A(y + tζ)) which depends holomorphically on the parameter t in the the disk

{t ∈ C : |t| < (1 − ε)−1} ⊂ {t ∈ C : |t| <
1

2κ

1

1 + δ−1
}

and which is such that λ̃(y + tζ) is isolated and nondegenerate eigenvalue, whenever
|t| < 1

2κ
1

1+δ−1 , in particular for t = 1. Thus, λ̃(y+ζ) is a candidate for the holomorphic

extension λ(z) of the parametric eigenvalue. By Lemma 2.11, λ̃(y + ζ) is, in fact, the
same eigenvalue for any choice of y ∈ U , ζ ∈ CM satisfying y + ζ = z. Therefore,
λ(z) := λ̃(y + ζ) is well-defined. Similar considerations apply to the eigenfunction
w(z). In the remainder of the proof, we distinguish two cases:
Case M < ∞. By Theorem 2.10 and Lemma 2.11, the function (λ, w) is separately
complex-analytic in E(τ). The classical Hartogs’ theorem [21, Theorem 2.2.8] implies
joint complex-analyticity of (λ, w) on E(τ).
Case M = ∞. The function (λ, w) is analytic on E(τ) in the sense of Definition 2.3.1
of [20]. The claim therefore follows using [20, Prop. 3.1.2] and [20, Theorem 3.1.5].
Remark 2.14. Notice that in (2.22) summability with p < 1 is required in (2.20) in
order for the analyticity region E(τ) in (2.22) to increase with dimension m.
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3. Galerkin discretization of abstract variational eigenvalue problems.

To prepare the convergence analysis of the the Smolyak-Galerkin approximation of
the parametric eigenvalue problems we recapitulate abstract results for the Galerkin
method for elliptic eigenvalue problems from [2].
Variational approximations of the abstract eigenvalue problem (2.4) are defined in
terms of a one-parameter family {Vh}h>0 ⊂ V of finite-dimensional subspaces of
increasing dimension N(h) → ∞ as h → 0, which is dense in V , i.e., for all u ∈ V :
limh→0 infχ∈Vh ||u − χ||V = 0. We assume that

inf
0#=u∈Vh

sup
0#=v∈Vh

|a(u, v)|
‖u‖V ‖v‖V

≥ γ(h) > 0. (3.1)

We further assume stability of {Vh}h>0 in the sense that

∀u ∈ V : lim
h→0

γ(h)−1 inf
χ∈Vh

‖u − χ‖V = 0. (3.2)

We define Ph as the a(·, ·) projection of V onto Vh by

∀u ∈ V, v ∈ Vh : a(Phu, v) = a(u, v). (3.3)

The projection Ph is quasi-optimal in V :

||u − Phu||V ≤
(

1 +
C1

γ(h)

)
inf

χ∈Vh

‖u − χ‖V . (3.4)

Galerkin approximations (λh, wh) of eigenpairs are obtained by restricting the abstract
eigenvalue problem (2.4) to Vh:

find λh ∈ C and 0 -= wh ∈ Vh s.t. ∀v ∈ Vh : a(wh, v) = λh (wh, v)H . (3.5)

Equation (3.5) is a matrix eigenvalue problem of dimension N(h) = dimVh, so that
there exist N(h) many, in general complex eigenvalues λj(h), j = 1, . . . , N(h). By
(3.1), the eigenvalues are non-zero. The pair (λh, wh) is an eigenpair of (3.5) if and
only if (λ−1

h , wh) is an eigenpair of the compact operator Th : V → Vh defined by

∀u ∈ V, v ∈ Vh : a(Thu, v) = (u, v)H . (3.6)

The operator Th can be written as PhT .
Let now λ ∈ C be an eigenvalue of (2.4) with algebraic multiplicity m and ascent
α(λ), i.e., λ−1 ∈ C is an eigenvalue of the operator T with algebraic multiplicity m
and α(λ) is the ascent of λ−1 − T . Since T is compact, Th = PhT → T in norm in
L(V, V ) by (3.4) and, as h → 0, there are m discrete eigenvalues λ1(h), . . . , λm(h) of
(3.5) that converge to λ. Define

M(λ) := {w : w is a generalized unit eigenvector of (2.4) for λ},
M∗(λ) := {w : w is a generalized adjoint unit eigenvector of (2.4) for λ}

and their approximation bounds

εh(λ) = sup
u∈M(λ)

inf
χ∈Vh

‖u − χ‖V and ε∗h(λ) = sup
u∈M∗(λ)

inf
χ∈Vh

‖u − χ‖V . (3.7)

There holds the following general result on the asymptotic eigenvalue error analysis.
Theorem 3.1. Consider the variational eigenvalue problem (2.4) and its variational
approximation (3.5). For λ ∈ σ(A), let α(λ) denote the ascent of λ−1 − T . Then:
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1. There exists a constant C > 0 such that, as h → 0,

|λ − λ̂(h)| ≤ Cγ(h)εh(λ)ε∗h(λ) where λ̂(h) =
1

m

m∑

j=1

λj(h), (3.8)

2. and

∣∣λ − λ̌(h)
∣∣ ≤ Cγ(h)−1εh(λ)ε∗h(λ) where λ̌(h) =



 1

m

m∑

j=1

1

λj(h)





−1

,

(3.9)
3.

|λ − λj(h)| ≤ C(γ(h)−1εh(λ)ε∗h(λ))1/α(λ). (3.10)

4. Let λ(h) be an eigenvalue of (3.5) such that limh→0 λ(h) = λ ∈ σ(A). Suppose
further that for each h > 0 the vector wh ∈ Vh is a unit vector which satisfies
(λ(h)−1 − Th)kwh = 0 for some positive integer k ≤ α(λ). Then, for any
% ∈ N0 with k ≤ % ≤ α(λ) there is a vector uh ∈ V such that

(λ−1 − T ))uh = 0 and ||uh − wh||V ≤ C(γ(h)−1εh(λ))()−k+1)/α(λ).
(3.11)

4. Parametric elliptic EVPs. Let D ⊂ Rd be a bounded Lipschitz domain.
We consider the parametric diffusion operator A(y) given by

(A(y)ζ)(x) = −∇x · (a(x, y)∇xζ(x)), x ∈ D, y ∈ U (4.1)

for a family of diffusion coefficients y "→ a(·, y), which is parametrized by a vector
y = (y1, y2, . . .) belonging to the set U of admissible parameters, defined in (2.6).
The parameters ym, m = 1, 2, . . . could denote design parameters of an engineering
system, or states of an optimal controller; they could also denote random coefficients
in a wavelet or Karhunen-Loève expansion of the random field y "→ a(·, y). We present
examples for the former scenario below.

