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1. Introduction. Multi-parametric eigenvalue problems (EVPs) arise in numer-

ous applications: we mention only engineering (parametric design optimization of the
spectrum of structures in solids, fluids and electromagnetics), uncertainty quantifica-
tion, stability analysis of engineering systems and the like. Other applications arise in
the perturbation analysis in physics. Accordingly, there is a sizable body of references
devoted to eigenvalue perturbation analysis. The mathematical theory of perturba-
tion evolved in close connection to these applications; seminal works are by Rellich
and Kato, see [27, 22] and references therein.
In recent years, much attention has been devoted to the computational analysis of
so-called complex systems; in the context of the results in the present paper, such en-
gineering systems could be deterministic initial boundary value problems depending
on possibly a large number of design parameters. Alternatively, one could consider
spectral problems for partial differential equations with random field input such as,
e.g. diffusion problems with random heat conductivity. Adopting parametric represen-
tations of input random fields (e.g. by Karhunen-Loeéve expansions) renders the EVP
of interest deterministic but depending on possibly a countable number of parameters.
We develop the numerical analysis in an abstract setting, where we consider para-
metric operator families A(y) € L(V,V*) depending on a vector of real parameters
y = (y1,Y2,...), which cover differential- and integral operators acting in separable
Hilbert spaces V' and also parametric matrices.

2. Parametric eigenvalue problems. We present a class of abstract eigen-
value problems for parametric self-adjoint families of operators with real-analytic de-
pendence on on a vector of parameters and discuss the dependence of their eigenpairs
on these parameters. This will be the foundation of the design and the analysis of
sparse tensor approximation methods in subsequent sections.

We will specialize on operators of the particular form

Aly) =A+y1B1 +y2Bo+ ...

with a self-adjoint “principal part” A. In first order approximation, the affine depen-
dence of A(y) on the parameter vector y = (y1, Yo, - ..) will also appear in the case of
general smooth nonlinear dependence y — A(y).

Specific examples are also provided in the next section. In particular, operators
depending on a countable number of parameters arise in applications such as PDEs
with spatially inhomogeneous random coefficients.

2.1. Variational eigenvalue problems. Let V and H be separable Hilbert
spaces over R (or C) with inner products (-,-)y and (-,-)g and norms || - ||y and
| - ||z, respectively. Unless stated otherwise, V and H are assumed to be infinite-
dimensional. We assume V and H form the Gel’fand triple V C H =2 H* C V* with
dense and compact injections, where H = H™* indicates identification of the “pivot
space” H with its dual H*. By (-, ")y xv+ we denote the duality pairing on V and V*.
Let b: V x V — C be a bilinear (or sesquilinear) form for which there exist constants
v >0 and C; > 0 such that

Vu,0 € Vi |b(u,v)| < Cil|ullv]|v]]v, (2.1)

b
. w o)l Sy (2.2)
0#£ueV ozvev |[ullv||v|lv
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and

YO#veV: sup|blu,v) >0. (2.3)
ueV

We denote by A € L(V,V*) the operator corresponding to the form b(-,-) via the
identification b(u,v) = (v, Au)y xy~ for all u,v € V. Then (2.1)—(2.3) imply that
both, A and its adjoint A* are isomorphisms between the space V' and its dual V*.
We call A € C eigenvalue of the form b(-,-) if there exists an eigenvector 0 # w € V
associated to A, such that

YoeV: bw,v)=Xwv)m, (2.4)

in which case the pair (A, w) € C x V is called eigenpair of b(,-).

By o(A) we denote the spectrum of an operator A [25, Ch. VI]. Conditions (2.1)—(2.3)
and compactness of the embedding V' C H imply the existence of a unique compact
linear operator T' € L(V, V) such that

Yu,v € Vi b(Tu,v) = (u,v)q. (2.5)

The pair (A, w) € C x V satisfies (2.4) if and only if \Tw = w # 0, i.e., if and only if
the pair (A™%, w) is an eigenpair of the compact operator 7. Note that by (2.2), the
eigenvalue A is non-zero.

Let p € o(T), pp # 0. The number A = p~! is an eigenvalue of the form b(-,-). The
smallest integer a such that Ker((u—T)%) = Ker((u—T)%"1) is called ascent of u—T.
The dimension m = dim Ker((x — T")%) is finite and is called algebraic multiplicity of
A. Vectors in Ker((u — T)%), the generalized eigenspace of T  corresponding to \ are
called generalized eigenvectors of T corresponding to X\. The geometric multiplicity
of u is equal to dimKer(u — T'). The b-adjoint of T, denoted by T is defined by
b(Tu,v) = b(u, Tyw) for all u,v € V. A pair (\,v) € C x V is called adjoint eigenpair
of the form b(-,-) if and only if (A\=1,v) is an eigenpair of T, i.e., v # 0 and b(u, v) =
A(u,v)y for all w € V. In this case v is called adjoint eigenvector corresponding
to \. Generalized adjoint eigenvectors of T are exactly the generalized eigenvectors
of T.. An eigenvalue A € o(A) is called isolated if dist(A,0(A) \ {A\}) > 0. It is
called discrete if it is isolated and if for self-adjoint A: it is of finite multiplicity,
ie., dim{u € V : Au = A} < 0o see [25, Theorem VIL.10]; for non-selfadjoint A: the
spectral projection Py = — 5 A= (A—p)~tdp, is finite dimensional [26, Ch. XII].
An eigenvalue A € o(A) is called nondegenerate if the respective dimension equals one.

2.2. Abstract parametric eigenvalue problems. We consider a family of
real, parametric eigenvalue problems, and assume until further specification that V'
and H are Hilbert spaces over R (rather than over C). Assume we are given a family
of bounded self-adjoint operators A(y) € L(V,V*) parameterized by a vector y =
(y1, Y2, ...) of real numbers, which we assume to take values in bounded intervals,
after rescaling y,, € [—1,1]. In many applications, we deal with a finite, but possibly
large number M of parameters, whereas for applications from elliptic PDEs with
random coefficients we allow countably many parameters. Accordingly, we assume
y € U, where

1M, M < oo,

’ M= oo (2.6)

-
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For M = oo the summation “Z%Zl” is understood an (unconditionally) convergent
infinite sum. For U we consider a Hausdorff topology, i.e., the euclidean topology if
U is finite-dimensional; if U is infinite-dimensional we equip U with the topology and
metric of ¢>°(N). This setting fits the abstract framework of [20]. For all y € U we
associate to A(y) the bilinear form

bly;+,): VXV =R, (u,v)— bly;u,v):= (u, A(y)v)vxv= (2.7)

We assume that y — A(y) is uniformly bounded on U:

Vu,0 € Vi (u, A(y)v)v v < SHB”A(ZJ)HL(V,V*) lullvlvllv, (2.8)
ye
with sup, ey [[A(Y)[l 2(v,v+) < o0, and uniformly elliptic on U:
Ja>0: WyeU: YweV: (uAly)v)vxv- > allvlf. (2.9)

This implies that for every y € U the operator A(y) is boundedly invertible, i.e., for
its inverse holds |[A™*(y)||z(v+,v) < a~'. The compactness of the embedding V < H
implies that the parametric EVP: given y € U, find

AMy)eR and 0#w(y) eV st Aly)w(y) = My)w(y) (2.10)
or, in variational form: given y € U, find
Ay) €R, 0Fw(y)eV: YweV: byw(y),v)=Ay) (wy),v)s (2.11)

admits, for every y € U, countably many real eigenvalues (\j(y));>1 C R of finite
multiplicity. Here, and in the following, we always assume the eigenvalue sequences
to be numbered in increasing magnitude, counting multiplicities, i.e., an eigenvalue of
multiplicity k is listed k times. The corresponding set of eigenfunctions {w;(y)};>1 C
V forms a countable dense set in V', and therefore, by compact and dense embedding
V — H, we assume w.l.o.g. that for every y € U the sequence (w;(y));>1 forms a
countable orthonormal basis of H.

