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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Erratum for “Multiple Traces formulation for

Helmholtz transmission problems” Adv. Appl. Math.,
37(1):39–91, 2012

R. Hiptmair, C. Jerez-Hanckes

September 15, 2012

Abstract A flawed proof led to a wrong power of a logarithmic factor in the
estimate of Lemma 11 of [R. Hiptmair and C. Jerez-Hanckes. Multiple traces
boundary integral formulation for Helmholtz transmission problems. Adv. Appl.

Math., 37(1):39–91, 2012]. This error does not compromise the main results of this
paper. A corrected version of that Lemma 11 is provided here.

1 Erroneous Estimate

As an auxiliary result required for the proof of convergence of the MTF, we intro-
duced Lemma 11:

Lemma 1 (Spurious Lemma 11 in [2]) Given a quasi-uniform family of meshes

{Γh}h>0 for a polygon Γ , the following inverse estimate

‖ϕh‖H̃−1/2(Γ ) ≤ CI(1 + |logh|) ‖ϕh‖H−1/2(Γ ) (1)

holds true for all piecewise constants ϕh ∈ S−1,0(Γh) and with CI independent of

the meshwidth h > 0.

2 Corrected Estimate

The statement of Lemma 1 needs to be altered as the presented proof is flawed.

The new version of Lemma 1 is as follows:

R. Hiptmair
Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland
E-mail: hiptmair@sam.math.ethz.ch

C. Jerez-Hanckes
School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
E-mail: cjerez@math.ethz.ch



2 R. Hiptmair, C. Jerez-Hanckes

Lemma 2 (Corrected version of Lemma 11 in [2]) Given a quasi-uniform

family of meshes {Γh}h>0 for a polygon Γ , the following inverse estimate

‖ϕh‖H̃−1/2(Γ ) ≤ CI(1 + |log h|)3/2 ‖ϕh‖H−1/2(Γ ) (2)

holds true for all piecewise constants ϕh ∈ S−1,0(Γh) and with CI independent of

the meshwidth h > 0.

Compared to the original version there is an extra 1
2 exponent in the logarith-

mic growth on h.

Proof Again we rely on the dual mesh Γ̂h of the mesh Γh of the curve Γ , see [2,
Beginning of Sect. 4.1.1]. In detail, let µ : [0, 1] 7→ Γ denote a parametrization of
the curve Γ , and denote by {xi}

M
i=0 the M + 1 nodes of the given partition Γh

that satisfy xi = µ(i/M). The nodes ξi, i = 0, . . . ,M , of the dual mesh Γ̂h are
defined according to

ξ0 = x0 , ξM+1 = xM , ξi = µ
(

1
M

(
i− 1

2

))
, i = 1, . . . ,M . (3)

We write S0,1(Γ̂h) for the space of piecewise linear functions on the dual mesh
Γ̂h, and S0,1

0 (Γ̂h) for its subspace of functions vanishing in the endpoints x0 = ξ0
and xM = ξM+1. The customary “tent function basis” of S0,1(Γ̂h) comprises the
functions bih, i = 0, . . . ,M + 1.

Let us introduce the space S̃0,1(Γ̂h) ⊂ S0,1(Γ̂h) defined as

S̃0,1(Γ̂h) :=
{
vh ∈ S0,1(Γ̂h) : vh|[ξ0,ξ2], vh|[ξM−1,ξM+1] ∈ P1

}
(4)

In words, S̃0,1(Γ̂h) is the space of p.w-linear functions over the dual mesh with re-
strictions at the endpoints, thus leavingM degrees of freedom which is equal to the
number of dofs for S−1,0(Γh). As basis of S̃0,1(Γ̂h) is given by {b̃1h, b

2
h, . . . , b

M−1
h , b̃Mh },

where b̃1h and b̃Mh are special linear combinations of b0h, b
1
h and bMh , b

M+1
h , respec-

tively, see Figure 1.

ξ0 ξ1 ξ2 ξM ξM+1

0

1

b̃1h

b̃Mh

Fig. 1 A function in S̃0,1(Γ̂h) (magenta) and nodal basis functions (blue and red).

