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ACCURATE NUMERICAL DISCRETIZATIONS OF

NON-CONSERVATIVE HYPERBOLIC SYSTEMS.

U. S. FJORDHOLM AND S. MISHRA

Abstract. We present an alternative framework for designing efficient numer-
ical schemes for non-conservative hyperbolic systems. This approach is based
on the design of entropy conservative discretizations and suitable numerical dif-
fusion operators that mimic the effect of underlying viscous mechanisms. This
approach is illustrated by considering two model non-conservative systems:
Lagrangian gas dynamics in non-conservative form and a form of isothermal
Euler equations. Numerical experiments demonstrating the robustness of this
approach are presented.

1. Introduction

1.1. Systems in conservative form. Many interesting models in physics and
engineering involve systems of conservation laws. Examples include the shallow
water systems of hydrology, the Euler equations of gas dynamics and the equations
of magneto-hydrodynamics. In one space dimension, these equations can be written
as non-linear PDEs of the form

(1.1) ut + F(u)x = 0.

Here, u : R × R+ "→ Rm and F : Rm "→ Rm are the vector of unknowns and
the flux vector, respectively. The system needs to completed with suitable initial
and boundary conditions. The system is termed hyperbolic if the eigenvalues of
the flux Jacobian ∂uF are real. It is well known that solutions of (1.1) develop
discontinuities (shock waves) in finite time even if the initial data is smooth. Hence,
solutions of (1.1) are sought in the sense of distributions [10]. This definition makes
sense for u ∈ L1

loc as the flux is in the conservative form and the derivative on the
flux can be transferred to the test function.

Weak solutions of (1.1) need not be unique and must be supplemented with
additional admissibility criteria or entropy conditions in order to select a physically
meaningful solution. The entropy condition is based on the existence of a convex
entropy function S : Rm "→ R and functions v, Q such that

(1.2) v = ∂uS(u), ∂uQ(u) = 〈v, ∂uF(u)〉.
Then, the admissible solutions of (1.1) have to satisfy the entropy inequality :

(1.3) S(u)t +Q(u)x ≤ 0.

The above inequality holds in the sense of distributions and leads to a stability esti-
mate on the entropy solutions of (1.1). The entropy inequality encodes information
about small scale effects like diffusion and dispersion.

Date: August 5, 2010.
1991 Mathematics Subject Classification. 65M06,35L65.
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1.2. Systems in non-conservative form. There are many interesting physical
models that cannot be expressed in the conservative form (1.1). Instead, they are
written in non-conservative quasilinear form:

(1.4) wt +A(w)wx = 0.

Here A : Rm "→ Rm×m is a matrix-valued function. Note that the conservative
form (1.1) can be written in the above form by setting A = ∂uF as the Jacobian
matrix. However, it may not be possible to rewrite (1.4) in the conservative form.
The non-conservative system (1.4) is termed hyperbolic if the eigenvalues of A are
real.

Examples of non-conservative hyperbolic systems include shallow water equa-
tions with bottom topography [3], gas flows in a duct [12], multi-layer shallow
water equations [4, 2] and multi-phase flows [23].

Analogous to the conservative system (1.1), solutions of the non-conservative
system develop discontinuities, even for smooth initial data. Hence, the solutions
of (1.4) need to be interpreted in a suitable weak sense. A distributional solution of
(1.4) is not well defined as it involves a non-conservative product of distributions.

In [7], Dal Maso, LeFloch and Murat defined the non-conservative product
A(w)wx in terms of a path connecting left and right states wL and wR across
discontinuities of w. A path is a C1 function Φ : [0, 1] × Rm × Rm "→ Rm such
that Φ(0,wL,wR) = wL and Φ(1,wL,wR) = wR for all wL,wR ∈ Rm. Without
providing details about the definition and properties of the non-conservative prod-
uct, we would like to point out that the path Φ is used to obtain a generalized
Rankine-Hugoniot relation at a jump discontinuity connecting wL and wR with
speed σ:

(1.5) σ(wR −wL) =

∫ 1

0
A(Φ(s,wL,wR))

∂Φ

∂s
(s,wL,wR) ds.

Hence, the shock speed and jump relations at a discontinuity depend on the choice
of the path Φ.

If the matrix A can be written as Jacobian, i.e, A = ∂uF, then the non-
conservative system (1.4) can be written as a conservative system (1.1) and the
generalized Rankine-Hugoniot condition (1.5) reduces to the standard Rankine-
Hugoniot condition for (1.1):

(1.6) σ(uR − uL) = F(uR)− F(uL).

Note that the above relation is independent of the choice of path. For stability
properties of the non-conservative product we refer to [7].