2.3. Analyticity. We are particularly interested in the case where the depen-
dence of A(y) on the parameters y,,, is analytic in suitable sense and, more specifically,
in the case when the dependence of A(y) on each coordinate y,, is affine, possibly after
linearization of A(y) given smooth dependence on the parameter vector y: there exist
A, B,, € L(V,V*), m > 1, such that

Vy=(y1,42,..) €U A(y) = A+ D ymBm (2.12)

with convergence in L(V,V*).
REMARK 2.1. To ensure coercivity (2.9) of A(y) in (2.12), it is sufficient that in
(2.12) the “mean operator” A and the “fluctuations” B,, salisfy

(v, Aoy v > alol} Voe v,

Ja>0 and Ir<1: M ) (2.13)
> IBmllevyv-) < ka
m=1
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Indeed, condition (2.13) implies (2.9) with o = a(1 — k) > 0: for any y € U and
v €V we have

M
b(y;v,v) = b(0;0,v) — <Z |BM|E(V,V*)> [vll¥ > a(l = &)lv]|3-
m=1

As we will show, under certain conditions the eigenpairs (A, (y), Wm (y))m>1 depend
analytically on the parameter vector y. To make this precise, we first recall definitions
and facts on Hilbert space valued analytic functions. To this end, from now on we as-
sume that'V and H are complex separable Hilbert spaces and extend all inner products
and duality pairings sesquilinearly for complex valued arguments. We emphasize that
this extension is for purposes of analysis only; the parametric eigenvalue problems
under consideration here are real and self-adjoint (for non-selfadjoint operators some
of our results require essential modifications in their statement and proof).
We recall some definitions. Assume initially that M < co. Let X be a Banach space
over C and let £ C C™ be an open, bounded and connected domain, M € N. A
function x : £ — X is said to be

o (strongly jointly) analytic in E if for each a € E there is {ck}keNé” C X such

that the Taylor series EkeNg’ Ck Hnﬂf{:l(zm — @y,)*m is summable to x(z) for
z € F sufficiently close to b.

e (strongly) holomorphic in E if for each a € E each first order partial derivative
limgzp—o(z(a + hen) — x(a))/h exists in X where e,, € CM is the m-th
standard unit vector.

o weakly analytic in E if for each ¢ € X* the function f(z(-)) is a C-valued
analytic function in F (equivalently, holomorphic by Hartogs’ theorem [21,
Theorem 2.2.8]).

For X endowed with a locally convex sequentially complete topology (e.g. Banach
space) these notions coincide, see [20, Theorem 2.1.3], also [25, Theorem VI.4].
In the case M = oo we call z : E — X (jointly) analytic on a set £ C CM which is
open w.r.t. £>°(N), if X is locally convex sequentially complete and if the series

f) = @)+ Y LD —a)

N
veNy

is uniformly summable for z — a in any compact subset of the largest balanced subset
of the set E — a (here, E C E — a is called balanced if z € EA|(| < 1= (z € E).

2.3.1. Case M = 1. The case M = 1 is of independent interest, and also
serves as a building block for the multiparameter case. Therefore, we recapitulate the
pertinent results here. For single parameter, regular' analytic spectral perturbation
theory we refer to [22, Chapters I and II] and [26, Chap. XII]. For M = 1, the
operator A(y) in (2.12) takes the form

Aly)=A+yB, yeU=][-1,1]. (2.14)

We can extend A(:) to an entire, operator-valued function by allowing y € C. In
this case, the dependence of the eigenpairs (A\;(y),w;(y))j>1 on the parameter y is
well understood. Although the dependence of A(y) on y in (2.14) is analytic, the
eigenpairs of A(y) do not necessarily inherit this analytic dependence:

Las opposed to “asymptotic”, see [26], Sect. XII.2 and XII.3
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EXAMPLE 2.2 ([22], Sect. IL.1 or [26], Sect. XIL.1). For V = C? consider

Aly) = ((1) _01> +z (? é) € L(V,V").

Then A(z) has eigenvalues Ao (z) = £V 1 + 22 and is real and self-adjoint for real z.
Evidently, for |z| < 1, the eigenvalues are complex-analytic functions of z. However,
even though the map z — A(z) is entire analytic and R 5 z — A1 (z) are real-analytic
functions, the maps C 5 z +— Ay (z) exhibit singularities as complez-analytic functions
at z = £i. Note that A(z) is symmetric for Im z = 0, but is not Hermitean for any
Imz # 0, and even not diagonalizable for z = +i.

We now consider in (2.10) the parametric operator A(y) as restriction to U of the
analytic, L(V, V*)-valued function

A:C— LV, V*), z+ A(z):=A+2B. (2.15)

Notice carefully that the extension of the self adjoint A(y), y € R obtained in this
fashion is not necessarily Hermitean (cf. Example 2.2).

We will work under assumption (2.13), which in the case M = 1 becomes the following.
ASSUMPTION 2.3. There exist @ > 0 and k < 1 s.t.

Re(v, Av)yxv+ > allv|ly, Yo €V and ||B|lcvv+) < k. (2.16)

Under (2.16), the variational form of the eigenvalue problem for A(z) in (2.15) satisfies
the assumptions (2.1)—(2.3):

PROPOSITION 2.4. Assume (2.16). Then, for any 0 < § <1 and all z € C with |z| <
k™16 the sesquilinear form b(z;-,+) : V x V. — C, b(z;u,v) := (u, A(2)v)y « v+ satisfies
(2.1)~(2.3) with

y=a(l-48)>0, C1=|Allzwy) +r8lBllvve), (2.17)

in particular, for any k < 6. Moreover, for all z € C with |z| < k=1 the operator
A(2) is boundedly invertible with supy, <15 [|A™(2)||cv+v) < (@1 —d))~ "

By compactness of the embedding V' «— H, for every y € U, the spectrum o(A(y)) of
the self-adjoint operator A(y) is discrete and consists of at most countably many real
eigenvalues \;(y), j = 1,2,... of finite multiplicity which accumulate only at infinity.
As A(y) is symmetric, the algebraic and geometric multiplicities of \;(y) coincide.
We are interested in the relation of A(y) € o(A(y)) to eigenvalues A(z) € C of the
complex extension A(z) in (2.15) of A(y).

THEOREM 2.5. For z € C, consider the family (2.15) of linear operators where A, B
satisfy (2.16). Fizy € U = [—1,1]. Let AM(y) € 0(A(y)) C R be a discrete eigenvalue
of A(y) of multiplicity m € N. Then the following holds:

a) There exist m (not necessarily distinct) complex-valued functions of z which
are single-valued and analytic near z = vy, denoted by XV, X3 . \(m)
such that A9 (y) = A(y), j=1,...,m and \9)(2), j =1,...,m are discrete
eigenvalues of A(z) near z =y,

b) there are no other eigenvalues of A(z) near \(z),

c¢) there are m complez-analytic V-valued functions w® . w™) | such that
wW(2),...,w™ (2) are corresponding eigenvectors of A(z),

d) the domains of analyticity contain discs {z € C : |z — y| < €} where ¢ =
e(k) ~k~t as Kk — 0.



Proof. Parts a) and b) is Theorem XII.13 in [26]. Part ¢) is Problem 17 in Sect. XII
of [26] applied to the projector P((3) with 8 = z —y in Theorem XII.13 of [26]. Part
d) follows by a scaling argument. O

The following quantitative bound on the parameter range ensuring ellipticity will be
useful later for obtaining uniform bounds on convergence radii.

THEOREM 2.6. Assume (2.16). Fizy € U. Let AMy) € o(A(y)) be isolated and
nondegenerate. Define the spectral gap v = v(y, AM(y)) = dist(A(y), o (A(y)) \ {\(y)})-
Then there exists z — Ay (z) € o(A(2)) with \y(y) = A(y) which is complex-analytic in

the disc E(y,k,v/A(y)) ={2€C:|z—y| < %%} Moreover, A\y(z) € o(A(2))

is isolated and nondegenerate for each z € E(y, k,v/A(y)).
Proof. We have ||Bv||y~ < ké||v|lvy < %W||A(y)v| y- for all v € V' by coercivity

[|A(y)v|lv+ > @(1 — |y|s)||v]|v. Theorem XIL.8 of [26] (Kato-Rellich) and Theorem
XII.11 of [26] show the claimed analyticity inside the circle of radius
1 r —yl
r=la+e 'b+aly) +e)]] M =— T 2.18
o+ b+ aM0) + ol = 3T (218)

witha= —£— b=0and e = 2~. 0
1—k|y| 2
REMARK 2.7. Note that

1 _{5+0(52), for §—0,

2.19
1+6-1 1—64+0067%, for §— 0. (2.19)

Thus, as the ratio 6 = v/A(y) becomes small, the size of the domain analyticity is
critically restricted by v being relatively small. If v is large compared to \(y), the size
of the domain of analyticity is essentially given by k=1, cf. Theorem 2.5.

An analytic continuation argument yields the “y-uniform” version of Theorem 2.6.
COROLLARY 2.8. Suppose that U 3 y — A(y) € 0(A(y)) is continuous and such that
for each y € U, Ny) is isolated and nondegenerate. Let § > 0 be such that

VyeU: dist(A(y),o(A(y) \ {A(y)}) = 5A(y).

Then we can extend y — A(y) to a functions z — A(z) which is analytic on E(k,d) =
Uyev E(y, K, 6), s.t. AM(2) € 0(A(2)) is isolated and nondegenerate for all z € E(k, 0).
Proof. We need the following special case of Lemma 2.11 below: for all y € U there
exists r > 0 s.t. for any two continuous functions fi, fo : B.(y) — o(A(z)) holds

fily) =Ay) = faly) Yy e B (y)NU = fa(z) = fa(z) Vz€ B,(y),

where B, (y) ={z € C: |z —y| <r}.

