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Abstract

Fast magnetic reconnection can be modeled by Hall MHD

equations. We consider a sub-model: the Hall induction equa-

tions and design stable finite difference schemes to approximate

it. Numerical examples are provided to verify the robustness of

the scheme.

1 Introduction

Magnetic reconnection, a widely studied phenomena in plasma physics,
is a change of topology of the magnetic field lines that permits a fast
change of the magnetic energy into thermal and kinetic energy. One of
popular models for fast reconnection [1], are the equations of the form :

∂ρ

∂t
= −∇ · (ρu) (1.1)

∂(ρu)

∂t
= −∇

{

ρu⊗ u+

(

p+
|B|2

2

)

I3×3 −B⊗B

}

(1.2)

∂E

∂t
= −∇

{(

E + p+
|B|2

2

)

u+E×B

}

(1.3)

∂B

∂t
= −∇×E. (1.4)

Here ρ, u, p are the gas density, velocity and pressure respectively. E

and B are the electric and magnetic fields. The total energy E is given
by the equation of state, i.e.,

E =
p

γ − 1
+

ρ|u|2

2
+

|B|2

2
. (1.5)

Here γ is the gas constant. Equations from (1.1) to (1.3) represent the
conservation of mass, momentum and energy; the last one (1.4) describes
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the evolution of the magnetic field.
The equations have to obey the divergence constraint:

∇ ·B = 0. (1.6)

For ideal MHD, the electric field is given by

E = −u×B. (1.7)

However, no reconnection is possible with this model. In order to model
fast reconnection, we use a generalized Ohm’s law [2],[3]

E = −u×B+ ηJ+
δi
L0

J×B

ρ
+

(
δe
L0

)2 1

ρ

[
∂J

∂t
+ (u ·∇)J

]

. (1.8)

Here L0 is the normalizing length unit, and δe and δi denote electron
and ion inertia respectively; they are related to electron-ion mass ratio
by ( δe

δi
)2 = me

mi
.

Using the Ampère’s law we can write the electric current J as

J = ∇×B. (1.9)

The Hall MHD equations are non-linear and complicated. A sub-model
is the Hall induction equation given by

∂

∂t

[

B+

(
δe
L0

)2

∇× (∇×B)

]

= ∇× (u×B)− η∇× (∇×B)

−

(
δe
L0

)2 1

ρ
∇× ((u ·∇)(∇×B))−

δi
L0

1

ρ
∇× ((∇×B)×B)

(1.10)

with u being a given velocity field.
For the remaining part of this paper, we will focus on the Hall induction
equations (1.10) and onto the design stable numerical scheme for it.

2 Theoretical Analysis

We rewrite the advection term in (1.10) using a standard vector identity
resulting in

∇× (u×B) = (B ·∇)u−B(∇ · u) + u(∇ ·B)− (u ·∇)B (2.1)

We note that the term that leads to a lack of symmetry is u(∇ ·B). For
divergence free data (1.6) this term vanishes and the remaining equations
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are in symmetric form:

∂

∂t

[

B+

(
δe
L0

)2

∇× (∇×B)

]

= (B ·∇)u−B(∇ · u)− (u ·∇)B

−η∇× (∇×B)−

(
δe
L0

)2 1

ρ
∇× ((u ·∇)(∇×B))

−
δi
L0

1

ρ
∇× ((∇×B)×B) (2.2)

We have the following theorem:

Theorem 2.1. Let u ∈ C2(R3) decays to zero sufficiently fast. Fur-
thermore, assume that the solution of (2.2) goes to zero at infinity, then
following apriori estimates hold:

d

dt

(

‖B‖2L2(R3) +

(
δe
L0

)2 1

ρ
‖∇×B‖2L2(R3)

)

≤ C1

(

‖B‖2L2(R3) +

(
δe
L0

)2 1

ρ
‖∇×B‖2L2(R3)

)

(2.3)

d

dt
‖∇ ·B‖L2(R3) ≤ C2‖∇ ·B‖L2(R3) (2.4)

with C1 and C2 being constants that depend on u and its derivatives
only. The above estimates imply that B ∈ H1

loc
(R3).