The weak solutions of (1.4) (based on the non-conservative product of [7]) need
not be unique. We assume the existence of an entropy function S and entropy flux
function Q such that the solution w of (1.4) satisfies the entropy inequality

S(w)t +Q(w)x ≤ 0

(cf. (1.3)). Note that the entropy inequality is still in a conservative form; hence
it holds in the sense of distributions. Furthermore, the entropy inequality is inde-
pendent of the choice of paths. An example of a non-conservative system with an
entropy inequality was presented in the context of shallow water equations with
bottom topography in a recent paper [9]. The existence of an entropy solution
for a non-conservative system (1.4) with smallness assumptions on initial data was
shown in [7].
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1.3. Numerical schemes. Numerical schemes for the conservation law (1.1) have
undergone rapid development in the last few decades. Finite volume (conservative
finite difference) methods (see [14]) are frequently employed for approximating (1.1).
For simplicity, we consider a uniform Cartesian mesh {xj}j∈Z with mesh size xj+1−
xj ≡ ∆x. The midpoint values are xj+1/2 :=

xj+xj+1

2 and the domain is partitioned
into intervals Ij = [xj−1/2, xj+1/2]. The time levels are denoted by tn and the time
step by ∆t. A standard first-order accurate finite volume scheme is written as

(1.7) un+1
j = un

j − ∆t

∆x

(
Fn

j+1/2 − Fn
j−1/2

)
.

Here, un
j is an approximation to the cell average of the solution in Ij and Fn

j+1/2 =

F(un
j ,u

n
j+1) is a numerical flux function, consistent with the flux F in (1.1). Higher-

order schemes based on (1.7) can be designed by standard procedures [14].
On the other hand, the design of efficient schemes for the non-conservative system

(1.4) is still immature. In a recent paper [18], Pares has proposed a theoretical
framework for designing schemes approximating (1.4). On a uniform Cartesian
mesh, the finite volume (difference) scheme of [18] is of the form

(1.8) wn+1
j = wn

j − ∆t

∆x

(
Dn,−

j+1/2 +Dn,+
j−1/2

)
.

Here, the fluctuations Dn,±
j+1/2 = D±(wn

j ,w
n
j+1) are assumed to be path consistent,

that is, they satisfy

(1.9) Dn,+
j+1/2 +Dn,−

j+1/2 =

∫ 1

0
A
(
Φ(s,wn

j ,w
n
j+1)

)∂Φ
∂s

(
s,wn

j ,w
n
j+1

)
ds,

with Φ being the path used in defining the non-conservative product. Fluctua-
tions of the Godunov, Roe and other approximate Riemann solver types have been
proposed in [18] and in [16, 17].

Recent papers like [2] and [5] have investigated path conservative schemes in
detail and found examples where path conservative schemes like (1.8) may not
converge to the solution corresponding to the chosen path. In [2], Abgrall and
Karni ask the following questions: (i) how does one go about choosing a path for a
given non-conservative system; (ii) once a path is chosen and a path conservative
scheme is defined, does the scheme converge to the solution defined by the path;
and (iii) in problems where the correct solution is known without ambiguity, how
can one design schemes that converge to the corresponding solution. They explore
these pertinent questions for a specific system modeling gas dynamics in Lagrangian
coordinates and conclude that path conservative schemes may not converge to the
correct solution.

1.4. Scope of this paper. In this paper, we aim to address the above issues and
design numerical schemes that converge to the correct solution of non-conservative
hyperbolic systems. Our strategy is based on the following ingredients:

(1) Entropy conservative schemes: We define finite difference discretizations of
(1.4) such that the scheme satisfies a discrete version of the entropy identity

(1.10) S(w)t +Q(w)x = 0.

This is based on the entropy conservative schemes for (1.1) developed by
Tadmor in [19, 20] and extensively investigated in recent papers [8, 9].
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Entropy conservative schemes for the shallow water equations with bottom
topography were designed in [9].

(2a) Physical viscosity: Entropy is conserved for smooth solutions of (1.4) but
needs to be dissipated at shocks. One method for introducing entropy
dissipation is by directly discretizing the underlying convection-diffusion
equation for (1.4) by adding the previously ignored physical diffusion oper-
ator. An entropy stable discretization of the physical diffusion operator is
added to the entropy conservative scheme for (1.4). This strategy has been
investigated in the context of the conservative system (1.1) in [8, 21, 22].
We extend it to the case of non-conservative systems in this paper.

(2b) Numerical diffusion: A direct approximation of the underlying physical
viscosity, as outlined in (2a), requires very small mesh sizes (the order of
the viscosity coefficient) for a non-oscillatory resolution of discontinuities
[8]. Hence, we need suitable numerical diffusion operators to mimic the
action of the physical viscosity. These operators need to be entropy stable
and have to be designed such that the resulting scheme converges to the
correct solution.

The above strategy is illustrated for two model systems in this paper. The first
was explored by Abgrall and Karni in [2] and contains most of the difficulties that
one might encounter in more complicated non-conservative systems. The second
system is the isothermal Euler equations as described by Karni in [11].

The rest of the paper is organized as follows: in Section 2, we introduce the model
system of [2] and state the associated entropy formulation. Entropy conservative
schemes are described in Section 3. Physical viscosity and numerical diffusion
operators are considered in Sections 4 and 5, respectively. The similar case of the
isothermal Euler equations is briefly described in Section 6.

