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Abstract

The order-of-magnitude method proposed by Struchtrup (Phys. Fluids 16/11, 2004, p.3921-
3934) is a new closure procedure for the infinite moment hierarchy in kinetic theory of gases,
taking into account the scaling of the moments. The scaling parameter is the Knudsen
number Kn, which is the mean free path of a particle divided by the system size.

In this paper, we generalize the order-of-magnitude method and derive a formal theory
of scale-induced closures on the level of the kinetic equation. Generally, different orders
of magnitude appear through balancing the stiff production term of order 1/Kn with the
advection part of the kinetic equation. A cascade of scales is then induced by different powers
of Kn.

The new closure produces a moment distribution function that respects the scaling of
a Chapman-Enskog expansion. The collision operator induces a decomposition of the non-
equilibrium part of the distribution function in terms of the Knudsen number.

The first iteration of the new closure can be shown to be of second-order in Kn under
moderate conditions on the collision operator, to be L2-stable and to possess an entropy law.
The derivation of higher order approximations is also possible. We illustrate the features of
this approach in the framework of a 16 discrete velocities model.

1 Introduction

Kinetic theory describes the flow of gases by means of a stochastic description based on the
distribution function of the particle velocities. The distribution function obeys the Boltzmann
equation - an integro-differential equation that considers free streaming and collisions of the
particles, see e.g., the textbook [6]. This description of gases is a detailed, complex, microscopic
approach reflected in the fact that the state of the gas at a spatial point is given by a function,
i.e., an infinite dimensional object. In contrast, gases in classical fluid dynamics are described by
a low dimensional vector of variables, typically density, velocity and temperature in each space
point.

The aim of approximation methods in kinetic theory is to reduce the high dimensional particle
description rigorously to a low-dimensional continuum model. Classical approaches are given
by asymptotic analysis and function approximation theory. The Chapman-Enskog expansion
conducts an asymptotic analysis where the smallness parameter is the Knudsen number, see
for example the textbook [7]. This expansion successfully derives the fluid dynamic laws of

∗Seminar for Applied Mathematics, ETH Zurich, Switzerland / mail: pkauf@math.ethz.ch
†Seminar for Applied Mathematics, ETH Zurich, Switzerland / mail: matorril@math.ethz.ch
‡FB Mathematik, Universität Konstanz, Germany / mail: michael.junk@uni-konstanz.de
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Navier-Stokes and Fourier, but fails to produce useful higher order results beyond the first
order. Instead, the Burnett- and super-Burnett-equations have been shown to be unstable
in [2]. Grad’s moment approach uses approximation theory and represents the distribution
function as series of Hermite functions, see [9, 10].. In the limit, this series is supposed to
reproduce any distribution function.. Truncations of the series give rise to moment equations
that approximate Boltzmann’s equation. However, the approximation converges slowly and also
unphysical artifacts, like subshocks, are produced, see e.g. [24].

Various attempts exist to remedy the drawbacks of the Chapman-Enskog expansion. The
work [12] introduced a hyperbolic form of the Burnett equations which is stable, while in [3] it was
shown that a variable transformation may be able to remove unstable terms from the second
order Chapman-Enskog result. Moment equations have been popular for their mathematical
structure, see [13], and also for some success in describing physical processes, see the textbook
[14]. A combination of Grad’s moment method and an asymptotic approach has been introduced
in [19].

Recently, in [17], a new derivation of macroscopic equations was presented that was claimed
to be different from both Chapman-Enskog and Grad.. This so-called order-of-magnitude method
is based on general moment equations and follows the scale of the variables for a closure, see
also the textbook [16]. The resulting equations exhibit an inherent asymptotic accuracy in the
sense of Chapman-Enskog and they are stable. The method succeeded to derive generalized 13-
moment-equations in [18] and also showed that the R13-equations of [19] are a correct, stable,
third order accurate approximation of Boltzmann’s equation. This may explain the success of
the R13-equations as demonstrated in [21, 22, 23, 24]. The R13-equations even allow to construct
reasonable boundary conditions, see [11, 20, 25].

In this paper, we extend the order-of-magnitude method to the level of kinetic equations.
So far, this method was only applied to the full non-linear moment hierarchy with little chance
to gain insight into the general mathematical idea and structure of the closure. Our aim is to
develop a formal theory of the new closure and to apply it to general kinetic equations. Here,
we restrict ourselves to a linear kinetic model equation and demonstrate the relation of the new
method to the classical approaches of Chapman-Enskog and Grad. We prove the asymptotic
accuracy of the resulting closure and show the existence of an entropy law and L2-stability, once
specific variables are chosen. Our findings clearly show how the method exploits the scaling of
the distribution function and the structures that this scaling creates in the phase space. Hence,
it is reasonable to call this method a scale-induced closure.

The paper is organized as follows: The next section briefly resumes the order-of-magnitude
method as applied to the moment hierarchy in [16] and discusses the results. Sec. 3 introduces
the linear kinetic model and Sec. 4 discusses the classical closure theories in their application to
the model. The new scale-induced closure is derived in Sec. 5 where also the asymptotic accuracy
and stability are proven. As examples of the new method, Sec.6 discusses the generalized 13-
moment-system of [18], the application of the new closure to a 16 discrete velocities scheme and
an application to a more general, high dimensional ”kinetic type” equation. In that setting, the
classical closures are compared to the scale induced closure, and the advantage of the latter is
clearly shown. The paper ends with a conclusion.

2 Struchtrup’s Order-of-Magnitude Approach

In the papers [17] and [18], Struchtrup proposes an order-of-magnitude approach to derive
macroscopic transport equations in kinetic gas theory based on Boltzmann’s equation. We
briefly summarize the results of his method which will be generalized in the later sections. For
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details we refer to the original papers and the textbook [16].
The Boltzmann equation

∂f

∂t
+ ci

∂f

∂xi
=

1

ε
J(f, f) (1)

describes the evolution of the distribution function f of the particle velocities in a mon-atomic
gas. The value of f (x, t, c) dc gives the number density of particles in x at time t with velocities
in [c, c+ dc] with c defined with respect to an absolute reference. The collision operator J is an
integral functional which depends quadratically on f (see, for example, [6]). We assume, that
the equation is normalized in such a way that the Knudsen number, i.e., the ratio between the
mean free path and a macroscopic length, appears as scaling parameter ε.

Relevant for macroscopic equations are the equilibrium moments density, momentum density
and energy density

# = m

∫

R3

f dc, #v = m

∫

R3

c f dc,
3

2
ρθ +

1

2
#v2 =

1

2
m

∫

R3

c2 f dc (2)

from which average velocity v and temperature θ (in energy units) are derived. Additional
higher order non-equilibrium moments are defined as

us
i1···in = m

∫

R3

C2sC〈i1 · · ·C in〉 (f − fM) dC. (3)

Here, fM is the Maxwell distribution and C = c − v is the peculiar velocity. Indices in angu-
lar brackets denote the symmetric and trace-free part of the corresponding tensor. Evolution
equations for the moments follow from integration of (1). They form an infinite hierarchy with
a closure problem.

The order-of-magnitude approach closes the system of equations in three steps. As first step,
a Chapman-Enskog expansion is conducted (e.g., us

i = εus
i|1+ε2 us

i|2+...) on the infinite hierarchy
in order to assign an order of magnitude in terms of the Knudsen number to all moments. In
the first expansion, only vectorial and second degree tensors with arbitrary number of traces are
non-zero and we obtain

us
i|1 = −κs ρθs ∂θ

∂xi
, us

ij|1 = −µs ρθs+1 ∂v〈i
∂x j〉

, us
i1···in = 0 (n > 2). (4)

The subscript 1 denotes the first expansion, κs and µs are pure numbers. All other moments
vanish to first order in ε. Obviously, heat flux qi|1 = 1

2u1
i|1 and stress tensor σij|1 = u0

ij|1 are
among the first order moments. The coefficients κs and µs stem from the production terms of
the moment equations. For a more specific representation in terms of quantities involving the
collision operator, we refer to [19].

The fact that all vectorial and 2-tensorial moments are of the same order of magnitude is used
as constitutive relation in the second step of the method. Indeed, up to an error of second order
in the Knudsen number, two of all these moments suffice to calculate the value of the others. As
natural candidates for a basis we choose heat flux u1

i|1 and stress tensor u0
ij|1 and eliminate the

gradient expressions in (4). The result are local constitutive equations for all higher moments
accurate up to an error of second order in ε. They read

us
i|1 =

κs

κ1
θs−1u1

i|1 (s > 1), (5)

us
ij|1 =

µs

µ0
θsu0

ij|1 (s > 0), (6)

us
i1···in |1 = 0 (s > 0, n > 2). (7)
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In the last step of the method, these relations are inserted into the moment hierarchy and
all expressions that have been shown to be of higher order in ε than two, are simply set to zero.
The final equations form a closed system based on quantities and expressions with consistent
order of magnitude. It is important to note, that the closure (5)/(6) depends on the collision
integral through the parameters κs and µs.

The order-of-magnitude method is, in principle, capable to produce equations at any order
of Knudsen number, see [16]. However, only equations up to third order have been derived, so
far.

3 Linear Kinetic Model

In the following we will recast the order-of-magnitude approach into a general kinetic framework
and demonstrate attractive properties of the resulting equations.

The theory is developed for a generic linear kinetic model which includes discrete velocity
models with finite velocity sets C ⊂ Rd as well as the continuous case C = Rd.

Definition 1 (Kinetic Model) Starting from an open spatial domain Ω ⊂ Rd, d ∈ N and
a velocity set C ⊂ Rd we identify distribution functions f : R+ × Ω × C → R with elements
ft,x : C → R+ of a suitable Hilbert space V of real valued functions on C. A solution of the linear
kinetic model is a distribution function which satisfies

∂tf(t,x, c) + c ·∇f(t,x, c) +
1

ε
Kf(t,x, c) = 0, (t,x, c) ∈ R

+ × Ω × C (8)

with Knudsen number ε and a linear collision operator K : V → V , independent of (t,x), with
the following properties:

1. K has a p-dimensional kernel (p ∈ N) injectively parametrized by an equilibrium distribu-
tion

M : R
p → V, ρ '−→ M ρ (9)

satisfying K M = 0. The operator M does not depend on (t,x). The function (Mρ)(t,x, c)
plays the role of the Maxwellian distribution function. The components of ρ are called
equilibrium parameters.