4.1. Assumptions on the data. We suppose that in addition to being bounded
and Lipschitz the domain D ⊂ Rd is simply connected. We denote by (·, ·) the
L2(D) scalar product which extends uniquely by continuity to the duality pairing on
H1

0 (D) × H−1(D), again denoted by (·, ·).
The parameter dependence of the eigenvalue problem enters through the diffusion
coefficient a. We assume that a : U → L∞(D) is uniformly positive, i.e., that there
exist constants 0 < amin ≤ amax < ∞ such that

∀y ∈ U : 0 < amin ≤ ess inf
x∈D

a(x, y) ≤ ||a(·, y)||L∞(D) ≤ amax < ∞. (4.2)

For every y ∈ U consider the parametric Dirichlet eigenvalue problem:

find λ(y) ∈ R and 0 -= w(y) ∈ H1
0 (D) s.t. A(y)w(u) = λ(y)w(y). (4.3)

Of particular interest is the case when the diffusion coefficient depends affinely on the
parameter vector y ∈ U (for background on the following assumption see [8, 11]):
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Assumption 4.1. The parametric diffusion coefficient is of the form

a(x, y) = ā(x) +
∑

m≥1

ymψm(x). (4.4)

with ym ∈ [−1, 1], and

∑

m≥1

||ψm||L∞(D) ≤
κ

1 + κ
āmin (4.5)

with āmin = ess infD ā, κ > 0. Further, we assume

∑

m≥1

||ψm||pW 1,∞(D) < ∞ (4.6)

with some p ∈ (0, 1). In particular, U 4 y "→ a(·, y) ∈ W 1,∞(D).
Remark 4.2. Equation (4.6) implies for (4.3) that ∆w(y) ∈ L2(D) for all y ∈ U .
If D ⊂ Rd is convex, this in turn implies that w(y) ∈ W = H2(D) ∩ H1

0 (D) for
all y ∈ U . For polygonal domains D ⊂ R2 with straight sides, the same statement
holds for W being a weighted Sobolev space, see [1]. For simplicity we assume in the
following that D ⊂ Rd is convex.
Assume z ∈ CM is such that dist(z, [−1, 1]) < τm ∈ (0,∞), m ≥ 1. Then (4.3) implies

−a(·, z)∆w(z) = λ(z)w(z) + ∇w(z) ·∇a(·, z). (4.7)

The mappings z "→ a(·, z) and z "→ ∇a(·, z) are jointly complex-analytic with values
in L∞(D) by (4.6). Assume that the pair (λ(z), w(z)) is jointly complex-analytic in
an open neighborhood E of z with values in R × H1

0 (D). Then z "→ w(z) is jointly
complex-analytic on E with values in L2(D). Assume that supz∈E ||a(·, z)||W 1,∞(D) <
∞ and that inf(x,z)∈D×E a(x, z) > 0. From (4.7) we obtain ∆w(z) ∈ L2(D). More-
over, z "→ ∆w(z) is jointly complex-analytic on E with values in L2(D), as can be
easily checked using (4.7). Under (4.6), these assumptions are satisfied in the set-
ting of Theorem 2.13, for z ∈ E(τ̃ ) where τ̃m = min{τm, c||ψm||p−1

W 1,∞(D)} with c > 0

arbitrary and τ and E(·) are as in (2.22). Thus we obtain the following corollary.
Corollary 4.3. In the setting of Theorem 2.13 with (4.1) and (4.4), assuming in
addition (4.6) and D ⊂ Rd convex, the eigenpair (λ, w) can be extended to a jointly
complex-analytic function on E(τ̃ ) with values in C × (H2(D) ∩ H1

0 (D)), where τ̃ is
given by τ̃m = min{τm, c||ψm||p−1

W 1,∞(D)} with c > 0 being arbitrary, and τ and E(·)
are as in (2.22).
The weak formulation of the parametric EVP is obtained in the usual way by testing
(4.3) in H1

0 (D) and integrating by parts. This results in the parametric eigenvalue
probem: for every y ∈ U , find λ(y) ∈ R and 0 -= w(y) ∈ H1

0 (D) such that

(ā∇u(y),∇η) +
∑

m≥1

ym(ψmu(y), η) = λ(y)(u(y), η) ∀η ∈ H1
0 (D). (4.8)

By assumption (4.2) and the Lax-Milgram lemma, for every y ∈ U the operator A(y) ∈
L(H1

0 (D), H−1(D)) is boundedly invertible and by the compactness of the embedding
L2(D) ⊂ H−1(D) for every y ∈ U the inverse T (y) = A−1(y) : L2(D) → H1

0 (D) is
compact. Hence, for every y ∈ U , the elliptic operator A(y) admits a countable set
of eigenvectors {wj(y)}j≥1 ⊂ H1

0 (D) forming an orthonormal basis of L2(D) with
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corresponding eigenvalues 0 < λ1(y) ≤ λ2(y) ≤ . . . and λj → ∞ as j → ∞ which
we assume to be numbered in increasing order, counting multiplicity. Due to the
self-adjointness of A(y), the eigenvalues’ dependence on y ∈ U is Lipschitz [22, Sect.
V.4.3, Theorem 4.10]. This Lipschitz dependence (which fails to hold for general, non
self-adjoint operators) allows us to speak of parametric eigenvalue families.
Remark 4.4. Enumeration of the eigenvalues λj(y) can be done in two ways: first,
as stated above, for every y ∈ U in increasing eigenvalue magnitude, and second, in
increasing eigenvalue magnitude with respect to a reference value of y, e.g. y = 0 ∈ U .
Due to possible crossings of eigenvalues, the two eigenvalue numberings may differ.
Remark 4.5. For every y ∈ U the fundamental or spectral gap λ2(y) − λ1(y) is
strictly positive and λ1(y) is nondegenerate by the Krein-Rutman theorem see e.g.
[19, Theorem 1.2.6]. Thus there exists δ > 0 such that

dist(λ1(y), σ(A(y)) \ {λ1(y)}) ≥ δλ1(y) for all y ∈ U. (4.9)

We are in particular interested in computing for all y ∈ U the “ground state”, i.e.,
the smallest eigenvalue λ1(y) and a corresponding eigenfunction w1(y) of (4.8). This
shall be understood from now on.

4.2. Multilevel finite element spaces in D. We discretize the space V =
H1

0 (D) by means of a dense, nested sequence of subspaces

{0} = V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ V = H1
0 (D),

of finite dimensions n) = dimV) < ∞. Here we assume that V), % ≥ 1 result from a
uniform refinement of a given regular simplicial mesh (other subspace sequences, such
as spectral or p-version finite element discretizations could be considered as well).