We only sketch the rest of the proof of the theorem, omitting the technical details.
Let U C K1 C Ky C ... C E(k,0) be a monotonic sequence of compact sets such
that E(x,0) = U, ey Kn- On every K, an extension A, of A can be constructed using
Theorem 2.6 which is complex-analytic on any open B C K, and unique by Lemma
2.11. Moreover, all \,, agree on their respective domains of definition, giving rise to
a complex-analytic extension of A\ to E(k,d), again unique by Lemma 2.11. O

2.3.2. Case M > 1. In generalizing the above results to M > 2 parameters,
care is necessary, as the following example due to Rellich shows, cf. [26, p. 60].
ExaMPLE 2.9. Consider the two-parameter family of symmetric 2 X 2 matrices

1 0 0 1
A(ylva) = yl <0 _1) +y1 <1 O> N
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Then A is linear, hence entire analytic in y1 and yo, and symmetric for real y; how-
ever, its eigenvalues A(y1,y2) = £+/y7 + y5 are not real-analytic with respect to y1, y»
in any vicinity of the origin. Notice also that A(0,0) has a double eigenvalue 0.
In this section we derive sufficient conditions which preclude this kind of singularity.
For technical reasons we focus on eigenvalues which are isolated and nondegenerate.
The following theorem is a local result on holomorphic dependence of an isolated and
nondegenerate eigenvalue on the parameters.
THEOREM 2.10. Suppose z € CM is such that A(z) has an isolated and nondegenerate
eigenvalue \(z). Pick m € N, and write e, = (0,...,0,1,0,...), nonzero in m-th
coordinate. Then Jep,(2) > 0 s.t. for En :={(n € C: |(n| < em(2)} holds:

1. there exists a unique complex-analytic function

Em 3 Gn = M2z + emlm) € 0(A(z + emm))-

2. Mz 4+ em(m) s isolated and nondegenerate for all ¢, € Ep,.
3. there exists a complex-analytic V -valued function

E,.>C—wiz+enin) eV

such that w(z + e, Cm) is a corresponding eigenvector for all (y, € E,y,.
Proof. Note first that for any » > 0 the complex-analytic operator-valued function
¢+ A(z + e, ) is uniformly bounded on the closed disk {¢ € C: || < r}. Thus, by
[26, Exercise XI1.8], the Kato-Rellich theorem [26, Theorem XII.8] applies. O
We now prove the following lemma ensuring uniqueness of the extension.
LEMMA 2.11. Let B C U be connected by polygonal paths in the following sense: for
any za, 2y € B there exist n € N, zo,..., 2, € B with 20 = 24, 2n = 2p and

[zk—1,2k) == {tzpg—1 + (1 —t)zx : t €[0,1]} C B forall k=1,...,n.

Take continuous functions f,g: B — C with f(z),g(z) € o(A(2)) for all z € B such
that f(z) and g(z) are isolated and nondegenerate for all z € B. If f(z) = g(z) for
some z € B, then f(z) = g(z) for all z € B.
Proof. Suppose to the contrary that for some z,, 2z, € B we have f(z,) = g(z,) and
f(z) # g(zp). Let ¢ : [0,1] — B be a continuous function with ¢(0) = z, and
(1) = zp. Without loss of generality we can assume that
o O(t) = zq +t(zp — 2a),
e Ve > 0 there exists ¢ € (0,¢) with f(¢(t)) # g(¢(t)) (to this end notice that
{z€ B: f(2) =g(2)} is closed in B),
e the family of operators ¢ — A(C) = A(zq + (26 — 24)), |¢] < 2 is well-defined
and is complex-analytic.
By the Kato-Rellich theorem [26, Theorem XIIL.8], there exists exactly one point
E(¢) € 0(A(¢)) close to E(0) = f(z4) = g(z4) for ¢ small enough, w.lo.g. for |¢| < 2
by rescaling (z, — z,). But this is a contradiction to f(z) # g(2p) if we set ( = 1.0
In the following (Theorem 2.13) we identify the range of 2 € CM close to the parameter
set U such that the conditions of Theorem 2.10 apply. We start with a Lemma.
LEMMA 2.12. Fizy € U = [-1,1]M and ¢ € CM. Assume that for some p € (0,1]

B(p) = Z ||Bm||12(v7v*) (220)

m>1
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is finite. Assume k = =B(p)sup,,s; |Cm|||Bm||£ (Ve < 00, where a > 0 is as in
(2.9). Then

1Y GnBullevve) < B(p) sup lCm|||Bm||£ ATIY (2.21)

m>1

and moreover, for a :=«, rk, A:= A(y) and B:=Y -, (mBm we have (2.16).
Proof. Equation (2.21) follows by the triangle and the Holder inequalities. Thus,
||B]|z(v,v+) < k& and (2.16) holds by the assumption that @ =« and A = A(y) . O
The results of this section are now combined in the following theorem.

THEOREM 2.13. For the family of operators A(y), y € U assume that i) A(y) is of
the form (2.12), i) (2.8) and (2.9) hold, iii) for a p € (0,1] that the perturbations
are p-summable as in (2.20), w) A(y) € o(A(y)) is an isolated and nondegenerate
eigenvalue for all y € U with corresponding eigenfunction w(y) € V, |lw(y)||lg = 1

and v) the function U 3 y — (Ay),w(y)) € R x V is continuous. Finally, assume
that vi) there exists & > 0 such that dist(A(y), o (A(y)) \{\(y)}) = dA\(y) for ally € U.

al|Bm )
Let € € (0,1). Define 1, := (1 — 6)%, m > 1 and

E(1) :={z € CM : dist(zn, [~1,1]) < T }. (2.22)

Then (A, w) can be extended to a jointly complez-analytic function on E(T).

Proof. For any z € E(7) we first identify a candidate A(z) € o(A(z)) which is isolated
and nondegenerate. Fix z € E(7). Take y = y(2) € U with |z, — ym| < Tim, m > 1.
Define ¢ = z — y. Obviously, |(,;,| < T, and therefore

B 5 m Bm 17p * <(1- L
(p)zg?lK W[Bmll vy < ( 6)2(1+5,1)
Thus, for & := £ B(p) sup,,>, |§m|||Bm||1£z"}7v*) we have (1—¢)7t < .- 1+6 —=—. Consider

the complex-analytic operator-valued function t — A(y+t¢) = A(y)+t Zm21 CnB

By Corollary 2.8 and Lemma 2.12 there exists a complex-valued function ¢ — ;\(y +
t¢) € o(A(y + t¢)) which depends holomorphically on the parameter ¢ in the the disk

B L 1 1
{teCiftl<Q-e)7}clteC i < g 75—}

and Which is such that S\(y +1() is isolated and nondegenerate eigenvalue, whenever
[t] < 2,-; 1+6 ———, in particular for ¢ = 1. Thus, A(y+() is a candidate for the holomorphic

extension A(z) of the parametric eigenvalue. By Lemma 2.11, ;\(y + () is, in fact, the
same eigenvalue for any choice of y € U, ¢ € CM satisfying y + ¢ = z. Therefore,
Az) = S\(y + () is well-defined. Similar considerations apply to the eigenfunction
w(z). In the remainder of the proof, we distinguish two cases:

Case M < co. By Theorem 2.10 and Lemma 2.11, the function (\,w) is separately
complex-analytic in E(7). The classical Hartogs’ theorem [21, Theorem 2.2.8] implies
joint complex-analyticity of (A, w) on E(T).

Case M = oo. The function (A, w) is analytic on E(7) in the sense of Definition 2.3.1
of [20]. The claim therefore follows using [20, Prop. 3.1.2] and [20, Theorem 3.1.5]. O
REMARK 2.14. Notice that in (2.22) summability with p < 1 is required in (2.20) in
order for the analyticity region E(T) in (2.22) to increase with dimension m.
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3. Galerkin discretization of abstract variational eigenvalue problems.
To prepare the convergence analysis of the the Smolyak-Galerkin approximation of
the parametric eigenvalue problems we recapitulate abstract results for the Galerkin
method for elliptic eigenvalue problems from [2].
Variational approximations of the abstract eigenvalue problem (2.4) are defined in
terms of a one-parameter family {V,}p~o C V of finite-dimensional subspaces of
increasing dimension N(h) — oo as h — 0, which is dense in V, i.e., for all u € V:
limy, g infy ey, ||u — x|l = 0. We assume that
la(u, v)|

inf  sup —5——— >y(h)>0. 3.1
oy, o 2, Tullv Tl = 7 (3.1)

We further assume stability of {V3}5>0 in the sense that

Co i 1 inf [lu— x|y = 0. 2
VueV:  limy(h) Xlgvhllu xllv=0 (3.2)

We define P}, as the a(-, ) projection of V' onto Vj, by
YueViveVy: a(Pyu,v) =alu,v). (3.3)

The projection P}, is quasi-optimal in V:

Ch
u— Ppully <1+ —= ) inf ||ju— . 3.4
lu= Pl < (1405 int =l (3.0
Galerkin approximations (A, wy, ) of eigenpairs are obtained by restricting the abstract
eigenvalue problem (2.4) to Vj:

find A\, €eC and 0#wp €V, st. YweV,: alwpv)= (wp,v)g. (3.5)

Equation (3.5) is a matrix eigenvalue problem of dimension N(h) = dim V},, so that
there exist N(h) many, in general complex eigenvalues A;(h), 7 = 1,...,N(h). By
(3.1), the eigenvalues are non-zero. The pair (Ap,wp) is an eigenpair of (3.5) if and
only if ()\;1, wp,) is an eigenpair of the compact operator T}, : V' — V), defined by

VueViveVy: a(Thu,v) = (u,v)y. (3.6)

The operator T}, can be written as P,T.