Proof. For the first inequality we multiply the equation with B and then
integrate over R3 resulting in

∫

R3

1

2

∂B2

∂t
+

(
δe
L0

)2 1

ρ
B∇× (∇×

∂B

∂t
)dx =

∫

R3

[

B(B ·∇)u−B
2(∇ · u)−

1

2
(u ·∇)B2 − ηB∇× (∇×B)

−

(
δe
L0

)2 1

ρ
B∇× ((u ·∇)(∇×B))−

δi
L0

1

ρ
B∇× ((∇×B)×B)

]

dx.

Partial integration yields

1

2

d

dt

(

‖B‖2L2(R3) +

(
δe
L0

)2

‖∇×B‖2L2(R3)

)

=

∫

R3

[

B(B ·∇)u−
1

2
B

2(∇ · u)− η(∇×B)2

+
1

2

(
δe
L0

)2 1

ρ
(∇ · u)(∇×B)2 −

δi
L0

1

ρ
(∇×B)((∇×B)×B)
︸ ︷︷ ︸

=0



 dx
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Using the smoothness of u in the above identity leads to

d

dt

(

‖B‖2L2(R3) +

(
δe
L0

)2

‖∇×B‖2L2(R3)

)

≤

CA‖B‖2L2(R3) + CB

(
δe
L0

)2

‖∇×B‖2L2(R3)

here CA = max
k={x,y,z}

(‖∂(u1+u2+u3)
∂k ‖L∞(R3)) and CB = ‖∇u‖L∞(R3).

Applying divergence operator on (2.2), we obtain

∂∇ ·B

∂t
= −∇(u(∇ ·B)).

Integrating overR3 and then integration by parts, we obtain the estimate
(2.4) by setting C2 = ‖∇u‖L∞(V ).

3 Numerical Scheme

We subdivide the computational domain using a uniform Cartesian mesh
with mesh width ∆x,∆y and ∆z. B̂i,j,k(t) and ûi,j,k(t) are approxima-
tions of B(x, t) and u(x, t) at point (xi, yj, zk). We also define discrete
derivatives D = (Dx, Dy, Dz)" using central differences:





Dx

Dy

Dz



 ai,j,k =






ai+1,j,k−ai−1,j,k

2∆x .
ai,j+1,k−ai,j−1,k

2∆y
.

ai,j,k+1−ai,j,k−1

2∆z .




 (3.1)

where ai,j,k is an arbitrary function defined on the mesh. For central
difference operators we have the following lemmas:

Lemma 3.1 (Summation by parts). Let ai,j,k and bi,j,k be grid func-
tions, such that |ai,j,k|, |bi,j,k| → 0 for i, j, k → ∞ then

∑

i,j,k

ai,j,kDxbi,j,k = −
∑

i,j,k

bi,j,kDxai,j,k (3.2)

Proof. This follow directly by a change of index in the sum.

Lemma 3.2 (Discrete chain rule). For every finite difference operator D
that approximates the first derivative, there exists an averaging operator
A such that for every ai,j,k = a(xi, yj, zk) with a ∈ C2 and every bi,j,k
defined on the mesh,

D(ai,j,kbi,j,k) = ai,j,kD(bi,j,k) +A(bi,j,k)D(ai,j,k) + ãi,j,k (3.3)

holds. If bi,j,k ∈ l2, then the residual ã is bounded i.e., ‖ã‖ ≤ Ch‖b‖ for
a generic mesh size h and some constant C > 0.
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Proof. For the proof of this lemma, see [4] lemma 3.3.

For approximating (2.2) we use the following semi-discrete numerical
scheme

∂

∂t

[

B̂i,j,k +

(
δe
L0

)2

D× (D× B̂i,j,k)

]

= Ā

(

B̂i,j,k ·D
)

ûi,j,k

−A

(

B̂i,j,k(D · ûi,j,k)
)

− (ûi,j,k ·D)B̂i,j,k − ηD× (D× B̂i,j,k)

−

(
δe
L0

)2 1

ρ
D× ((ûi,j,k ·D)B̂i,j,k)−

δi
L0

1

ρ
D×

(

(D× B̂i,j,k)× B̂i,j,k

)

.

