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Switzerland

∗Support in part by SNF Grant No. PDFMP2-127034/1



Sparse space-time finite element discretization of

parabolic equations

Roman Andreev∗

Seminar for Applied Mathematics,
Rämistrasse 101, 8092 Zürich, Switzerland
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Abstract

For a class of linear parabolic equations we propose a nonadaptive

sparse space-time Galerkin least squares discretization. We formulate cri-

teria on the trial and test spaces for the well-posedness of the correspond-

ing Galerkin least squares solution. In order to obtain discrete stability

uniformly in the discretization parameters, we allow test spaces which are

suitably larger than the trial space. The problem is then reduced to a

finite, overdetermined linear system of equations by a choice of bases. We

present several strategies that render the resulting normal equations well-

conditioned uniformly in the discretization parameters. The numerical

solution is then shown to converge quasi-optimally to the exact solution

in the natural space for the original equation. Numerical examples for the

heat equation confirm the theory.

1 Introduction

Linear parabolic equations constitute an important class of evolutionary par-
tial differential equations and are used to model various phenomena in physics,
financial engineering, chemistry, biology, etc. Consequently, a sizable body of
methods for their numerical solution has been developed (Lang, 2001; Thomée,
2006). However, most of these methods are variations on the “method of lines”,
and therefore fail to produce a priori error bounds under minimal regularity as-
sumptions and are intrinsically hard to parallelize. To date, several authors have
proposed simultaneous space-time discretization schemes for parabolic initial
boundary value problems, we refer to (Horton & Vandewalle, 1995; Babuška &
Janik, 1990; Schötzau, 1999; Griebel & Oeltz, 2007; Schwab & Stevenson, 2009;
Stevenson & Chegini, 2010) and further references therein. Using the variational
formulation of (Schwab & Stevenson, 2009) we present a non-adaptive sparse
space-time discretization procedure which builds upon fairly classical numerical
tools of the finite element method, allows to prove quasi-optimality of the nu-
merical solution and has the potential to significantly reduce the computational
cost for sufficiently smooth solutions. The approach is fundamentally different

∗andreevr@math.ethz.ch, support by SNF Grant No. PDFMP2-127034/1
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from (Stevenson & Chegini, 2010) where a wavelet adaptive scheme involving a
tensor construction of suitable wavelet bases is applied to the resulting biinfi-
nite normal equations; or from (Babuška & Janik, 1990) where quasi-optimality
is obtained for an hp continuous Galerkin time stepping with a constant not
uniform in the discretization parameter, see (Babuška & Janik, 1990, Theo-
rem 3.6.1), exploiting the setting of time-independent coefficients in an essential
manner. In Example 4.3 we indicate, but do not elaborate on further here,
how the construction of wavelets can be effectively bypassed by means of the
well-known BPX operator. Moreover, we work with space- and time-dependent
inputs throughout. We mention a few further connections to existing works:
a general framework for least-squares finite element methods is advocated in
(Bochev & Gunzburger, 2009), but our exposition is self-contained and confined
to Theorem 3.1 and Section 4; in the language of (Demkowicz & Gopalakrish-
nan, 2011), we identify some test spaces in which “optimal test functions” for the
parabolic problem can be sufficiently well approximated; the preconditioner pro-
posed here for the discrete system an instance of the methodology of “operator”
(Hiptmair, 2006) or “canonical” (Mardal & Winther, 2010) preconditioning.

The paper is organized as follows. In Section 2 we introduce the problem and
present a well-posed variational formulation in suitable Bochner spaces. In Sec-
tion 3 we motivate a notion of Galerkin least squares solution w.r.t. a pair of
trial and test spaces. We present abstract criteria for its unique existence, and
the quasi-optimality property. In Section 4 we discuss how, once a suitable pair
of trial and test spaces is available, the Galerkin least squares solution can be
obtained via discrete linear least squares equations, for which we construct op-
timal preconditioners. Section 5 introduces and investigates the properties of a
particular construction of trial and test spaces based on space-time sparse tensor
product spaces, to which the abstract theory of Section 3 applies. In Section 6
we specialize on the one-dimensional heat equation and give specific examples
of suitable tensor product bases. We exemplify the theory developed in these
sections in Section 7 by providing a series of numerical examples illuminating
various aspects of the method. Section 8 summarizes the results of the paper.