Let now A € C be an eigenvalue of (2.4) with algebraic multiplicity m and ascent
a(N), i.e., A7 € C is an eigenvalue of the operator T with algebraic multiplicity m
and «()) is the ascent of A™! —T'. Since T' is compact, T}, = P,T — T in norm in
L(V,V) by (3.4) and, as h — 0, there are m discrete eigenvalues A\j(h), ..., Ay (h) of
(3.5) that converge to A. Define

M(N) :={w: w is a generalized unit eigenvector of (2.4) for A},
M*(A) :={w: w is a generalized adjoint unit eigenvector of (2.4) for \}
and their approximation bounds

en(A) = sup inf |[u—x|lv and €, (A\)= sup inf |Ju—x|v. (3.7)
ueM(A) XEVR weM*(\) XEVa

There holds the following general result on the asymptotic eigenvalue error analysis.
THEOREM 3.1. Consider the variational eigenvalue problem (2.4) and its variational
approzimation (3.5). For A\ € o(A), let a()\) denote the ascent of \™' —T. Then:
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1. There exists a constant C > 0 such that, as h — 0,
. . 1 &
A=A < Cr(Wen(Ner () where A(h) = —> i), (38)

2. and

A - 5‘(h)‘ < Cy(h)Yen(Ner (X)) where A(h) = %Z 1 ’

(3.9)

A=) < Cly() " ten(N)ep (AW, (3.10)

4. Let A\(h) be an eigenvalue of (3.5) such thatlimy,_o A(h) = X € o(A). Suppose
further that for each h > 0 the vector wy, € V}, is a unit vector which satisfies
(A(R)™Y — Tw)*wy, = 0 for some positive integer k < a()\). Then, for any
¢ e Ny with k <€ < «a(X) there is a vector up, € V' such that

AP =D)up =0 and ||un —wpllv < C(y(h) " tep (X)) EFHD/aN)
(3.11)

4. Parametric elliptic EVPs. Let D C R? be a bounded Lipschitz domain.
We consider the parametric diffusion operator A(y) given by

(AW)O(x) = =Va - (a(z,y)Val(z)), ze€D, yeU (4.1)

for a family of diffusion coefficients y — a(-,y), which is parametrized by a vector
y = (y1,¥2,...) belonging to the set U of admissible parameters, defined in (2.6).
The parameters y,,, m = 1,2, ... could denote design parameters of an engineering
system, or states of an optimal controller; they could also denote random coefficients
in a wavelet or Karhunen-Loeve expansion of the random field y — a(-,y). We present
examples for the former scenario below.

4.1. Assumptions on the data. We suppose that in addition to being bounded
and Lipschitz the domain D C R? is simply connected. We denote by (-,-) the
L?(D) scalar product which extends uniquely by continuity to the duality pairing on
H}(D) x H~Y(D), again denoted by (-, -).

The parameter dependence of the eigenvalue problem enters through the diffusion
coefficient a. We assume that a : U — L°°(D) is uniformly positive, i.e., that there
exist constants 0 < amin < Gmax < 00 such that

VyeU: 0<apn< essigfa(a:,y) <|la(-,¥)|lL>=(p) < amax < 00. (4.2)
S

For every y € U consider the parametric Dirichlet eigenvalue problem:
find Ay) €R and 0# w(y) € Hy(D) st. Ay)w(u) = My)w(y). (4.3)

Of particular interest is the case when the diffusion coefficient depends affinely on the
parameter vector y € U (for background on the following assumption see [8, 11]):

11



ASSUMPTION 4.1. The parametric diffusion coefficient is of the form

a(r,y) = a(x) + Y Ymm(2). (4.4)
m>1
with ym € [—1,1], and
Z ||wm||L°°(D) < " Gmin (45)
m>1 ‘ Ttk

with Gmin = essinfp a, x > 0. Further, we assume

m>1

with some p € (0,1). In particular, U > y +— a(-,y) € WH>(D).

REMARK 4.2. Equation (4.6) implies for (4.3) that Aw(y) € L*(D) for ally € U.
If D ¢ R is convex, this in turn implies that w(y) € W = H?(D)n H(D) for
all y € U. For polygonal domains D C R? with straight sides, the same statement
holds for W being a weighted Sobolev space, see [1]. For simplicity we assume in the
following that D C R? is convex.

Assume z € CM is such that dist(z, [~1,1]) < 75, € (0,00), m > 1. Then (4.3) implies

—a(-, 2)Aw(z) = Mz)w(z) + Vw(z) - Va(-, 2). (4.7)

The mappings z — a(-, z) and z — Va(:, z) are jointly complex-analytic with values
in L>(D) by (4.6). Assume that the pair (A(z),w(z)) is jointly complex-analytic in
an open neighborhood F of z with values in R x H}(D). Then z — w(z) is jointly
complex-analytic on E with values in L?(D). Assume that sup,cp ||a(-, 2)|lw1.=p) <
oo and that inf(, ,yepxra(z,z) > 0. From (4.7) we obtain Aw(z) € L*(D). More-
over, z — Aw(z) is jointly complex-analytic on E with values in L2(D), as can be
easily checked using (4.7). Under (4.6), these assumptions are satisfied in the set-
ting of Theorem 2.13, for z € E(7) where 7, = min{7,,, c||wm||’;;11,w(D)} with ¢ > 0
arbitrary and 7 and E(-) are as in (2.22). Thus we obtain the following corollary.
COROLLARY 4.3. In the setting of Theorem 2.13 with (4.1) and (4.4), assuming in
addition (4.6) and D C R? convex, the eigenpair (\,w) can be extended to a jointly
complex-analytic function on E(7) with values in C x (H?(D) N HY(D)), where 7 is
given by T, = min{Tm,c||1/Jm||€;11m(D)} with ¢ > 0 being arbitrary, and T and E(-)
are as in (2.22).

The weak formulation of the parametric EVP is obtained in the usual way by testing
(4.3) in H}(D) and integrating by parts. This results in the parametric eigenvalue
probem: for every y € U, find A\(y) € R and 0 # w(y) € H}(D) such that

@Vu(y), V) + D> ym(@mu(y),n) = Ay)(u(y),n) Vne Hy(D).  (48)

m>1

By assumption (4.2) and the Lax-Milgram lemma, for every y € U the operator A(y) €
L(H (D), H=Y(D)) is boundedly invertible and by the compactness of the embedding
L*(D) ¢ H™Y(D) for every y € U the inverse T'(y) = A~(y) : L*(D) — HY(D) is
compact. Hence, for every y € U, the elliptic operator A(y) admits a countable set
of eigenvectors {w;(y)};>1 C Hg(D) forming an orthonormal basis of L?(D) with

12



corresponding eigenvalues 0 < A (y) < Aa(y) < ... and A; — oo as j — oo which
we assume to be numbered in increasing order, counting multiplicity. Due to the
self-adjointness of A(y), the eigenvalues’ dependence on y € U is Lipschitz [22, Sect.
V.4.3, Theorem 4.10]. This Lipschitz dependence (which fails to hold for general, non
self-adjoint operators) allows us to speak of parametric eigenvalue families.

REMARK 4.4. Enumeration of the eigenvalues Aj(y) can be done in two ways: first,
as stated above, for everyy € U in increasing eigenvalue magnitude, and second, in
increasing eigenvalue magnitude with respect to a reference value ofy, e.g.y =0¢€ U.
Due to possible crossings of eigenvalues, the two eigenvalue numberings may differ.
REMARK 4.5. For every y € U the fundamental or spectral gap A2(y) — Mi(y) is
strictly positive and Ai(y) is nondegenerate by the Krein-Rutman theorem see e.g.
[19, Theorem 1.2.6]. Thus there exists § > 0 such that

dist (M (1), o (A®) \ W)} = Sh(y) forall yeU. (4.9)

We are in particular interested in computing for all y € U the “ground state”, i.e.,
the smallest eigenvalue A (y) and a corresponding eigenfunction wi(y) of (4.8). This
shall be understood from now on.