2. There exists a surjective equilibrium operator generalizing the mapping to the equilibrium
moments, which is independent of (t,x)

E0 : V → R
p, f '−→ ρ = E0f (10)

and satisfies the conservation property E0 K = 0 as well as E0 M = idRp . Note that the
combination Q = ME0 is a projection onto the kernel of K, the so called equilibrium pro-
jection. Accordingly, P = id−Q is called non-equilibrium projection. With this projections
we have the decomposition V = V0 ⊕ VNE with the equilibrium space V0 = QV and the
non-equilibrium space VNE = PV .

3. There exists a linear mapping K† : V → V with the properties

K†Q = 0, K†K = KK† = P (11)
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The condition E0M = idRp clearly implies that E0 inverts the action of M , or in other words,
that E0 is a pseudo-inverse of M .

Definition 2 Let X,Y be vector spaces and A : X → Y be linear. A linear mapping B : Y → X
is called a pseudo inverse of A (abbreviated as B = A†), provided

ABA = A, BAB = B. (12)

If X,Y are Hilbert spaces, B is called Moore-Penrose-inverse of A if in addition to (12) the
operators AB and BA are self-adjoint, i.e.

(AB)∗ = AB, (BA)∗ = BA. (13)

One can show that the Moore-Penrose-inverse is unique (see, for example, [8] and App.A) and,
in the case of injective A and finite dimensional X, it is given by B = (A∗A)−1A∗.

Applied to our situation with M = A and E0 = B, we first see that E0M = idRp implies (12)
so that E0 is indeed a pseudo-inverse of M . Moreover, the identity E0M is self-adjoint with
respect to any scalar product on Rp and the self-adjointness of the converse product Q = ME0

is equivalent to the orthogonality of the projection Q. In particular, the Moore-Penrose-inverse
M † = (M∗M)−1M∗ can serve as equilibrium operator E0 provided M †K = 0. Since

M †K = (M∗M)−1M∗K = (M∗M)−1(K∗M)∗,

we see that this condition is satisfied when K is self-adjoint, i.e. K∗ = K, because KM = 0.
This case will be of importance in section 7.

Using the properties of K and K† one can show (12)

KK†K = KP = K − KQ = K

K†KK† = K†P = K† − K†Q = K†

so that K† is really a pseudo-inverse of K. If K is self adjoint and E0 is chosen as Moore-Penrose-
inverse of M , then Q and P are also self-adjoint. In this case, K† is the Moore-Penrose-inverse
of K because (13) is also satisfied.

Further properties of K and K† which will be frequently used later can also directly be
deduced from the basic assumptions:

KQ = QK = 0, KP = PK = K, K†P = PK† = K†, K†Q = QK† = 0. (14)

In the case of the Boltzmann equation, the space V would be some weighted L2 space. The
equilibrium parameters are ρ = E0f =

∫
ψf with ψ = (1, c, c2)T and p = 2 + d. Furthermore,

M ρ would be given by the Maxwell distribution fM (#,v, θ; c).
The vector of equilibrium parameters ρ is a mapping

ρ : Ω × R
+ → R

p. (15)

The modelling task in kinetic theory is to find reasonable evolution equations for ρ by using a
projected space with much lower dimension than V . The following theory will achieve this goal.
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4 Classical Approximations

Classical asymptotic limits and approximations of kinetic equations include the Euler equations,
Chapman-Enskog expansion and Grad’s method. We review these results here for our model
since the new approach is built upon them and shows various connections to them.

In equation (8), the limit ε → 0 formally leads to Kf = 0 so that the distribution function
is asymptotically given by an equilibrium M ρ = Qf . Any extension beyond equilibrium will be
written

f = Qf + Pf = M ρ + f (NE) (16)

with a non-equilibrium disturbance f (NE).

4.1 Equilibrium Closure

The Euler equations arise if we apply the equilibrium operator E0 to (8) and obtain

∂tρ + E0c ·∇Mρ + E0c ·∇f (NE) = 0 (17)

The closure assumption f (NE) = 0 produces the Euler equations.

4.2 Chapman-Enskog Closure

The Chapman-Enskog expansion asks for the structure of the disturbance f (NE) = Pf . It is easy
to find an evolution equation for this quantity by applying the non-equilibrium projection P to
(8) and observing (14)

∂tf
(NE) + Pc ·∇f (NE) + Pc ·∇Mρ +

1

ε
K f (NE) = 0. (18)

Inserting the expansion f (NE) = ε f (NE)
1 + ε2f (NE)

2 + . . . , applying K† and using (11) and (14),

we obtain under the condition that all coefficients f (NE)
k and their derivatives are bounded with

respect to ε

Pf (NE)
1 + K†c ·∇Mρ = O(ε). (19)

In the Chapman-Enskog approach, this necessary condition on f (NE)
1 is replaced by the sufficient

but more strict requirement

f (NE)
1 = −K†c ·∇Mρ. (20)

Using εf (NE)
1 as approximation for f (NE) in (17), we can close the equation in a more accurate

way, leading to the general Navier-Stokes-Fourier equations

∂tρ + E0c ·∇Mρ = εE0(c ·∇)K†(c ·∇)Mρ. (21)

Going one order further and using relation (20) for f (NE)
1 , we get from (18)

Kf (NE)
2 − K†c ·∇M∂tρ − Pc ·∇K†c ·∇Mρ = O(ε) (22)

which can be solved in the form

Pf (NE)
2 = K†K†c∇M∂tρ + K†c ·∇K†c ·∇Mρ + O(ε) (23)

Again, dropping the non-equilibrium projection and the possible O(ε) contribution, the ne-
cessary condition is replaced by a more strict requirement in the classical Chapman-Enskog
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approach. In these so called Burnett relations for f (NE)
2 , the time derivatives ∂tρ can be replaced

by −E0c ·∇Mρ (Euler equations) with no loss of order. The equations then read

∂tρ + E0c ·∇Mρ =εE0(c ·∇)K†(c ·∇)Mρ

− ε2E0(c ·∇)K†(c ·∇)K†(c ·∇)Mρ

+ ε2E0(c ·∇)K†K†(c∇M)E0(c ·∇)Mρ.

(24)

However, (24) can be proven to be unstable in the realistic cases of the full Boltzmann
collision operator, see [2]. Higher order expansions like super-Burnett equations, turn out to
be unstable as well, [16]. This failure of the expansion indicates that the assumptions on the
coefficients are too strict in the higher order cases. In fact, for a model problem (see [5]) one
can show that less rigid assumptions help to avoid the stability breakdown.

There exist various attempts to stabilize the Burnett equations, for example [3] and [12]
which can be seen as particular choices of the right hand side in (23).

4.3 Grad Closure

Grad in [9] and [10] assumes a specific form of the distribution function which we summarize as

f = M ρ + Gµ + f̃ . (25)

Here, the non-equilibrium part is composed of the Grad distribution Gµ and a remainder f̃ ,
where G : Rq → V maps certain non-equilibrium parameters µ ∈ Rq onto a distribution function.
The dependencies of G on the equilibrium variables ρ are neglected in accordance with a linear
theory. The range of the mapping G can be viewed as vectors of the distribution space V opening
a subspace additional to the equilibrium space given by M . In the original Grad theory, this
subspace is spanned by Hermite polynomials. The parameters µ are typically defined in terms
of higher order moments, for example, as non-equilibrium parts of the fluxes of the equilibrium
variables. More generally, we assume that µ = E1f with a linear mapping E1 : V → Rq which
satisfies

E1G = idRq , E1M = 0, E0G = 0. (26)

As a consequence, S = GE1 is a projection which decomposes P into two parts S and R = P −S,
the latter one being the projection onto the remainder term.

Application of E0 and E1 to the equation (8) yields evolution equations for ρ and µ. We find

∂tρ + E0c ·∇Mρ + E0c ·∇Gµ + E0c ·∇f̃ = 0 (27)

and

∂tµ + E1c ·∇Mρ + E1c ·∇Gµ + E1c ·∇f̃ +
1

ε
E1K Gµ +

1

ε
E1K f̃ = 0, (28)

where in Grad’s approach f̃ = 0 leads to a closure of the system. Grad’s equations can typically
be shown to be stable.

From a geometric point of view, Grad’s approach amounts to a splitting of the non-equilibrium
space VNE into a resolved and an unresolved subspace where the resolved subspace V1 = Im(G)
is parametrized through an - up to conditions (26) - arbitrary choice of higher order moments
E1 (see Figure 1). Hence, the asymptotic accuracy in terms of Knudsen number remains unclear
for Grad’s equations.
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V

V0 VNE

V1
V2

Q P

S R

Figure 1: Splitting of the phase space into an equilibrium subspace V0 with
projection Q = ME0 and the non-equilibrium remainder VNE = PV which
is again split into the primary non-equilibrium subspace V1 = SV with Grad-
projection S = GE1 and the secondary non-equilibrium subspace V2 = RV .

5 Scale-Induced Closure

The order-of-magnitude approach wants to derive stable moment equations which are asymp-
totically accurate in the sense of a Chapman-Enskog expansion. Burnett equations satisfy the
accuracy condition, but are unstable. On the other hand, Grad’s equations are stable but the
closure is based on a distribution function which is arbitrarily reconstructed through higher
moments and has no a-priori asymptotic properties.

5.1 Derivation

The Chapman-Enskog expansion implies a distribution function in the form

f = M ρ + ε f (NE)
1 + ε2f (NE)

2 + O(ε3), (29)

while in Grad’s approach, the distribution function is structured according to

f = M ρ + Gµ + fR (30)

with equilibrium part Mρ ∈ V0, the primary non-equilibrium contribution Gµ ∈ V1 and the
secondary contribution fR ∈ V2 (see Figure 1).

A compatibility between the two representations (29) and (30) may be achieved if V1 is

constructed in such a way that it contains εf (NE)
1 . Thus, the task is to appropriately define G

and moments µ with their operator E1 such that, apart from the basic requirements

E1G = idRq , E1M = 0 E0G = 0, (31)

also εf (NE)
1 = Gµ ∈ Im(G) = V1 is possible. In contrast to Grad’s moment approach where

the distribution function is specified, for example, as Hermite series independent of the kinetic

equation, the condition εf (NE)
1 ∈ V1 combines the phase space splitting with the structure of the

kinetic equation.
Using the equilibrium projection Q, and the projections S = GE1 and R = P − S related to

the primary and secondary non-equilibrium, we can derive equations for ρ, µ and fR. Applying
R to (8), we obtain

ε2∂tf̂R + Rc ·∇Mρ + εRc ·∇Gµ̂ + ε2Rc ·∇f̂R + RK Gµ̂ + εRK f̂R = 0, (32)

8
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where we scaled the moments µ = εµ̂ and fR = ε2f̂R. If we choose the primary non-equilibrium
G such that for some suitable µ̂

Gµ = εGµ̂ = −εK†c ·∇Mρ (33)

we automatically satisfy the following equivalent requirements

1. the first expansion coefficient εf (NE)
1 in (20) can be written in the form Gµ.