2. Lagrangian Euler equations

2.1. Conservative form. Following [2], we consider compressible inviscid gas dy-
namics in Lagrangian coordinates:

(2.1)

vt − ux = 0

ut + px = 0

Et + (pu)x = 0.

This is an instance of the conservation law (1.1) with u = (v, u,E). Here, v is the
specific volume, u is the velocity and p is the gas pressure. The spatial coordinate
is mass, and the total energy is given by

(2.2) E := e+
u2

2
,

with the internal energy e being given by the equation of state for ideal gases,

(2.3) e =
pv

γ − 1
.

In all computations we use a gas constant of γ = 1.4.
The system is strictly hyperbolic with eigenvalues given by 0 and ±c, with c

being the sound speed

c =

√
γp

v
.
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The system is also equipped with an entropy function S = −pvγ

γ−1 . It is straight-

forward to check that smooth solutions of (2.1) satisfy the entropy identity

(2.4) St ≡ 0.

The above entropy identity has to be replaced with an entropy inequality at shocks.

2.2. Non-conservative form. The conservative system (2.1) can also be written
in non-conservative form by setting w = (v, u, e) as the vector of unknowns. The
resulting equations are

(2.5)

vt − ux = 0

ut + px = 0

et + pux = 0.

Note that (2.5) and (2.1) are equivalent for smooth solutions. The above system
can be written in the generic form (1.4) by defining

A =




0 −1 0
− p

v 0 γ−1
v

0 p 0



 .

The eigenvalues of A are 0 and ±c, as for the conservative formulation. Further-
more, smooth solutions of (2.5) satisfy the entropy identity (2.4). Observe that the
entropy function S can be written as a function of v and e alone, and hence is not
strictly convex with respect to w = (v, u, e).

We remark that the nonconservative formulation (1.4) can be obtained from the
conservative one (1.1) by multiplying the latter by the change-of-variables matrix
T := dw

du , which in the case of Lagrangian Euler equations is

(2.6) T =




1 0 0
0 1 0
0 −u 1



 .

2.3. Definition of the non-conservative product. The non-conservative sys-
tem (2.5) involves a single non-conservative product pux. As the conservative and
non-conservative forms for Lagrangian gas dynamics are formally equivalent, it
is natural to select a path for the non-conservative product such that the result-
ing generalized Rankine-Hugoniot relations (1.5) are equivalent to the standard
Rankine-Hugoniot condition (1.6) for (2.1). In [2], the authors chose the linear
path

v(s) = vL + s(vR − vL)

u(s) = uL + s(uR − uL)

p(s) = pL + s(pR − pL).

(2.7)

Substituting the above choice of path in (1.5) leads to the following jump conditions
across a discontinuity moving with speed σ:

(2.8)

σ[[v]] = −[[u]]

σ[[u]] = [[p]]

σ[[e]] = p[[u]],
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where we use the standard notation

u =
uL + uR

2
, [[u]] = uR − uL.

Note that the above jump conditions coincide with the exact jump conditions for
the conservative system (2.1). This equivalence of jump conditions provides a jus-
tification for the choice of the linear path.

3. Entropy conservative schemes

Once the path is chosen and the corresponding solutions are defined, the aim
is to design numerical schemes that approximate the correct solution of the non-
conservative system (2.5). As Abgrall and Karni have shown in [2], this task is
highly non-trivial and path conservative schemes of the form (1.8)may not converge
to the correct solution defined by the linear path (2.7). In fact, the authors of [2]
did not describe any scheme that converged to the correct solution of (2.5). We
will design such convergent schemes in this paper. As stated before, the first step
of our design paradigm involves the construction of entropy conservative schemes.

3.1. Conservative system. We consider the finite volume scheme (1.7) in its
semi-discrete form

(3.1)
d

dt
uj(t) +

1

∆x

(
F∗

j+1/2(t)− F∗
j−1/2(t)

)
= 0,

with F∗
j+1/2(t) = F∗(uj(t),uj+1(t)

)
. Following Tadmor [19], this finite volume

scheme is entropy conservative if computed solutions uj(t) satisfy a discrete entropy
equality

(3.2)
d

dt
S
(
uj(t)

)
+

1

∆x

(
Qj+1/2(t)−Qj−1/2(t)

)
= 0

for some numerical entropy flux Qj+1/2(t) = Q(uj(t),uj+1(t)). This is guaranteed
if the numerical flux function F∗

j+1/2 satisfies

(3.3) 〈[[v]]j+1/2,F
∗
j+1/2〉 = [[Ψ]]j+1/2 ∀ j,

see [19]. Here v := ∂uS(u) are the entropy variables in (1.2) and Ψ = 〈v,F〉−Q is
the entropy potential.

For Lagrangian gas dynamics with entropy S, the entropy flux function is Q ≡ 0,
and the entropy equality (3.2) states that entropy is constant in time. The entropy
variables and potential are given by

(3.4) v = vγ−1




−p
u
−1



 , Ψ = puvγ−1.

