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Bivariate Matrix Functions

Daniel Kressner∗

August 29, 2010

Abstract

A definition of bivariate matrix functions is introduced and some theoretical as well
as algorithmic aspects are analyzed. It is shown that our framework naturally extends
the usual notion of (univariate) matrix functions and allows to unify existing results on
linear matrix equations and derivatives of matrix functions.

1 Introduction

Given a square matrix A and a univariate scalar function f(z) defined on the spectrum of
A, the matrix function f(A) is again a square matrix of the same size. Well-known examples
include the matrix inverse A−1, the matrix exponential exp(A) and the matrix logarithm
log(A), see the recent monograph by Higham [11] for an excellent overview on the analysis
and computation of such matrix functions.

This paper is concerned with the following question. What is an appropriate bivariate
extension of matrix functions? More specifically, given two square matrices along with a
bivariate scalar function f(x, y), is there a sensible way of “evaluating f at these matrices”?
Implicitly, as will be seen in the course of this note, this question has been considered many
times in the literature for particular classes of bivariate functions. However, to the best of
our knowledge, the most general case has not been put in a unified mathematical framework,
with minimal assumptions on f and A,B. The main contribution of this note is to provide
such a unification, covering several existing results and hopefully leading to new insights.

Given an m×m matrix A and an n× n matrix B, the bivariate matrix function f{A,B}
proposed in this note is not a matrix but a linear operator on the set of m × n matrices.
In Section 2, three equivalent characterizations are provided, based on bivariate Hermite
interpolation, an explicit expression, and a Cauchy integral formulation. In Section 3, it is
shown that f{A,B} nicely extends some well-known properties of univariate matrix functions.
For example, the eigenvalues of f{A,B} are the values of f at the eigenvalues of A and
B. Another useful property is (g ◦ f){A,B} = g

(
f{A,B}

)
, allowing to succinctly express

compositions of bivariate with univariate functions. For example, this shows that the solution
to the matrix Sylvester equation AX −XBT = C can be written as X = f{A,B}(C) with
f(x, y) = 1/(x − y). Section 4 presents another important special case of bivariate matrix
functions: The Fréchet derivative of a univariate function f at a matrix A is shown to admit
the expressions f [1]{A,AT } with f [1](x, y) = (f(x)−f(y))/(x−y). Section 5 sketches a general
algorithm for computing bivariate matrix functions. However, it should be stressed that this

∗Seminar for applied mathematics, ETH Zurich, kressner@math.ethz.ch
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algorithm can be expected to be inferior in terms of efficiency and robustness compared
to more specialized algorithms covering the special cases mentioned above. Some further
developments that could offspring from the framework developed in this note are outlined in
the concluding section.

2 Definition and Basic Properties

Before defining bivariate matrix functions, we briefly recall the definition of a univariate
matrix function. Let A ∈ Cm×m have the pairwise distinct eigenvalues λ1, . . . ,λs. Then we
let indλi(A) denote the index of λi, i.e., the size of the largest Jordan block associated with
λi. Then the matrix function associated with a univariate scalar function f is defined as
f(A) := p(A), where p(z) is the unique Hermite interpolating polynomial of degree less than∑s

i=1 indλiA satisfying

∂g

∂zg
p(λi) =

∂g

∂zg
f(λi), g = 0, . . . , indλiA− 1, i = 1, . . . , s. (1)

It is assumed that f is defined on the spectrum of A in the sense of [11], which in particular
means that all required derivatives of f exist. Following [11], we say that p interpolates f at
A if (1) is satisfied.

2.1 Definition via Hermite Interpolation

To extend the definition above from the univariate to the bivariate setting, we first consider
the case of polynomials.

Definition 2.1 Let A ∈ Cm×m, B ∈ Cn×n and consider a bivariate polynomial p(x, y) =∑s
i=1

∑t
j=1 pijx

iyj with pij ∈ C. Then p{A,B} : Cm×n → Cm×n is defined by

p{A,B}(C) :=
s∑

i=1

t∑

j=1

pijA
iC(BT )j . (2)

Note that the transposition of B in (2) is purely a matter of convention, which has the
main advantage that it allows for a non-ambiguous extension to multivariate functions, see
Section 6.

As in the univariate case, we will approach a general bivariate function by means of
Hermite interpolation. This is only possible if the function is defined on the spectra of A and
B in the following sense.

Definition 2.2 Let A ∈ Cm×m have pairwise distinct eigenvalues λ1, . . . ,λs and let B ∈
Cn×n have pairwise distinct eigenvalues µ1, . . . , µt. Then a bivariate function f(x, y) is de-
fined on the spectra of A and B if the following mixed partial derivatives exist and are con-
tinuous:

∂g+h

∂xgyh
f(λi, µj),

g = 0, . . . , indλi(A)− 1, i = 1, . . . , s,
h = 0, . . . , indµj (B)− 1, j = 1, . . . , t.