The rationale for choosing S̃0,1(Γ̂h) was to make the stability property

sup
ψh∈S−1,0(Γh)

|〈ψh , vh〉|

‖ψh‖L2(Γ )

≥ CST ‖vh‖L2(Γ ) ∀ vh ∈ S̃0,1(Γ ), ∀h > 0, (5)
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hold. This can be proved by computing the Galerkin matrix of 〈ψh , vh〉 with
respect to a suitably scaled local basis of S−1,0(Γh) and S̃0,1(Γ ), respectively.
This matrix turns out to be strictly diagonally dominant.

Owing to (5) we can define the linear projector J1h : L2(Γ ) → S̃0,1(Γ̂h) accord-
ing to 〈

ϕh , J
1
h u

〉
= 〈ϕh , u〉 , ∀ϕh ∈ S−1,0(Γh) , (6)

and conclude from (5)
∥∥∥J1h u

∥∥∥
L2(Γ )

≤ C−1
ST ‖u‖L2(Γ ) , ∀h > 0 . (7)

Also, instead of the projection operator Ph, we use the nodal interpolation operator
Ih : H1(Γ ) → S̃0,1(Γ̂h). Thanks to the continuous embedding of C0(Γ ) in H1(Γ )
we have

‖Ihf‖H1(Γ ) ≤ CI ‖f‖H1(Γ ) , h > 0, (8)

and one can prove

‖f − Ihf‖L2(Γ ) ≤ C2h ‖f‖H1(Γ ) , h > 0. (9)

Note that for dimensions higher than one these results are no longer true.
Consequently, one can derive the following estimate:

∥∥∥J1h u
∥∥∥
H1(Γ )

≤
∥∥∥J1h u− Ihu

∥∥∥
H1(Γ )

+ ‖Ihu‖H1(Γ )

inverse inequality and (8) ≤ Cinvh
−1

∥∥∥J1h u− Ihu
∥∥∥
L2(Γ )

+ CI ‖u‖H1(Γ )

= Cinvh
−1

∥∥∥J1h(Id−Ih)u
∥∥∥
L2(Γ )

+ CI ‖u‖H1(Γ )

(7) ≤ Cinvh
−1C−1

ST ‖(Id−Ih)u‖L2(Γ ) + CI ‖u‖H1(Γ )

(9) ≤ Cinvh
−1C−1

STC2h ‖u‖H1(Γ ) + CI ‖u‖H1(Γ )

≤ C̃1 ‖u‖H1(Γ )

(10)

with C̃1 := CinvC
−1
STC2 + CI.

Interpolation between L2(Γ ) and H1(Γ ) using (7) and (10) yields
∥∥∥J1h u

∥∥∥
H1/2(Γ )

≤ C3 ‖u‖H1/2(Γ ) ∀ u ∈ H1/2(Γ ), ∀h > 0. (11)

where C3 := C
−1/2
ST C̃

1/2
1 .

Let us introduce a chop-off operator
◦

Ih: S0,1(Γ̂h) → S0,1
0 (Γ̂h), which sets

vh(ξ0) = vh(ξM+1) = 0. This is equivalent to dropping the contribution of basis
functions of S0,1(Γ̂h) associated with the endpoints. The impact of chopping off
can be controlled thanks to the following lemma.

Lemma 3 For all vh in S0,1(Γh) we have

∥∥∥
◦

Ih vh

∥∥∥
H̃1/2(Γ )

≤ C4(1 + |logh|)3/2 ‖vh‖H1/2(Γ ) . (12)
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To prove this, proceed as follows. Write

vh =
◦

Ih vh + vh(ξ0)b
0
h + vh(ξM+1)b

M+1
h (13)

Based on the inverse inequality [1, Lemma 1]

‖vh‖L∞(Γ ) ≤ CD(1 + |logh|)1/2 ‖vh‖H1/2(Γ ) ∀ vh ∈ S0,1(Γ̂h), (14)

we get

|vh(ξ0)| , |vh(ξM+1)| ≤ C(1 + |logh|)1/2 ‖vh‖H1/2(Γ ) (15)

The above together with the knowledge that

∥∥∥b0h
∥∥∥
H1/2(Γ )