By directly inserting v,Ψ into (3.3), one can obtain the following explicit expression
for F∗:

(3.5) F∗(uL,uR) =




−ū
p̄

2p̄ū− pu



 =




−ū
p̄

pLuR+pRuL

2



 .

See [8] for more information about this technique. Note that the third component
of the numerical flux is not an arithmetic average of the exact fluxes of the left and
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right states. Inserting (3.5) into (3.1) gives the scheme

d

dt
vj −

uj+1 − uj−1

2∆x
= 0

d

dt
uj +

pj+1 − pj−1

2∆x
= 0

d

dt
Ej + pj

uj+1 − uj−1

2∆x
+ uj

pj+1 − pj−1

2∆x
= 0.

(3.6)

Proposition 3.1. The entropy conservative scheme (3.6) is a consistent discretiza-
tion of the conservative system (2.1) and is second-order accurate. Furthermore, it
satisfies the discrete entropy identity

(3.7)
d

dt
Sj(t) = 0 ∀ j,

where Sj(t) = S(uj(t)) = −pjv
γ−1
j

γ−1 .

Proof. Consistency and accuracy follows from the definition. The entropy identity
(3.7) is obtained by taking the inner product of (3.6) with vj = ∂uS(uj). !

Higher order of spatial accuracy can be obtained by using the procedure of [13].
As an example, a fourth order accurate entropy conservative scheme consists of
replacing F∗ in (3.1) with

(3.8) F4,∗
j+1/2 =

4

3
F∗(uj ,uj+1)−

1

6

(
F∗(uj−1,uj+1) + F∗(uj ,uj+2)

)

The semi-discrete scheme (1.8) can be integrated in time using a standard Runge-
Kutta method.

3.2. Non-conservative system. There is no general theory characterizing en-
tropy conservative schemes for non-conservative systems like (1.4). However, we
can derive an entropy conservative scheme for the model system (2.5) based on
the formal equivalence between it and the conservative system (2.1). Mimicking
this equivalence at the discrete level, we multiply (3.6) by the change-of-variables
matrix Tj =

dw
du (uj) to obtain the following semi-discrete scheme:

(3.9)

d

dt
vj −

uj+1 − uj−1

2∆x
= 0

d

dt
uj +

pj+1 − pj−1

2∆x
= 0

d

dt
ej + pj

uj+1 − uj−1

2∆x
= 0.

The time dependence of all the above quantities has been suppressed for notational
convenience. This scheme has the following properties.

Proposition 3.2. The semi-discrete scheme (3.9) is a consistent approximation
of the non-conservative system (2.5) and is second-order accurate. Furthermore, it
satisfies the discrete entropy identity (3.7). Hence, (3.9) is entropy conservative.

Proof. The proof of second-order accuracy follows from a Taylor expansion. To
prove (3.7), we take the inner product of (3.9) by ∂wS(wj). Since

∂wS(w) = T−t∂uS(u) = T−tv,

the result follows from Proposition 3.1. !
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A fourth-order entropy conservative version of (3.9), obtained by multiplying
(3.8) by Tj =

dw
du (uj), is given by

(3.10)

d

dt
vj(t)−

1

∆x

(
2

3
(uj+1 − uj−1)−

1

12
(uj+2 − uj−2)

)
= 0,

d

dt
uj(t) +

1

∆x

(
2

3
(pj+1 − pj−1)−

1

12
(pj+2 − pj−2)

)
= 0,

d

dt
ej(t) +

pj
∆x

(
2

3
(uj+1 − uj−1)−

1

12
(uj+2 − uj−2)

)
= 0.

3.3. Numerical experiments. In this section we test the two entropy conserva-
tive schemes

EC2 Second-order scheme (3.6) with RK2 time stepping.
NEC2 Second-order scheme (3.9) with RK2 time stepping.

Following [2], we consider a Riemann problem whose solution is a single right-
going shock. Fixing the right state uR, we can use the generalized Rankine-
Hugoniot condition (2.8) to express the left state variables vL, uL as a function
of pL:

(3.11) vL =
2γp+ [[p]]

2γp− [[p]]
vR, uL = uR +

√
2vR[[p]]

2

2γp− [[p]]
.

Setting
pL = 1, (vR, uR, pR) = (8, 0, 0.1),

we obtain vL ≈ 2.0984, uL ≈ 2.3047. The shock moves at a speed σ ≈ 0.3905. The
initial data is set to be

(3.12) u0(x) =

{
uL if x < 0.5

uR if x > 0.5

and we compute for x ∈ [0, 1] with non-reflecting boundary conditions. The do-
main is partitioned into 200 grid cells. In Figure 1 we plot the density (1/v) at
time t = 0.25 computed with the EC2 scheme for the conservative system (2.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

EC2

NEC2

Figure 1. Computed density for the Riemann problem (3.12)
with the EC2 and NEC2 schemes at time t = 0.25 on a mesh
with 200 points.
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and with the NEC2 scheme for the non-conservative system (2.5). Both schemes
approximate the single shock solution qualitatively. As expected, there are large
oscillations behind the shock as both schemes lack any dissipation mechanism. We
introduce dissipation mechanisms in subsequent sections. We note that there are
very minor differences between the entropy conservative schemes approximating the
conservative system (2.1) and the non-conservative system (2.5).