2. the evolution of the remainder fR in (32) is governed only by quantities at least first order
in ε.

3. the distribution Gµ is given by the leading order term of the expansion of the distribution
function f in powers of ε conducted on (18).

To see Item 2, we do a short calculation: using the zeroth order terms in (32) we have

Rc ·∇Mρ + RKGµ̂
(33)
= R (c ·∇Mρ − Pc ·∇Mρ) = 0 (34)

since RP = R.
In order to derive an expression for G from (33) we will write it in the form

Gµ̂ = −K†c · M ∇ρ, (35)

where now the operator −K†c · M acts on p × d gradients ∇ρ =: A ∈ Rp×d according to

−K†c · MA = −K†
p∑

i=1

d∑

α=1

cαM eiAiα (36)

where ei are the Rp unit vectors. The same convention is applied to operators with the same
structure.

In the next two sections we consider two alternative paths to the specification of the operators
G and E1. In order to keep notation simple, we use µ for the scaled higher moments µ̂ in the
following.

5.2 Constructing the Distribution

In this section we choose a moment operator E1 : V → Rq with some restrictions and determine
the distribution function G from it. This point of view corresponds to constructing a closure
Gµ for the infinite moment hierachy by saying that f = Mρ + Gµ for given moments µ = E1f .
This directly corresponds to Struchtrup’s order-of-magnitude approach. Note, that the moment
production terms can be computed without any further assumptions on f . This simplifies the
process originally developed by Struchtrup in [18].

The projector E1 cannot be chosen entirely arbitrarily. Since we require E1G = idRq and
want to replace gradients by moments in (35) we have to choose E1 such that the linear equation

µ = E1Gµ = −εE1K
†c · M∇ρ (37)

is essentially solvable for ∇ρ. We expect that this leaves quite some freedom for the choice of
E1.

9



Scale-Induced Closure for Approximations of Kinetic Equations

Let us make this restriction a bit more precise: In general, the operator K†c · M has a non-
trivial nullspace ker

(
K†c · M

)
∈ Rp×d. We define V1 := Im(K†c · M) and choose E1 injective

on V1, i.e. ker(E1) ∩ V1 = {0}, meaning that E1 should not enlarge the kernel of K†c · M .
Furthermore we require the basic relation that E1M = 0 and define q such that E1 : V1 → Rq is
surjective.

Defining the projections T0 onto ker
(
K†c · M

)
and T1 onto any subspace complementary to

ker(K†c · M) in Rp×d, we can write ∇ρ = T0∇ρ + T1∇ρ. We then solve

T1∇ρ = −
1

ε

(
E1K

†c · M
)†

µ, (38)

which now determines the relevant part of ∇ρ in terms of µ. The symbol † denotes any pseudoin-
verse, see Sec. 3. This procedure should be compared to the elimination of gradient expressions
in Section 2 for the order-of-magnitude method conducted on moments.

For G we then compute

Gµ = −εK†c · M (T0∇ρ + T1∇ρ) (39)

= −εK†c · M
(

T0∇ρ −
1

ε

(
E1K

†c · M
)†

µ

)
(40)

= K†c · M
(
E1K

†c · M
)†

µ (41)

and thus

G = K†c · M
(
E1K

†c · M
)†

. (42)

Lemma 1 (Scale-Induced Distribution) Under the assumptions ker(E1) ∩ V1 = {0} with
V1 = Im

(
K†c · M

)
and E1M = 0 for the moment projector E1 : V → Rq with q = dimV1, we

have for the distribution function (42):

1. The construction is in accordance with the requirements (31). The non-equilibrium space
can be split into VNE = V1 ⊕ V2, with V1 := GRq = GE1VNE = SVNE and V2 = (P −
S)VNE = RVE.

2. The construction satisfies Im (G) = Im
(
K†c · M

)
= V1 in agreement with the condition

(35) as well as ker (G) = {0}.

3. V1 constains contributions to the distribution function up to order O(ε) and V2 contains
all orders higher than ε2 in a Chapman-Enskog expansion.

Proof.

1. We clearly have E1G = E1K†c ·M
(
E1K†c · M

)†
= idRq due to the requirement ker(E1)∩

V1 = {0}. The condition E1M = 0 was required for E1 a priori. Furthermore PG = G
follows from PK† = K† and implies that E0G = E0PG = 0. The splitting follows from
these three requirements. For the decomposition, we observe that GRq = V1 ⊂ VNE since
QG = ME0G = 0. With E1M = 0 we have that E1V0 = E1ME0V = {0} and with
E1R = E1P − E1S = E1 − E1 = 0, we have E1V2 = E1RV = {0} and thus ImE1 = E1V1

follows, and with this V = V0 ⊕ V1 ⊕ V2.

2. Since ker
(
E1K†c · M

)
= ker

(
K†c · M

)
, it follows that Im

(
E1K†c · M

)†∩ker
(
K†c · M

)
=

{0}, and with that Im (G) = Im
(
K†c · M

)
. It follows from the definition of q that Gµ = 0

implies µ = 0.

10
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3. The order of magnitude of the subspaces follows directly from the definition of Gµ as in
(42).

Herewith, the structure of the distribution function has been deduced from the kinetic equa-
tion. It strongly depends on the collision operator K and arises from the requirement of a scale
separation in the non-equilibrium subspace according to an asymptotic expansion in ε.

The typical separation in the phase space of the distribution function is that into equilibrium
and non-equilibrium as in (16). The order-of-magnitude method given above now shows that
there exists an additional natural separation of the non-equilibrium phase space that follows
from the kinetic equation itself. The first order contribution opens a subspace V1 in non-
equilibrium that can be described by a low-dimensional set of moments µ that all scale by ε.
The remainder space V2 contains all high order contributions to the distribution function when
Chapman-Enskog expanded.

The result is a scale-induced closure whose distribution structure strongly depends on the
collision operator K. It is characterized not by slow and fast relaxation times but instead
through the scale of the contributions of the asymptotic expansions to the distribution function.

Note that this construction is extendable to higher orders, leading to a more detailed decom-
position of the non-equilibrium phase space VNE .

In the derivation of G the higher moments µ = E1f are specified only by the solvability of
the system (37). This is possible, but E1 will not be unique. This situation is equivalent to
the result (4) for the order-of-magnitude method applied to the moments directly. In (4) some
moments had to be chosen as basis in which the others are represented. In the calculation of
this representation, gradient expressions of equilibrium variables had to be eliminated.

5.3 Constructing the Moment Operator

To some extend the approach in Sec. 5.2 above mimics the procedure used in [17] and [18]
conducted on the moment equations. An alternative path to exploiting the condition (35) is to
first specify the distribution G and then derive the moment operator E1.

The easiest way to construct G in accordance with (35) is to just choose G = K†c · M .
However, having condition (31) in mind, E1G = idRq cannot be fullfilled if K†c · M is not
injective. To improve our definition of G, we intoduce q linearly independent vectors which
generate a complementary subspace to ker(K†c · M). Then we define the surjective map

D : R
p×d → R

q, ∇ρ '→ µ̂, (43)

such that D(ker(K†c ·M)) = {0}. Note that this leaves quite some freedom for the choice of D.
With D we can adjust our definition of G to

GD = −K†cM (44)

as an operator acting on ∇ρ according to (36), giving

GD∇ρ = −K†cM∇ρ = −K†c ·∇M ρ (45)

in agreement with condition (33). Using a pseudoinverse of D the distribution G is explicitly
given by

G = −K†cMD† (46)

as a mapping from Rq to V . In Sec. 5.4, we will compare (46) to (42), which was resulting from
the choice of a specific operator E1.

11



Scale-Induced Closure for Approximations of Kinetic Equations

By construction, G is injective on the moment space Rq with ImG = Im
(
K†cM

)
= V1 ⊂ V .

Hence G : Rq → V1 is bijective and we can use its inverse to construct E1 on V1.
We remark that this definition automatically entails the condition E0G = 0: In fact, according

to (14), we have K† = PK† so that G = PG and hence

E0G = E0PG = 0.

It remains to specify the moment mapping E1 in such a way that the remaining conditions
E1M = 0 and E1G = idRq in (31) are satisfied. While E1M = 0 fixes the behavior of E1

on the equilibrium subspace V0, the condition E1G = idRq shows that E1 has to invert G on
V1 = Im(G). This can be summarized by saying that E1 has to be a pseudoinverse of G whose
kernel includes V0.

The only information about the behavior of E1 on complementary subspaces to V0 ⊕ V1 is
that V2 should be the nullspace of the projection S = GE1. Since G is injective, the nullspace
of S is identical to the nullspace of E1. Hence, the complete construction follows by choosing a
space V2 with the property V1 ⊕ V2 = VNE and setting E1 = 0 on V0 ⊕ V2 and E1 = G−1 on V1.
Then all conditions on G and E1 are satisfied. Summarizing, we obtain a decomposition of V
into generally non-orthogonal subspaces

V = V0 ⊕ V1 ⊕ V2, V0 = QV, VNE = PV = V1 ⊕ V2. (47)

and

E1f = E1(f0 ⊕ εf (NE)
1 ⊕ fR) = G−1εf (NE)

1 , with f0 ∈ V0, εf (NE)
1 ∈ V1, fR ∈ V2. (48)

If we get orthogonal sums in (47), then S = GE1 is a symmetric projector. With that,
additional to (31) and (48), we obtain the unique Moore-Penrose-inverse E1 = G†, see Sec. 3.
For a proof see App.A and [26].

In Sec. 7 we will show that the specific construction leading to E1 = G† as above produces
desirable properties of the evolution equation for ρ and µ. However, if not stated otherwise, we
will use a general non-orthogonal decomposition V = V0 ⊕ V1 ⊕ V2.

From the construction of E1 we can again clearly see that the order of magnitude method
is based on a natural separation of the non-equilibrium phase space VNE that follows from the
kinetic equation itself. It should be noted that, also here, the construction of E1 is not unique
due to some arbitrariness in the choice of D and, following from this, the moment space Rq.
This situation corresponds again to the result (4) for the order-of-magnitude method applied to
the moments directly. In (4) some moments had to be chosen as basis in which the others are
represented.

5.4 Comparison

In Sec. 5.2 we started with the construction of a projection E1 : V → Rq with certain restrictions
and computed G from it, whereas in Sec. 5.3 above, we started with the specification of G :
Rq → V by choosing the operator D and then determined E1 as inverse of G. In both cases the
restriction of Gµ as obtained in (35) was used.