With respect to a basis {φ())
i }n!

i=1 for V), the abstract Galerkin discretization (3.5)
becomes a family of parametric matrix eigenvalue problems, the Galerkin projections
of (4.8) onto V): for y ∈ U , find µ)(y) ∈ R and 0 -= u)(y) ∈ V) such that

(ā∇u(y),∇η) +
∑

m≥1

ym(ψm∇u(y),∇η) = µ)(y)(u(y), η) ∀η ∈ V), (4.10)

where, for each y ∈ U and % = 0, 1, . . ., (µ)(y), u)(y)) denotes the Galerkin approxi-
mation of the first eigenpair in V).
The algebraic structure of (4.10) is particularly convenient for computation. Indeed,

denoting by A
())
0 , A

())
m , m ≥ 1 the stiffness matrices and by M()) the mass matrix

w.r.t. the basis {φ())
i }n!

i=1, given by

(A())
0 )ij = (ā∇φ())

j ,∇φ())
i ), (A())

m )ij = (ψm∇φ())
j ,∇φ())

i ), M
())
ij = (φ())

j , φ())
i ),

the problem (4.10) reads for any given y ∈ U : find

u)(y) ∈ Rn! s.t. (A())
0 +

∑

m≥1

ymA())
m )u)(y) = µ)(y)M())u)(y). (4.11)

Thus, the matrices need only be assembled once if a hierarchic basis is used, and once
on each level of interest % ∈ N0 if standard hat functions are used. Note that the
method presented below uses (4.11) only with finitely supported sequences (ym)m≥1.
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Remark 4.6. For the ground state we know that the eigenvalue is separated and that
the corresponding eigenvector can be chosen to be positive, see Remark 4.5, uniformly
in the choice of the parameter by Lipschitz dependence of the eigenpair on the parame-
ter. Therefore, we normalize the approximate the parametric eigenvector u)(y) at any

given y ∈ U by imposing u)(y)*M())u)(y) = 1 and
∫

D

∑n!

i=1 φ())
i (x)(u)(y))idx ≥ 0.

We make the following assumption on the ansatz spaces V), which is satisfied by the
usual finite element ansatz spaces (see, e.g., [10]).
Assumption 4.7. There exists a t0 > 0 and C > 0 such that for all t ∈ [0, t0] holds:

inf
vh∈V!

||vh − v||H1
0 (D) ≤ C2−t)||v||W (4.12)

for all % ∈ N0 and v ∈ W . Here, W = H1
0 (D) ∩ H1+t(D), cf. Remark 4.2. In

particular, (4.12) implies (3.2).

4.3. Parametric deterministic eigenvalue problem. In this section we dis-
cuss the numerical solution of the parametric matrix eigenvalue problems (4.11) for

fixed y ∈ U . By Assumption (4.2), for each y ∈ U , % ∈ N0 the matrix A
())
0 +

∑
m≥1 ymA

())
m is symmetric positive definite. Setting ym = 0, m > M , we conclude

that the truncated matrix A
())
0 +
∑M

m=1 ymA
())
m has the same property uniformly w.r.t.

M ∈ N. Hence, for any y ∈ U , % ∈ N0, M ∈ N, the truncated problem

u
(M)
) (y) ∈ Rn! : (A())

0 +
M∑

m=1

ymA())
m )u(M)

) (y) = µ(M)
) (y)M())u

(M)
) (y) (4.13)

is a symmetric positive definite generalized matrix eigenvalue problem. By the same
reasoning, the first eigenvalue of the truncated system (4.13) is simple, i.e., of single
multiplicity, uniformly in y ∈ U for all % ≥ 0 sufficiently large, see Corollary 4.9. We

identify u)(y1, y2, . . . , yM , 0, . . .) = u
(M)
) (y1, . . . , yM ) and denote by u)(y) ∈ V) the

function

u)(y) =
n!∑

i=1

φ())
i (u)(y))i.

Any numerical method for symmetric generalized eigenvalue problems applies to
(4.13), see, e.g. [28, 17, 13, 18]. For our computations we use the JDBSYM library
[16], which implements a variant of the Jacobi-Davidson method.

4.4. Abstract error bounds. Based on the abstract eigenvalue approximation
theory in Section 3, we obtain the following a-priori error bounds, cf. [2, Sect. 8].
Proposition 4.8. Consider the eigenvalue problem (4.3) (or in variational form
(2.11)) with the operator A(y) being the parametric diffusion operator in (4.1). Let
assumptions (4.2), (4.4) and (4.5) hold. For some m ≥ 1 let (λm(y), wm(y)) be an
eigenpair of the EVP (4.3) with eigenspace of multiplicity one for all y ∈ U , i.e.,
eigenvalue crossings are excluded.
Then there exist constants C > 0, h0 > 0 such that the Galerkin eigenvalue approx-
imation from the finite element space V) is quasi-optimal uniformly in y ∈ U : for
every y ∈ U and every 0 < h < h0 holds

||wm(y) − wh
m(y)||H1

0 (D) ≤ Cεh(λm(y)) = C inf
vh∈V!

||wm(y) − vh||H1
0 (D). (4.14)
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For the Galerkin eigenvalue approximations holds

|λm(y) − λh
m(y)| ≤ C(εh(λm(y)))2 ≤ C inf

vh∈V!

||wm(y) − vh||2H1
0 (D). (4.15)

Using Remark 4.5, Assumption 4.7 and supy∈U ||wm(y)||W < ∞ we obtain the fol-
lowing corollary.
Corollary 4.9. For h > 0 small enough, the spectral gap of the discretized problem,
λh

2 (y) − λh
1 (y) is strictly positive uniformly in y ∈ U . Moreover, for 0 ≤ t ≤ t0 as in

Assumption 4.1, we have

sup
y∈U

||w1(y) − wh
1 (y)||H1

0 (D) ≤ Cht and sup
y∈U

|λ1(y) − λh
1 (y)| ≤ Ch2t (4.16)

where C < ∞ is independent of h for sufficiently small h > 0.

5. Sparse composite collocation method. In this section we introduce a
generalization of the sparse grid collocation operator introduced in [23, 6]. We start
by collecting the necessary definitions.
Let Ln denote the univariate Lagrange polynomial of degree n ∈ N0 scaled such
that

∫ 1
−1 |Ln(t)|2 dt

2 = 1. For n ∈ N0 let in denote the Lagrange interpolation op-

erator of degree n which maps a continuous function v ∈ C0([−1, 1]) to a poly-
nomial inv of degree n with (inv)(z) = v(z) in the Gauss-Legendre points z ∈
{−1 < zn

0 < . . . < zn
n < 1 : Ln+1(zn

k ) = 0}. Denote by {wn
k }n

k=0 ⊂ (0,∞) the corre-
sponding Gauss-Legendre quadrature weights [15]. Define jn = in − in−1, n ≥ 0
where, by convention, i−1 := 0. Let F ⊂ NN

0 denote the collection of all multi-
indices ν ∈ NN

0 such that for each ν ∈ F the support supp ν = {m ∈ N : νm -= 0} is
finite. For a multiindex ν ∈ F we denote by Lν the tensorized Legendre polynomial
Lν = Lν1 ⊗Lν2 ⊗ · · · , that is Lν(y) =

∏
m≥1 Lνm(ym) for all y ∈ U . For a multiindex

set Λ ⊂ F we denote by PΛ the span of {Lν : ν ∈ Λ}. Note that PF is dense in L2
π(U),

where π is the uniform probability measure. Below we frequently use the notation
1A = 1 if A is true and 1A = 0 otherwise, as well as ν̃ ≤ ν (or ν ≥ ν̃) iff ν̃m ≤ νm

for all m ≥ 1. For any finite multiindex set Λ ⊂ F we define the sparse collocation
operator

IΛ =
∑

ν∈Λ

⊗

m≥1

jνm (5.1)

with the convention I∅ := 0. Due to Λ being finite, for each of the finitely many
ν ∈ Λ the tensorized operator

⊗
m≥1 jνm has only finitely many non-trivial increment

factors jνm , m ∈ supp ν, while jνm = j0 = i0 for m /∈ supp ν. This implies that IΛ is
well defined on bounded continous functions on U . The operator IΛ has appeared in
various variants, i.e., for specific choices of Λ in the literature, see [6, 3, 7, 4, 24, 23]
and references therein. In particular, the generic definition (5.1) accomodates all
formulas of [5].
Definition 5.1. A multiindex set Λ ⊆ F is called monotone if the following impli-
cation holds:

∀ν ∈ Λ : ν̃ ∈ F ∧ ν̃ ≤ ν ⇒ ν̃ ∈ Λ.