4. Physical diffusion

In this section, we introduce explicit physical diffusion for both the conservative
(2.1) and non-conservative (2.5) systems in order to model the dissipation at shocks.
We use two different sets of explicit diffusion operators.

Uniform diffusion.

Conservative form. We add explicit uniform diffusion to the conservative system
(2.1) by introducing a Laplacian on the right-hand side of (2.1) to obtain

(4.1)

vt − ux = µvxx

ut + px = µuxx

Et + (pu)x = µExx.

Here, µ is the diffusion coefficient. Formally, the solution uµ = (v, u, E) of (4.1)
converges to the entropy solution u of (2.1) as µ → 0.

Non-conservative form. By multiplying (4.1) by T we can derive the equivalent
version of (4.1) for the non-conservative system (2.5) as

(4.2)

vt − ux = µvxx

ut + px = µuxx

et + pux = µexx + µu2
x.

An alternative diffusion operator for the non-conservative system (2.5) would con-
sist of adding a Laplacian to it, leading to the system

(4.3)

vt − ux = µvxx

ut + px = µuxx

et + pux = µexx.

Note that the only difference between these two formulations is the µu2
x term in

(4.2).

Navier-Stokes viscosity. A more physically relevant diffusion operator for La-
grangian gas dynamics is provided by the Navier-Stokes type viscosity term.

Conservative form. The Navier-Stokes equations in Lagrangian coordinates are
given by

(4.4)

vt − ux = 0

ut + px = µ
(uxx

v
− uxvx

v2

)

Et + (pu)x = µ

(
u2
x

2v

)

x

,

where µ is the viscosity coefficient [15].
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Non-conservative form. The corresponding Navier-Stokes equations for the non-
conservative system (2.5) are again obtained by multiplying (4.4) by T, obtaining

(4.5)

vt − ux = 0

ut + px = µ
(uxx

v
− uxvx

v2

)

et + pux = µ
u2
x

v
.

We remark that the Navier-Stokes equations in both the conservative (4.4) and
non-conservative (4.5) forms satisfy the entropy inequality

(4.6) St ≤ 0.

4.1. Numerical schemes. The left hand sides of all the above convection-diffusion
equations is either the conservative system (2.1) or the non-conservative system
(2.5), and to discretize them we use the entropy conservative schemes of the previous
section. The right hand side consists of explicit diffusion operators and we discretize
them by standard central finite difference operators. For second order discretization,
we use

(4.7)
gx ≈ gj+1 − gj−1

2∆x

gxx ≈ gj+1 − 2gj + gj−1

∆x2
,

and for fourth-order accuracy, we use

(4.8)

gx ≈ 1

∆x

(
2

3
(gj+1 − gj−1)−

1

12
(gj+2 − gj−2)

)

gxx ≈ 1

∆x2

(
4

3
(gj+1 + gj−1)−

5

2
gj −

1

12
(gj+2 + gj−2)

)
.

Here g is any given function and gj = g(xj).

4.2. Numerical experiments. We consider the Riemann problem (3.12) for four
different convection-diffusion equations: (4.1) for the conservative system and (4.2),
(4.3) and (4.5) for the non-conservative system. The aim is to ascertain the vis-
cous profile corresponding to very small viscosity coefficients for both systems with
different regularizations.

Figure 2 shows density for the system (4.1) along with the exact single-shock
solution. We use viscosity coefficients µ = 10−4, 0.5 × 10−4 and 0.25 × 10−4; to
avoid oscillations in the solution we have to use a high number of mesh points:
4000, 8000 and 16000, respectively. Increasing the number of mesh points further
for fixed µ does not change the solution much. It is clear that as µ decreases, the
computed solutions approach the solution of the inviscid conservative system (2.1).
What is more, the discontinuity is propagated at the correct speed in all three
simulations. Similar results (not shown here) were obtained for the Navier-Stokes
regularization (4.4) of the conservative system (2.1).

The same experiment is repeated for the diffusive regularizations of the non-
conservative system (2.5) and the computed densities are shown in Figure 3. There
are two main differences between the results for the conservative and non-conservative
cases: although the viscous profiles for (4.2) and (4.5) converge to the single shock
solution in the inviscid case, the rate of convergence with respect to the mesh size
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Figure 2. Computed solution for the Riemann problem (3.12) for
the viscous equation (4.1) with a second-order scheme.

(for a fixed µ) is very slow, particularly for the Navier-Stokes regularization (4.5).
Furthermore, the rate of convergence decreases when the coefficient µ is reduced.
Some deterioration in the rate may be due to oscillations on account of inadequate
resolution. This convergence is accelerated when fourth-order discretizations are
used, as illustrated in Figure 3(d) (contrast with 3(c)).

