Stable numerical scheme for the magnetic induction equation with Hall effect

P. Corti

Research Report No. 2010-30
October 2010
Seminar für Angewandte Mathematik Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect

Paolo Corti
Seminar for Applied Mathematics, ETH Zurich
CH-8092, Switzerland
E-mail: paolo.corti@sam.math.ethz.ch

Abstract

Fast magnetic reconnection can be modeled by Hall MHD equations. We consider a sub-model: the Hall induction equations and design stable finite difference schemes to approximate it. Numerical examples are provided to verify the robustness of the scheme.

1 Introduction

Magnetic reconnection, a widely studied phenomena in plasma physics, is a change of topology of the magnetic field lines that permits a fast change of the magnetic energy into thermal and kinetic energy. One of popular models for fast reconnection [1], are the equations of the form :

$$
\begin{align*}
\frac{\partial \rho}{\partial t} & =-\nabla \cdot(\rho \mathbf{u}) \tag{1.1}\\
\frac{\partial(\rho \mathbf{u})}{\partial t} & =-\nabla\left\{\rho \mathbf{u} \otimes \mathbf{u}+\left(p+\frac{|\mathbf{B}|^{2}}{2}\right) \mathbf{I}_{3 \times 3}-\mathbf{B} \otimes \mathbf{B}\right\} \tag{1.2}\\
\frac{\partial \mathcal{E}}{\partial t} & =-\nabla\left\{\left(\mathcal{E}+p+\frac{|\mathbf{B}|^{2}}{2}\right) \mathbf{u}+\mathbf{E} \times \mathbf{B}\right\} \tag{1.3}\\
\frac{\partial \mathbf{B}}{\partial t} & =-\nabla \times \mathbf{E} . \tag{1.4}
\end{align*}
$$

Here ρ, \mathbf{u}, p are the gas density, velocity and pressure respectively. \mathbf{E} and \mathbf{B} are the electric and magnetic fields. The total energy \mathcal{E} is given by the equation of state, i.e.,

$$
\begin{equation*}
\mathcal{E}=\frac{p}{\gamma-1}+\frac{\rho|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{B}|^{2}}{2} . \tag{1.5}
\end{equation*}
$$

Here γ is the gas constant. Equations from (1.1) to (1.3) represent the conservation of mass, momentum and energy; the last one (1.4) describes
the evolution of the magnetic field.
The equations have to obey the divergence constraint:

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{1.6}
\end{equation*}
$$

For ideal MHD, the electric field is given by

$$
\begin{equation*}
\mathbf{E}=-\mathbf{u} \times \mathbf{B} \tag{1.7}
\end{equation*}
$$

However, no reconnection is possible with this model. In order to model fast reconnection, we use a generalized Ohm's law [2],[3]

$$
\begin{equation*}
\mathbf{E}=-\mathbf{u} \times \mathbf{B}+\eta \mathbf{J}+\frac{\delta_{i}}{L_{0}} \frac{\mathbf{J} \times \mathbf{B}}{\rho}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho}\left[\frac{\partial \mathbf{J}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{J}\right] . \tag{1.8}
\end{equation*}
$$

Here L_{0} is the normalizing length unit, and δ_{e} and δ_{i} denote electron and ion inertia respectively; they are related to electron-ion mass ratio by $\left(\frac{\delta_{e}}{\delta_{i}}\right)^{2}=\frac{m_{e}}{m_{i}}$.
Using the Ampere's law we can write the electric current \mathbf{J} as

$$
\begin{equation*}
\mathbf{J}=\nabla \times \mathbf{B} \tag{1.9}
\end{equation*}
$$

The Hall MHD equations are non-linear and complicated. A sub-model is the Hall induction equation given by

$$
\begin{align*}
\frac{\partial}{\partial t} & {\left[\mathbf{B}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \nabla \times(\nabla \times \mathbf{B})\right]=\nabla \times(\mathbf{u} \times \mathbf{B})-\eta \nabla \times(\nabla \times \mathbf{B}) } \\
& -\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \nabla \times((\mathbf{u} \cdot \nabla)(\nabla \times \mathbf{B}))-\frac{\delta_{i}}{L_{0}} \frac{1}{\rho} \nabla \times((\nabla \times \mathbf{B}) \times \mathbf{B}) \tag{1.10}
\end{align*}
$$

with \mathbf{u} being a given velocity field.
For the remaining part of this paper, we will focus on the Hall induction equations (1.10) and onto the design stable numerical scheme for it.