We now introduce some notation used throughout. By Id we denote the identity
or the injection map between spaces which will be clear from the context. For
i, j ∈ Z we set δij := 1 if i = j and δij := 0 if i "= j. By N (R+) we denote the
set of positive integers (reals) and N0 := N ∪ {0} (R≥0 := R+ ∪ {0}). Boldface
lower and upper case letters denote vectors and matrices, possibly (bi-)infinite,
e.g. u ∈ RM , B ∈ RN×M , where M,N ∈ N ∪ {∞}; if M = ∞ then RM is the
set of sequences over R, etc. For N ∈ N0 we define [N ] := {n ∈ N : n ≤ N}
and [N ] := N if N = ∞. We write ‖·‖M for the vector norm induced by a
symmetric positive (semi-)definite matrix M ∈ RM×M , M ∈ N ∪ {∞}, i.e.,
‖u‖2

M
:= u#Mu for u ∈ RM ; we set "2

M
([M ]) := {u ∈ RM : ‖u‖M < ∞} and

"2([N ]) := {v ∈ RN : ‖v‖2!2([N ]) :=
∑

n∈[N ] |vn|2 < ∞} with the obvious norms.

The condition number of a matrix B ∈ RN×M with respect to the norms of
"2([M ]) and "2([N ]), if B is invertible, is denoted by κ2(B) ∈ R ∪ {∞}. By ⊗
we denote the tensor product of Hilbert spaces, or their elements. For a Banach
space Z (here, all Banach spaces are over the field of reals) we denote by ‖·‖Z
its norm and by Z ′ its continuous dual, i.e., the space of linear continuous real
valued functionals on Z; by 〈·, ·〉Z′×Z we denote the duality pairing on Z ′ ×Z.
By 〈·, ·〉Z we denote the scalar product on a Hilbert space Z. If a Banach
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space V embeds continuously into another, H , we write V ↪→ H . The symbol
∼= denotes identification via an isomorphism. For two Banach spaces Z, Z̃ we
denote by L(Z, Z̃) the space of linear continuous maps Z → Z̃ equipped with
the operator norm ‖·‖L(Z, eZ).

2 Problem setting and variational formulation

Let V and H be separable Hilbert spaces over reals s.t. V ↪→ H ∼= H ′ ↪→ V ′

is a Gelfand triple, i.e., the embeddings are continuous and dense, and the
scalar product 〈·, ·〉H is compatible with the duality pairing on V ′ × V . Let
0 < Tend < ∞ and set J := (0, Tend). We will work in the following setting.

Assumption 2.1. For (a.e.) t ∈ J we are given a bilinear form at(·, ·) on
V × V , such that for all ζ, η ∈ V

• J - t .→ at(ζ, η) ∈ R is measurable,

• |at(ζ, η)| ≤ amax‖η‖V ‖ζ‖V ,

• at(ζ, ζ) ≥ amin‖ζ‖2V − c0‖ζ‖2H ,

where 0 < amin ≤ amax < ∞ and c0 ≥ 0 are fixed. For simplicity, in the
following we assume c0 = 0, see discussion in (Schwab & Stevenson, 2009, Proof
of Theorem 5.1). We further restrict our attention to symmetric operators, i.e.,
at(ζ, η) = at(η, ζ) for all ζ, η ∈ V .

Concerning the last two assumptions we remark that in the following, merely
Theorem 3.9 is bounded by this restriction, which, however, can also be removed.
Consider now the following abstract parabolic equation

∂tu(t) + at(u(t), ·) = g(t) ∈ V ′, u(0) = h ∈ H, (2.1)

for a.e. t ∈ J , where g : J → V ′ and h ∈ H are given, and u : J → V ′ is the
unknown. Here, and in the following, ∂t· denotes the (weak) partial derivative
w.r.t. the temporal variable.