The second major difference between the two cases is that the viscous profile
corresponding to the discrete Laplace operator (4.3) does not converge to the invis-
cid solution. Instead, it converges to a solution with a higher intermediate density.
This leads to the conclusion that the limit of viscous regularizations for the non-
conservative system (2.5) is sensitive to the choice of the diffusion operator.

5. Numerical diffusion

The addition of explicit viscosity to the entropy conservative schemes is prob-
lematic as the viscosity coefficients have to be very small in order to approximate
the viscous limit, as was demonstrated in the previous section. Small viscosity
coefficients require very fine meshes (mesh size being on the order of the viscos-
ity coefficients) for resolving the solution without unphysical oscillations. Such fine
meshes are not computationally feasible, especially for multi-dimensional problems.
Hence, we need to devise suitable numerical diffusion operators that mimic the ef-
fects of physical viscosity while capturing shocks without unphysical oscillations.

5.1. Conservative form. Any standard entropy stable diffusion operator can be
added to the entropy conservative scheme (3.6) (see [20]). For simplicity, we choose
a Lax-Friedrichs type operator:

(5.1) Pn
j+1/2 =

cnmax

2∆x

(
un
j+1 − un

j

)
.

Here,

cnmax = max
j

|cnj |,
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Figure 3. Computed density for (3.12) with different regulariza-
tions of the non-conservative system (2.5). In each plot, the value
of the viscosity coefficient and the number of mesh points are in-
dicated.

with cnj being the sound speed corresponding to the state un
j . The resulting (fully

discrete) scheme is

(5.2) un+1
j = un

j − ∆t

∆x

(
F∗

j+1/2 − F∗
j−1/2

)
+∆t

(
Pn

j+1/2 −Pn
j−1/2

)

Here, F∗ is the entropy conservative flux defined in (3.5). The diffusion operator in

(5.2) corresponds to setting the viscosity coefficient in (4.1) as µ = cnmax∆x
2 , which

vanishes as the mesh is refined. A less dissipative choice would be to scale the
dissipation with local wave speeds, which gives a Rusanov-type scheme.

5.2. Non-conservative form. Analogous to the conservative case, we can intro-
duce numerical diffusion operators for the non-conservative system (2.5) by replac-
ing the viscosity coefficients in front of the regularizations (4.2), (4.3) and (4.5) by a

scaled version of the mesh size. In particular, we select µ = cnmax∆x
2 , as above. The

left-hand sides are discretized using the entropy conservative scheme (3.9). This
leads to the following schemes:
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Discrete Laplacian. Discretizing the Laplacian-type diffusion operator in (4.3) gives
the following Lax-Friedrichs-type scheme:

(5.3)

vn+1
j − vnj

∆t
− 1

2∆x
(un

j+1 − un
j−1) =

cnmax

2∆x

(
vnj+1 − 2vnj + vnj−1

)

un+1
j − un

j

∆t
+

1

2∆x
(pj+1 − pj−1) =

cnmax

2∆x

(
vnj+1 − 2vnj + vnj−1

)

en+1
j − enj

∆t
+

pj
2∆x

(uj+1 − uj−1) =
cnmax

2∆x

(
enj+1 − 2enj + enj−1

)
.

Modified discrete Laplacian. Instead of rescaling the regularized system (4.3), we
can rescale the regularized system (4.2) (derived from the underlying system (4.1))
resulting in the following modified Lax-Friedrichs type scheme:

(5.4)

vn+1
j − vnj

∆t
− 1

2∆x
(un

j+1 − un
j−1) =

cnmax

2∆x

(
vnj+1 − 2vnj + vnj−1

)
,

un+1
j − un

j

∆t
+

1

2∆x
(pj+1 − pj−1) =

cnmax

2∆x

(
vnj+1 − 2vnj + vnj−1

)
,

en+1
j − enj

∆t
+

pj
2∆x

(uj+1 − uj−1) =
cnmax

2∆x

(
enj+1 − 2enj + enj−1

)

+
cnmax

2∆x

(
uj+1 − uj−1

2

)2

.

Note that the only difference between (5.3) and (5.4) is the term approximating
µu2

x in the third component.

Discrete Navier-Stokes operator. A discretization of the Navier-Stokes viscosity in
(4.5) results in the scheme

(5.5)

vn+1
j − vnj

∆t
− 1

2∆x
(un

j+1 − un
j−1) =

cnmax

2∆x

(
vnj+1 − 2vnj + vnj−1

)

un+1
j − un

j

∆t
+

1

2∆x
(pj+1 − pj−1) =

cnmax

2∆xvnj

(
un
j+1 − 2un

j + un
j−1

)

− cnmax

8∆x(vnj )
2
(un

j+1 − un
j−1)(v

n
j+1 − vnj−1)

en+1
j − enj

∆t
+

pj
2∆x

(uj+1 − uj−1) =
cnmax

2∆xvnj

(
uj+1 − uj−1

2

)2

.

Note that this scheme is not strictly a discrete version of the Navier-Stokes equation
(4.5) as we have added numerical diffusion in the density equation.