2 Theoretical Analysis

We rewrite the advection term in (1.10) using a standard vector identity resulting in

$$
\begin{equation*}
\nabla \times(\mathbf{u} \times \mathbf{B})=(\mathbf{B} \cdot \nabla) \mathbf{u}-\mathbf{B}(\nabla \cdot \mathbf{u})+\mathbf{u}(\nabla \cdot \mathbf{B})-(\mathbf{u} \cdot \nabla) \mathbf{B} \tag{2.1}
\end{equation*}
$$

We note that the term that leads to a lack of symmetry is $\mathbf{u}(\nabla \cdot \mathbf{B})$. For divergence free data (1.6) this term vanishes and the remaining equations
are in symmetric form:

$$
\begin{align*}
\frac{\partial}{\partial t}\left[\mathbf{B}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2}\right. & \nabla \times(\nabla \times \mathbf{B})]=(\mathbf{B} \cdot \nabla) \mathbf{u}-\mathbf{B}(\nabla \cdot \mathbf{u})-(\mathbf{u} \cdot \nabla) \mathbf{B} \\
& -\eta \nabla \times(\nabla \times \mathbf{B})-\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \nabla \times((\mathbf{u} \cdot \nabla)(\nabla \times \mathbf{B})) \\
- & \frac{\delta_{i}}{L_{0}} \frac{1}{\rho} \nabla \times((\nabla \times \mathbf{B}) \times \mathbf{B}) \tag{2.2}
\end{align*}
$$

We have the following theorem:
Theorem 2.1. Let $\mathbf{u} \in C^{2}\left(\mathbb{R}^{3}\right)$ decays to zero sufficiently fast. Furthermore, assume that the solution of (2.2) goes to zero at infinity, then following apriori estimates hold:

$$
\begin{align*}
& \frac{d}{d t}\left(\|\mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho}\|\nabla \times \mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}\right) \\
& \quad \leq C_{1}\left(\|\mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho}\|\nabla \times \mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}\right) \tag{2.3}\\
& \frac{d}{d t}\|\nabla \cdot \mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C_{2}\|\nabla \cdot \mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)} \tag{2.4}
\end{align*}
$$

with C_{1} and C_{2} being constants that depend on \mathbf{u} and its derivatives only. The above estimates imply that $\mathbf{B} \in H_{l o c}^{1}\left(\mathbb{R}^{3}\right)$.
Proof. For the first inequality we multiply the equation with \mathbf{B} and then integrate over \mathbb{R}^{3} resulting in

$$
\begin{array}{r}
\int_{\mathbb{R}^{3}} \frac{1}{2} \frac{\partial \mathbf{B}^{2}}{\partial t}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \mathbf{B} \nabla \times\left(\nabla \times \frac{\partial \mathbf{B}}{\partial t}\right) d x= \\
\int_{\mathbb{R}^{3}}\left[\mathbf{B}(\mathbf{B} \cdot \nabla) \mathbf{u}-\mathbf{B}^{2}(\nabla \cdot \mathbf{u})-\frac{1}{2}(\mathbf{u} \cdot \nabla) \mathbf{B}^{2}-\eta \mathbf{B} \nabla \times(\nabla \times \mathbf{B})\right. \\
\left.-\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \mathbf{B} \nabla \times((\mathbf{u} \cdot \nabla)(\nabla \times \mathbf{B}))-\frac{\delta_{i}}{L_{0}} \frac{1}{\rho} \mathbf{B} \nabla \times((\nabla \times \mathbf{B}) \times \mathbf{B})\right] d x .
\end{array}
$$

Partial integration yields

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\left(\|\mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2}\|\nabla \times \mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}\right)= \\
\int_{\mathbb{R}^{3}}\left[\mathbf{B}(\mathbf{B} \cdot \nabla) \mathbf{u}-\frac{1}{2} \mathbf{B}^{2}(\nabla \cdot \mathbf{u})-\eta(\nabla \times \mathbf{B})^{2}\right. \\
+\frac{1}{2}\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho}(\nabla \cdot \mathbf{u})(\nabla \times \mathbf{B})^{2}-\frac{\delta_{i}}{L_{0}} \frac{1}{\rho} \underbrace{(\nabla \times \mathbf{B})((\nabla \times \mathbf{B}) \times \mathbf{B})}_{=0}] d x
\end{array}
$$

Using the smoothness of u in the above identity leads to

$$
\begin{aligned}
& \frac{d}{d t}\left(\|\mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2}\|\nabla \times \mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}\right) \leq \\
& \quad C_{A}\|\mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+C_{B}\left(\frac{\delta_{e}}{L_{0}}\right)^{2}\|\nabla \times \mathbf{B}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}
\end{aligned}
$$

here $C_{A}=\max _{k=\{x, y, z\}}\left(\left\|\frac{\partial\left(u_{1}+u_{2}+u_{3}\right)}{\partial k}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}\right)$ and $C_{B}=\|\nabla \mathbf{u}\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}$.
Applying divergence operator on (2.2), we obtain

$$
\frac{\partial \nabla \cdot \mathbf{B}}{\partial t}=-\nabla(\mathbf{u}(\nabla \cdot \mathbf{B}))
$$

Integrating over \mathbb{R}^{3} and then integration by parts, we obtain the estimate (2.4) by setting $C_{2}=\|\nabla \mathbf{u}\|_{L^{\infty}(V)}$.