2



Bivariate Hermite interpolation on tensor grid data is well-understood and can be easily
performed by tensorized univariate Hermite interpolation, see, e.g., [1, 13]. In particular, for
any f(x, y) defined on the spectra of A and B there is a bivariate polynomial p(x, y) satisfying

∂g+h

∂xgyh
p(λi, µj) =

∂g+h

∂xgyh
f(λi, µj),

g = 0, . . . , indλi(A)− 1, i = 1, . . . , s,
h = 0, . . . , indµj (B)− 1, j = 1, . . . , t.

(3)

The choice of p(x, y) is unique if it has degree less than
∑s

i=1 indλi(A) in x and degree less
than

∑t
j=1 indµj (B) in y. As in the univariate case, we say that p interpolates f at {A,B}

if (3) is satisfied.

Definition 2.3 The bivariate matrix function associated with a bivariate scalar function
f(x, y) defined on the spectra of A and B is defined by f{A,B} := p{A,B}, where p(x, y) is
the bivariate polynomial of minimal degree interpolating f at {A,B}.

In the following, we discuss some basic properties of bivariate matrix functions.

Lemma 2.4 Under the conditions of Definition 2.3,

f{A,B}(C) = P
(
f{P−1AP,Q−1BQ}(P−1CQ−T )

)
QT (4)

for any two invertible matrices P,Q of matching size.

Proof. It is straightforward to verify this statement for polynomials f , which concludes
the proof by definition.

Lemma 2.5 Consider any two polynomials p1, p2 satisfying the interpolation conditions (3).
Then p1{A,B} = p2{A,B}.

Proof. By Lemma 2.4, we can assume A,B to be in Jordan canonical form. Since the
evaluation of bivariate matrix polynomials decouples for block diagonal matrices A and B (see
also Lemma 2.6 below), it suffices to prove the statement for λiI +NA, and µjI +NB, where
NA, NB are nilpotent matrices of index indλi(A) and indµj (B), respectively. Set e := p1− p2.
Then

∂g+h

∂xgyh
e(λi, µj) = 0, g = 0, . . . , indλi(A)− 1, h = 0, . . . , indµj (B)− 1

and hence e takes the form

e(x, y) =
∑

g≥indλi
(A)

h≥indµi (B)

egh(x− λi)
g(y − µj)

h

for some coefficients egh. By Definition 2.1 and the nilpotency of NA, NB, this implies e{λiI+
NA, µiI +NB} = 0.

Lemma 2.5 has the convenient consequence that any polynomial satisfying the appropriate
Hermite interpolation conditions can be used for defining a bivariate matrix function.
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Lemma 2.6 Consider block (diagonal) matrices

A =

[
A11 0
0 A22

]
, B =

[
B11 0
0 B22

]
, C =

[
C11 C12

C21 C22

]
,

where Aii, Bjj are square and C is partitioned conformally with A and B. Then

f{A,B}(C) =

[
f{A11, B11}(C11) f{A11, B22}(C12)
f{A22, B11}(C21) f{A22, B22}(C22)

]
, (5)

holds for any f(x, y) defined on the spectra of A,B,

Proof. Clearly, any polynomial p interpolating f at {A,B} also interpolates f at {Aii, Bjj}
for i ∈ {1, 2}, j ∈ {1, 2}. Thus, by Lemma 2.5, it suffices to establish (5) for the polynomial
p, which is straightforward to verify.

Lemma 2.6 extends in a direct manner to block diagonal matrices A,B with arbitrarily
many square diagonal blocks.

2.2 An explicit expression

The aim of this section is to characterize f{A,B}(C) in terms of the Jordan structure of A
and B. First, let us briefly consider the special case that A and B happen to be of the form

A = λI +NA, B = µI +NB,

where NA, NB are nilpotent matrices of index m̃, ñ, respectively. Then an interpolating
polynomial is given by the truncated Taylor expansion

p(x, y) =
m̃−1∑

g=0

ñ−1∑

h=0

1

g!h!

∂g+h

∂gx∂hy
f(λ, µ)(x− λ)g(y − µ)h.

According to Definition 2.3,

f{A,B}(C) =
m̃−1∑

g=0

ñ−1∑

h=0

1

g!h!

∂g+h

∂xgyh
f(λ, µ)Ng

AC(NT
B )

h. (6)

This can be used to derive an explicit expression based on the Jordan canonical forms of A
and B:

A = PJAP−1, JA = diag
(
JA(λ1), JA(λ2), . . . , JA(λs)

)
,

B = QJBQ−1, JB = diag
(
JB(µ1), JB(µ2), . . . , JB(µt)

)
,

(7)

where JA(λi) contains all Jordan blocks belonging to the eigenvalue λi of A, and analogously
JB(µj).