4.2. Multilevel finite element spaces in D. We discretize the space V' =
H} (D) by means of a dense, nested sequence of subspaces

{0}=VicVocVicC...CcV =HyD),

of finite dimensions ny = dimV; < co. Here we assume that V;, £ > 1 result from a
uniform refinement of a given regular simplicial mesh (other subspace sequences, such
as spectral or p-version finite element discretizations could be considered as well).
With respect to a basis {¢§£)};ﬁ1 for Vg, the abstract Galerkin discretization (3.5)
becomes a family of parametric matriz eigenvalue problems, the Galerkin projections
of (4.8) onto V: for y € U, find pe(y) € R and 0 # ue(y) € Ve such that

@Vu(y), V) + > ym(@mVuly), Vi) = pe(y)(u(y),n) ¥y € Vi, (4.10)

m>1

where, for each y € U and ¢ = 0,1,..., (ue(y),ue(y)) denotes the Galerkin approxi-
mation of the first eigenpair in V.
The algebraic structure of (4.10) is particularly convenient for computation. Indeed,

denoting by A(()e), %), m > 1 the stiffness matrices and by M) the mass matrix

w.r.t. the basis {gbgz) e given by

=1
(AY)y; = (@vel” Vo), (AD); = Wn Ve, vel), ML = (8" 6",

the problem (4.10) reads for any given y € U: find

w(y) eR™ st (AP + 3 yn AL u(y) = pey) MOuy(y). (4.11)

m>1

Thus, the matrices need only be assembled once if a hierarchic basis is used, and once
on each level of interest ¢ € Ny if standard hat functions are used. Note that the
method presented below uses (4.11) only with finitely supported sequences (Yum )m>1-
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REMARK 4.6. For the ground state we know that the eigenvalue is separated and that
the corresponding eigenvector can be chosen to be positive, see Remark 4.5, uniformly
in the choice of the parameter by Lipschitz dependence of the eigenpair on the parame-
ter. Therefore, we normalize the approzimate the parametric eigenvector ug(y) at any
given y € U by imposing ue(y) T MOuy(y) =1 and [, Y0, 61 (2)(we(y))idz > 0.
We make the following assumption on the ansatz spaces Vp, which is satisfied by the
usual finite element ansatz spaces (see, e.g., [10]).

ASSUMPTION 4.7. There exists a to > 0 and C > 0 such that for all t € [0, 1] holds:

. —te
it lon = ollmymy < €27l (4.12)

for all ¢ € Ny and v € W. Here, W = H}(D) N HY(D), cf. Remark 4.2. In
particular, (4.12) implies (3.2).

4.3. Parametric deterministic eigenvalue problem. In this section we dis-
cuss the numerical solution of the parametric matrix eigenvalue problems (4.11) for
fixed y € U. By Assumption (4.2), for each y € U, ¢ € Ny the matrix A((f) +
D1 ymA%) is symmetric positive definite. Setting y,, = 0, m > M, we conclude

that the truncated matrix AE)Z) —l—znﬂff:l ymA%) has the same property uniformly w.r.t.
M € N. Hence, for any y € U, ¢ € Ng, M € N, the truncated problem

M
u @) e R (A + Yy A ) = i (MO ) (413)

m=1

is a symmetric positive definite generalized matrix eigenvalue problem. By the same
reasoning, the first eigenvalue of the truncated system (4.13) is simple, i.e., of single
multiplicity, uniformly in y € U for all £ > 0 sufficiently large, see Corollary 4.9. We

identify we(y1,92,---,yn,0,...) = u§M) (y1,---,ym) and denote by us(y) € Vi the
function

e

ue(y) =3 61 (we(y))s.

i=1

Any numerical method for symmetric generalized eigenvalue problems applies to
(4.13), see, e.g. [28, 17, 13, 18]. For our computations we use the JDBSYM library
[16], which implements a variant of the Jacobi-Davidson method.

4.4. Abstract error bounds. Based on the abstract eigenvalue approximation
theory in Section 3, we obtain the following a-priori error bounds, cf. [2, Sect. 8].
PROPOSITION 4.8. Consider the eigenvalue problem (4.3) (or in wvariational form
(2.11)) with the operator A(y) being the parametric diffusion operator in (4.1). Let
assumptions (4.2), (4.4) and (4.5) hold. For some m > 1 let (A, (y), wm (y)) be an
eigenpair of the EVP (4.3) with eigenspace of multiplicity one for all y € U, i.e.,
eigenvalue crossings are excluded.

Then there exist constants C > 0, hg > 0 such that the Galerkin eigenvalue approx-
imation from the finite element space Vy is quasi-optimal uniformly iny € U: for
every y € U and every 0 < h < hgy holds

llwm (y) = wi W)l 3 () < Cen(m(y)) = C il lwm(y) = vallugyp)-  (4.14)
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For the Galerkin eigenvalue approximations holds

A (1) = A ()] < Clen(Am(y))? < C inf |lwm(y) - vnlligy () (4.15)

Using Remark 4.5, Assumption 4.7 and sup,cy ||wm(y)|[w < oo we obtain the fol-
lowing corollary.

COROLLARY 4.9. For h > 0 small enough, the spectral gap of the discretized problem,
N3 (y) — Mi(y) is strictly positive uniformly iny € U. Moreover, for 0 <t <ty as in
Assumption 4.1, we have

sup [|wi (y) — wi (W)|lgypy < Ch' and  sup |\ (y) — A (y)| < CR** (4.16)
yeU yeU

where C' < 0o is independent of h for sufficiently small h > 0.

5. Sparse composite collocation method. In this section we introduce a

generalization of the sparse grid collocation operator introduced in [23, 6]. We start
by collecting the necessary definitions.
Let L, denote the univariate Lagrange polynomial of degree n € Ny scaled such
that f_ll Ly, (t)*4 = 1. For n € Ny let i,, denote the Lagrange interpolation op-
erator of degree n which maps a continuous function v € C°([-1,1]) to a poly-
nomial i,v of degree n with (i,v)(z) = v(z) in the Gauss-Legendre points z €
{-1<zy<...<2!<1:Lppi(2}) =0}. Denote by {w}}_, C (0,00) the corre-
sponding Gauss-Legendre quadrature weights [15]. Define j, = i — in—1, n > 0
where, by convention, i_; := 0. Let F C N denote the collection of all multi-
indices v € N} such that for each v € F the support suppv = {m € N: v, # 0} is
finite. For a multiindex v € F we denote by L, the tensorized Legendre polynomial
L,=L, ®L,,®---,thatis L,(y) =[],,>1 Lv,, (ym) for all y € U. For a multiindex
set A C F we denote by P5 the span of {L, : v € A}. Note that P is dense in L2 (U),
where 7 is the uniform probability measure. Below we frequently use the notation
1a =1if Ais true and 14 = 0 otherwise, as well as 7 < v (or v > D) iff 1, < vy
for all m > 1. For any finite multiindex set A C F we define the sparse collocation
operator

In=> Qi (5.1)

veAm>1

with the convention Iy := 0. Due to A being finite, for each of the finitely many
v € A the tensorized operator ), ju,. has only finitely many non-trivial increment
factors j,, , m € suppv, while j,, = jo = io for m ¢ suppv. This implies that Iy is
well defined on bounded continous functions on U. The operator I, has appeared in
various variants, i.e., for specific choices of A in the literature, see [6, 3, 7, 4, 24, 23]
and references therein. In particular, the generic definition (5.1) accomodates all
formulas of [5].

DEFINITION 5.1. A multiindex set A C F is called monotone if the following impli-
cation holds:

VwveA: veFAr<v=rvecA.

In particular, {}, {0} and F are monotone. Monotone multiindex sets A for Iy defined
by (5.1) are of particular interest, as the following lemma shows.
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LEMMA 5.2. Let A C F be finite and monotone. Then Ixp = p for all p € Py.
Moreover, Ip is unisolvent on Py, i.e., Vp € Pp: Inp = 0 implies p = 0. Further,
defining Qna as the span of the monomials {U > y — y” : v € A}, we have dimPp =
#A = dimQp < oo and moreover Qp = Py.