The following Lemma shows how the constructions in Sec. 5.2 and Sec. 5.3 are related.

Lemma 2 [Relation of Different Constructions]
Let Gµ be determined through (35).

12
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1. Consider the derivation in Sec. 5.3. If an appropriate operator D as in (43) gives rise to
a distribution G as in (46) and a moment operator E1 as in (48), then

D = −E1K
†c · M and G = K†c · M

(
E1K

†c · M
)†

(49)

in agreement with the definition (42) of G in the derivation of Sec. 5.2.

2. Consider the derivation in Sec. 5.2. If a moment operator E1 satisfying the condition
described in Sec. 5.2 gives rise to the distribution G as in (42) and additionally the projector
GE1 is symmetric, then there exists an operator E5.3

1 = G−1|V1
as in (48). In particular,

E5.3
1 = G† = E1 and the two approaches agree.

Proof.

1. From (44) it follows D = −G†K†c · M and since K†c · M maps to V1, we have D =
−E1K†c · M . The second equality follows with (46).

2. E5.3
1 = G† = E1 follows from the symmetry of S together with condition (31), stating

E1G = idRq .

In the case where V is finite dimensional, we apply a standard argument using singular
value decomposition. For details see App.A. If V is a generally infinite dimensional Hilbert
space, we refer to Theorem 9.1.3 in [26].

Remark: Note that starting with E5.2
1 as in Sec. 5.2, then, according to (42), constructing

G = K†c · M
(
E5.2

1 K†c · M
)†

, and finally defining E1 as in (48) does not necessarily yield
E1 = E5.2

1 , unless the appearing pseudo-inverses are consistently chosen, which automatically
happens in the orthogonal case.

Usually, the approach in Sec. 5.3 is less practical since typically the distribution function is
to be constructed after the choice of specific moments to describe the process.

This situation is equivalent to the result (4) for the order-of-magnitude method applied to
the moments directly. In (4) some moments had to be chosen as basis in which the others
are represented. In the calculation of this representation, gradient expressions of equilibrium
variables had to be eliminated.

Finally, we want to stress that the basic idea of the construction presented here is extendable
to higher orders, leading to a more detailed decomposition of the non-equilibrium phase space
VNE, see Sec. 8.

6 Asymptotic Order

Assuming, as in Grad’s closure, f = M ρ + Gµ with G and E1 satisfying (48), we find the
evolution equations

∂tρ + E0c ·∇M ρ + E0c ·∇Gµ = 0 (50)

∂tµ + E1c ·∇M ρ + E1c ·∇Gµ +
1

ε
E1KGµ = 0. (51)

Note that in accordance with (29/30) and (33), µ = εµ1 + O(ε2). We have chosen this scaling
to compare (50/51) to Grad’s equations (27/ 28).

13
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We are interested in the asymptotic accuracy in terms of powers of ε of the evolution of ρ
with respect to the full kinetic equation. The question is, whether the evolution for µ in (51)
when expanded in ε and inserted into (50) reproduces the equations for ρ resulting from the
Chapman-Enskog expansion of the full kinetic model.

6.1 Order Analysis

The following theorem completely characterizes the asymptotic behavior of the system (50)/(51).

Theorem 1 (Asymptotic Accuracy) The system (50)/(51) with primary non-equilibrium
distribution G and moment operator E1 satisfying (48) describes an evolution of ρ that is of the
following Chapman-Enskog orders:

1) first order in the Knudsen number ε, if the operator E1KG is invertible on Rq.

2) second order in ε, if E1KG is invertible on Rq, and if

ẼK†R = 0 and ẼK†G = ẼG (E1KG)−1 , (52)

where Ẽ = E0c.

Proof.

1) The kinetic model produces an evolution for ρ that is given by (24). We have to show that,
up to first order, the asymptotic expansion of µ leads to the same equation. We introduce
µ = εµ1 + ε2µ2 into (51) and obtain for the first order contribution

E1c ·∇M ρ + E1KGµ1 = 0. (53)

We note that multiplying E1M = 0 with E0 from the right yields E1Q = 0 so that
E1P = E1. Using further KK† = P , we obtain E1 = E1KK† and hence (53) reads

E1K
(
K†c ·∇M ρ + Gµ1

)
= 0 (54)

The expression in the bracket is contained in V1 = Im(G) = Im(K†c · ∇M) and since
SV1 = V1, we have

E1KS
(
K†c ·∇M ρ + Gµ1

)
= 0. (55)

Using the definition S = GE1, the invertibility of E1KG and the relation E1G = idRq , we
conclude

µ1 = −E1K
†c ·∇M ρ (56)

and with it Gµ1 = −K†c ·∇M ρ.

Using this result, we can compute the leading order of the µ dependent expression in (50)

E0c ·∇Gµ = εE0(c ·∇)Gµ1 + O(ε2) (57)

= −εE0(c ·∇)K†(c ·∇)M ρ + O(ε2) (58)

which is precisely the first order contribution given in (21).

14
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2) Balancing the next order of (51) yields

∂tµ1 + E1(c ·∇)Gµ1 + E1KGµ2 = 0 (59)

where µ1 has to be inserted from above. The relevant term that enters the evolution of ρ
reads

Ẽ ·∇Gµ2 = −Ẽ ·∇G (E1KG)−1 (∂tµ1 + E1(c ·∇)Gµ1) (60)

The relation corresponding to (59) within the Chapman-Enskog expansion of the full
kinetic equation can be written

∂t

(
−K†c ·∇M ρ

)
+ c ·∇

(
−K†c ·∇M ρ

)
+ Kf (NE)

2 = 0

where the expression in brackets can be replaced by Gµ1 in the current context. As in

Sec. 4.2, we can multiply by K† and drop the non-equilibrium projection in front of f (NE)
2 ,

which yields

f (NE)
2 = −K†G (∂tµ1 + E1(c ·∇)Gµ1) − K†R (c ·∇)Gµ1

which influences the evolution of ρ in the form

Ẽ ·∇f (NE)
2 = −Ẽ ·∇K†G (∂tµ1 + E1(c ·∇)Gµ1) − Ẽ · K†R (c ·∇)Gµ1. (61)

Equality with the expression obtained for µ2 is given if

Ẽ ·∇G (E1KG)−1 = Ẽ ·∇K†G − Ẽ · K†R (c ·∇)G. (62)

This is guaranteed by the assumptions.

The theorem shows that the system resulting from the scale induced closure can be of second
order, that is, of the same accuracy as the Burnett equations, and as such go beyond the first
order Navier-Stokes equations. The scale induced closure combines Grad’s method with the
asymptotic properties of a Chapman-Enskog expansion.

Second order is given in non-trivial cases where the special conditions given in the theorem
are satisfied. In general, additional expressions have to be added on the right hand side of the
system stemming from higher moment equations. This can be seen in [18] where generalized
13-moment-equations are derived. Interestingly, for Maxwell-molecules the condition for direct
second order is satisfied, hence the original Grad equations are of Burnett order, see [16]. For a
given K, sufficient and also necessary conditions for any order can be obtained through direct
comparison of the asymptotic expansion with the corresponding Chapman-Enskog expansion of
(8). This is exemplified in App.B.3.

Note that the operator Ẽ = E0c can be interpreted as equilibrium projection of higher
moments. By asking that ẼK†R = 0, we demand in a weak sense that K† does not map any
elements of the secondary non-equilibrium V2 to a lower order (non-)equilibrium. This is also
related to condition 3) in Sec. 6.2.
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6.2 Various Conditions for First and Higher Order

The conditions given in Theorem 1 are sufficient. In this section we give an overview of some
more sufficient conditions for first and even higher order.

We begin with analyzing the mapping KG. To check injectivity, we note that KGµ = 0
implies Gµ ∈ ker(K), i.e. Gµ = Mρ for some ρ ∈ Rp, so that condition (48) yields µ = E1Mρ =
0. Hence, KGRq = KV1 = PKV1 ⊂ VNE is a q-dimensional subspace of VNE . Now there are two
possibilities depending on whether the intersection of KV1 and V2 is empty or not. Interestingly,
this alternative decides about the first order accuracy condition.

Lemma 3 The following conditions are equivalent

1)E1KG invertible 2)V1 = SKV1 3)KV1 ∩ V2 = {0}.

Proof. Assuming (1), we see that G(E1KG) is injective. Since S = GE1 is a projection onto V1,
we conclude that SKV1 = SKGRq is a q-dimensional subspace of V1 and thus identical to V1.
Next, we assume (2) and KV1 ∩ V2 *= {0} for a proof by contradiction. Then there exists some
f = Gµ ∈ V1 such that 0 *= Kf ∈ V2 and hence SKf = 0 which shows that SKG : Rq → V1

is not injective. Consequently, it cannot be surjective which contradicts the assumption (2).
Finally assuming (3), we check the injectivity of E1KG. If µ ∈ Rq satisfies E1KGµ = 0, then
also SKGµ = GE1KGµ = 0 so that KGµ ∈ ker(S) = V2. Since also KGµ ∈ KV1 we find
KGµ = 0. The injectivity of KG then yields µ = 0 which finally shows (1).

In view of this reformulation, we should recall the construction of the operator E1. In the
construction, we had the freedom to choose V2 and now we see that it may be beneficial to select
V2 in such a way that it intersects KV1 only at the origin.

In order to satisfy the second order condition (52) in Thm. 1, we can choose V1 as an invariant
subspace of K, i.e.

KV1 = V1

which is stronger than SKV1 = V1. This is because

G = PG = K†KG = K†SKG = K†GE1KG.

Applying the inverse of E1KG, we find

G(E1KG)−1 = K†G,

which is sufficient for the second condition in (52). If we have in addition ẼK†R = 0, we get
second order accuracy if V1 is an invariant subspace of K.

Another sufficient condition for first, and in fact also higher order is given by

G(E1KG)−1E1 = K†

which needs the invertibility of E1KG but is a much stronger condition. In fact, one can show
with asymptotic expansion that it implies V1 = VNE , or equivalently V2 = {0}. Hence, we
easily see that it leads to arbitrary accuracy, since higher order contributions are trivial. For our
purpose, however, this case is of little interest, because the complexity of the kinetic equation
is not reduced by applying the scale induced closure.
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6.3 Regularization

The above construction uses the zeroth order of the evolution of the distribution f̂R in (32). The
first order gives additional accuracy and leads to regularized equations similar to the R13-system
in [17] and [19].