Lemma 2.7 Let A,B have the Jordan canonical forms (7) and partition

P−1CQ−T =




C11 · · · C1t
...

...
Cs1 · · · Cst
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conformally. Then

f{A,B}(C) = P




F11 · · · F1t
...

...
Fs1 · · · Fst



QT

with

Fij =

indλi (A)−1∑

g=0

indµj (B)−1∑

h=0

1

g!h!

∂g+h

∂xgyh
f(λi, µj)

(
JA(λi)− λiI

)g
Cij

(
JT
B (µj)− µjI

)h
(8)

for i = 1, . . . , s and j = 1, . . . , t.

Proof. By Lemma 2.4 and Lemma 2.6, we have Fij = f{JA(λi), JB(µj)}(Cij). The
formula (8) therefore follows directly from (6).

Lemma 2.7 extends a similar expression given in [20, Sec. 10] for the solution of matrix
Sylvester equations, which will be seen below to correspond to the case f(x, y) = 1/(x − y).
More specifically, in [20, Sec. 10], a more compact formulation has been attained by defining
matrices of the form

Vig = P diag
(
0, . . . , 0,

(
JA(λi)− λiI

)g
, 0, . . . , 0

)
P−1,

Wjh = Q diag
(
0, . . . , 0,

(
JB(µj)− µjI

)h
, 0, . . . , 0

)
Q−1 (9)

for g = 0, . . . , ind(λi)− 1, i = 1, . . . , s and h = 0, . . . , ind(µj)− 1, j = 1, . . . , t. Equivalently,

Vig =
1

2πi

∮

Γ(λi)

(x− λi)
g(zI −A)−1dx, Wjh =

1

2πi

∮

Γ(µj)

(z − µj)
h(yI −B)−1dy,

where Γ(λi) and Γ(µj) are sufficiently small circles surrounding λi and µj , respectively. By
Lemma 2.7,

f{A,B}(C) =
∑

i,j

∑

g,h

1

g!h!

∂g+h

∂xgyh
f(λi, µj)VigCW T

jh. (10)

2.3 A Cauchy integral representation

For holomorphic f , the expression (10) leads to a a Cauchy integral representation of f{A,B}(C).
We refer to [17] for an introduction to multivariate holomorphic functions.

Theorem 2.8 Let ΩA,ΩB ⊂ C be open sets containing the eigenvalues of A and B, respec-
tively, such that f is holomorphic on ΩA × ΩB and continuous on ΩA × ΩB. Then

f{A,B}(C) = − 1

4π2

∮

ΓA

∮

ΓB

f(x, y)(xI −A)−1C(yI −B)−1dy dx, (11)

where ΓA,ΓB are the contours of ΩA,ΩB.

Proof. By changing the path of integration, the right-hand side of (11) can be replaced by

− 1

4π2

∑

i,j

∮

Γ(λi)

∮

Γ(µj)
f(x, y)(xI −A)−1C(yI −B)−1dy dx, (12)
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with sufficiently small circles Γ(λi),Γ(µj) surrounding λi, µj . The matrices Vig,Wjh intro-
duced in (9) allow for the decompositions

(xI −A)−1 =
∑

i

indλi (A)−1∑

g=0

1

(x− λi)g+1
Vig, (yI −B)−1 =

∑

j

indµj (B)−1∑

h=0

1

(y − µj)h+1
Wjh.

Inserting this into (12) gives

− 1

4π2

∑

i,j

∑

g,h

∮

Γ(λi)

∮

Γ(µj)

f(x, y)

(x− λi)g+1(y − µj)h+1
VigCW T

jhdy dx. (13)

Using
∂g+h

∂xgyh
f(λi, µj) = −g!h!

4π2

∮

Γ(λi)

∮

Γ(µj)

f(x, y)

(x− λi)g+1(y − µj)h+1
dy dx,

we thus obtain that the right-hand side of (11) is identical with the expression (10) for
f{A,B}(C).

For the case f(x, y) = 1/p(x, y) with an arbitrary bivariate polynomial p the result of
Theorem 2.8 is attributed in [20] to Krein [18].

In most practically relevant instances of the univariate case, the eigenvalues of A are
contained in a domain of holomorphy of f and therefore ΩA is connected. This appears to
happen less frequently for bivariate holomorphic functions. As a typical example, consider
f(x, y) = 1/(x−y) and let the eigenvalues of A be 1/2, 1+1/2, . . . , n+1/2 while the eigenvalues
of B are 1, 2, . . . , n. Then any ΩA × ΩB in the sense of Theorem 2.8 consists of at least n2

connected components, see also Figure 1.