Example 2.2. Let D ⊂ Rd, d ∈ N be an open domain with a Lipschitz bound-
ary. Consider

∂tu(t, x)− div(q(t, x) gradu(t, x)) = g(t, x), (t, x) ∈ J ×D, (2.2)

u(x, 0) = h(x), x ∈ D, (2.3)

u(t, x) = 0, (t, x) ∈ ∂J ×D, (2.4)

where q ∈ L∞(J × D) is a space- and time-dependent coefficient q which may
describe e.g. heat conductivity or material permeability, and the differential op-
erators div and grad are w.r.t. the spatial variable x ∈ D. The natural choice
here is V = H1

0 (D) and H = L2(D). For (a.e.) t ∈ J define at : V ×V → R by

at(ζ, η) =

∫

D
q(t, x) grad ζ(x) · grad η(x)dx for all ζ, η ∈ V. (2.5)

Assumption 2.5 is satisfied if we assume

0 < amin := ess inf
J×D

q ≤ ess sup
J×D

q =: amax < ∞. (2.6)
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In order to obtain a well-posed variational formulation of (2.1) we follow (Schwab
& Stevenson, 2009) and introduce the spaces

X := L2(J, V ) ∩H1(J, V ′) ∼= (L2(J)⊗ V ) ∩ (H1(J)⊗ V ′)

Y := Y1 × Y2 := L2(J, V )×H ∼= (L2(J)⊗ V )×H

with norms ‖·‖X and ‖·‖Y given by

‖u‖2X := ‖u‖2L2(J,V ) + ‖∂tu‖2L2(J,V ′), ‖v‖2Y := ‖v1‖2L2(J,V ) + ‖v2‖2H (2.7)

for all u ∈ X and v = (v1, v2) ∈ Y. We note that

sup
0≤t≤Tend

sup
u∈X\{0}

‖u(t)‖H
‖u‖X

< ∞, (2.8)

i.e., X ↪→ C0(J,H), in particular the trace map (·)|t=0 : X → H , u .→ u|t=0 =
u(0) ∈ H is well-defined and continuous (Lions & Magenes, 1972, Chapter 1).
Define the linear operator B : X → Y ′ by

(Bu)(v) =

∫

J
{〈∂tu(t), v1(t)〉V ′×V + at(u(t), v1(t))} dt+ 〈u(0), v2〉H (2.9)

for all u ∈ X and v = (v1, v2) ∈ Y, as well as the functional f : Y → R by

f(v) =

∫

J
〈g(t), v1(t)〉V ′×V dt+ 〈h, v2〉H (2.10)

for all v = (v1, v2) ∈ Y. It is easy to check that B ∈ L(X ,Y ′) and f ∈ Y ′. The
variational formulation of (2.1) now reads:

find u ∈ X s.t. (Bu)(v) = f(v) ∀v ∈ Y. (2.11)

We recall (Schwab & Stevenson, 2009, Theorem 5.1) for future reference.

Theorem 2.3. The linear operator B : X → Y ′ and its inverse are continuous.
In particular, (2.11) is well-posed (in Hadamard sense).

3 Abstract stability results

The starting point for a stable discretization of (2.11) w.r.t. a pair of closed
subspaces U ⊆ X and V ⊆ Y will be the inf-sup condition for the bilinear form
〈B·, ·〉Y′×Y on U × V , i.e.,

inf
u∈U\{0}

sup
v∈V\{0}

〈Bu, v〉Y′×Y

‖u‖X‖v‖Y
=: γU ,V > 0. (3.1)

Assuming existence of such subspaces, we motivate in Theorem 3.1 a notion of
an approximate “Galerkin least squares solution” to (2.11) in the trial space
U ⊆ X w.r.t. a sufficiently large test space V ⊆ Y and an auxiliary norm on
Y. This leads to Definition 3.2. After some preparations, we give an abstract
criterion for (3.1) in Theorem 3.9.
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Theorem 3.1. Let U ⊆ X and V ⊆ Y be closed subspaces. Assume that the inf-
sup condition (3.1) holds. Further, let 〈·, ·〉′Y be a scalar product on Y, such that
the induced norm ‖·‖′Y on Y is equivalent to ‖·‖Y , that is there exist constants
0 < c ≤ C < ∞ s.t.