Remark 5.1. All of the aforementioned schemes are first-order accurate. An alter-
native would add fourth-order diffusion operators (4.8) to the fourth-order accurate
entropy conservative scheme (3.10). We do consider such schemes in the next sec-
tion. However, the schemes are still first-order accurate as the diffusion coefficient
is proportional to the mesh size.
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5.3. Numerical experiments. In this section, we test the following schemes:

ECS: The first-order scheme (5.2) solving the conservative system (2.1).
ELF: The first-order scheme (5.3) with Lax-Friedrichs type diffusion.
ELM: The first-order scheme (5.4) with modified Lax-Friedrichs type diffusion.
ENS: The first-order scheme (5.5) with Navier-Stokes type diffusion operator.

We can expect these schemes to mimic the behavior of their respective counterpart
in Section 4, while at the same time introducing more diffusion, thus requiring fewer
grid cells to remove oscillatory behavior.

In some experiments, we also test the fourth-order version of the above schemes
and label them by ELF4, ELM4 and ENS4 respectively.

5.3.1. Single shock. We repeat the initial-value problem (3.12) with the four schemes
on a mesh of 1500 points. Computed density, velocity and pressure are shown in
Figure 4. It is evident that the Lax-Friedrichs type ELF scheme computes wrong
intermediate states in all three variables, with the largest deviations lying in the
density. This is not unexpected, as using the explicit Laplacian type diffusion oper-
ator in the regularized system (4.3) led to a viscous profile that did not converge to
the correct solution (see Figure 3(a)). Since the ELF diffusion operator models the
action of a Laplacian, it is thus not surprising that the resulting scheme converges
to an incorrect solution. In fact, the results for the ELF scheme are comparable
to those obtained by Abgrall and Karni (see Figure 1 in [2]) with the path consis-
tent Roe and Lax-Friedrichs schemes. The results suggest that the reason the path
consistent schemes may not converge to the correct solution is the dynamics of the
numerical diffusion operator, thus justifying the speculations of [2].

Conversely, the modified Lax-Friedrichs type ELM scheme and the Navier-Stokes
based ENS scheme compute correct intermediate states, albeit with small devia-
tions. Again, this is expected as their regularized counterparts (4.2) and (4.5)
converge towards the single-shock solution.

To investigate the question of convergence further, we repeat the experiment
with the ELF and ELM schemes on a sequence of meshes. The resulting density
is shown in Figure 5. Apart from a slight difference directly behind the shock, the
ELM scheme displays a clear, monotonous convergence towards the reference solu-
tion. The ELF scheme also shows convergence, but towards an entirely unphysical
solution.

5.3.2. Hugoniot locus. Following [2, 5], we compute the Hugoniot locus of the ECS,
ELF, ELM and ENS schemes. This is done by fixing (vR, uR, pR) = (8, 0, 0.1) (as
before) while varying pL between 0.2 and 1. For each value of pL, the corresponding
single-shock left state is calculated from (3.11) and the initial-value problem (3.12)
is solved with the four schemes. The computed value directly behind the shock is
plotted in the u-p plane in Figure 6. We see that the ECS, ELF and ENS schemes
approximate the exact Hugoniot locus very accurately, whereas the ELF scheme
converges to a different Hugoniot locus. This indicates that choosing a suitable
numerical diffusion operator is absolutely essential in obtaining convergence to a
correct solution.

5.3.3. Sod shock tube. We consider the Riemann problem

(5.6)
(
v0(x), u0(x), p0(x)

)
=

{
(1/3, 0, 3) if x < 0.5

(1, 0, 1) if x > 0.5
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Figure 4. Computed density for (3.12) with different schemes for
(2.1) and (2.5). All the results are shown at t = 0.25 and are
computed on a mesh of 1500 points. The reference solution is
computed with the ECS schemes on a mesh of 8000 points.
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Figure 5. Density for (3.12), computed at time t = 0.25 on a
sequence of meshes with the ELF and ELM schemes. Note the
different scaling of the y-axis.
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Figure 6. The numerical Hugoniot locus in the u-p plane com-
puted with the ECS, ELF, ELM and ENS schemes.

This is a variant of the standard Sod shock tube problem [14] and the exact solution
consists of a left going rarefaction, a right going shock and a right going contact
discontinuity. Figure 7 shows the computed density with the ECS, ELF, ELM and
ENS schemes. The results indicate that that all the schemes, including the ELF
scheme, converge to the correct solution in this case.

6. Isothermal Euler equations

To illustrate our approach in a different setting, we consider the isothermal Euler
equations

ρt + (ρu)x = 0

(ρu)t + (ρu2 + c2ρ)x = 0,
(6.1)

obtained by letting γ → 1 in the Euler equations [6, 11]. Here, c is the (constant)
sound speed. The system (6.1) has eigenvalues u±c and hence is strictly hyperbolic.
We set c = 1 in the remainder.

Energy is not a conserved variable in the isothermal Euler equations; rather, it
gives rise to the entropy pair

S = ρ

(
u2

2
+ log ρ

)
, Q = ρu

(
u2

2
+ log ρ+ 1

)
.