0 2 4 6
0

1

2

3

4

5

6

Eigenvalues of A

E
ig

e
n
va

lu
e
s 

o
f 
B

Figure 1: Red line: Singularities of f(x, y) = 1/(x−y). Blue squares: Set (ΩA∩R)×(ΩB∩R)
for which ΩA × ΩB satisfies the requirements of Theorem 2.8

3 Spectral properties and composition of functions

The eigenvalues of the linear operator f{A,B} are scalars λ ∈ C for which there is a nonzero
C ∈ Cm×n such that f{A,B}(C) = λC. Equivalently, these are the eigenvalues of the
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mn × mn matrix M(f{A,B}), where M denotes the natural isomorphism between linear
operators on Cm×n and mn×mn matrices.

Lemma 3.1 Let λ1, . . . ,λs and µ1, . . . , µt denote the eigenvalues of A and B, respectively.
Then the eigenvalues of f{A,B} are given by f(λi, µj) for i = 1, . . . , s, j = 1, . . . , t.

Proof. By Definition 2.3, f{A,B} = p{A,B}, where the polynomial p(x, y) =
∑

ij pijx
iyj

interpolates f at {A,B}. By a direct extension of the usual argument for linear matrix
equations (see, e.g., [12, Thm 4.45]), the eigenvalues of

M(p{A,B}) =
∑

ij

pij
(
Bj ⊗Ai

)
.

are given by p(λi, µj) = f(λi, µj).
To discuss the index of f(λi, µj) as an eigenvalue of f{A,B}, the following result will turn

out to be useful.

Lemma 3.2 Let f1, f2 be holomorphic functions in the vicinity of the spectra of A,B. Then
f1{A,B} ◦ f2{A,B} = π{A,B} with π(x, y) = f1(x, y)f2(x, y).

Proof. By an appropriate choice of contours ΓA and ΓB, Theorem 2.8 implies

(
f1{A,B} ◦ f2{A,B}

)
(C) =

1

16π4

∮

ΓA

∮

ΓB

∮

ΓA

∮

ΓB

f1(x1, y1)f2(x2, y2)(x1I −A)−1(x2I −A)−1 · · ·

· · ·C(y1I −B)−1(y2I −B)−1dy2dx2dy1dx1.

Using

− 1

4π2

∮

ΓA

∮

ΓA

f1(x1, y1)f2(x2, y2)(x1I −A)−1(x2I −A)−1dx2dx1

=
1

2πi

∮

ΓA

f1(x, y1)f2(x, y2)(xI −A)−1dx,

see, e.g., [20, Sec 7], and an analogous formula for (y1 −B)−1(y2 −B)−1, we obtain

(
f1{A,B} ◦ f2{A,B}

)
(C) = − 1

4π2

∮

ΓB

∮

ΓA

f1(x, y)f2(x, y)(xI −A)−1C(yI −B)−1dy dx

= π{A,B}(C).

An immediate consequence of Lemma 3.2, bivariate matrix functions evaluated at the
same arguments commute: f1{A,B}◦f2{A,B} = f2{A,B}◦f1{A,B}. Another consequence
is the power rule

f{A,B} ◦ · · · ◦ f{A,B}︸ ︷︷ ︸
d times

= fd{A,B}. (14)

Corollary 3.3 Let σ be an eigenvalue of f{A,B}. Then

indσf{A,B} ≤ max
{
indλA+ indµB − 1: σ = f(λ, µ),λ ∈ Λ(A), µ ∈ Λ(B)

}
, (15)

where Λ denotes the set of eigenvalues of a matrix.

7



Proof. From Lemma 2.4 it is clear that we can assume without loss of generality that A
and B are already in Jordan canonical form (7). Then the matrix representation of f{A,B}
becomes block diagonal with diagonal blocks

M(f{JA(λ), JB(µ)}) =
indλ(A)−1∑

i=0

indµ(B)−1∑

j=0

pij
(
JT
B (µ)− µI

)j ⊗
(
JA(λ)− λI

)i
,

for some coefficients pij with p00 = f(λ, µ) =: σ, see (8). Defining the polynomial p(x, y) =∑
i+j≥1

pijxiyj , we have

f{JA(λ), JB(µ)}− σI = p{JA(λ)− λI, JB(µ)− µI}

and therefore, by (14),

(
f{JA(λ), JB(µ)}− σI

)d
= pd{JA(λ)− λI, JB(µ)− µI}.

By the binomial theorem,

pd{JA(λ)− λI, JB(µ)− µI} =
∑

i+j≥d

qij
(
JT
B (µ)− µI

)j ⊗
(
JA(λ)− λI

)i

for some coefficients qij . A term in this sum becomes zero if i ≥ indλ(A) or j ≥ indλ(B),
which will always be the case if d = indλ(A) + indµ(B)− 1. Hence,

indσf{JA(λ), JB(µ)} ≤ indλA+ indµB − 1.