(3.4)

Note that t is suppressed for notational convenience. We denote

Ā(Bi,j,k ·D) = Ax(B
1
i,j,k)Dx +Ay(B

2
i,j,k)Dy +Az(B

3
i,j,k)Dz (3.5)

and

A (Bi,j,k(D · ui,j,k))
i =

Ax(B
i
i,j,k)Dxu

1
i,j,k +Ay(B

i
i,j,k)Dyu

2
i,j,k +Az(B

i
i,j,k)Dzu

3
i,j,k (3.6)

for i = 1, 2, 3. A being the averaging operator defined in previous lemma.
We can show that the following holds:

Theorem 3.3. Let ûi,j,k = u(xi, yj, zk) be the point evaluation of a
function u ∈ C2 and let the solutions of (3.4) go to zero at infinity, then
the following estimates hold

d

dt

(

‖B̂‖2l2(R3) +

(
δe
L0

)2 1

ρ
‖D× B̂‖2l2(R3)

)

≤ C1

(

‖B̂‖2l2(R3) +

(
δe
L0

)2 1

ρ
‖D× B̂‖2l2(R3)

)

(3.7)

d

dt
‖D · B̂‖2l2(R3) ≤ C2‖D · B̂‖2l2(R3) + C3 max(∆x,∆y,∆z) (3.8)

with C1, C2 and C3 constant that depend on u and its derivative only.

Proof. The proof of this theorem uses the two lemmas 3.1 and 3.2 to
mimic the proof of the continuous version of this theorem (Thm. 2.1 ).
A detailed proof will be provided in [5].

The scheme (3.4) is semi-discrete and needs to be coupled with a
suitable numerical time-integration routine. We have chosen to use a
second-order SSP Runge-Kutta method [6].
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Remark 3.4. A fourth order version of this scheme is derived by replac-
ing the central difference operator by corresponding fourth-order central
difference, e.g.,

D(4)
x ai,j,k =

2

3

ai+1,j,k − ai−1,j,k

∆x
−

1

12

ai+2,j,k − ai−2,j,k

∆x
(3.9)

4 Numerical Experiments

We tested the numerical scheme for a 2-d version of the general induction
equations(2.2) with the following initial data

B0(x, y) = 4





−y
x− 1

2
0



 e−20((x− 1
2
)2+y2) (4.1)

and u = (−y, x, 0)". An exact solution of this problem can be calculated
in the pure advection case, i.e. if η = δi = δe = 0. The solution is given
by

B(x, y, t) = R(t)B0(R(−t)(x, y)) (4.2)

where R(t) is a rotation matrix on the z axis with angular velocity t.
We ran two different tests on the domain [−2.5, 2.5] × [−2.5, 2.5] with
Dirichlet boundary conditions.

10
1

10
2

10
3

10
!3

10
!2

10
!1

10
0

e
rr

o
r

N

 

 
1.83

3.95

10
1

10
2

10
3

10
!4

10
!3

10
!2

10
!1

N

e
rr

o
r

 

 
2.02

3.95

Figure 4.1: l2 convergence analysis. On the left we have η = δi = δe = 0,
and on the right the forced problem for L0 = ρ = 1, η = 0.01,δi = 0.1
and δe = 4.5× 10−2. In the legend we show the slope of the lines

Test 1 We test convergence of the scheme for two different central differ-
ence operators. One of second order and other of order four.
In absence of a known analytical solution in presence of Hall effect,
we have modified the problem. We add known analytical source
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term to the induction equation; this term is computed so that (4.2)
is the solution of the forced version of (2.2).
In Fig. 4.1 we show l2 errors after a time t = 2π for different
mesh size N = Nx = Ny. The theoretical orders of convergence
are obtained.

Test 2 As second test we compare the solutions for advection problem
and full problem at time t = π (Fig.4.2). We note that that the
resistivity and the Hall term diffuse the solution and also induce a
creation of a small third component in the field.

Figure 4.2: Solution after T = π. On the left we have η = δi = δe = 0,
and on the right we have L0 = ρ = 1, η = 0.01,δi = 0.1 and δe =
4.5× 10−2.

5 Conclusion

The symmetric form of the general induction equations (2.2) posses some
energy and divergence estimates. These estimates can be used to build
a stable numerical scheme.
The presence of a time-derivative of the current in (2.2) implies that a
matrix inversion has to be performed at every time step. Currently, we
use a direct solver to invert the matrix. However, the matrix is ill condi-
tioned and suitable pre-conditioners need to be devised to stabilize and
accelerate the inversion algorithms. The design of such pre-conditioner
is a topic of ongoing research and they will be presented in forthcoming
papers.
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