3 Numerical Scheme

We subdivide the computational domain using a uniform Cartesian mesh with mesh width $\Delta x, \Delta y$ and $\Delta z . \hat{\mathbf{B}}_{i, j, k}(t)$ and $\hat{\mathbf{u}}_{i, j, k}(t)$ are approximations of $\mathbf{B}(\mathbf{x}, t)$ and $\mathbf{u}(\mathbf{x}, t)$ at point $\left(x_{i}, y_{j}, z_{k}\right)$. We also define discrete derivatives $\mathbf{D}=\left(D_{x}, D_{y}, D_{z}\right)^{\top}$ using central differences:

$$
\left(\begin{array}{l}
D_{x} \tag{3.1}\\
D_{y} \\
D_{z}
\end{array}\right) a_{i, j, k}=\left(\begin{array}{c}
\frac{a_{i+1, j, k}-a_{i-1, j, k}}{2 \Delta x_{i, j}} . \\
\frac{a_{i, j+1, k} a_{i, j-1, k}}{2 \Delta y} . \\
\frac{a_{i, j, k+1}-a_{i, j, k-1}}{2 \Delta z} .
\end{array}\right)
$$

where $a_{i, j, k}$ is an arbitrary function defined on the mesh. For central difference operators we have the following lemmas:

Lemma 3.1 (Summation by parts). Let $a_{i, j, k}$ and $b_{i, j, k}$ be grid functions, such that $\left|a_{i, j, k}\right|,\left|b_{i, j, k}\right| \rightarrow 0$ for $i, j, k \rightarrow \infty$ then

$$
\begin{equation*}
\sum_{i, j, k} a_{i, j, k} D_{x} b_{i, j, k}=-\sum_{i, j, k} b_{i, j, k} D_{x} a_{i, j, k} \tag{3.2}
\end{equation*}
$$

Proof. This follow directly by a change of index in the sum.
Lemma 3.2 (Discrete chain rule). For every finite difference operator D that approximates the first derivative, there exists an averaging operator A such that for every $a_{i, j, k}=a\left(x_{i}, y_{j}, z_{k}\right)$ with $a \in C^{2}$ and every $b_{i, j, k}$ defined on the mesh,

$$
\begin{equation*}
D\left(a_{i, j, k} b_{i, j, k}\right)=a_{i, j, k} D\left(b_{i, j, k}\right)+A\left(b_{i, j, k}\right) D\left(a_{i, j, k}\right)+\tilde{a}_{i, j, k} \tag{3.3}
\end{equation*}
$$

holds. If $b_{i, j, k} \in l^{2}$, then the residual \tilde{a} is bounded i.e., $\|\tilde{a}\| \leq C h\|b\|$ for a generic mesh size h and some constant $C>0$.

Proof. For the proof of this lemma, see [4] lemma 3.3.
For approximating (2.2) we use the following semi-discrete numerical scheme

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left[\hat{\mathbf{B}}_{i, j, k}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \mathbf{D} \times\left(\mathbf{D} \times \hat{\mathbf{B}}_{i, j, k}\right)\right]=\overline{\mathbf{A}}\left(\hat{\mathbf{B}}_{i, j, k} \cdot \mathbf{D}\right) \hat{\mathbf{u}}_{i, j, k} \\
-\mathbf{A}\left(\hat{\mathbf{B}}_{i, j, k}\left(\mathbf{D} \cdot \hat{\mathbf{u}}_{i, j, k}\right)\right)-\left(\hat{\mathbf{u}}_{i, j, k} \cdot \mathbf{D}\right) \hat{\mathbf{B}}_{i, j, k}-\eta \mathbf{D} \times\left(\mathbf{D} \times \hat{\mathbf{B}}_{i, j, k}\right) \\
-\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho} \mathbf{D} \times\left(\left(\hat{\mathbf{u}}_{i, j, k} \cdot \mathbf{D}\right) \hat{\mathbf{B}}_{i, j, k}\right)-\frac{\delta_{i}}{L_{0}} \frac{1}{\rho} \mathbf{D} \times\left(\left(\mathbf{D} \times \hat{\mathbf{B}}_{i, j, k}\right) \times \hat{\mathbf{B}}_{i, j, k}\right) . \tag{3.4}
\end{array}
$$