This shows the result by taking the maximum over all eigenvalue pairs λ, µ that satisfy
σ = f(λ, µ).

In most cases of practical interest, we expect that equality holds in (15). However, there
are obvious exceptions, as the trivial example f(x, y) ≡ 0 demonstrates.

A bivariate matrix function f{A,B} can be composed with a univariate function u(z) by
applying the usual definition of matrix function to the matrix representation M(f{A,B}).
Formally, we let

u(f{A,B}) := M−1(u(M(f{A,B}))).

This definition assumes u to be defined on the spectrum of f{A,B}, for which a sufficient
condition in terms of the Jordan structures of A and B can be easily derived from (3.3): The
derivatives

u(g)
(
f(λi, µj)

)
,

i = 1, . . . , s, j = 1, . . . , t,
g = 0, . . . , indλiA+ indµjB − 2,

(16)

are assumed to exist.

Theorem 3.4 Consider a bivariate function f(x, y) defined on the spectra of square matrices
A,B and a univariate function u(z) for which the derivatives (16) exist. Then

u(f{A,B}) = (u ◦ f){A,B}. (17)

8



Proof. Since both sides of (17) are linear in u, the power rule (14) implies that the state-
ment of the lemma holds for any polynomial u. Now, let the polynomial pf interpolate f at

{A,B}, and let pu be a Hermite interpolation of u satisfying p(g)u
(
f(λi, µj)

)
= u(g)

(
f(λi, µj)

)

for all i, j, g as in (16). Then

u(f{A,B}) = pu(pf{A,B}) = (pu ◦ pf ){A,B}.

The proof is concluded if we can show that pu ◦ pf interpolates u ◦ f at {A,B}. By Faà di
Bruno’s chain rule, the mixed derivative

∂g+h

∂xgyh
pu
(
pf (x, y)

)

can be expressed in terms of derivatives of pu up to order g+h and mixed partial derivatives
of pf up to order g, h in x, y. Applying this chain rule to the conditions (3) for u ◦ f , all the
resulting derivatives of pu and pf are found to match those of u and f , respectively. Hence, (3)
is satisfied; pu ◦ pf indeed interpolates u ◦ f at {A,B}.

To give some examples of Theorem 3.4, consider first the Sylvester equation AX−XBT =
C or, equivalently, f{A,B}(X) = C for f(x, y) = x−y. Provided that A and B have disjoint
spectra, Theorem 3.4 implies that the solution X = f{A,B}−1(C) can be written as

X = fsylv{A,B}(C) with fsylv(x, y) =
1

x− y
.

Similarly, the solution to the Stein equation X − AXBT = C, if it exists and is unique, can
be written as

X = fstein{A,B}(C) with fstein(x, y) =
1

1− xy
.

As a last example, Theorem 3.4 implies the identity

(
I ⊗A+B ⊗ I

)−1/2
vec(C) = fisqr{A,B}(C) with fisqr(x, y) = (x+ y)−1/2, (18)

which allows for the application of the inverse matrix square root of I ⊗ A + B ⊗ I without
having to form this matrix explicitly, see Section 5 for a more detailed discussion.

4 Fréchet derivatives of univariate matrix functions

Given a sufficiently often differentiable univariate function f(x), the Fréchet derivative of f
at a matrix A in direction C is defined as

Df{A}(C) := lim
h→0

1

h

(
f(A+ hC)− f(A)

)
.

The following result shows that Df{A}(C) can be interpreted as a bivariate matrix function
representing the finite difference evaluated at A.

Theorem 4.1 Let A be a square matrix and let f be 2 · indλA− 1 times continuously differ-
entiable at λ for every λ ∈ Λ(A). Then

Df{A}(C) = f [1]{A,AT }(C), with f [1](x, y) := f [x, y] =

{
f(x)−f(y)

x−y , for x ,= y,

f ′(x), for x = y.

9



Proof. For f(x) = xk, it is well known (and easy to see) that

Df{A}(C) =
k∑

i=1

Ak−iCAi−1 = f [1]{A,AT }(C)

with f [1](x, y) =
∑k

i=1 x
k−iyi−1 = (xk − yk)/(x− y) for x ,= y and f [1](x, x) = f ′(x). Because

of linearity, this shows the statement of the theorem for every polynomial. For the general case
of a function f satisfying the assumptions, let p be an interpolating polynomial matching the
first 2 · indλA−1 derivatives of f at every eigenvalue λ of A. Consider any pair of eigenvalues
λ, µ of A, and let

T =





τ0 1

τ1
. . .
. . . 1

τg+h+1




, τ0 = · · · = τg = λ, τg+1 = · · · = τg+h+1 = µ.