Under the first order accuracy condition, the evolution of f̂R in (32) reduces to

ε2∂tf̂R + ε2Rc ·∇f̂R + εRc ·∇Gµ̂ + εRK f̂R = 0 (63)

where zero-order terms have vanished. The first order terms in this equation are balanced by
choosing

RKf̂R = −Rc ·∇Gµ̂ (64)

Assuming that (RK)†RKf̂R = f̂R, we can write

f̂R = −(RK)†Rc · G∇µ̂. (65)

This gives a first contribution to the secondary non-equilibrium in (30) based on gradients of
the non-equilibrium variables µ. The elaboration of this procedure is left for future work. In
fact, an additional first order term has been suppressed above. This regularization procedure
has been successfully conducted on the moment hierarchy for Maxwell-molecules in [17].

7 Stability

In this section we assume that

1)V is a Hilbert space with scalar product 〈·, ·〉V .

2) The collision operator K and the equilibrium projection Q are self-adjoint.

Furthermore K is positive semi-definite.

3) The multiplication operator cα : V → V defined by (cαf)(v) = vαf(v) is self-adjoint.

4) The projector S = GE1 as constructed in Sec. 5.1 - 5.4 is self-adjoint.

(66)

The distribution M is defined in Sec. 1. After introducing symmetric positive definite opera-
tors based on the adjoints of the distributions, we will show that the equations (50)/(51) possess
an entropy law and are therefore stable.

Definition 3 (Adjoint) We denote 〈·, ·〉Rn the standard scalar product in Rn

1) We define the adjoint M∗ of M through the Riesz representation theorem as the unique
linear operator M∗ : V → Rp such that

〈x,M∗f〉Rp = 〈Mx, f〉V , ∀f ∈ V, x ∈ R
p (67)

2) Similarly we define G∗ : V → Rq, such that

〈y,G∗f〉Rq = 〈Gy, f〉V , ∀f ∈ V, y ∈ R
q (68)

3) Based on the adjoints we define

B := M∗M : R
p → R

p and L := G∗G : R
q → R

q. (69)
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The matrices B and L are symmetric, positive definite by construction. They will give rise to
symmetric forms which constitute the entropy of the moment system. Again we keep notation
simple, and use µ for the scaled higher moments µ̂ in the following. Generally the stability result
does not depend on the scaling of µ.

In this orthogonal setting, the pseudoinverse G† is the unique Moore-Penrose inverse. Due to
injectivity of G, it can be computed as G† = (G∗G)−1G∗. Furthermore we have through (66) 2)
and 4) that indeed E0 and E1 are the unique Moore-Penrose inverses of M and G respectively
(see Sec. 3 and 5.4).

Theorem 2 (Stability) Let the moment system (50)/(51) be given, based on the operators
M,G and E0, E1 defined in Sec. 3 and 5.3. Then the system features the convex entropy

η =
1

2
〈ρ, Bρ〉Rp +

1

2
〈µ,Lµ〉Rq , ρ ∈ R

p, µ ∈ R
q (70)

with associated negative definite entropy production. In particular, the system is symmetric
hyperbolic.

Proof.
Convexity of η: 〈·, B·〉Rp and 〈·, L·〉Rq define scalar products based on the symmetric, positive
definite matrices from (69). The function η is therefore convex. Note that η shows similarities
with the entropies in [3] and [20].
Entropy law: Multiplying (50) with 〈ρ, B·〉 and (51) with 〈µ,L·〉 yields

〈ρ, B∂tρ〉Rp + 〈ρ, BE0c · M ∇ρ〉Rp + 〈ρ, BE0c · G∇µ〉Rp = 0 (71a)

〈µ,L∂tµ〉Rq + 〈µ,LE1c · M ∇ρ〉Rq + 〈µ,LE1c · G∇µ〉Rq = −
1

ε
〈µ,LE1KGµ〉Rq (71b)

From the definition of B we immediately see

BE0 = M∗ME0 = M∗Q = (QM)∗ = M∗ (72)

since Q is self-adjoint.
For the product LE1 we analogously find with (66)4 that

LE1 = G∗GE1 = G∗S = (SG)∗ = G∗. (73)

Plugging in these expressions yields

〈ρ, B∂tρ〉Rp + 〈ρ,M∗c · M ∇ρ〉Rp + 〈ρ,M∗c · G∇µ〉Rp = 0 (74a)

〈µ,L∂tµ〉Rq + 〈µ,G∗c · M ∇ρ〉Rq + 〈µ,G∗c · G∇µ〉Rq = −
1

ε
〈µ,G∗KGµ〉Rq (74b)

After adding the equations (74) and using the self-adjointness of L, B and c, we obtain

∂t

(
1

2
〈ρ, Bρ〉

Rp +
1

2
〈µ,Lµ〉

Rq

)

+ ∇ ·
(

1

2
〈ρ,M∗cM ρ〉

Rp + 〈ρ,M∗cGµ〉
Rp +

1

2
〈µ,G∗cGµ〉

Rq

)
(75)

= −
1

ε
〈µ,G∗KGµ〉

Rq
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which is an entropy law.
Negativity of entropy production: Since K is self-adjoint and positive semidefinite, we have
G∗KG = (

√
KG)∗

√
KG. Hence, we can rewrite 〈µ,G∗KGµ〉Rq = 〈

√
KGµ,

√
KGµ〉V > 0,

since K is positive on the range of G. Therefore the entropy production is negative definite.
With Theorems 1 and 2 we have shown that the scale induced closure yields equations which

are physically accurate in terms of a Knudsen number expansion as well as mathematically
stable.

We have seen before that, in the new theory, the definition of the distribution function Gµ
depends on the structure of the collision operator. This is a natural outcome since the scale
decompostion of the non-equilbrium phase space is induced by the collision operator. To find a
symmetric projector GE1, additional constraints on the choice of the variables µ follow. Hence,
also the choice of variables µ is governed by K which is somewhat surprising. For the moments in
(4) this results in an additional recombination of the vectors and tensors to find an appropriate
basis.

8 Higher Order Scale Induced Closure

The orignial order-of-magnitude method developed by Struchtrup in [17] is a 3rd order ap-
proximation. In this section we sketch how to construct the scale induced closure including
contributions of order up to εn in our linear case. This is just an outline and shall serve as
starting point for future research. Many details remain unspecified.

Extending (30), we decompose

f = Mρ + εG1µ̂1 + ε2G2µ̂2 + · · · εnGnµ̂n + εn+1f̂Rn , (76)

with moments µ̂k ∈ Rqk . The corresponding operators E1,...,En and G1,...,Gn are required to
fulfill

EkGk = idRqk , EkM = 0, E0Gk = 0, EiGj = 0, (77)

where i, j, k = 1, ..., n and i *= j.

With these operators, we can construct the projections Sk = GkEk, k = 1, ..., n and Rn =
P − S1 − ... − Sn, such that our phase space is divided as in Fig. 2.

V0 S1V SnV RnV

Figure 2: The phase space is subdivided into various higher non-equilibrium
parts.

In accordance with the construction in Sec. 5.1, we match orders as in (32) and derive the
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equations determining the Gkµ̂k as

G1µ̂1 = −K†c · M∇ρ

G2µ̂2 = −K†c · G1∇µ̂1

...

Gnµ̂n = −K†c · Gn−1∇µ̂n−1

(78)

Under certain conditions on the relation between the image sets of K†c · Gi and Sj, the
operators can be constructed analogously to Sec. 5.2 and Sec. 5.3.

The equations are derived by plugging (76) into the linear kinetic equation, applying the
operators E0,...,En and setting fRn = 0. Using scaled variables µk = εkµ̂k, k = 1, ..., n, they
read

∂tρ + E0c ·∇Mρ + E0c ·∇G1µ1 + · · · + E0c ·∇Gnµn = 0

∂tµ1 + E1c ·∇Mρ + E1c ·∇G1µ1 + · · · + E1c ·∇Gnµn +
1

ε
E1KG1µ1 + · · · +

1

ε
E1KGnµn = 0

...

∂tµn + Enc ·∇Mρ + Enc ·∇G1µ1 + · · · + Enc ·∇Gnµn +
1

ε
EnKG1µ1 + · · · +

1

ε
EnKGnµn = 0

(79)

8.1 Stability for the Higher Order case

The stability analysis in the higher order case uses similar arguments as in Sec. 7. We need the
first 3 assumptions of (66), assumption 4) needs to be extended to all the projectors S1,...,Sn,
and the positive semi-definiteness of K will need some extension as well. The entropy becomes

ηn =
1

2
〈ρ, Bρ〉Rp +

1

2
〈µ1, L1µ1〉Rq1 + · · ·+

1

2
〈µn, Lnµn〉Rqn , ρ ∈ R

p, µk ∈ R
qk , k = 1, ..., n,

(80)
where Lk = G∗

kGk.
We proceed analogously to the proof of Thm. 2 and get the entropy flux

1

2
〈ρ,M∗cMρ〉Rp +

n∑

k=1

〈ρ,M∗cGkµk〉Rp +
1

2

n∑

k=1

〈µk, G
∗
kcGkµk〉Rqk +

n∑

j=1

n∑

i=j+1

〈µj , G
∗
jcGiµi〉Rqj .

(81)
On the right hand side of the entropy equation, we get

−
1

ε

n∑

j=1

n∑

k=1

〈µj , G
∗
jKGkµk〉Rqj . (82)

Since this quantity should be negative, assumption 2) in (66) extends to negativity not only
of −K, but of the above combination. This is satisfied, for example, if K is self adjoint and
negative definite on V ⊥

0 and if the subspaces SiV are K-invariant for i = 1, ..., n.
If all these assumptions are met, we obtain an entropy law with negative entropy production,

and therefore symmetric hyperbolic and stable equations.
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8.2 Order Analysis

The order analysis becomes even more technical for n ≥ 2 than it is in Sec. 6. A general analysis
is therefore beyond the scope of this work. For examples like the following 16 discrete velocities
model in Sec. 9.2, the easiest way to check the order of accuracy is a direct asymptotic expansion
of the equations under consideration, see App.B.3. Note however that the 16 discrete velocities
models is not complex enough to serve as a good testcase for higher orders in the scale induced
closure.

9 Examples

As examples for the theory described above we discuss three specific cases. One displays the
generalized 13-moment-case. Then we consider a model with 16 discrete velocities and show the
approximation features of the various closures. The last case demonstrates the accuracy of the
closure approximations in the case of a generic linear model system.