∀v ∈ Y : c‖v‖′Y ≤ ‖v‖Y ≤ C‖v‖′Y . (3.2)

Then there exists a unique u′ ∈ U which satisfies

u′ = argmin
w∈U

sup
v∈V\{0}

|〈Bw − f, v〉Y′×Y |
‖v‖′Y

. (3.3)

Moreover, the a priori quasi-optimality estimate

‖u− u′‖X ≤
(
1 +

(
1 +

C

c

) ‖B‖L(X ,Y′)

γU ,V

)
inf
w∈U

‖u− w‖X (3.4)

holds, where u = B−1f ∈ X solves (2.11).

Proof. For each u ∈ X let v"u ∈ V denote the unique element which satisfies
〈v"u, v〉′Y = 〈Bu, v〉Y′×Y for all v ∈ V , which is well-defined by the Riesz rep-
resentation theorem. By (3.2) the bound ‖v"u‖′Y ≤ C‖B‖L(X ,Y′)‖u‖X holds.
Moreover, we have

‖v"w − v"u‖′Y = sup
v∈V\{0}

|〈Bw −Bu, v〉Y′×Y |
‖v‖′Y

for all w, u ∈ X , (3.5)

which, by means of (3.1), implies that the map

U → V" := {v"u : u ∈ U} ⊆ V , w .→ v"w (3.6)

is injective and thus bijective. Let now u := B−1f . Since V" ⊆ Y is a closed
subspace, there exists a unique v" ∈ V" which minimizes v" .→ ‖v" − v"u‖′Y . By
bijectivity of (3.6) there exists a unique u′ ∈ U such that v"u′ = v", which is
thus the unique solution to (3.3) by the characterization (3.5) with u = B−1f .
To show (3.4), we observe that for all w ∈ U we have

γU ,V‖w − u′‖X ≤ sup
v∈V\{0}

〈B(w − u′), v〉Y′×Y

‖v‖Y
≤ ‖B(w − u)‖Y′ +

1

c
‖v"u − v"u′‖′Y

≤
(
1 +

C

c

)
‖B‖L(X ,Y′)‖u− w‖X ,

using (3.1), (3.5), ‖v"u − v"u′‖′Y ≤ ‖v"u − v"w‖′Y and (3.2). This implies (3.4).

We remark that we are interested in using norms ‖·‖′Y on Y which are numer-
ically easily accessible, for instance via sequence norms generated by a choice
of a Riesz basis on Y, see Example 4.2. Theorem 3.1 motivates the following
definition.

Definition 3.2. Let U ⊆ X and V ⊆ Y be closed subspaces. Let ‖·‖′Y ∼ ‖·‖Y
be equivalent norms. We call the solution of (3.3) the Galerkin least squares
solution, provided it exists and is unique.
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For our purposes it is useful to introduce a notation for the inf-sup condition
for bilinear forms, such as 〈B·, ·〉Y′×Y in (3.1). This generalizes the notion of
the “K-condition” of Babuška & Janik (1990), introduced in the context of
parabolic equations to describe stability of the duality paring 〈·, ·〉V ′×V w.r.t. a
finite element space W ⊆ V . This is the subject of the following definition.

Definition 3.3. Let Z̃ and Z be Banach spaces where a pairing 〈·, ·〉 eZ×Z : Z̃ ×
Z → R is defined. Let Z̃ ⊆ Z̃, Z ⊆ Z be subspaces. We define K eZ×Z(Z̃, Z) ∈
R≥0 w.r.t. the pairing 〈·, ·〉 eZ×Z by

K eZ×Z(Z̃, Z) := inf
ez∈ eZ\{0}

sup
z∈Z\{0}

〈z̃, z〉 eZ×Z
‖z̃‖ eZ‖z‖Z

. (3.7)

Example 3.4. We give some examples for the above definition, in particular
illustrating typical pairings 〈·, ·〉 eZ×Z to occur in the following.