Then f(T ) is defined and equals p(T ) as long as 0 ≤ g+ h ≤ indλA+ indµA− 1. A result by
Opitz [24] shows that the upper triangular entries of f(T ) are the divided differences of f . In
particular, the entry in the upper right corner equals

f
[
λ, . . . ,λ︸ ︷︷ ︸
g + 1 times

, µ, . . . , µ︸ ︷︷ ︸
h+ 1 times

]
=






1
g!h!

∂g+h

∂xgyh
f [x, y]

∣∣∣
x=λ,y=µ

for λ ,= µ,

1
(g+h)!

∂g+h

∂xg+h f(x)
∣∣∣
x=λ

for λ = µ,

which, together with f(T ) = p(T ), shows

∂g+h

∂xgyh
p[1](λ, µ) =

∂g+h

∂xgyh
f [1](λ, µ)

for all 0 ≤ g+h ≤ indλA+indµA−1. Hence, p[1] satisfies the required interpolation conditions
and

Df{A}(C) = Dp{A}(C) = p[1]{A,AT } = f [1]{A,AT }

concludes the proof.
Using Lemma 3.2 and Theorem 4.1, the trivial relation f [x, y]x−f [x, y]y = f [x, y](x−y) =

f(x)− f(y), gives – expressed in terms of the matrix A – the commutator relations

ADf{A}(C)−Df{A}(C)A = Df{A}(AC − CA) = f(A)C − Cf(A), ∀C ∈ Cn×n (19)

for any holomorphic function f , see also [3, Thm 2.1]. Najfeld and Havel [23, Thm 4.4]
have obtained an expression for Df{A} from (19) for functions f that admit a power se-
ries with convergence radius ρ and ‖A‖ < ρ. In [23], this expression is called “generalized
divided difference matrix”, which coincides with the matrix representation of f{A,A} and
thus matches the statement of Theorem 4.1. Note, however, that Theorem 4.1 imposes much
weaker conditions on f and A.

Theorem 4.1 together with Lemma 3.1 reconfirm the well-known fact that the eigenval-
ues of Df{A} are given by f [λ, µ] for all pairs λ, µ ∈ Λ(A), see also Theorem 3.9 in [11].
Lemma 2.7 and (10) yield explicit expressions for Df{A} = f [1]{A,AT } that recover an

10



expression of Horn and Johnson stated in [12, Thm 6.6.14] under stronger assumptions on
the differentiability of f . Note that all these explicit expressions coincide with a formula by
Daleckĭı and Krĕın [5, 4] in the special case that A is diagonalizable, see also (21) below and
Theorem 3.11 in [11].

Finally, we demonstrate the versatility of the framework of bivariate matrix functions by
showing the well-known relation

f

([
A C
0 A

])
=

[
A Df{A}(C)
0 A

]
(20)

under minimal conditions on f,A.

Theorem 4.2 Equation (20) holds under the assumptions of Theorem 4.1.

Proof. It is well known (and easy to show) that (20) holds for any polynomial. Setting

M =

[
A C
0 A

]
, we clearly have indλM ≤ 2 · indλA for every λ ∈ Λ(A). Hence, for a

polynomial p interpolating the first 2 · indλA−1 derivatives of f at λ, we have p(M) = f(M).
By the argument used in the proof of Theorem 4.1, p[1] interpolates f [1] at {A,AT }. This
concludes the proof:

f(M) = p(M) =

[
p(A) p[1]{A,AT }(C)
0 p(A)

]
=

[
f(A) f [1]{A,AT }(C)
0 f(A)

]
.

In comparison, Theorem 2.1 in [22] shows (20) only under the stronger assumption that f
is m− 1 times continuously differentiable at every eigenvalue of A, where m = max{indλA :
λ ∈ Λ(A)}.

By applying the Cauchy integral representation for holomorphic matrix functions, Equa-
tion (20) implies a well-known integral representation for Df(A), see [27]. It is instructive to
rederive this representation from the Cauchy integral formulation of Theorem 2.8 applied to
f [1]{A,AT }.

5 Computation of bivariate matrix functions

The purpose of this section is to provide a rather informal discussion of possible algorithms
for computing f{A,B}(C) for medium-sized matrices A,B.