9.1 Generalized 13-Moment-Equations

The generalized 13-moment-equations have been derived by Struchtrup in [18] by the order-of-
magnitude approach described above. In the derivation a general interaction potential has been
assumed and, hence, general production terms in the moment equations have been considered.
The closure approximation takes into account the structure of the production terms and the
resulting coefficients could be identified with classical Burnett coefficients.

The final equations for stress tensor σij and heat flux qi read

Dσij

Dt
+ σij

∂vk

∂xk
+ 2σk〈i

∂v j〉

∂xk
+ Pr

4*3

5*2

(
∂q〈i
∂x j〉

− ω q〈i
∂ ln θ

∂x j〉

)

+ Pr
4*4

5*2
q〈i

∂ ln p

∂x j〉
+ Pr

4*5

5*2
q〈i

∂ ln θ

∂x j〉
+

*6

*2
σk〈i S j〉k = −

2p

*2µ

[
σij + 2µ

∂v〈i
∂x j〉

]
(83)

and

Dqi

Dt
+ qk

∂vi

∂xk
+

5

3
qi

∂vk

∂xk
−

5

2Pr
σik

∂θ

∂xk
+

5θ3

4θ2 Pr
σik

∂ ln p

∂xk

+
5θ4

4θ2 Pr
θ

(
∂σik

∂xk
− ωσik

∂ ln θ

∂xk

)
+

15θ5

4θ2 Pr
σik

∂θ

∂xk
= −

5p

2θ2 Prµ

[
qi +

5µ

2Pr

∂θ

∂xi

]
(84)

where vi is the velocity, θ is the temperature (in energy units), p is the pressure, Pr is the Prandtl
number, µ viscosity and *α, θα are Burnett coefficients. Interestingly, for Maxwell molecules
the equations reduce to the 13-moment-system of Grad which is based on a Hermite series of the
distribution function. This is a mere coincidence and related to the fact that the eigenfunctions
of the linearized collision operator for Maxwell molecules are Hermite functions. Hence, Grad’s
equations form the accurate second order system only for Maxwell molecules while the above
system is the second order accurate extension to general interaction potentials. I.e., it is a
stable system that reproduces the correct general Burnett relations when expanded in Knudsen
number. In that sense it is also related to the regularized Burnett equations in [12].

The system demonstrates the capabilities of the described scale-induced closure procedure.
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Figure 3: 2-D velocity space with interactions in the 16 discrete velocities
model.

9.2 Linearized 16 Discrete Velocity Model

The following example considers a linearized 16 discrete velocities model in one space and two
velocity dimensions [1]. Such models are a generalization of models initially developed in [4].
They have been more thoroughly investigated in [1].

Choosing the bilinear interactions as in Fig. 3, we obtain the kinetic equations

∂tui(x, t) +
16∑

j=1

Vij∂xuj(x, t) +
1

ε
Knonlin

i [u] = 0, (85)

with Vij = δijc
(1)
i , Knonlin = Kdiag + Kstraight being positive semidefinite bilinear forms (see

Appendix B.1, equations (114) and (115)). We linearize (85) around a constant equilibrium
f0

i = 1 by the ansatz ui = 1 + εfi and neglect all higher order terms. This leads again to a
positive semidefinite linear map K : V → V . The linear equations read

∂tfi(x, t) +
16∑

j=1

Vij∂xfj +
1

ε

16∑

j=1

Kijfj = 0, (86)

with K as in (116).
The nullspace of K defines the equilibrium moments1

ρ =
16∑

i=1

fi, ρvx =
16∑

i=1

c(1)
i fi, ρvy =

16∑

i=1

c(2)
i fi, e =

16∑

i=1

c2
i fi. (87)

The orthogonal complement of the nullspace of K is spanned by the arbitrarily chosen vectors
r1,...,r12.

For the detailed computations leading to the form of the classical equations in the following
subsections we refer to B.2. Here we only give the results.

1Note that left and right eigenvectors are equal since K is symmetric.
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9.2.1 Euler Equations

The Euler equations (17) become

∂t






ρ
ρvx

ρvy

ρe




 +






0 1 0 0
0 0 0 1

2
0 0 0 0
0 66

5 0 0




 ∂x






ρ
ρvx

ρvy

ρe




 =






0
0
0
0




 (88)

9.2.2 Navier-Stokes-Fourier System

With the pseudoinverse of K we get the Navier Stokes Fourier equations according to (21)

∂t





ρ
ρvx

ρvy

ρe



 +





0 1 0 0
0 0 0 1

2
0 0 0 0
0 66

5 0 0



 ∂x





ρ
ρvx

ρvy

ρe



 = ε





0 0 0 0
0 4

5 0 0
0 0 289

20 0
−140

5 0 0 14
5



 ∂2
x





ρ
ρvx

ρvy

ρe



 (89)

9.2.3 Burnett Equations

From (24), the Burnett equations turn out to be

∂t





ρ
ρvx

ρvy

ρe



 +





0 1 0 0
0 0 0 1

2
0 0 0 0
0 66

5 0 0



 ∂x





ρ
ρvx

ρvy

ρe



 =ε





0 0 0 0
0 4

5 0 0
0 0 289

20 0
−140

5 0 0 14
5



∂2
x





ρ
ρvx

ρvy

ρe





− ε2





0 0 0 0
−19

4 0 0 27
40

0 0 0 0
0 1354

125 0 14
5



 ∂3
x





ρ
ρvx

ρvy

ρe





(90)

9.2.4 Grad Equations

To obtain a Grad Closure, we have to choose some higher moments through the operators G
and E1, satisfying the constraints given in section 4.3. We will argue that the scale induced
closure produces a set of 3 higher moments, so in order to have a fair comparison, we chose the
same number for Grad.

We will choose these moments once arbitrarily and, to compare, also as fluxes of lower order
equations.

Arbitrary Choice of Moments
Let arbitrarily µ1 = E1r1, µ2 = E1r2 and µ3 = E1r3, with the again arbitrary choice of E1

and G, as shown in App.B.2.1, fullfilling only (26), but not necessarily (33). For details of the
construction of G and E1, see App.B.2.1.
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With E1 and G, we use (27) and (28) and get the equations

∂t





ρ
ρvx

ρvy

ρe
µ1

µ2

µ3





+





0 1 0 0 0 0 0
0 0 0 1/2 0 0 0
0 0 0 0 9 -1 1
0 66/5 0 0 72/5 56/5 −56/5

−30/32 0 0 3/32 9/4 3/4 3/4
5/16 0 −1/20 −1/32 2/5 −6/5 −1/5
5/8 0 −1/10 −1/16 4/5 −2/5 3/5





∂x





ρ
ρvx

ρvy

ρe
µ1

µ2

µ3





+
1

ε





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4 -7 7
0 0 0 0 0 11 -3
0 0 0 0 2 1 7









ρ
ρvx

ρvy

ρe
µ1

µ2

µ3





=





0
0
0
0
0
0
0





(91)

Kinetic Fluxes as Moments
A more natural way to construct E1 and G for the Grad equations is to consider those variables
that appear in the fluxes of the equations, see also the remark in section 4.3. From the kinetic
model, we obtain heat fluxes in x and y direction, as well as the pressure tensor

qx =
16∑

i=1

c(1)
i c2

i fi, qy =
16∑

i=1

c(2)
i c2

i fi, σxy =
16∑

i=1

c(1)
i c(2)

i fi. (92)

However, building E1 and G from these vectors, we can compute that their equilibrium part
is not zero, i.e. conditions (26) are not fullfilled in our model with 16 discrete velocities. The
remedy is to chose the non-equilibrium projections

Pqx, P qy, Pσ12. (93)

For more details, see App.B.2.1. The resulting equations are:

∂t






ρ
ρvx

ρvy

ρe
µ1

µ2

µ3






+





0 1 0 0 0 0 0
0 0 0 1/2 0 0 0
0 0 0 0 0 0 20
0 66/5 0 0 16

√
34/5 0 0

−
√

85/128 0 0
√

1.7/16 0 0 0
0 0 0 0 0 0 2

√
1.7

0 0 1/4 0 0 2
√

1.7 0





∂x






ρ
ρvx

ρvy

ρe
µ1

µ2

µ3






+
1

ε






0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 25/17 0 0
0 0 0 0 0 25/17 0
0 0 0 0 0 0 9/25











ρ
ρvx

ρvy

ρe
µ1

µ2

µ3






=






0
0
0
0
0
0
0






(94)
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9.2.5 Scale Induced Closure

The operator −K†c·M in (33) has a 3-dimensional image, its nullspace is (1, 0, 0, 10)T . Therefore
we get 3 higher moments µ1, µ2 and µ3. We choose D as parametrization of the orthogonal
complement of (1, 0, 0, 10)T

D =




10√
101

0 0 − 1√
101

0 1 0 0
0 0 1 0



 , D† =





10√
101

0 0

0 1 0
0 0 1

− 1√
101

0 0




. (95)

Constructing E1 as the pseudoinverse G† and plugging all into (50/51), we obtain the equations

∂t





ρ
ρvx

ρvy

ρe
µ1

µ2

µ3





+





0 1 0 0 0 0 0
0 0 0 1

2 0 −4
5 0

0 0 0 0 0 0 −289
20

0 66
5 0 0 14

√
101

5 0 0
− 5600

487
√

101
0 0 560

487
√

101
0 608

487
√

101
0

0 −2 0 0 19
√

101
16 0 0

0 0 −289
841 0 0 0 0





∂x





ρ
ρvx

ρvy

ρe
µ1

µ2

µ3





+
1

ε





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 560

487 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 289

841









ρ
ρvx

ρvy

ρe
µ1

µ2

µ3





=





0
0
0
0
0
0
0





(96)

These equations are of second order accuracy since the conditions in Thm. 1 are met. Another
way of checking the accuracy is through direct asymptotic expansion of (96). This furthermore
shows that the equations are not of 3rd order (see App.B.3).

9.2.6 Comparison

In order to compare the results of the different closures, we look at the spatial Fourier transform
fj(x, t) =

∑
k∈Z

e−ikxf̂k
j (t). This transforms the gradients into factors of −ik. We apply the

Fourier transform to (85), (88), (89), (91) and (96) and obtain ordinary differential equations
with the solution

∂tf̂
k
j (t) − i

16∑

j=1

Vijkf̂k
j (t) +

1

ε

16∑

j=1

Kij f̂
k
j (t) = 0, f̂k(t) = exp[ikV −

1

ε
K]f̂k(0) (97)

As initial condition we choose f̂k
j (0) = 1 for the wave number k = 2π and for all j = 1, ...16,

corresponding to Dirac peaks in the untransformed space. We show the results obtained with
the various closures for the real part of the Fourier transformed mass density ρ̂k =

∑16
j=1 f̂k

j (t)
in Fig. 5.