We will consider the following regularization of (6.1):

ρt + (ρu)x = µρxx

(ρu)t + (ρu2 + ρ)x = µ(ρu)xx.
(6.2)

Formally, the solution of (6.2) converges to the solution of (6.1) as µ → 0.
Karni [11] considers the following alternative formulation of (6.1):

ρt + (ρu)x = 0

ut +

(
u2

2
+ log ρ

)

x

= 0.
(6.3)
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Figure 7. Computed solutions for the Sod shock tube (5.6) with
different schemes for (2.1) and (2.5). All the results are shown
at t = 0.105 on a mesh of 1000 points. The reference solution is
computed with the ECS schemes on a mesh of 8000 points.

This system can be written in the nonconservative form (1.4) by letting

w = (ρ, u), A(w) =

[
u ρ
1/ρ u

]
.

We remark that although (6.3) is written in divergence form, the velocity u is not
a conserved variable. To see this, we keep the right-hand side terms of (6.2) to
obtain the equivalent formulation

ρt + (ρu)x = µρxx

ut +

(
log ρ+

u2

2

)

x

= µuxx + 2µ(log ρ)xux.
(6.4)

Clearly the term 2µ(log ρ)xux in the equation for u cannot be written in divergence
form, and so even in the limit µ → 0, u is not conserved.
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A naive regularization of (6.3) would involve adding a Laplacian to the right-
hand side, obtaining the system

ρt + (ρu)x = µρxx

ut +

(
log ρ+

u2

2

)

x

= µuxx.
(6.5)

As we demonstrate numerically in the next section, the solution of (6.5) does not
converge to the entropy solution of (6.1) as µ → 0.

6.1. Numerical schemes. As the inviscid system (6.3) is written in divergence
form, it is straightforward to obtain entropy conservative schemes [8, 20]. We omit
the details and give its formulation:

d

dt
wj +

1

∆x

(
F∗

j+1/2 − F∗
j−1/2

)
= 0, F∗

j+1/2 =

[
ρu

u2

2 + log ρ

]
.

To obtain entropy stable schemes we discretize the right-hand sides of (6.4) and
(6.5) using central differences, as before. The resulting schemes are named ELM and
ELF, respectively, corresponding to their counterparts in Section 5. The viscosity
coefficient is set as µ = cnmax∆x

2 , as before, where

cnmax := max
j

|un
j |+ c

is the maximum eigenvalue of the solution.

6.2. Numerical experiment. We consider the following numerical experiment,
taken from [11]:

(ρ0(x), u0(x)) =

{
(0.4, 1) if x < 0.5

(0.1, 0) if x > 0.5.

We solve for x ∈ [0, 1] up to t = 0.2. The computed solutions are plotted in Figure
8 and 9, along with a reference solution computed with the Rusanov scheme for
the conservative system (6.1). We see clearly that the ELM scheme converges to
the correct solution, whereas the ELF scheme converges to an unphysical solution.
This incorrect solution corresponds very well to the solutions obtained with the
deficient schemes considered in [11] (see Figure 2(A) and 3(A) of that paper).

Again we see that a faithful discretization of the viscous terms of the conservative
formulation (6.2) is vital to the convergence of the nonconservative formulation.

7. Conclusion

The design of efficient numerical schemes for the non-conservative hyperbolic
system (1.4) is very challenging as the solution is highly dependent on the choice
of a path. How to make this choice is still an unsolved problem. The available the-
oretical framework of path conservative schemes [18] is inadequate [2, 5], the main
shortcoming of this approach being the lack of convergence of path conservative
schemes to the correct solution. This was illustrated in [2] for the non-conservative
version of Lagrangian gas dynamics (2.5).

We have presented an alternative paradigm for the design of numerical schemes
for non-conservative systems based on three ingredients: (i) an entropy conservative
discretization; (ii) explicit discretization of physical viscosity; and (iii) the design
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Figure 8. Solution computed with the ELF scheme.
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Figure 9. Solution computed with the ELM scheme.

of numerical diffusion operators that mimic the effect of the physical viscosity at
any given mesh resolution.

This approach has been illustrated for the Lagrangian gas dynamics system (2.5)
and for a version of the isothermal Euler equations (6.3). We demonstrate that
schemes based on this design paradigm converge to the correct solution. Further-
more, the schemes are simple to implement and computationally inexpensive. The
choice of the numerical diffusion operator was absolutely crucial, as a naive choice
led to convergence to incorrect solutions of the underlying conservative system.

The main drawbacks of the current approach lie in the fact that we require an
entropy framework as well as explicit information about the underlying viscous
mechanisms, and that the schemes have to be tailored to each individual system
under consideration. However, most systems arising in physics are equipped with
an entropy formulation, and explicit information about the underlying viscous op-
erators is readily available.

We plan to extend the current framework for multi-layer shallow water equa-
tions and for multi-phase flows in a forthcoming paper. Other directions of future
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research are to design high-order schemes and address problems in several space
dimensions. The current approach is quite promising on both issues.
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