In particular, {}, {0} and F are monotone. Monotone multiindex sets Λ for IΛ defined
by (5.1) are of particular interest, as the following lemma shows.
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Lemma 5.2. Let Λ ⊂ F be finite and monotone. Then IΛp = p for all p ∈ PΛ.
Moreover, IΛ is unisolvent on PΛ, i.e., ∀p ∈ PΛ: IΛp = 0 implies p = 0. Further,
defining QΛ as the span of the monomials {U 4 y "→ yν : ν ∈ Λ}, we have dim PΛ =
#Λ = dim QΛ < ∞ and moreover QΛ = PΛ.
Proof. Observe that I{ν′}Lν =

⊗
m≥1 jν′

m
Lνm = 0 if ν′

m > νm for at least one m ∈ N.
This allows to write for ν ∈ Λ

IΛLν =
∑

ν′≤ν

⊗

m≥1

jν′
m

Lνm =
⊗

m≥1

νm∑

ν′
m=0

jν′
m

Lνm =
⊗

m≥1

Lνm = Lν , (5.2)

which shows the first assertion. Let now p ∈ PΛ = span{Lν : ν ∈ Λ} s.t. IΛp = 0. By
(5.2), linearity of IΛ and linear independence of the set {Lν}ν∈Λ imply p = 0. The
statement dimPΛ = #Λ = dim QΛ < ∞ is obvious. Since Λ is monotone, we have
Lν ∈ QΛ ∀ν ∈ Λ, hence PΛ ⊆ QΛ. Now dim PΛ = dim QΛ < ∞ implies PΛ = QΛ.
Note that in general, however, IΛ is not interpolatory, as the cardinality of the set of
collocation nodes in (5.1) may be larger than dimPΛ, as the following example shows.
Example 5.3. Consider Λ = {ν0 = 0, ν1 = (1, 0, 0, . . .), ν2 = (0, 1, 0, 0, . . .)} con-
sisting of three multiindices. The corresponding sparse collocation operator IΛ is
then based on the following five collocation nodes: zν0

0 = 0, zν1
− = (− 1√

3
, 0, . . .),

zν1
+ = (+ 1√

3
, 0, . . .), zν2

− = (0,− 1√
3
, 0, . . .) and zν2

+ = (0, + 1√
3
, 0, . . .).

The following observation will be useful: for any monotone Λ ⊂ F we have

∀ν ∈ Λ :
∏

m≥1

(νm + 1) = #{ν̃ ∈ Λ : ν̃ ≤ ν}. (5.3)

Lemma 5.4 (Number of collocation points). Let Λ ⊂ F be monotone and finite.
Then the number collocation points in IΛ is at most (#Λ)2.
Proof. We can write IΛ as IΛ =

∑
ν∈Λ cΛ

ν

⊗
m≥1 iνm , where each term requires∏

m≥1(νm + 1) collocation points by definition of in, n ≥ 0. The number of col-
location points in IΛ can therefore be estimated as

∑

ν∈Λ

∏

m≥1

(νm + 1)
(5.3)
=
∑

ν∈Λ

#{ν̃ ∈ Λ : ν̃ ≤ ν} ≤
∑

ν∈Λ

#Λ = (#Λ)2.

Remark 5.5. Note that the upper bound (#Λ)2 is independent of the “effective
dimension” maxν∈Λ #supp ν. Moreover, the exponent 2 in the upper bound (#Λ)2 on
the number of collocation points in IΛ is sharp, as can be seen from the sequence

Λ) = {(ν1, . . . , νM , 0 . . .) ∈ F : ||ν||)1(N) ≤ %}, % = 0, 1, . . .

where M ≥ 1 is fixed. Indeed, by [6, Sect. 6.2], we have #Λ) =

(
M + %

M

)
while the

number of collocation points in IΛ is given by N),M =

(
2M + %

2M

)
. This yields

N),M ≥
(

2M + %

2M

)2M

! (2M + %)2M ≥ (M + %)2M ≥
(

(M + %)M

M !

)2

≥ (#Λ))
2

with the implied constant independent of % ≥ 0. Thus, N),M ∼ (#Λ))
2 as % → ∞.
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Remark 5.6. For % ≥ 0 let n*
) := 1()≥1)2

). For a monotone and finite Λ ⊂ F
define Λ* :=

⋃
ν∈Λ{ν̃ ∈ F : ∀m ≥ 1 : ν̃m ≤ min{n*

) ≥ νm : % ≥ 0}}. For each % ≥ 0,
n*

) +1 is the number of nodes in the Clenshaw-Curtis quadrature rule of order n*
) +1.

The nodes of these Clenshaw-Curtis quadrature rules are nested, cf. [23]. Thus, if
we defined in to be the Lagrange interpolation operator based on the nodes of the
Clenshaw-Curtis quadrature rule of order min{n*

) ≥ n : % ≥ 0}+ 1, for monotone and
finite Λ the number of collocation points in IΛ" would be exactly #Λ* = dim PΛ" , as
opposed to the possibly quadratic growth in Remark 5.5.
The following is a characterization of IΛ for monotone multiindex sets Λ ⊂ F by an
expansion into tensorized multivariate Legendre polynomials.
Lemma 5.7. Let Λ ⊂ F be monotone and finite, and assume cΛ

ν ∈ R, ν ∈ Λ
are such that IΛ =

∑
ν∈Λ cΛ

ν

⊗
m≥1 iνm . Then for f ∈ C0(U ; R) we have IΛf =

∑
ν′∈Λ dΛ

ν′(f)Lν′ , where dΛ
ν′(f), ν′ ∈ Λ is defined by

dΛ
ν′(f) =

∑

ν∈Λ
ν≥ν′

cΛ
ν

∑

η≤ν

wν
ηLν′(zν

η )f(zν
η ),

where wν
η =
∏

m≥1 wνm
ηm

∈ R and zν
η = (zν1

η1
, zν2

η2
, . . .) ∈ U , η ≤ ν ∈ Λ.

Proof. We have the univariate formula inv =
∑

n′≤n dn′(v)Ln′ with coefficients
dn′(v) =

∑
k≤n′ wn

k Ln′(zn
k )v(zn

k ) as can be immediately checked using the fact that
the Gauss-Legendre quadrature formula p "→

∑
k≤n wn

k p(zn
k ) integrates polynomials

p = Ln′Ln′′ of degree at most 2n+1 exactly [15, (1.4.7) and (1.4.14)]. Thus we obtain

IΛf =
∑

ν∈Λ

cΛ
ν




⊗

m≥1

iνm



 f =
∑

ν∈Λ

cΛ
ν

∑

ν′≤ν

Lν′

∑

η≤ν

wν
ηLν′(zν

η )f(zν
η ),

which, after exchanging the summation, yields the claim.
In what follows, we specialize our considerations to multiindex sets Λ of a particu-
lar structure, motivated by a-priori estimates obtained in [12] for coefficients a(x, y)
satisfying Assumption 4.1. To describe the structure of these sets, let c0 denote the
collection of non-increasing sequences of reals less than one and tending to zero:

c0 = {µ = (µ1, µ2, . . .) ∈ [0, 1)N : 1 > µ1 ≥ µ2 ≥ · · · and lim
m→∞

µm = 0} .