,
∥∥∥bM+1
h

∥∥∥
H1/2(Γ )

≤ C

gives
∥∥∥vh−

◦

Ih vh

∥∥∥
H1/2(Γ )

≤ C̃(1 + |log h|)1/2 ‖vh‖H1/2(Γ ) (16)

from where ∥∥∥
◦

Ih vh

∥∥∥
H1/2(Γ )

≤ Ĉ(1 + |logh|)1/2 ‖vh‖H1/2(Γ ) . (17)

Finally, we use a result by McLean and Steinbach [4], [2, Eq. (166)]

‖uh‖H̃1/2(Γ ) ≤ CMS(1 + |logh|) ‖uh‖H1/2(Γ ) , ∀uh ∈ S0,1
0 (Γ̂h) . (18)

Thus, we arrive at the estimate

∥∥∥
◦

Ih vh

∥∥∥
H̃1/2(Γ )

≤ CMSĈ(1 + |logh|)3/2 ‖vh‖H1/2(Γ ) (19)

since
◦

Ih vh ∈ S0,1
0 (Γ̂h) ⊂ H̃1/2(Γ ).

The estimates (17) and (19) permit us to finish the proof of Lemma 2 as follows.
Let ϕh ∈ S−1,0(Γh), then by definition of the dual norm:

‖ϕh‖H̃−1/2(Γ ) = sup
0 6=v∈H1/2(Γ )

|〈ϕh , v〉|

‖v‖H1/2(Γ )

(11), (6) ≤ C3 sup
0 6=v∈H1/2(Γ )

∣∣〈ϕh , J1h v
〉∣∣

∥∥J1h v
∥∥
H1/2(Γ )

≤ C3 sup
0 6=vh∈S̃0,1(Γ̂h)

∣∣∣
〈
ϕh ,

◦

Ih vh

〉∣∣∣
‖vh‖H1/2(Γ )

+ C3 sup
0 6=v∈S̃0,1(Γ̂h)

∣∣∣
〈
ϕh , (Id−

◦

Ih)vh

〉∣∣∣
‖vh‖H1/2(Γ )

(20)
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Due to (12), the first term sup on the right-hand side satisfies

sup
0 6=vh∈S̃0,1(Γ̂h)

∣∣∣
〈
ϕh ,

◦

Ih vh
〉∣∣∣

‖vh‖H1/2(Γ )

≤ C4(1 + |logh|)3/2 sup
0 6=vh∈S̃0,1(Γ̂h)

∣∣∣
〈
ϕh ,

◦

Ih vh
〉∣∣∣

∥∥∥
◦

Ih vh

∥∥∥
H̃1/2(Γ )

= C4(1 + |logh|)3/2 sup
0 6=wh∈S

0,1
0

(Γ̂h)

|〈ϕh , wh〉|

‖wh‖H̃1/2(Γ )

≤ C4(1 + |logh|)3/2 sup
0 6=w∈H̃1/2(Γ )

|〈ϕh , w〉|

‖w‖H̃1/2(Γ )

= C4(1 + |logh|)3/2 ‖ϕh‖H−1/2(Γ ) .

(21)

The second term is tackled by a simple Cauchy-Schwarz inequality

sup
0 6=vh∈S̃0,1(Γ̂h)

∣∣∣
〈
ϕh , (Id−

◦

Ih)vh

〉∣∣∣
‖vh‖H1/2(Γ )

≤ sup
0 6=vh∈S̃0,1(Γ̂h)

‖ϕh‖L2(Γ )

∥∥∥(Id−
◦

Ih)vh

∥∥∥
L2(Γ )

‖vh‖H1/2(Γ )

(22)

Using a scaling argument and (16), one can show that

∥∥∥(Id−
◦

Ih)vh

∥∥∥
L2(Γ )

≤ C5h
1/2

∥∥∥(Id−
◦

Ih)vh

∥∥∥
H1/2(Γ )

≤ C5h
1/2C̃(1 + |logh|)1/2 ‖vh‖H1/2(Γ ) .