For any ε, the Euler solution is oscillating without damping (no influence of the collision
term). In Fig. 5, we see that the damping in Navier-Stokes dominates already after short time
(ε = 0.1, ε = 0.5). Both, Euler and Navier-Stokes use 4 variables. For the Grad solution,
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we have different options of chosing the closure. We compare some of these choices in Fig. 4
(r1, r2, r3; r5, r6, r7; projected heat fluxes and pressure tensor). Clearly, the choice of heat flux
and pressure tensor projected onto the non-equilibrium space (see Sec. 9.2.4), performs best for
all ε.

The Grad solution, using 7 variables, shows damping, and there is a phase shift to the kinetic
solution. The scale induced closure performs better with the same number of variables for
ε = 0.01 and ε = 0.1. We see hardly any difference between the scale induced closure and the
kinetic equation for ε = 0.01, ε = 0.1, only at ε = 0.5 some deviations start to occur.

Summarizing, the choice of variables is the main point in all these methods - among the
totally 16 kinetic variables, we want to choose a few linear combinations to build macroscopic
variables. These should mimic the microscopic behaviour as good as possible.

Burnett equations (90) are unstable for large relaxation times ε = 0.5. This is due to the fact
that the Burnett equations only consider a Taylor series in ε, which does not necessarily become
more accurate by adding higher order terms. In the scale induced closure, we are not only taking
into account higher orders but additionally an enrichment of the approximation space.

To validate our results, we also show the imaginary part of the Fourier transformed velocity

in x direction, v̂k
x =

∑16
j=1 c(1)

j f̂k
j (t) in Fig. 6. Density and x-velocity are non-trivial quantities in

the model under consideration. The energy shows to be just a scaling of the density. Usually,
higher moments are more difficult to capture, however in our case, the approximations for the
velocity show the same qualities as for the density.

9.3 Linear Matrix System

The second example is more abstract and illustrates the fundamental range of the new closure
procedure. We consider a vector function y : R+ → RN satisfying an ordinary differential
equation

∂ty + T y +
1

ε
K y = 0, y|t=0 = y(0) (98)

with initial conditions y(0). The matrix T generalizes the transport operator, while K can be
viewed as collisional part. As for the kinetic model we assume that there exist vectors or matrices
M and E0 with KM = 0 and E0K = 0, as well as E0M = id. Equilibrium variables are given
by ρ = E0 y. The whole theory derived above can be easily translated to the present case. The
aim is to replace the high-dimensional system (98) by a lower dimensional system for ρ with
high accuracy.

To check the approximation quality we consider a concrete example and take N = 4 and

K =
1

54





45 −3 21 −21
−3 65 31 −31
21 31 53 1
−21 −31 1 53



 (99)

as collision matrix. This matrix was constructed such that it exhibits the eigenvalues λi ∈
{0, 1, 1, 2} and a one-dimensional kernel given by M = (1, 1,−1, 1)tr with KM = 0. In accor-
dance with section 7, the equilibrium operator with E0K = 0 is given by E0 = (M∗M)−1M∗ =
1
4(1, 1,−1, 1) and the equilibrium variable ρ = E0 y is scalar. T is chosen to be

T =





0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0



 . (100)
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We will solve the full system (98) with (99) and (100) numerically and compare the numerical
results of various approximations like a Chapman-Enskog-type or the scale-induced closure to
the full solution.

The kinetic variable (”distribution”) satisfies y = M ρ + y1 with a disturbance computed in
(20)

y1 = −εK†T M ρ. (101)

This leads to the equation (see (21))

∂tρ + (E0T M) ρ − ε (E0T K†T M) ρ = 0 (102)

in the sense of a first Chapman-Enskog expansion. Initial conditions are given by ρ|t=0 =
E0y(0) = ρ(0). For our example, it turns out that E0T M = 0 and E0T K†T M = 65

54 , so we

find ρ(t) = ρ(0) exp
(
−ε65

54 t
)

as first approximation. According to the theory above, a better
approximation is given by equations for ρ coupled to a scalar higher moment µ = E1y with the
structure (compare (27), (28))

∂t

(
ρ
µ

)
+

(
E0T M E0T G
E1T M E1T G

)

︸ ︷︷ ︸
A

(
ρ
µ

)
= −

1

ε

(
0 0
0 E1K G

)

︸ ︷︷ ︸
B

(
ρ
µ

)
(103)

and particular choices for G and E1.
Some of these choices are proposed through the Grad closure. As we have seen in the previous

example, not every choice of G and E1 just fulfilling (26) offers the same accuracy. Thus we
first choose E1 = E0T and with it G = (E1E∗

1)−1E∗
1 , imitating the selection of higher moments

from the kinetic equations. Luckily, conditions (26) are met, meaning that E0T contains no
equilibrium part.

Out of curiosity, we construct arbitrary vectors

G =

(
−

1

2
, 1,

1

14
,−

3

7

)tr

, E1 =

(
1,

1

2
,−1,−

5

2

)
(104)

satisfying the basic requirements E0G = 0, E1M = 0 and E1G = 1, for comparison. In Grad’s
approach, independent of the choice of non-equilibrium moments, the kinetic structure given
through K is not fully exploit. Instead, the new scale-induced order-of-magnitude approach
(D = 1) suggests to use

G = −K†TMD†, E1 = (G∗G)−1 G∗ (105)

which is adapted to the structure of the kinetic equation.
In Fig. 7 we compare the evolution of ρ as predicted from the full system (98), from the

Chapman-Enskog-type result, the two Grad approaches and the order-of-magnitude equations.
The relaxation times are chosen to be ε = 0.01, ε = 0.1 and ε = 0.5. The CE result manages

to predict a general decaying behaviour, while the random moment Grad approximation gives an
initial behaviour that is qualitatively correct but fails for large times t. The Grad approximation
with E1 = TE0 performs much better, however also fails in the low ε = 0.01 case, compared to
the scale induced closure. The scale induced closure result matches the full solution in a nearly
perfect way for ε = 0.01 and ε = 0.1. For ε = 0.5, the Grad method becomes better. We do not
want to overstress this rather special example, but it indicates that the scale-induced closure
may considerably improve the accuracy of lower dimensional approximations of more general
equations.
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For completeness we give the resulting matrices in the system (103) for the random moment
Grad approach

A =

(
0 −41

28
5
4 −81

28

)
, B =

(
0 0
0 55

27

)
, (106)

the Grad approach with E1 = TE0

A =

(
0 1
−3

2 0

)
, B =

(
0 0
0 113

81

)
. (107)

and the sclae induced closure

A =

(
0 65

57
−65

54 0

)
, B =

(
0 0
0 65

57

)
. (108)

As initial condition for the full system y(0) = (1, 4,−2, 1) was used which corresponds to ρ(0) = 2.

10 Conclusion

This work supplements the work of Struchtrup in [17] and [18] where an order-of-magnitude
closure for moment equations in kinetic gas theory was developed. Here, we generalize this
approach to the level of kinetic equations and relate it to standard methods of Chapman-
Enskog and Grad. The new closure obeys a scaling of the non-equilibrium phase space that
is introduced by asymptotic expansion. This scaling structures the phase space and allows to
formulate a distribution function based on moments respecting the asymptotic properties of
the kinetic equation. In this sense, it provides a scale-induced closure. The resulting moment
equations exhibit high asymptotic accuracy in a natural way.

The theory is developed in the case of a linear kinetic model equation. The final equations
can be shown to possess an entropy law and to be L2-stable. In future work the results need
to be extended to the non-linear case. This should be possible since the original method was
conducted on non-linear moment equations, however the necessary mathematical tools in the
non-linear setting will be more sophisticated. Our example with a linearized discrete velocity
model showed that the scale induced closure is performing very well in approximating the high-
dimensional kinetic evolution by low dimensional equations, giving good reasons to also use it
in more general settings.
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A Appendix: Proof of Lemma 2 Part 2

We proove that E1 = G† given symmetry of S = GE1 and conditions (31). Denote N :=
dim(V ) < ∞.

A singular value decomposition of G yields

G = U




Σ ∈ Rq×q

0 ∈ R(N−q)×q



 W ∗, (109)

with U ∈ RN×N and W ∈ Rq×q orthogonal, and Σ ∈ Rq×q the diagonal matrix containing the
non zero singular values of G. Any left inverse E1 of G is of the form

E1 = W
(

Σ−1 C ∈ Rq×(N−q)
)
U∗, (110)

with C an arbitrary matrix. Now

GE1 = U

(
id ∈ Rq×q Σ · C
0 ·Σ−1 0 ·C

)
U∗. (111)

This can only be symmetric if C = 0, which yields the Moore-Penrose-inverse G† in (110). For
the case of a general Hilbertspace, we refer to Theorem 9.1.3 in [26].

B Appendix: Details for the 16 Velocities Model

For reference we give the detailed expressions for the distribution functions and the moment
operator for different closures of the 16-velocity model.

B.1 Matrices

The velocities are ordered by

c1 = (−3, 3), c2 = (−1, 3), c3 = (1, 3), c4 = (3, 3),
c5 = (−3, 1), c6 = (−1, 1), c7 = (1, 1), c8 = (3, 1),

c9 = (−3,−1), c10 = (−1,−1), c11 = (1,−1), c12 = (3,−1),
c13 = (−3,−3), c14 = (−1,−3), c15 = (1,−3), c16 = (3,−3).