Proof. Observe that Iyyn Ly, = R,>1 Jvt, Ly, =0 if v/ > v, for at least one m € N.
This allows to write for v € A

IzL, = Z ®ju;nLVm = ® zm: ju;nLl/m = ® Ll/m = Ll/; (52)

v'<vm>1 m>1v] =0 m>1

which shows the first assertion. Let now p € Py =span{L, : v € A} s.t. [yp =0. By
(5.2), linearity of I, and linear independence of the set {L,},eca imply p = 0. The
statement dimPy = #A = dimQ, < oo is obvious. Since A is monotone, we have
L, € Qp Vv € A, hence Py C Q. Now dimPp = dim Qp < oo implies Py = Qa. O

Note that in general, however, I is not interpolatory, as the cardinality of the set of
collocation nodes in (5.1) may be larger than dim Py, as the following example shows.
ExaMPLE 5.3.  Consider A = {vy=0,11 =(1,0,0,...),v2 = (0,1,0,0,...)} con-
sisting of three multiindices. The corresponding sparse collocation operator I is

then based on the following five collocation nodes: z;° = 0, z/* = (—\/ig, 0,...),
2 = (—I—%,O, ., 272 = (0, —%,0, ..) and 217 = (O,—|—%,O, s
The following observation will be useful: for any monotone A C F we have
wel: J[wm+1)=#{per:i<v} (5.3)
m>1

LEMMA 5.4 (Number of collocation points). Let A C F be monotone and finite.
Then the number collocation points in I is at most (#A)2.

Proof. We can write Iy as In = Y, .5 A ®,,>1iv,,, where each term requires
[1,,>:(@m + 1) collocation points by definition of i,, n > 0. The number of col-
location points in I5 can therefore be estimated as

ST+ S #ierv<vy <3 #A= (#4)

veAm>1 veEA veEA

d

REMARK 5.5. Note that the upper bound (#A)? is independent of the “effective
dimension” max, e # supp v. Moreover, the exponent 2 in the upper bound (#A)? on
the number of collocation points in Ix is sharp, as can be seen from the sequence

AgZ{(Vl,...,V]u,O...) e F: ||V||Z1(N) Sﬁ}, {=0,1,...

where M > 1 is fized. Indeed, by [6, Sect. 6.2], we have #Ay = (M]\; g) while the
2M + ¢

number of collocation points in I is given by Ny = < oM

) . This yields

2M + ¢
2M

2M M
)z s r > (B

2
Non 2 ( ) > (#A0)°

with the implied constant independent of £ > 0. Thus, Ngar ~ (#Ag)2 as { — oo.
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REMARK 5.6. For £ > 0 let nj := 1(521)2Z, For a monotone and finite A C F
define A* := |J, cp{P € F:Vm>1: 0y <min{nj > vy, : £ > 0}}. For each £ > 0,
ny + 1 is the number of nodes in the Clenshaw-Curtis quadrature rule of order nj + 1.
The nodes of these Clenshaw-Curtis quadrature rules are nested, cf. [23]. Thus, if
we defined i, to be the Lagrange interpolation operator based on the nodes of the
Clenshaw-Curtis quadrature rule of order min{n} >n:¢ > 0} +1, for monotone and
finite A the number of collocation points in Ix+ would be exactly #A* = dimPy+, as
opposed to the possibly quadratic growth in Remark 5.5.

The following is a characterization of Iy for monotone multiindex sets A C F by an
expansion into tensorized multivariate Legendre polynomials.

LEMMA 5.7. Let A C F be monotone and finite, and assume ¢ € R, v € A

are such that Iy = Y, ., ch Q10 Then for f € C%(U;R) we have Inf =
> en d (f)Lys, where d2(f), v/ € A is defined by

dy(f) =Y b > whLy(z)f (=),

veA <v
vl n=

where wy =[5, wym € R and 2y = (z1,272,...) €U, n<v € A.
Proof. We have the univariate formula i,v = > ., dw(v)Ly with coefficients
dnr (V) = D ey WLy (2])v(2)) as can be immediately checked using the fact that
the Gauss-Legendre quadrature formula p — >, - wip(z}) integrates polynomials

p = Ly Ly of degree at most 2n+1 exactly [15, (1.4.7) and (1.4.14)]. Thus we obtain

Inf=>"c [ Qv | =D > LY whL (20 f(20),

veA m>1 veA v' <v n<v

which, after exchanging the summation, yields the claim. O

In what follows, we specialize our considerations to multiindex sets A of a particu-
lar structure, motivated by a-priori estimates obtained in [12] for coefficients a(x,y)
satisfying Assumption 4.1. To describe the structure of these sets, let ¢y denote the
collection of non-increasing sequences of reals less than one and tending to zero:

co={p=(ui,p2,...) €0, )N :1>p; >ps>--- and n}iinmum:O}.

For j1 € ¢co, v € F we write p” =[], o (with 0° := 1) and for £ > 0 we define
A(pe) ={veF  u’ >e}. (5.4)

Clearly, for any 1 € ¢o and any € > 0 the multiindex set A(u, €) is finite and monotone.
The multiindex sets A(u, £) were introduced in [9] and investigated in the context of
the stochastic Galerkin method for elliptic stochastic PDEs in [8]. The next result
give precise asymptotics for the cardinality of the sets A(u,e) defined in (5.4) for a
sequence p € ¢o which models algebraic decay of terms in the expansions (2.12), (4.4).
LEMMA 5.8. For u € ¢o given by fiy, = (1+m)~7 with o > 1,

1. as e — 0, the cardinality of the set A(u,e) in (5.4) equals

62\/logm
- x2ﬁ(log x)3/4
2. for p > 1/0 we have Sup.sq Y-, ep(ye) (1) < 00 while for 0 <p < 1/0 we

have 3,5 iy = 0.

#A(p,e) = F(e7'/?)  where F(x) (1+0(1/logw))
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Here and throughout, the function log always denotes the natural logarithm.

Proof. See [8, Prop. 4.5] for the proof of the first claim. The second is a special case of
[11, Lemma 7.1]. We provide the argument for completeness here. Let 0 < § < po—1,
¢(8) > 0 be such that F(x) < ¢(6)z'+? for z > 1. Take vy = 0/(po — 1 —6) and let I,
be the interval I,, = [277",277("=1). Note that

#veF:p’ el,} <#A(p,277") = F(277) < ¢(6)20m/70+9),

We compute

sup L (WP =lm Y (=) Y (W)

e>0 veA(p,e) veA(p,e) n>1 “L,:EEJI-'W
Z Q’Y"/U 1+6)9—py(n—1)
n>1
= ¢(6)2P7 Z 9= n(p—(1+0)/0) _ = ¢(8)277,
n>1

which is finite. For 0 < p < 1/0, Zm>1 pp, >S5 (L+m)~! diverges. O

In Example 5.3 we showed that, in general, #A > dim Py, i.e., the number of deter-
ministic problems to be solved for the determination of Iy is larger than the number
of monomials in Py which determine the precision of I, cf. (5.6). To facilitate com-
parison with Monte-Carlo methods, we quantify the convergence of I in terms of the
number of deterministic problems to be solved. To this end, we bound dim Py = #A
for several classes of monotone index sets A.

DEFINITION 5.9. For u € ¢y and 0 < e <1, define

B(u,e) :=max{m >1: i, >1} Z 4#supp v H

veEA(p,e) mesupp v

1+ pm
1— pm

(5.5)

where A(u,€) is as in (5.4) and

7 () ;== inf{s¢>0: sup e*B(u,e) < o},
0<e<1

which may be infinite. We refer to »*(u) as asymptotic overhead order of u € co.
The class of sequences p € ¢p which have finite asymptotic overhead order »* (i) < 0o
includes some important families, as we show in the following.
LEMMA 5.10 (Asymptotic overhead order for algebraic decay). For the model se-
quence iy, = (1 +m)~% with algebraic decay with fized order o > 1 the asymptotic
overhead order »*(u) is bounded by >* (1) < 2(1+logd)/o.
Proof. Let 0 < & < py. Clearly max{m >1: p,, > e} < e~ 1/7, Using [8, Lemma 4.8]
we therefore have # suppv < 2log (5_1/”) if u¥ is sufficiently small for v € A(u, €) to
hold. Thus, for v € A(u,e) and any fixed 6 > 0 we obtain

4#suppu H 1+Mm S, (4_’_5)72/010g5 _ 672log(4+6)/a
— U

meEsupp v

v

u” is small enough and trivially the same bound otherwise. Using #A(u,e) <
e~(149/7 (Lemma 5.8) we obtain for ¢ — 0

1+ pm
#A(p,e) max{m > 1: pu,, > 1} max 4%5WPPv H 2 o Se™

veA(u,e) mesupp v 1-— Hm
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with 25 = (1 +6)/o + 1/o + 2log(4 + d)/o. Thus s»*(pu) < 5. Since 6 > 0 was
arbitrary, the claim follows. O

LEMMA 5.11 (Isotropic sparse tensor product asymptotic overhead order). Assume
W€ co is of the form p1 = po = -+ = ppr = po > 0, fyy, = 0 for m > M, where
M € N is fized. Then the asymptotic overhead order of u is »*(u) = 0.

Proof. Take any » > 0. With L = loge/log o (for simplicity an integer) we have [29]

M
c M+ L)

M+L) < i <S(=loge) <e7* for €—0

#A(p,€) = < M

and the other terms in (5.5) are bounded, independently of £ > 0. O

Lemma 5.10 and Lemma 5.11 give rise to an even larger family of sequences p for
which the asymptotic overhead order of i can be estimated.