(23)

On the other hand, following the reasoning in the proof of [3, Lemma 4.5] we
obtain the inverse inequality

‖ϕh‖L2(Γ ) ≤ C6h
−1/2 ‖ϕh‖H−1/2(Γ ) (24)

so that combining (23) and (24) for (22) boils down to

sup
0 6=vh∈S̃0,1(Γ̂h)

∣∣∣
〈
ϕh , (Id−

◦

Ih)vh
〉∣∣∣

‖vh‖H1/2(Γ )

≤ C6h
−1/2C5h

1/2C̃(1 + |logh|)1/2 ‖ϕh‖H−1/2(Γ )

≤ C7(1 + |logh|)1/2 ‖ϕh‖H−1/2(Γ ) ,

(25)

where now C7 := C6C5C̃. To conclude, using (21) and (25) we get

‖ϕh‖H̃−1/2(Γ ) ≤ C3C4(1 + |logh|)3/2 ‖ϕh‖H−1/2(Γ )

+ C3C7(1 + |logh|)1/2 ‖ϕh‖H−1/2(Γ )

≤ CI(1 + |logh|)3/2 ‖ϕh‖H−1/2(Γ ) ,

(26)

where the constant CI is defined adequately.
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3 Implications

The power of the logarithmic factor (1 + | logh|) in the estimate of Corollary 3
of [2] has to be raised to 3

2 as well. In turns, this corollary is used in the proof
of Theorem 13 of [2]. However, the inverse estimate of Corollary 3 only enters in
Equation (182). There it is crucial that h1/2−ǫ(1+ | log h|)β → 0 for h→ 0, which
holds for any β ∈ R. Hence, the slightly changed power of the logarithmic factor
in Lemma 11 of [2] does not make any difference.
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Multiple Traces Boundary Integral Formulation for Helmholtz

Transmission Problems
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Abstract

We present a novel boundary integral formulation of the Helmholtz transmission problem for bounded com-

posite scatterers (that is, piecewise constant material parameters in “subdomains”) that directly lends itself to

operator preconditioning via Calderón projectors. The method relies on local traces on subdomains and weak

enforcement of transmission conditions. The variational formulation is set in Cartesian products of standard

Dirichlet and special Neumann trace spaces for which restriction and extension by zero are well defined. In

particular, the Neumann trace spaces over each subdomain boundary are built as piecewise eH
−1/2-distributions

over each associated interface. Through the use of interior Calderón projectors, the problem is cast in varia-

tional Galerkin form with an operator matrix whose diagonal is composed of block boundary integral operators

associated with the subdomains. We show existence and uniqueness of solutions based on an extension of Li-

ons’ projection lemma for non-closed subspaces. We also investigate asymptotic quasi-optimality of conforming

boundary element Galerkin discretization. Numerical experiments in 2-D confirm the efficacy of the method and

a performance matching that of another widely used boundary element discretization. They also demonstrate its

amenability to different types of preconditioning.

Keywords: Acoustic scattering, boundary integral equations, trace spaces, Calderón projectors, boundary

elements.

1 Introduction

We focus on the time-harmonic scattering of acoustic waves by a bounded penetrable object Ω ∈ Rd, d = 2, 3,
composed of several subdomains Ωi, i = 1, . . . , N . Specifically, in each subdomain Ωi the solution u satisfies
a Helmholtz equation with wave-number κi. This is generally referred to as Helmholtz Transmission Problem

(HTP) and is a relevant model for applications ranging from ultrasound and electromagnetic biomedical imaging

[53, 1] to blood cell scattering [15] and antenna design [42]. A solution of the HTP on a given subdomain is

related to the surrounding ones via continuity or transmission conditions for Dirichlet and Neumann traces across

interfaces. More precisely, if u represents the total wave inside the scattererΩ and the scattered field in the exterior
Ω0 := Rd \ Ω̄, the problem for N subdomains can be stated as follows:

Problem 1.1 (Multiple Transmission Problem). Seek u in a suitable functional space such that:






−∆u − κ2
i u = 0 in Ωi i = 0, . . . , N,

+inhom. transmission conditions on ∂Ω,

+homogeneous transmission conditions on all interfaces Ωi ∩ Ωj ,

+radiation conditions for |x| −→ ∞.

(1)
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