For µ ∈ c0, ν ∈ F we write µν =
∏

m∈N
µνm

m (with 00 := 1) and for ε > 0 we define

Λ(µ, ε) = {ν ∈ F : µν ≥ ε}. (5.4)

Clearly, for any µ ∈ c0 and any ε > 0 the multiindex set Λ(µ, ε) is finite and monotone.
The multiindex sets Λ(µ, ε) were introduced in [9] and investigated in the context of
the stochastic Galerkin method for elliptic stochastic PDEs in [8]. The next result
give precise asymptotics for the cardinality of the sets Λ(µ, ε) defined in (5.4) for a
sequence µ ∈ c0 which models algebraic decay of terms in the expansions (2.12), (4.4).
Lemma 5.8. For µ ∈ c0 given by µm = (1 + m)−σ with σ > 1,

1. as ε → 0, the cardinality of the set Λ(µ, ε) in (5.4) equals

#Λ(µ, ε) = F (ε−1/σ) where F (x) = x
e2

√
log x

2
√

π(log x)3/4
(1 + O(1/ logx))

2. for p > 1/σ we have supε>0

∑
ν∈Λ(µ,ε)(µ

ν)p < ∞ while for 0 < p ≤ 1/σ we
have

∑
m≥1 µp

m = ∞.
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Here and throughout, the function log always denotes the natural logarithm.
Proof. See [8, Prop. 4.5] for the proof of the first claim. The second is a special case of
[11, Lemma 7.1]. We provide the argument for completeness here. Let 0 < δ < pσ−1,
c(δ) > 0 be such that F (x) ≤ c(δ)x1+δ for x > 1. Take γ = σ/(pσ − 1− δ) and let In

be the interval In = [2−γn, 2−γ(n−1)). Note that

#{ν ∈ F : µν ∈ In} ≤ #Λ(µ, 2−γn) = F (2γn/σ) ≤ c(δ)2γn/σ(1+δ).

We compute

sup
ε>0

∑

ν∈Λ(µ,ε)

(µν)p = lim
ε→0

∑

ν∈Λ(µ,ε)

(µν)p =
∑

n≥1

∑

ν∈F
µν∈In

(µν)p

≤
∑

n≥1

c(δ)2γn/σ(1+δ)2−pγ(n−1)

= c(δ)2pγ
∑

n≥1

2−γn(p−(1+δ)/σ) = c(δ)2pγ ,

which is finite. For 0 < p ≤ 1/σ,
∑

m≥1 µp
m ≥

∑
m≥1(1 + m)−1 diverges.

In Example 5.3 we showed that, in general, #Λ > dim PΛ, i.e., the number of deter-
ministic problems to be solved for the determination of IΛ is larger than the number
of monomials in PΛ which determine the precision of IΛ, cf. (5.6). To facilitate com-
parison with Monte-Carlo methods, we quantify the convergence of IΛ in terms of the
number of deterministic problems to be solved. To this end, we bound dim PΛ = #Λ
for several classes of monotone index sets Λ.
Definition 5.9. For µ ∈ c0 and 0 < ε ≤ 1, define

B(µ, ε) := max{m ≥ 1 : µm ≥ 1}
∑

ν∈Λ(µ,ε)

4#supp ν
∏

m∈supp ν

1 + µm

1 − µm
(5.5)

where Λ(µ, ε) is as in (5.4) and

κ*(µ) := inf{κ > 0 : sup
0<ε≤1

εκB(µ, ε) < ∞},

which may be infinite. We refer to κ*(µ) as asymptotic overhead order of µ ∈ c0.
The class of sequences µ ∈ c0 which have finite asymptotic overhead order κ*(µ) < ∞
includes some important families, as we show in the following.
Lemma 5.10 (Asymptotic overhead order for algebraic decay). For the model se-
quence µm = (1 + m)−σ with algebraic decay with fixed order σ > 1 the asymptotic
overhead order κ*(µ) is bounded by κ*(µ) ≤ 2(1 + log 4)/σ.
Proof. Let 0 < ε ≤ µ1. Clearly max{m ≥ 1 : µm ≥ ε} ≤ ε−1/σ. Using [8, Lemma 4.8]
we therefore have # supp ν ≤ 2 log

(
ε−1/σ

)
if µν is sufficiently small for ν ∈ Λ(µ, ε) to

hold. Thus, for ν ∈ Λ(µ, ε) and any fixed δ > 0 we obtain

4#supp ν
∏

m∈supp ν

1 + µm

1 − µm
" (4 + δ)−2/σ log ε = ε−2 log(4+δ)/σ

µν is small enough and trivially the same bound otherwise. Using #Λ(µ, ε) "
ε−(1+δ)/σ (Lemma 5.8) we obtain for ε → 0

#Λ(µ, ε)max{m ≥ 1 : µm ≥ 1} max
ν∈Λ(µ,ε)

4#supp ν
∏

m∈supp ν

1 + µm

1 − µm
" ε−κδ
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with κδ = (1 + δ)/σ + 1/σ + 2 log(4 + δ)/σ. Thus κ*(µ) ≤ κδ. Since δ > 0 was
arbitrary, the claim follows.
Lemma 5.11 (Isotropic sparse tensor product asymptotic overhead order). Assume
µ ∈ c0 is of the form µ1 = µ2 = · · · = µM = µ0 > 0, µm = 0 for m > M , where
M ∈ N is fixed. Then the asymptotic overhead order of µ is κ*(µ) = 0.
Proof. Take any κ > 0. With L = log ε/ logµ0 (for simplicity an integer) we have [29]

#Λ(µ, ε) =

(
M + L

M

)
≤ (M + L)M

M !
" (− log ε)M " ε−κ for ε → 0

and the other terms in (5.5) are bounded, independently of ε > 0.
Lemma 5.10 and Lemma 5.11 give rise to an even larger family of sequences µ for
which the asymptotic overhead order of µ can be estimated.
Proposition 5.12. Let µ(1) ∈ c0 for which the asymptotic overhead order of µ(1) is

finite, i.e., κ := κ*(µ(1)) < ∞. Let M ≥ 1 and µ ∈ c0 be a sequence with µ(1)
m ≥ µm

for m > M . Then we have κ*(µ) ≤ κ*(µ(1)).

Proof. We assume w.l.o.g. that 0 < ε ≤ min{µ1, µ
(1)
1 }. Define µ(0) ∈ c0 by µ(0)

m =
1(m≤M)µ1, m ≥ 1. Let Hε be the map Hε : Λ(µ(0), ε) × Λ(µ(1), ε) → Λ(µ, ε) given by

h = (ν(0), ν(1)) "→ Hε(h) = 1(µν≥ε)ν with νm =

{
ν(0)

m m ≤ M

ν(1)
m m > M.