Diagonalization of A and B. Suppose that A,B are diagonalizable:

P−1AP = diag(λ1, . . . ,λm), Q−1BQ = diag(µ1, . . . , µn),

and let C̃ = P−1CQ−T . Then Lemma 2.7 implies

f{A,B}(C) = P
(
F̃ ◦ C̃

)
QT with f̃ij = f(λi, µj), (21)

where “◦” denotes the Hadamard product. This expression is well-suited for (nearly) normal
matrices A and B but can be expected to run into numerical instabilities when P and/or Q
are ill-conditioned.
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Diagonalization of B only. The above approach can be modified if only one of the ma-
trices, say B, is known to admit a well-conditioned basis of eigenvectors. Let Q−1BQ =
diag(µ1, . . . , µn) and partition C̃ = CQ−T =

[
c1, . . . , cn

]
. Then Lemma 2.4 and Lemma 2.6

imply
f{A,B}(C) =

[
y1, . . . , yn

]
QT with yj = f{A, µj}(cj). (22)

Note that f{A, µj} = fµj (A) is a univariate matrix function for fµj (x) = f(x, µj). Having a
stable procedure for evaluating/applying fµj (A) at hand, this approach can be expected to
be significantly more robust than (21). An analogous, row-wise procedure can be performed
if A is known to admit a well-conditioned basis of eigenvectors.

Taylor expansion. In the extreme case that all eigenvalues of B are nearly identical, the
diagonalization of B is clearly not the preferred option but this situation can be exploited as
well. Following the approach for univariate matrix functions proposed by K̊agström [16], see
also [6], we let µ = trace(B)/n and consider the truncated Taylor expansion

f(x, y) ≈ f(x, µ) + (y − µ)
∂

∂y
f(x, µ) + · · ·+ 1

k!
(y − µ)k

∂k

∂yk
f(x, µ). (23)

This yields an approximation for the bivariate matrix function in terms of the univariate

functions f (0)
µ (x) := f(x, µ), f (1)

µ (x) := ∂
∂yf(x, µ), . . . , f

(k)
µ (x) := ∂k

∂yk
f(x, µ):

f{A,B}(C) ≈ f (0)
µ (A)C + f (1)

µ (A)C(B − µI) + · · ·+ 1

k!
f (k)
µ (A)C(B − µI)k. (24)

Since B has all eigenvalues close to µ, one can expect that k need not be chosen very large to
obtain good accuracy, see [6, 11, 16, 21] for discussions. Compared to (22), formula (24) has

the requirement that not only f (0)
µ but also the derivatives f (1)

µ , . . . , f (k)
µ need to be evaluated

at A. Without going into implementation details, we only mention that if the Schur-Parlett
algorithm [6] is used for this purpose then the mixed partial derivatives of f need to be
available, which could be considered a not too unreasonable requirement.

Block diagonalization of B only. Diagonalization and Taylor expansion can be combined
in an obvious manner by considering a block diagonalization of B:

Q−1BQ = diag
(
B11, . . . , Btt

)
(25)

such that Q is well-conditioned and the eigenvalues of each diagonal block Bjj are nearly
identical. Methods for performing such a decomposition reliably are a subtle matter and have
been discussed, e.g., in [6, 9, 25]. Assuming (25) is available,

f{A,B}(C) =
[
Y1, . . . , Yn

]
QT with Yj = f{A,Bjj}(Cj),

where C̃ = CQ−T =
[
C1, . . . , Cn

]
is partitioned in accordance with Q−1BQ. In effect, each

block column Yj can be computed by means of (24).
An analogous, block row-wise procedure can be derived if it is preferable to block diago-

nalize A.
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Summary. As noted in [6, 11], algorithms for evaluating univariate matrix functions based
on block diagonalization have their deficiencies. In particular, to obtain a very well-conditioned
Q, the spectrum of the diagonal blocks can often not be chosen very narrow. Consequently,
to yield good accuracy, a large value of k needs to be chosen in the truncated Taylor ex-
pansion (24). The Schur-Parlett algorithm [6, 25] has been demonstrated to allow for more
narrow block diagonal spectra and is therefore preferred over block diagonalization. It would
be desirable to have a bivariate analogue of this algorithm, which ideally would reduce
to the well-known Bartels-Stewart algorithm for Sylvester matrix equations if applied to
f(x, y) = 1/(x−y). Unfortunately, the derivation of such an analogue appears to be difficult.

It should be stressed that there are far better algorithms available for the two most
important special cases of matrix functions; we refer to [15] for linear matrix equations and
to [11] for matrix Fréchet derivatives.

6 Extension to multivariate functions

For the sake of clarity, the focus of this paper has been on bivariate matrix functions. However,
the extension to arbitrary multivariate functions is rather simple.