(112)

which gives

V = Diag (−3,−1, 1, 3,−3,−1, 1, 3,−3,−1, 1, 3,−3,−1, 1, 3) (113)
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for the advection operator. The diagonal interactions are defined by

Kdiag[u] = −





u2u5 − u1u6

u1u6 + u3u6 − u2u5 − u2u7

u2u7 + u4u7 − u3u6 − u3u8

u3u8 − u4u7

u1u6 + u6u9 − u2u5 − u5u10

u2u5 + u2u7 + u5u10 + u7u10 − u1u6 − u3u6 − u6u9 − u6u11

u3u6 + u3u8 + u6u11 + u8u11 − u2u7 − u4u7 − u7u10 − u7u12

u4u7 + u7u12 − u3u8 − u8u11

u5u10 + u10u13 − u6u9 − u9u14

u6u9 + u6u11 + u9u14 + u11u14 − u5u10 − u7u10 − u10u13 − u10u15

u7u10 + u7u12 + u10u15 + u12u15 − u6u11 − u8u11 − u11u14 − u11u16

u8u11 + u11u16 − u7u12 − u12u15

u9u14 − u10u13

u10u13 + u10u15 − u9u14 − u11u14

u11u14 + u11u16 − u10u15 − u12u15

u12u15 − u11u16





(114)

and the straight interactions are taken to be

Kstraight[u] = −





0
u5u7 − u2u10

u6u8 − u3u11

0
−(u5u7 − u2u10)

−(u6u8 − u3u11) − (u6u14 − u9u11)
−(u5u7 − u2u10) − (u7u15 − u10u12)

−(u6u8 − u3u11)
u6u14 − u9u11

u5u7 − u2u10 + u7u15 − u10u12

u6u8 − u3u11 − (u9u11 − u6u14)
u7u15 − u10u12

0
u9u11 − u6u14

u10u12 − u7u15

0





(115)
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Fig. 3 displays the interactions in the velocity grid. The linearized collision operator becomes

K = −





-1 1 0 0 1 -1 0 0 0 0 0 0 0 0 0 0

1 -3 1 0 0 2 0 0 0 -1 0 0 0 0 0 0

0 1 -3 1 0 0 2 0 0 0 -1 0 0 0 0 0

0 0 1 -1 0 0 -1 1 0 0 0 0 0 0 0 0

1 0 0 0 -3 2 -1 0 1 0 0 0 0 0 0 0

-1 2 0 0 2 -6 2 -1 0 2 1 0 0 -1 0 0

0 0 2 -1 -1 2 -6 2 0 1 2 0 0 0 -1 0

0 0 0 1 0 -1 2 -3 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 -3 2 -1 0 1 0 0 0

0 -1 0 0 0 2 1 0 2 -6 2 -1 -1 2 0 0

0 0 -1 0 0 1 2 0 -1 2 -6 2 0 0 2 -1

0 0 0 0 0 0 0 1 0 -1 2 -3 0 0 0 1

0 0 0 0 0 0 0 0 1 -1 0 0 -1 1 0 0

0 0 0 0 0 -1 0 0 0 2 0 0 1 -3 1 0

0 0 0 0 0 0 -1 0 0 0 2 0 0 1 -3 1

0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 -1





(116)

which is a symmetric positive definite matrix in R16×16.

B.2 Construction of the Operators for the Classical Closures:

The orthogonal complement of ker(K) is spanned by vectors r1,...,r12. The matrix M0 consisting
of equilibrium and r1,...,r12 (see also (87)) gives an equivalent formulation of (86) in terms of
moments

∂tM0f(x, t) + M0V M−1
0 ∂xM0f +

1

ε
M0KM−1

0 M0f = 0. (117)

The complete moment operator M0 can be computed to be

M0 =

(
M (1)

0

M (2,1)
0 id

)

∈ R
16×16 (118)

with submatrices

M (1)
0 =





1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-3 -1 1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 1 3

3 3 3 3 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3

18 10 10 18 10 2 2 10 10 2 2 10 18 10 10 18

-1 3 -3 1 0 0 0 0 0 0 0 0 0 0 0 0




(119)

and

M (2,1)
0 =





1 1 0 0 1 1 0 -1 0 0 -1

-1 0 3 2 1 2 5 6 5 6 9

0 -1 -3 -1 -1 -2 -4 -3 -3 -4 -6

0 0 0 0 0 0 0 0 0 0 0

-1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3





T

(120)

31



Scale-Induced Closure for Approximations of Kinetic Equations

and id ∈ R11×11. In the complete moment representation the production term then becomes

M0KM−1
0 = −





0 ∈ R4×4 0 ∈ R4×12

0 ∈ R12×4

-4 7 -7 1 0 -3 3 0 0 0 0 0

0 -11 3 -1 -1 3 1 0 0 -1 0 0

-2 -1 -7 2 -1 1 3 0 0 0 -1 0

-2 3 -3 -3 -1 -3 3 1 0 0 0 0

-1 0 0 0 -5 0 0 0 1 0 0 0

-1 -1 1 0 0 -7 3 -1 -1 2 0 0

-2 0 0 0 -3 0 -4 2 0 0 2 -1

-4 6 -6 1 -2 -6 6 -3 0 0 0 1

-3 7 -3 0 -2 -7 3 0 -1 1 0 0

-3 3 -3 0 -3 -3 3 0 1 -3 1 0

-4 6 -6 0 -3 -6 6 0 0 1 -3 1

-6 13 -9 0 -3 -9 5 1 0 0 1 -1





(121)

We now are using M0 to construct the operators for the various closures.. The equilibrium
distribution Mρ is parametrised by the four equilibrium moments only

Mρ = M−1
0

(
id ∈ R4×4 0 ∈ R4×12

)T
ρ =

(
1
80M̃

)T
ρ (122)

with

M̃ =






-3
2 5 5 -3

2 5 7
2

7
2 5 5 7

2
7
2 5 -3

2 5 5 -3
2

-3 -1 1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 1 3

3 3 3 3 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3
5
4 0 0 5

4 0 -5
4 -5

4 0 0 -5
4 -5

4 0 5
4 0 0 5

4




 (123)

Correspondingly, we construct the equilibrium operator as

E0f =
(

id ∈ R4×4 0 ∈ R4×12
)
M0f, (124)

This operator turns out to be

E0 =





1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-3 -1 1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 1 3

3 3 3 3 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3

18 10 10 18 10 2 2 10 10 2 2 10 18 10 10 18



 . (125)

B.2.1 Grad

Arbitrary Moments
For the higher moments in Grad’s closure, we arbitrarily chose µ1 = E1r1, µ2 = E1r2 and
µ3 = E1r3, with the again arbitrary choices of G and E1 as

G = M−1
0

(
0 ∈ R3×4 id ∈ R3×3 0 ∈ R3×9

)T
= M−1

0

(
1
80G̃

)T
(126)

with

G̃ =




-15 -11 -17 47 1 5 -1 -17 7 11 5 -11 3 7 1 -15

-1 -9 -7 5 -9 63 -15 -3 -7 -15 -13 -1 5 -3 -1 11

5 -7 -9 -1 -3 -15 63 -9 -1 -13 -15 -7 11 -1 -3 5





(127)
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and

E1 =
(

0 ∈ R3×4 id ∈ R3×3 0 ∈ R3×9
)
M0 (128)

=




-1 3 -3 1 0 0 0 0 0 0 0 0 0 0 0 0

1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0

1 0 -1 0 -1 0 1 0 0 0 0 0 0 0 0 0



 . (129)

As mentioned in 9.2.4, these operators fullfill the requirements (26), but not necessarily (33).

Kinetic Fluxes as Moments
The additional moments can be directly computed as

qx =
(

-54 -10 10 54 -30 -2 2 30 -30 -2 2 30 -54 -10 10 54
)

qy =
(

54 30 30 54 10 2 2 10 -10 -2 -2 -10 -54 -30 -30 -54
)

σxy =
(

-9 -3 3 9 -3 -1 1 3 3 1 -1 -3 9 3 -3 -9
)

To fullfill the conditions (26), we project these moment vectors to the non-equilibrium phase
space by applying P = (id − ME0). The resulting vectors are then normalized and form the
lines of E1.

Correspondingly we chose G = ET
1 , and construct the equations according to (27) and (28).

B.3 Direct Asymptotic Expansion

The conditions for 2nd order in Thm. 1 are met in the case of the 16 discrete velocities model.
Nontheless, in this section we show how to directly do the asymptotic expansion of (50/51) in
ε.

Let us abbreviate (50) and (51) as

∂t

(
ρ
µ

)
+

(
A B
C D

) (
ρ
µ

)
+

1

ε

(
0 0
0 E

)(
ρ
µ

)
=

(
0
0

)
, (130)

with A = E0c ·∇M , B = E0c ·∇G, C = E1c ·∇M , D = E1c ·∇G, E = E1KG.
Inserting the expansion µ = εµ1 + ε2µ2 into (130) yields

∂tρ + Aρ + B
(
εµ1 + ε2µ2

)
= 0

∂t

(
εµ1 + ε2µ2

)
+ Cρ + D

(
εµ1 + ε2µ2

)
+

1

ε
E

(
εµ1 + ε2µ2

)
= 0

(131)

and short calculations reveal that

µ1 = −E−1Cρ,

µ2 = −E−1Dµ1 − E−1∂tµ1 = E−1DE−1Cρ + E−1E−1C∂tρ
Euler
= E−1DE−1Cρ − E−1E−1CAρ.

(132)

Plugging this into (131) yields

∂tρ + Aρ = εBE−1Cρ + ε2B
(
−E−1DE−1Cρ + E−1E−1CAρ

)
, (133)
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or, by using the definitions of A,...,E:

∂tρ + E0c ·∇Mρ = εE0c ·∇G (E1KG)−1 E1c ·∇Mρ

− ε2E0c ·∇G (E1KG)−1 E1c ·∇G (E1KG)−1 E1c ·∇Mρ

+ ε2E0c ·∇G (E1KG)−1 (E1KG)−1 E1c ·∇ME0c ·∇Mρ.

(134)

This compares to the asymptotic expansion of the original kinetic equations, as given in (24)

∂tρ + E0c ·∇Mρ = − εE0(c ·∇)K†(c ·∇)Mρ

− ε2E0(c ·∇)K†(c ·∇)K†(c ·∇)Mρ

+ ε2E0(c ·∇)K†K†(c∇M)E0(c ·∇)Mρ.

(135)

Using now the special structure of the 16-discrete velocities model (112), we can compute
the coefficient matrices for first and second order, and get:

∂tρ + E0V M∂xρ = εE0V G (E1KG)−1 E1V M∂2
xρ

− ε2E0V G (E1KG)−1 E1V G (E1KG)−1 E1V M∂3
xρ

+ ε2E0V G (E1KG)−1 (E1KG)−1 E1V ME0V M∂3
xρ

(136)

Computing the products shows equivalence with the Chapman-Enskog expansion of the original
kinetic equations. Furthermore one can compute that this equivalence breaks down for third
order (super-Burnett).
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Figure 4: Various Grad closures for Fourier coefficient k = 2π at ε = 0.01
(top), ε = 0.1 (middle) and ε = 0.5 (bottom).
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Figure 5: The different Closures for Fourier coefficient k = 2π at ε = 0.01
(top), ε = 0.1 (middle) and ε = 0.5 (bottom).
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Figure 6: The different Closures for Fourier coefficient k = 2π at ε = 0.01
(top), ε = 0.1 (middle) and ε = 0.5 (bottom).
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Figure7: Solution of the full matrix system (98) and various lower dimensional
approximations at ε = 0.01 (top), ε = 0.1 (middle) and ε = 0.5 (bottom).
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