Observe that Hε is well-defined and surjective, and thus

#Λ(µ, ε) ≤ #Λ(µ(0), ε)#Λ(µ(1), ε)

due to ε < 1. Noticing further that

max{m ≥ 1 : µm ≥ ε} ≤ max{m ≥ 1 : µ(0)
m ≥ ε}max{m ≥ 1 : µ(1)

m ≥ ε}

and for all h = (ν(0), ν(1)) ∈ H−1
ε (Λ(µ, ε)) we have

suppHε(h) ⊆ supp ν(0) ∪ (supp ν(1) ∩ {m ∈ N : m > M})

and thus also

∏

m∈suppHε(h)

1 + µm

1 − µm
≤




∏

m∈supp ν(0)

1 + µm

1 − µm










∏

m∈supp ν(1)

m>M

1 + µm

1 − µm






≤




∏

m∈supp ν(0)

1 + µ(0)
m

1 − µ(0)
m








∏

m∈supp ν(1)

1 + µ(1)
m

1 − µ(1)
m



 ,

we conclude from Lemma 5.11 that B(µ) ≤ B(µ(0))B(µ(1)) " ε−δε−κ as ε → 0 for
any δ > 0. This shows the claim.
For complex-analytic functions on product domains we obtain the following approxi-
mation property of IΛ for multiindex sets Λ of type (5.4).
Theorem 5.13. Let {ρm}m≥1 be a sequence with ρm > 1 and ρm → ∞. For each
m ≥ 1 let Eρm denote the ellipse in C with sum of semiaxes ρm (as in [14, p. 312]).
Let v : E :=

∏
m≥1 Eρm → C be a jointly complex-analytic function. Define µ ∈ c0 by
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µm = supm′≥m
1

ρm′
, m ∈ N. Assume supm≥1 µmmσ < ∞ for some σ > 0 and that

κ*(µ) < ∞. Take κ > κ*(µ). Then there exists C > 0 such that

||IΛ(µ,ε)v − v||L2
π(U ;C) ≤ C

(
ε1−κ + ε1−1/σ

)
||v||C0(E;C) (5.6)

for all 0 < ε ≤ µ1, where π is the uniform probability measure on U .
Proof. As in [6, 24] we use the following approximation property of the univariate
interpolation operator in for complex-analytic functions f on Eρm :

||f − inf ||L2((−1,1); dt
2 ) ≤ C(ρm)µn

m||f ||C0(Eρm ), n = 0, 1, . . .

where C(ρm) = 4
ρm−1 " µm → 0 as m → ∞. In particular, for n = 1, 2, . . .

||jnf ||L2((−1,1); dt
2 ) ≤ C(ρm)µn

m

(
1 +

1

µm

)
||f ||C0(Eρm ) (5.7)

and there exists C < ∞, independent of v, with
∏

m∈supp ν C(ρm) ≤ C for any ν ∈ F .
Clearly,

||j0f ||L2((−1,1); dt
2 ) ≤ ||f ||C0([−1,1]). (5.8)

Another observation used in the following is this: for 0 < ε* ≤ ε ≤ 1 setting n0 =
max{n ≥ 0 : µn

m ≥ ε*} yields µn0+1
m < ε*, and thus for m ≥ 1

||f −
∑

n≥0

1(µn
m≥ε")jnf ||L2((−1,1); dt

2 ) ≤ C(ρm)ε*µ−1
m ||f ||C0(Eρm ). (5.9)

Similarly to [29, 6] we now write using µ* ∈ c0, µ*
m = µm+1, m ≥ 1 for any 0 < ε ≤ 1

IΛ(µ,ε) =
∑

ν"∈Λ(µ",ε)




∑

n≥0

1(µn
1 ≥ε/(µ")ν")jn



⊗ jµ"
1
⊗ · · ·

and use the decomposition

IΛ(µ,ε) − Id = Id1 ⊗ (IΛ(µ",ε) − Id1*) − J*
Λ(µ,ε) (5.10)

where Idm is the identity on m-variate functions, Id = Idm ⊗ Idm* and

J*
Λ(µ,ε) =

∑

ν"∈Λ(µ",ε)



Id1 −
∑

n≥0

1(µn
1≥ε/(µ")ν")jn



⊗ jµ"
1
⊗ · · · . (5.11)

In the remaining part of the proof we assume without loss of generality ||v||C0(E;C) ≤ 1.

In particular, fixing zj ∈ Eρj , j -= m we have ||zm "→ v(z1, z2, . . .)||C0(Eρm ;C) ≤ 1,

and by stability (5.8) we discard the effect of the countably many trivial increment
operators j0 in (5.11) in the following estimate. For v as in the statement of the claim
and any ε > 0 we now estimate using (5.9) and (5.7)

||J*
Λ(µ,ε)v||L2

π(U ;C) ≤
∑

ν"∈Λ(µ",ε)

C(ρ1)
ε

(µ*)ν" µ−1
1

∏

m∈supp ν"

C(ρm+1)(µ
*
m)ν"

m

(
1 +

1

µ*
m

)

≤ εC(ρ1)µ
−1
1

∑

ν"∈Λ(µ",ε)

∏

m∈supp ν"

C(ρm+1)

(
1 +

1

µm+1

)

≤ ε
∑

ν∈Λ(µ,ε)

∏

m∈supp ν

4
1 + µm

1 − µm
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Repeating this argument using the decomposition (5.10) we obtain (5.6). To this end
observe also that by the elementary inequality [12, (3.13)] for 0 < p ≤ q ≤ ∞

(
∑

m>M

|µm|q
)1/q

≤ M
1
q−

1
p




∑

m≥1

|µn|p




1/p

, (|µm|)m≥1 ∈ %p(N) nonincreasing

for all M ≥ 1 we have, setting q = 1 and p = 1/σ,

||IdM ⊗ (I{0} − IdM*)v||L2
π(U ;C) ≤

∑

m>M

C(ρm) ≤ C
∑

m>M

µm ≤ C||µ||)1/σ(N)M
1−σ

for all M ≥ 1, in particular for M = max{m ≥ 0 : µm ≥ ε} " ε−1/σ.
Remark 5.14. The preceding result remains true for Banach space valued complex-
analytic functions v : E → B.
The bound (5.6) implies convergence IΛ(µ,ε)v → v in L2

π(U) as ε → 0 if µ ∈ c0

has asymptotic overhead order κ*(µ) < 1. Combining Theorem 5.13, Lemma 5.10
and Proposition 5.12 we have the following statement: provided ρm ∼ mσ with a
σ larger than some fixed σ0 > 0, the operator defined in (5.1) based on index sets
Λ((ρ−1

m )m≥1, ·) approximates in mean-square sense a complex-valued function v which
is complex-analytic on

∏
m≥1 Eρm with rate at least (σ−σ0) with respect to #Λ(µ, ε) as

ε → 0 (strong tractability in the sense of [29]). In particular, in this case the so-called
curse of dimension does not appear. The “effective dimension” max{m ≥ 1 : µm ≥ ε},
however, appears in the computation cost of each sample.
Remark 5.15. For a particular choice of µ ∈ c0 (as described below) and ε > 0 the
multiindex set Λ(µ, ε) can be identified with the index set suggested in [23],