Note that t is suppressed for notational convenience. We denote

$$
\begin{equation*}
\overline{\mathbf{A}}\left(\mathbf{B}_{i, j, k} \cdot \mathbf{D}\right)=A_{x}\left(B_{i, j, k}^{1}\right) D_{x}+A_{y}\left(B_{i, j, k}^{2}\right) D_{y}+A_{z}\left(B_{i, j, k}^{3}\right) D_{z} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathbf{A}\left(\mathbf{B}_{i, j, k}\left(\mathbf{D} \cdot \mathbf{u}_{i, j, k}\right)\right)^{i}= \\
& A_{x}\left(B_{i, j, k}^{i}\right) D_{x} u_{i, j, k}^{1}+A_{y}\left(B_{i, j, k}^{i}\right) D_{y} u_{i, j, k}^{2}+A_{z}\left(B_{i, j, k}^{i}\right) D_{z} u_{i, j, k}^{3} \tag{3.6}
\end{align*}
$$

for $i=1,2,3$. A being the averaging operator defined in previous lemma. We can show that the following holds:
Theorem 3.3. Let $\hat{\mathbf{u}}_{i, j, k}=\mathbf{u}\left(x_{i}, y_{j}, z_{k}\right)$ be the point evaluation of a function $u \in C^{2}$ and let the solutions of (3.4) go to zero at infinity, then the following estimates hold

$$
\begin{gather*}
\frac{d}{d t}\left(\|\hat{\mathbf{B}}\|_{l^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho}\|\mathbf{D} \times \hat{\mathbf{B}}\|_{l^{2}\left(\mathbb{R}^{3}\right)}^{2}\right) \\
\leq C_{1}\left(\|\hat{\mathbf{B}}\|_{l^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left(\frac{\delta_{e}}{L_{0}}\right)^{2} \frac{1}{\rho}\|\mathbf{D} \times \hat{\mathbf{B}}\|_{l^{2}\left(\mathbb{R}^{3}\right)}^{2}\right) \tag{3.7}\\
\frac{d}{d t}\|\mathbf{D} \cdot \hat{\mathbf{B}}\|_{l^{2}\left(\mathbb{R}^{3}\right)}^{2} \leq C_{2}\|\mathbf{D} \cdot \hat{\mathbf{B}}\|_{l^{2}\left(\mathbb{R}^{3}\right)}^{2}+C_{3} \max (\Delta x, \Delta y, \Delta z) \tag{3.8}
\end{gather*}
$$

with C_{1}, C_{2} and C_{3} constant that depend on \mathbf{u} and its derivative only.
Proof. The proof of this theorem uses the two lemmas 3.1 and 3.2 to mimic the proof of the continuous version of this theorem (Thm. 2.1). A detailed proof will be provided in [5].

The scheme (3.4) is semi-discrete and needs to be coupled with a suitable numerical time-integration routine. We have chosen to use a second-order SSP Runge-Kutta method [6].

Remark 3.4. A fourth order version of this scheme is derived by replacing the central difference operator by corresponding fourth-order central difference, e.g.,

$$
\begin{equation*}
D_{x}^{(4)} a_{i, j, k}=\frac{2}{3} \frac{a_{i+1, j, k}-a_{i-1, j, k}}{\Delta x}-\frac{1}{12} \frac{a_{i+2, j, k}-a_{i-2, j, k}}{\Delta x} \tag{3.9}
\end{equation*}
$$

4 Numerical Experiments

We tested the numerical scheme for a 2-d version of the general induction equations(2.2) with the following initial data

$$
\mathbf{B}_{0}(x, y)=4\left(\begin{array}{c}
-y \tag{4.1}\\
x-\frac{1}{2} \\
0
\end{array}\right) e^{-20\left(\left(x-\frac{1}{2}\right)^{2}+y^{2}\right)}
$$

and $\mathbf{u}=(-y, x, 0)^{\top}$. An exact solution of this problem can be calculated in the pure advection case, i.e. if $\eta=\delta_{i}=\delta_{e}=0$. The solution is given by

$$
\begin{equation*}
\mathbf{B}(x, y, t)=\mathbf{R}(t) \mathbf{B}_{0}(\mathbf{R}(-t)(x, y)) \tag{4.2}
\end{equation*}
$$

where $\mathbf{R}(t)$ is a rotation matrix on the z axis with angular velocity t. We ran two different tests on the domain $[-2.5,2.5] \times[-2.5,2.5]$ with Dirichlet boundary conditions.