PROPOSITION 5.12. Let uV) € ¢q for which the asymptotic overhead order of p") is
finite, i.e., s := 2" (p™M) < co. Let M > 1 and p € ¢y be a sequence with u%) > lm
for m > M. Then we have »* () < s (™).

Proof. We assume w.l.o.g. that 0 < ¢ < min{,ul,,ugl)}. Define 49 € ¢y by u&?) =
Lim<anyp1, m > 1. Let H. be the map H. : A(p@,e) x A, e) — A(p, ) given by

yﬁ,?) m < M

h = (V(O)yl/(l)) — He(h) = Lr>eyy  with vy = {V?(le) m> M.

Observe that H. is well-defined and surjective, and thus
#A(p,2) < #AE )#AL, )
due to € < 1. Noticing further that
max{m >1: fi,, > e} <max{m >1:p > ec}max{m >1: ) > ¢}
and for all h = (v, b)) € H-'(A(u,€)) we have
supp H:(h) C supp vy (supp v N {meN:m>M})

and thus also

I =< II = I =

méesupp He (h) Hm m&Esupp v(0) 1- Hm mESup;;\/}/(l) ~ Hm
m>
- L+ juin L+ pi!
- 1 (0) 1 (1) ’
meEsuppv(® ~ Hm mEsuppr( + Hm

we conclude from Lemma 5.11 that B(u) < B(p)B(uM) < e % * as ¢ — 0 for
any 0 > 0. This shows the claim. O

For complex-analytic functions on product domains we obtain the following approxi-
mation property of Iy for multiindex sets A of type (5.4).

THEOREM 5.13. Let {pm}m>1 be a sequence with py, > 1 and p,, — oo. For each
m > 1 let £, denote the ellipse in C with sum of semiazes p., (as in [14, p. 312]).
Letv: & :=1],,>1&p. — C be a jointly complex-analytic function. Define pn € co by
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Hom = SUDyy >, p%, m € N. Assume sup,,~; pmm? < oo for some o > 0 and that
7 () < co. Take » > »*(u). Then there exists C > 0 such that

aguere = vllzz@e) < C (877 + 7Y [lolloogzc) (5.6)

for all 0 < e < p1, where m is the uniform probability measure on U.
Proof. As in [6, 24] we use the following approximation property of the univariate
interpolation operator i,, for complex-analytic functions f on &

m *

If = inf||L2((71,1);ﬂ) < Clom)pmllfllco@y, n=0,1,...

om)’

where C(py,) = o _1 < pm — 0 as m — oo. In particular, forn =1,2,...

(5.7)

P 'm,

o Al vty < Clombit (14 ) Wl

and there exists C' < oo, independent of v, with [
Clearly,

C(pm) < C for any v € F.

mesupp v

o fllza=1,1y:90) < M Sflleog-1,1))- (5.8)
Another observation used in the following is this: for 0 < ¢* < & < 1 setting ng =
max{n > 0: u? > e*} yields pmo+! < &* and thus for m > 1
I1f = Z Lipn, >s*)jnf||L2((71,1);%) < C(Pm)g*ﬂ%l||f||00(5,,7)- (5.9)
n>0

Similarly to [29, 6] we now write using p* € co, 1}, = ptm+1, m > 1 forany 0 < e <1

Iy = D | D0 Lupze/uytyin | ®dur @+
v*eA(p*,e) \n=0

and use the decomposition
Inguey —1d =1d" @ (Ingue o) — 1d7) = JX (4 (5.10)

where Id"" is the identity on m-variate functions, Id = Id™ ® Id"™* and

* _ 1 . .
A () = Z Id" — Z Lipnse/uey*yn | © Juy @+ (5.11)
v*eA(p*.e) n>0

In the remaining part of the proof we assume without loss of generality |[v][co <c) <1
In particular, fixing z; € &,;, j # m we have ||z, — v(21, 22, .. )||Co(5 o <1
and by stability (5.8) we discard the effect of the countably many trivial increment

operators jo in (5.11) in the following estimate. For v as in the statement of the claim
and any £ > 0 we now estimate using (5.9) and (5.7)

. 5 _ . 1
Aotz < C(Pl)WMl IT Clome) () <1+—>

v*eN(p* ) meEsupp v* Nm

<eClopr' Y 11 C(pm+1)<1+ ! )

v*eA(p*,e) mEsupp v* Pm+1

Z H 1+,Um

VEA(p, €) mesupp v
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Repeating this argument using the decomposition (5.10) we obtain (5.6). To this end
observe also that by the elementary inequality [12, (3.13)] for 0 < p < ¢ < o

1/p

1/q
< Z |,um|q> <M » Z |1an|? » (Im|)m>1 € ¢°(N) nonincreasing

m>M m>1

for all M > 1 we have, setting ¢ =1 and p = 1/0,

11" @ (Iroy = 1" )| 2wy € D Clom) <C Y pion < Cllptllga/e iy M7
m>M m>M

for all M > 1, in particular for M = max{m > 0: p,, > e} < e~ 0

REMARK 5.14. The preceding result remains true for Banach space valued complez-
analytic functionsv: € — B.

The bound (5.6) implies convergence Iy, v — v in LE(U) as e — 0if p € ¢
has asymptotic overhead order »*(u) < 1. Combining Theorem 5.13, Lemma 5.10
and Proposition 5.12 we have the following statement: provided p,, ~ m? with a
o larger than some fixed o9 > 0, the operator defined in (5.1) based on index sets
A((py})m>1, -) approximates in mean-square sense a complex-valued function v which
is complex-analyticon [[, -, &€, with rate at least (0 —0¢) with respect to #A(u, €) as
e — 0 (strong tractability in the sense of [29]). In particular, in this case the so-called
curse of dimension does not appear. The “effective dimension” max{m > 1: pu,, > €},
however, appears in the computation cost of each sample.

REMARK 5.15. For a particular choice of n € ¢y (as described below) and e > 0 the
multiindex set A(p,€) can be identified with the index set suggested in [23],

N
s N N : _ < .
Xo(w,N)={i e N,i>1 ;(zn Do, < wlgllgNan}

where w e R, N € N, a € Rf. Indeed, assuming without loss of generality that o is
increasing and setting pi,, = e ““m, e =pup form=1,.... M, pp, =0 form > M
for a suitable ¢ > 0 and w = loge/loguy it is easy to check that v € A(u,e) iff
1€ Xo(w, M), where we identify vy, =1, — 1, m=1,..., M.

We now compose the multilevel finite element discretization of the eigenvalue problem
from Sect. 4.2 with the sparse collocation operator (5.1) based on multiindex sets of
the form (5.4). For a given u € ¢o let (g5);>0 € co be a sequence of thresholds. With
(¢j)j>0 we associate a sequence of nested multiindex sets A; = A(p,e;), Ay = 0.
For v € F we define k(v) := inf{k > 0: v € Ay}, which may be infinite.

Now we consider the following sparse composite collocation operator, proposed for
isotropic collocation in [6] (cf. also [6, Remark 6.2.5]):

A== Y (a, = In ) (e = Aeca) (5.12)
0<k+¢<L
and
wesdn =Y (Ia, = In, ) (ue — upoy). (5.13)
0<k+¢<L
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LEMMA 5.16. We have for L > 0

S\L = Z I{V})\L—k}(u) and ﬁL - Z I{u}uL—k(V)'
veAL veAL

Proof. For A, L >0 we compute

L L
A = ZIAsz(/\Z — A1) = ZIAk (AL—k = AL—(k+1))
£=0

k=0
L L
— Z Z I{V}O\Lfk — )\L—(k-i-l)) = Z Z 1(k(u)§k)I{y}()‘Lfk — >‘L—(k+1));
k=0veAy k=0 vehs
and thus
L
A= Ty Y lkwy<kAn—k = An—(ht1))
veAL k=0
L
=2 Ty D Quek = Aoegern) = D T Aeoiw):
veAr k=k(v) vEAL

and similarly for 4. O
Note that the non-composite case corresponds to setting k() = 0 in the above.
From Theorem 5.13 we now deduce the following result.
THEOREM 5.17. Let W C HZ(D) and t > 0 be as in Assumption 4.7. Let D C R?
be convex according to Remark 4.2. Let {pm}m>1 be a sequence with p,, > 1 and
pm — 00 as m — oo. Assume that u : € =[] <&y, — W is jointly complex-
analytic. Define ji,, m > 1 as in Theorem 5.13. Assume that p,m® — 0 as m — oo
for some o > 0. If 0 > 0 is sufficiently large there exist »x < 1 and C' > 0 such that
for L>0
L
||’U, - 'G'LHL?r(U;H(l)(D)) <C (Z E]lffxz—t(L—k) + 5%”) ||u||CO(?;W)' (5.14)
k=0