Xα(w, N) = {i ∈ NN
+ , i ≥ 1 :

N∑

n=1

(in − 1)αn ≤ w min
1≤n≤N

αn}

where w ∈ R, N ∈ N, α ∈ RN
+ . Indeed, assuming without loss of generality that α is

increasing and setting µm = e−cαm , ε = µM for m = 1, . . . , M , µm = 0 for m > M
for a suitable c > 0 and w = log ε/ logµ1 it is easy to check that ν ∈ Λ(µ, ε) iff
i ∈ Xα(w, M), where we identify νm = im − 1, m = 1, . . . , M .
We now compose the multilevel finite element discretization of the eigenvalue problem
from Sect. 4.2 with the sparse collocation operator (5.1) based on multiindex sets of
the form (5.4). For a given µ ∈ c0 let (εj)j≥0 ∈ c0 be a sequence of thresholds. With
(εj)j≥0 we associate a sequence of nested multiindex sets Λj = Λ(µ, εj), Λ−1 := ∅.
For ν ∈ F we define k(ν) := inf{k ≥ 0 : ν ∈ Λk}, which may be infinite.
Now we consider the following sparse composite collocation operator, proposed for
isotropic collocation in [6] (cf. also [6, Remark 6.2.5]):

λ "→ λ̂L :=
∑

0≤k+)≤L

(IΛk − IΛk−1 )(λ) − λ)−1) (5.12)

and

u "→ ûL :=
∑

0≤k+)≤L

(IΛk − IΛk−1)(u) − u)−1). (5.13)
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Lemma 5.16. We have for L ≥ 0

λ̂L =
∑

ν∈ΛL

I{ν}λL−k(ν) and ûL =
∑

ν∈ΛL

I{ν}uL−k(ν).

Proof. For λ̂L, L ≥ 0 we compute

λ̂L =
L∑

)=0

IΛL−!(λ) − λ)−1) =
L∑

k=0

IΛk (λL−k − λL−(k+1))

=
L∑

k=0

∑

ν∈Λk

I{ν}(λL−k − λL−(k+1)) =
L∑

k=0

∑

ν∈ΛL

1(k(ν)≤k)I{ν}(λL−k − λL−(k+1)),

and thus

λ̂L =
∑

ν∈ΛL

I{ν}

L∑

k=0

1k(ν)≤k(λL−k − λL−(k+1))

=
∑

ν∈ΛL

I{ν}

L∑

k=k(ν)

(λL−k − λL−(k+1)) =
∑

ν∈ΛL

I{ν}λL−k(ν),

and similarly for ûL.
Note that the non-composite case corresponds to setting k(ν̃) = 0 in the above.
From Theorem 5.13 we now deduce the following result.
Theorem 5.17. Let W ⊂ H1

0 (D) and t ≥ 0 be as in Assumption 4.7. Let D ⊂ Rd

be convex according to Remark 4.2. Let {ρm}m≥1 be a sequence with ρm > 1 and
ρm → ∞ as m → ∞. Assume that u : E =

∏
m≥1 Eρm → W is jointly complex-

analytic. Define µm, m ≥ 1 as in Theorem 5.13. Assume that µmmσ → 0 as m → ∞
for some σ > 0. If σ > 0 is sufficiently large there exist κ < 1 and C > 0 such that
for L ≥ 0

||u − ûL||L2
π(U ;H1

0 (D)) ≤ C

(
L∑

k=0

ε1−κ

k 2−t(L−k) + ε1−κ

L

)

||u||C0(E;W ). (5.14)

Proof. If σ > 0 is sufficiently large, by Prop. 5.12 and Lemma 5.10 the asymptotic
overhead order of µ satisfies κ*(µ) < 1. The rest follows as in [7, Sect. 6.3] using
Theorem 5.13 and Corollary 4.9.
Corollary 5.18. Assume κ*(µ) < κ < 1. Set εk := 2−tk/(1−κ), k ∈ N. Then

||u − ûL||L2
π(U ;H1

0 (D)) " L2−tL||u||C0(E;W ). (5.15)

Next, we estimate the computational effort of the approximation u "→ ûL. As in
[29, 23, 6] for computational purposes we rewrite (5.12) in terms of the interpolation
operators

⊗
m≥1 iνm . Using Lemma 5.16 we have

λ̂L =
∑

ν∈ΛL

⊗

m≥1

(iνm − iνm−1)λL−k(ν)

=
∑

ν∈ΛL

∑

η∈{0,1}N

supp η⊆supp ν

(−1)||η||!1(N)

⊗

m≥1

iνm−ηmλL−k(ν)

=
∑

ν∈ΛL

∑

ν̃∈ΛL

1(ν̃≤ν)1(||ν̃−ν||!∞(N)≤1)(−1)||ν̃−ν||!1(N)

⊗

m≥1

iν̃mλL−k(ν).
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Finally, exchanging the sums and renaming the multiindices we obtain

λ̂L =
∑

ν∈ΛL

∑

ν̃∈ΛL

1(ν≤ν̃)1(||ν̃−ν||!∞(N)≤1)(−1)||ν̃−ν||!1(N)

⊗

m≥1

iνmλL−k(ν̃) (5.16)

and similarly

ûL =
∑

ν∈ΛL

∑

ν̃∈ΛL

1(ν≤ν̃)1(||ν̃−ν||!∞(N)≤1)(−1)||ν̃−ν||!1(N)

⊗

m≥1

iνmuL−k(ν̃). (5.17)

Remark 5.19. In (5.16) and (5.17), the number of nontrivial terms in the inner
sum does not affect the overall complexity. Indeed, for ν̃ ∈ ΛL the number of collo-
cation points in I{ν} =

⊗
m≥1 iν̃m is given by

∏
m≥1(ν̃m + 1) which by (5.3) equals

#{ν ∈ ΛL : ν ≤ ν̃}. On the other hand, if ν̃ ∈ ΛL there are at most #{ν ∈ ΛL : ν ≤ ν̃}
multiindices in the outer sum which have a non-trivial contribution from ν̃ in the inner
sum.
Remark 5.20. Standard hat function discretizations can be used to compute ûL in

(5.17). Indeed, let û())
L , % = 0, . . . , L be the contribution of u) in (5.17) and let P)

denote the prolongation operator V)−1 → V). We then have

ûL = û(L)
L + PL(û(L−1)

L + PL−1(. . . P2(û
(1)
L + P1û

(0)
L ) . . .)),

with total cost being proportional to the dimension of the ansatz space VL.
An efficient algorithm for computing ΛL has been given in [8]. Observe that for
ν ∈ ΛL = Λ(µ, εL) we have ν̃ ∈ ΛL and ν̃ ≥ ν iff η = ν̃ − ν satisfies η ∈ Λ(µ, εL/µν).
Thus, the same algorithm (with a straightforward modification to take the con-
straint ||ν̃ − ν||)∞(N) ≤ 1 and the variable level indicator k(ν̃) into account) can
be used to compute the coefficients of the terms