Figure 4.1: l^{2} convergence analysis. On the left we have $\eta=\delta_{i}=\delta_{e}=0$, and on the right the forced problem for $L_{0}=\rho=1, \eta=0.01, \delta_{i}=0.1$ and $\delta_{e}=4.5 \times 10^{-2}$. In the legend we show the slope of the lines

Test 1 We test convergence of the scheme for two different central difference operators. One of second order and other of order four. In absence of a known analytical solution in presence of Hall effect, we have modified the problem. We add known analytical source
term to the induction equation; this term is computed so that (4.2) is the solution of the forced version of (2.2).
In Fig. 4.1 we show l^{2} errors after a time $t=2 \pi$ for different mesh size $N=N_{x}=N_{y}$. The theoretical orders of convergence are obtained.

Test 2 As second test we compare the solutions for advection problem and full problem at time $t=\pi$ (Fig.4.2). We note that that the resistivity and the Hall term diffuse the solution and also induce a creation of a small third component in the field.

Figure 4.2: Solution after $T=\pi$. On the left we have $\eta=\delta_{i}=\delta_{e}=0$, and on the right we have $L_{0}=\rho=1, \eta=0.01, \delta_{i}=0.1$ and $\delta_{e}=$ 4.5×10^{-2}.

5 Conclusion

The symmetric form of the general induction equations (2.2) posses some energy and divergence estimates. These estimates can be used to build a stable numerical scheme.
The presence of a time-derivative of the current in (2.2) implies that a matrix inversion has to be performed at every time step. Currently, we use a direct solver to invert the matrix. However, the matrix is ill conditioned and suitable pre-conditioners need to be devised to stabilize and accelerate the inversion algorithms. The design of such pre-conditioner is a topic of ongoing research and they will be presented in forthcoming papers.

References

[1] X.H.Deng and H. Matsumoto, Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves,(2001), Nature

410, 557-560.
[2] Z.W. Ma and A. Bhattacharjee, Hall magnetohydrodynamic reconnection: The Geospace Environment Modeling challenge, J.Geophys. Res, (2001), Vol 106, No. A3, 3773-3782.
[3] X. Qian, J. Balbás, A. Bhattacharjee and H. Yang, A Numerical Study of Magnetic Reconnection: A Central Scheme for Hall MHD, "Hyperbolic Partial Differential Equations, Theory, Numerics and Applications", Proceedings of the 12th international conference held at the University of Maryland, To appear.
[4] S. Mishra and M.Svärd, On stability of numerical schemes via frozen coefficient and the magnetic induction equations, BIT Numerical Mathematics, (2010), Vol. 50, pp. 85-108
[5] P.Corti and S. Mishra, Stable Finite Difference Scheme for the Magnetic Induction Equation with Hall Effect, in preparation
[6] S. Gottleib,C.W. Shu and E. Tadmor, High order time discretisation with strong stability property, SIAM Review,(2001),Vol 43, pp. 89112

Research Reports

No. Authors/Title
10-30 P. Corti
Stable numerical scheme for the magnetic induction equation with Hall effect

10-29 H. Kumar
Finite volume methods for the two-fluid MHD equations
10-28 S. Kurz and H. Heumann
Transmission conditions in pre-metric electrodynamics
10-27 F.G. Fuchs, A.D. McMurry, S. Mishra and K. Waagan
Well-balanced high resolution finite volume schemes for the simulation of wave propagation in three-dimensional non-isothermal stratified magneto-atmospheres
10-26 U.S. Fjordholm, S. Mishra and E. Tadmor
Well-balanced, energy stable schemes for the shallow water equations with varying topography

10-25 U.S. Fjordholm and S. Mishra
Accurate numerical discretizations of non-conservative hyperbolic systems

10-24 S. Mishra and Ch. Schwab
Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random intitial data

10-23 J. Li, J. Xie and J. Zou
An adaptive finite element method for distributed heat flux reconstruction

10-22 D. Kressner
Bivariate matrix functions
10-21 C. Jerez-Hanckes and J.-C. Nédélec
Variational forms for the inverses of integral logarithmic operators over an interval

10-20 R. Andreev
Space-time wavelet FEM for parabolic equations
10-19 V.H. Hoang and C. Schwab
Regularity and generalized polynomial chaos approximation of parametric and random 2nd order hyperbolic partial differential equations

10-18 A. Barth, C. Schwab and N. Zollinger
Multi-Level Monte Carlo Finite Element method for elliptic PDE's with stochastic coefficients