First, consider a d-variate polynomial

p(x1, . . . , xd) =
s1∑

i1=1

· · ·
sd∑

id=1

pi1,...,idx
i1
1 · · ·xidd =

∑

i∈I
pix

i,

where we used the usual multiindex notation and I = [1, s1]× · · ·× [1, sd]. For the evaluation
of p at d matrices A1 ∈ Cn1×n1 , . . . , Ad ∈ Cnd×nd , we propose to define

p{A1, . . . , Ad}(C) :=
∑

i∈I
piC ×1 A

i1
1 ×2 A

i2
2 · · ·×d A

id
d ,

where C ∈ Cn1×n2×···×nd is a tensor of order d and ×j denotes the j-mode multiplication of a
tensor with a matrix [7, 2]. This matches (2) for d = 2 since Ai1

1 C(AT
2 )

i2 = C ×1 A
i1
1 ×2 A

i2
2 .

For a general function f(x1, . . . , xd), tensor Hermite interpolation yields a polynomial
p(x1, . . . , xd) satisfying

∂|g|

∂xg
p(λ1, . . . ,λd) =

∂|g|

∂xg
f(λ1, . . . ,λd),

g = (g1, . . . , gd),
gk = 0, . . . , indλk

(Ak)− 1, k = 1, . . . , d,
(26)

for every tuple of eigenvalues λ1 ∈ Λ(A1), . . . ,λd ∈ Λ(Ad), provided of course that all required
mixed derivatives of f exist and are continuous. The d-variate matrix function associated
with f can then be defined as f{A1, . . . , Ad} := p{A1, . . . , Ad}, which is a linear operator on
Cn1×n2×···×nd .

Mutatis mutandis, all results presented for bivariate matrix functions can be expected to
admit d-variate extensions. For example, if f is holomorphic on an open set Ω = Ω1×· · ·×Ωd,
with Λ(Ak) ⊂ Ωk, and continuous on Ω, the d-variate analogue of the Cauchy integral formula
of Theorem 2.8 becomes

f{A1, . . . , Ad}(C) =
1

(2πi)d

∮

Γ1

· · ·
∮

Γd

f(x1, . . . , xd)C ×1 (x1I −A1)
−1 · · ·×d (xdI −Ad)

−1dx,
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where Γk is the contour of Ωk.
The multivariate matrix function for f(x1, . . . , xd) = 1/(x1+ · · ·+xd) can be used to solve

discretizations of separable partial differential equations, see [8, 19]. We are not aware of any
other applications.

7 Conclusions and Outlook

The definition of bivariate matrix function proposed in this paper has resulted in the unifica-
tion and (mild) improvements of some existing results for linear matrix equations and matrix
Fréchet derivatives. It remains to be seen whether other applications fit into our framework.

This paper has only discussed basic results and briefly touched computational aspects.
There is evidence that the concept of bivariate matrix functions may offer a more abstract
view and possibly new insights for a variety of other, more advanced results. First, existing
Krylov subspace methods for Lyapunov matrix equations [14, 26] could be extended and
viewed as bivariate polynomial matrix approximations. Second, an analogue of Theorem 4.1
for Fréchet derivatives of bivariate matrix functions could lead to a more efficient way to
compute condition numbers for linear matrix equations, cf. [10, Sec. 16.3].
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[18] M. G. Krĕın. Lektsii po teorii ustoichivosti reshenii differentsialnykh uravnenii v Ba-
nakhovom prostranstve. Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1964.

[19] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with tensor
product structure. SIAM J. Matrix Anal. Appl., 31(4):1688–1714, 2010.

[20] P. Lancaster. Explicit solutions of linear matrix equations. SIAM Rev., 12:544–566, 1970.

[21] R. Mathias. Approximation of matrix-valued functions. SIAM J. Matrix Anal. Appl.,
14(4):1061–1063, 1993.

[22] R. Mathias. A chain rule for matrix functions and applications. SIAM J. Matrix Anal.
Appl., 17(3):610–620, 1996.

[23] I. Najfeld and T. F. Havel. Derivatives of the matrix exponential and their computation.
Advances in Applied Mathematics, 16:321–375, 1995.

[24] G. Opitz. Steigungsmatrizen. Z. Angew. Math. Mech., 44:T52–T54, 1964.

[25] B. N. Parlett and K. C. Ng. Development of an accurate algorithm for exp(Bt). Technical
Report PAM-294, Center for Pure and Applied Mathematics, University of California,
Berkeley, August 1985.

[26] Y. Saad. Numerical solution of large Lyapunov equations. In Signal processing, scattering
and operator theory, and numerical methods (Amsterdam, 1989), volume 5 of Progr.
Systems Control Theory, pages 503–511. Birkhäuser Boston, Boston, MA, 1990.

[27] E. Stickel. On the Fréchet derivative of matrix functions. Linear Algebra Appl., 91:83–88,
1987.

15



Research Reports

No. Authors/Title

10-22 D. Kressner
Bivariate matrix functions

10-21 C. Jerez-Hanckes and J.-C. Nédélec
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