⊗
m≥1 iνmλL−k(ν̃) in (5.16) and⊗

m≥1 iνmuL−k(ν̃) in (5.17) efficiently.
Finally, the total computational effort for the application of the sparse composite
collocation operator to the eigenpair of the ground state (5.16) and (5.17) can be
estimated using the following lemma.
Lemma 5.21. For k ≥ 0 assume #Λk " 2d1k/2, d1 > 0 and that the work for
determination of the numerical solution uk on one collocation node is bounded by a
constant multiple of 2d2k, d2 > 0. Then the computational effort for the numerical
realization of the sparse composite operator applied to the eigenpair of the ground state
is bounded by an absolute multiple of L2max{d1,d2}L as L → ∞.
Proof. We compute from (5.17) using the fact ν ≤ ν̃ ⇒ k(ν) ≤ k(ν̃) and (5.3)

∑

ν∈ΛL




∏

m≥1

(νm + 1)



L2d2(L−k(ν)) " L
L∑

k=0

∑

ν∈Λk\Λk−1




∏

m≥1

(νm + 1)



 2d2(L−k)

≤ L
L∑

k=0

(#Λk − #Λk−1) #Λk2d2(L−k)

≤ L
L∑

k=0

2d1k2d2(L−k)

which shows the claim.
We collect the foregoing in the following theorem.
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Theorem 5.22. For the parametric eigenvalue problem (2.10) assume the particular
form (4.1) with (4.2) and the Karhunen-Loève expansion (4.4). Assume (4.5) holds.
Assume further that D ⊂ Rd is open, bounded and convex. Let p ∈ (0, 1) be such that
(4.6) holds. Then B(p) ≤

∑
m≥1 ||ψm||pL∞(D). Assume 0 < σ ≤ 1

p − 1. For y ∈ U

let (λ(y), u(y)) = (λ1(y), w1(y)) denote the eigenpair with smallest eigenvalue. Let

ε ∈ (0, 1), c > 0 and define τm = min{(1 − ε)
amin||ψm||p−1

L∞(D)

2B(p)(1+δ−1) , c||ψm||p−1
W 1,∞(D)}, m ≥ 1

and E(τ) = {z ∈ CM : dist(zm, [−1, 1]) < τm}, where δ > 0 is as in (4.9). Define
ρm = τm +

√
1 + τ2

m, m ≥ 1 and µm = supm′≥m
1

ρm′
, m ≥ 1. Let 0 ≤ t ≤ 1 and W

be as in (4.12). If p ∈ (0, 1) is small enough then there exists 0 < κ < 1 such that
1. µ has asymptotic overhead order κ*(µ) ≤ κ

2. defining εk = 2−tk/(1−κ) and Λk = Λ(µ, εk) we have #Λk " ε−1/σ
k

3. the sparse composite approximation (5.13) satisfies for L ≥ 0

||u − ûL||L2
π(U ;H1

0 (D)) ≤ C(u)L2−tL = C(u)Lε1−κ

L

and

||u − ûL||L2
π(U ;H1

0 (D)) ≤ C(u)(#ΛL)−σ(1−κ) ≤ C(u)N−σ(1−κ)/2
L

where C(u) = C||u||C0(E(τ);W ) < ∞ with C > 0 independent of L ≥ 0, and
NL denotes the number of collocation points in IΛL .

6. Numerical examples. In the numerical examples we approximate the para-
metric eigenpairs by tensorized polynomials using the sparse collocation method as
described in Sect. 5.
We take an elliptic stochastic operator expanded in its Karhunen-Loève series as
a model example [8]. We set D = (−1, 1) ⊂ R and U = [−1, 1]∞ and let the
diffusion coefficient in (4.1) be a(x, y) = ā(x) +

∑
m≥1 ymam(x), (x, y) ∈ D × U,

where ā and {am}m≥1 ⊂ L∞(D). Specifically, we set ā ≡ 1 and am(x) = cos(πmx)
(m+1)3 ,

x ∈ D, m ≥ 1. This implies ||am||L∞(D) = 1
(m+1)3 , ||∇am||L∞(D) = πm

(m+1)3 such

that ||am||W 1,∞(D) = π
(m+1)2 + O(m−3) as m → ∞. Hence, for all p > 1

2 we have

(||am||W 1,∞(D))m≥1 ∈ %p(N), which implies (4.6). In the computation we set p := 0.6,

B(p) :=
∑M0

m=1 ||am||pL∞(D) with M0 = 105, amin := infx∈D ā−B(1), δ := 2.8 (empiri-

cal estimate from a few samples), ε = 0 and c = 10 in the defintion of µ, see Theorem
5.22. This now completely defines the multiindex sets Λ(µ, ε) for all ε > 0.
Approximate mean E [u] =

∫
U u(y)dπ(y) and variance E

[
u2
]
− E [u]2 of the first

eigenfunction u are shown in Fig. 6.1.
In Fig. 6.2 convergence of the approximate mean E

[
IΛ(µ,ε)λ

]
and the number of

collocation points in IΛ(µ,ε) as function of ε are shown. In space, and for the reference
value of E [λ] an overkill discretization is used. We observe an algebraic rate four for
the decay of the error E

[
IΛ(µ,ε)λ

]
−E [λ] as ε → 0. The number of collocation points

in IΛ(µ,ε) behaves like ε−3/2 as ε → 0.
In order to verify convergence of the parametric eigenvalue in L2

π(U), we employ
the parameterization via the Legendre polynomials, see Lemma 5.7, which allows an
exact computation of the L2

π(U) norm. We consider finite element spaces based either
on first or second order splines on an equidistant mesh, and compare the collocation
operator PΛ!λ) and the sparse composite collocation operator λ̂) for % = 0, 1, 2 against
an overkill reference solution. In the computation we set ε) = 2−) for simplicity. The
first order spaces have 15, 31, 63, the second order space have 16, 32, 64 degrees of

24



freedom on levels % = 0, 1, 2 respectively. The results are shown in Fig. 6.3, showing
the error of the approximate parametric eigenvalue versus the total number of degrees
of freedom in space, that is the sum of degrees of freedom of all EVPs solved.
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Fig. 6.1. Mean and variance of the ground state of the parameteric diffusion equation (4.3) as
described in Sect. 6.
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Fig. 6.2. Convergence of the mean of the computed parametric eigenvalue E
ˆ
IΛ(µ,ε)λ

˜
and the

corresponding number of collocation points in IΛ(µ,ε). See Sect. 6 for details.

7. Summary. We have quantified the analytic dependence of an isolated eigen-
pair of a linear operator depending affinely on a vector of parameters in an abstract
setting. We have then specialized the discussion on stochastic differential operators ex-
panded in its Karhunen-Loève series. Analyticity has been used to prove convergence
of the sparse composite operator applied to the eigenpair. Our numerical example of
an infinite dimensional paramateric eigenvalue problem confirms exponential conver-
gence of the sparse composite collocation method in the number of levels, and shows
that sparse composite tensorization can be an effective tool to reduce the complexity
of the problem.
In the sequel we will address the case of non-selfadjoint operators, as well as eigenpair
computation with eigenvalue “crossings”.
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