Proof. If ¢ > 0 is sufficiently large, by Prop. 5.12 and Lemma 5.10 the asymptotic
overhead order of u satisfies »*(u) < 1. The rest follows as in [7, Sect. 6.3] using
Theorem 5.13 and Corollary 4.9. O

COROLLARY 5.18. Assume »*(p) < 3 < 1. Set g}, := 27%F/(01=%) 'k € N. Then

llu = ]|z wma o)) S L27Flullgo@wy- (5.15)
Next, we estimate the computational effort of the approximation u +— uy. As in

[29, 23, 6] for computational purposes we rewrite (5.12) in terms of the interpolation
operators ®m>1 1y,,. Using Lemma 5.16 we have

5\L: Z ® Z1/,,, Zum—l AL k(v)

veEAL m>1

— E E [Inlle ;

- (_]') £m ZVan'r]'m)\L—k(V)
veEAL  nefo,1}N m>1

supp nCsupp v

Z Z HV V||i<>°(N)<1)( HV?VHIA(N) ® iﬁm)\L*k(V)'

veEAL DEAL m>1
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Finally, exchanging the sums and renaming the multiindices we obtain

A= "3 Tpen (ol <n (D700 &) iy, ALk (5.16)

veEAL DEAL m>1

and similarly

L= Y Lwnlpvilpee<n (D100 Qi up vy (5.17)

veEAL DEAL m>1

REMARK 5.19. In (5.16) and (5.17), the number of nontrivial terms in the inner
sum does not affect the overall complexity. Indeed, for v € Ap the number of collo-
cation points in Ity = @,,51 i, is giwen by [[,,~1(Zm + 1) which by (5.3) equals
#{v € AL : v < vU}. On the other hand, ifv € Ay, there are at most #{v € A :v < v}
multiindices in the outer sum which have a non-trivial contribution from v in the inner
sum.
REMARK 5.20. Standard hat function discretizations can be used to compute uy, in
(5.17). Indeed, let ﬁ(Le), ¢ =0,...,L be the contribution of ue in (5.17) and let Py
denote the prolongation operator Vy—1 — Vy. We then have

ap = o\ + Pt + Py (L Pyl + Pl L)),
with total cost being proportional to the dimension of the ansatz space Vi, .
An efficient algorithm for computing Ay has been given in [8]. Observe that for
velAL=A(u,er) wehave v € Ap and v > v iff n =0 — v satisfies n € A(u,en/pn”).
Thus, the same algorithm (with a straightforward modification to take the con-
straint || — v|[geyy < 1 and the variable level indicator k() into account) can
be used to compute the coefficients of the terms )~ iy, AL—k@) in (5.16) and
o1 Ivm UL —k(p) 0 (5.17) efficiently. B
Finally, the total computational effort for the application of the sparse composite
collocation operator to the eigenpair of the ground state (5.16) and (5.17) can be
estimated using the following lemma.
LEMMA 5.21. For k > 0 assume #Ar < 2d1k/2, d1 > 0 and that the work for
determination of the numerical solution ug on one collocation node is bounded by a
constant multiple of 2%2% dy > 0. Then the computational effort for the numerical
realization of the sparse composite operator applied to the eigenpair of the ground state
is bounded by an absolute multiple of L2m@{d1d2}L g5 [, — 0.
Proof. We compute from (5.17) using the fact v < v = k(v) < k(P) and (5.3)

L
ST +1) | L2=EHD <Y N I @m+1) | 22070

veArp \m>1 k=0veA\Ar—1 \m>1
L
<L Z (#Ay — #Ap—1) #0200
k=0
L

<L Z odikgda(L—Fk)
k=0

which shows the claim. O
We collect the foregoing in the following theorem.
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THEOREM 5.22. For the parametric eigenvalue problem (2.10) assume the particular
form (4.1) with (4.2) and the Karhunen-Loéve expansion (4.4). Assume (4.5) holds.
Assume further that D C R is open, bounded and convex. Letp € (0,1) be such that
(4.6) holds. Then B(p) < >, <, ||¢m||’£m(D). Assume 0 < 0 < % —1. ForyeU

let (A(y),u(y)) = (M(y),w1(y)) denote the eigenpair with smallest eigenvalue. Let

€ (0,1), ¢ > 0 and define 7, = min{(1 — E)% ||1/1m||W1 w(pyt: m 21
and E(1) = {z € CM : dist(z,, [~1,1]) < T}, where § > 0 is as in (4.9). Define
Pm =Tm +/1+72, m>1 andumzsupm?mﬁ, m>1. Let 0 <t <1 and W
be as in (4.12). If p € (0,1) is small enough then there exists 0 < » < 1 such that

1. p has asymptotic overhead order »* () < »
2. defining ey, = 27/ (=) and Ay, = A, ex) we have #Ay < 6]:1/[7
3. the sparse composite approzimation (5.13) satisfies for L > 0

lu—drllr2 wm oy < Cw)L2™ = C(u)Ley ™™
and
llw — ]|z s (py) < C(w)(F#AL) 707 < Clu) Ny 7072

where C(u) = C’||u||CO oy < 0 with C' > 0 independent of L > 0, and
Ny, denotes the number of collocation points in Ip, .

6. Numerical examples. In the numerical examples we approximate the para-
metric eigenpairs by tensorized polynomials using the sparse collocation method as
described in Sect. 5.

We take an elliptic stochastic operator expanded in its Karhunen-Loeve series as
a model example [8]. We set D = (—1,1) € R and U = [-1,1]* and let the
diffusion coefficient in (4.1) be a(z,y) = a(x) + >, 1 Ymam(z), (z,y) € D x U,
cos(mma)
(m+1)3 ’
B such

where @ and {am, }m>1 C L(D). Specifically, we set @ = 1 and a,,(z) =
x € D, m > 1. This implies ||ay||r=p) = m, [IVam!||L=(p)y = (CESE
that |[am||lw1.(p) = Ttz + O(m™3) as m — oo. Hence, for all p > 3 we have
(llam|lw1.0(Dy)m=>1 € £P(N), which implies (4.6). In the computation we set p := 0.6,
B(p) := 2%0:1 ||am||1£0<,(D) with Mo = 10°, amin := infzep a— B(1), 6 := 2.8 (empiri-
cal estimate from a few samples), € = 0 and ¢ = 10 in the defintion of yu, see Theorem
5.22. This now completely defines the multiindex sets A(u,¢) for all £ > 0.
Approximate mean E[u] = [, u(y)dn(y) and variance E [u?] — E [u]2 of the first
eigenfunction u are shown in Fig. 6 1

In Fig. 6.2 convergence of the approximate mean E [I A(u,E))‘] and the number of
collocation points in I, ) as function of € are shown. In space, and for the reference
value of E [A] an overkill discretization is used. We observe an algebraic rate four for
the decay of the error E [IA(”,E))\] —E[)\ as e — 0. The number of collocation points
in I5(,,¢) behaves like e3/2ase — 0.
In order to verify convergence of the parametric eigenvalue in L2(U), we employ
the parameterization via the Legendre polynomials, see Lemma 5.7, which allows an
exact computation of the L2 (U) norm. We consider finite element spaces based either
on first or second order splines on an equidistant mesh, and compare the collocation
operator Py, \¢ and the sparse composite collocation operator A, for £ = 0, 1,2 against
an overkill reference solution. In the computation we set e, = 27¢ for simplicity. The
first order spaces have 15, 31, 63, the second order space have 16, 32, 64 degrees of
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freedom on levels ¢ = 0, 1, 2 respectively. The results are shown in Fig. 6.3, showing
the error of the approximate parametric eigenvalue versus the total number of degrees
of freedom in space, that is the sum of degrees of freedom of all EVPs solved.

-4
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0.6 g
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0 0
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xT T

Fi1G. 6.1. Mean and variance of the ground state of the parameteric diffusion equation (4.3) as
described in Sect. 6.

—*—Error of the estimated mean —'—N“m\;e; of samples
- -t - \\ =~
S
<

Fia. 6.2. Convergence of the mean of the computed parametric eigenvalue E [IA(u,s))\] and the

corresponding number of collocation points in Ix(, ). See Sect. 6 for details.

7. Summary. We have quantified the analytic dependence of an isolated eigen-
pair of a linear operator depending affinely on a vector of parameters in an abstract
setting. We have then specialized the discussion on stochastic differential operators ex-
panded in its Karhunen-Loeve series. Analyticity has been used to prove convergence
of the sparse composite operator applied to the eigenpair. Our numerical example of
an infinite dimensional paramateric eigenvalue problem confirms exponential conver-
gence of the sparse composite collocation method in the number of levels, and shows
that sparse composite tensorization can be an effective tool to reduce the complexity
of the problem.

In the sequel we will address the case of non-selfadjoint operators, as well as eigenpair
computation with eigenvalue “crossings”.
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