1. For a Hilbert space Z, subspaces W,Z ⊆ Z we have for any 0 ≤ κ ≤ 1

KZ×Z(W,Z) ≥ κ ⇔ inf
z∈Z

‖w − z‖2Z ≤ (1− κ)‖w‖2Z ∀w ∈ W (3.8)

with the scalar product 〈·, ·〉Z as pairing.

2. If Z ↪→ Z̃ are Banach spaces then for all subspaces W ⊆ Z ⊆ Z we have
K eZ×Z(W,Z) ≥ K eZ×Z(Z,Z) ≥ K eZ×Z(Z,W ) .

3. For a Banach space Z, KZ′×Z(U,W ) ∈ [0, 1] for all U ⊆ Z ′, W ⊆ Z,
where 〈·, ·〉Z′×Z is the duality pairing.

4. The inf-sup condition (3.1) can be restated as γU ,V = KX×Y(U ,V) > 0
w.r.t. the pairing 〈·, ·〉X×Y := 〈B·, ·〉Y′×Y .

The following proposition is a generalization of the fact that H1(D) stabil-
ity of the L2(D)-orthogonal projection onto a subspace W ⊆ H1(D) implies
K(H1(D))′×H1(D)(W,W ) > 0, see also (McLean & Steinbach, 1999, Lemma 3.3)
for a comparable statement in the context of boundary element methods. The
stability of the L2(D)-orthogonal projector can in turn be verified by checking
local mesh criteria (Bramble et al., 2002).

Proposition 3.5. Let Z̃ and Z be Hilbert spaces where a pairing 〈·, ·〉 eZ×Z is

defined. Let U ⊆ Z̃, W ⊆ Z be subspaces. Assume that T : Z̃ → W satisfies

〈z̃, w〉 eZ×Z = 〈T z̃, w〉Z for all z̃ ∈ Z̃, w ∈ W. (3.9)

For any C > 0, the following are equivalent:

i) ‖u‖ eZ ≤ C‖Tu‖Z for all u ∈ U .

ii) K eZ×Z(U,W ) ≥ C−1.

ii’) K eZ×Z(U,Z) ≥ C−1KZ×Z(W,Z) for all subspaces Z ⊆ Z.
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In particular, for all subspaces Z ⊆ Z,

K eZ×Z(U,Z) ≥ K eZ×Z(U,W )KZ×Z(W,Z). (3.10)

Now assume additionally that Z ↪→ H ∼= H′ ↪→ Z ′ = Z̃ forms a Gelfand triple
of separable Hilbert spaces. Further, let Q : Z → W satisfy

〈u,Qz〉Z′×Z = 〈u, z〉Z′×Z for all u ∈ U, z ∈ Z. (3.11)

If U ∼= W ⊆ Z is closed, then Q is the H-orthogonal projection onto W . More-
over, i) is equivalent to stability of Q in Z, i.e.,

iii) ‖Qz‖Z ≤ C‖z‖Z for all z ∈ Z.

Remark 3.6. Let Z̃, Z be Hilbert spaces and 〈·, ·〉 eZ×Z : Z̃×Z → R a continuous
bilinear form. Let W ⊆ Z be a subspace. It is easy to see that there is at
most one T : Z̃ → W satisfying (3.9). Assume that W is separable, and set
N := dimW . Let {wn}n∈[N ] ⊂ W be a Z-orthonormal basis for W . Then
∑

n∈[N ]wn〈·, wn〉 eZ×Z ∈ L(Z̃,W ) can be easily verified to satisfy (3.9). Thus, if

Z is separable, (3.9) uniquely defines T and T ∈ L(Z̃ ,W ).

Proof. (Of Proposition 3.5) To see i) ⇔ ii), let u ∈ U \{0} be arbitrary. Given
i), the fact that 〈u, Tu〉 eZ×Z = ‖Tu‖2Z ≥ C−1‖Tu‖Z‖u‖ eZ and Tu "= 0 show ii).
Conversely, assume ii). Then i) is due to

C−1‖u‖ eZ ≤ sup
w∈W\{0}

〈u,w〉 eZ×Z
‖w‖Z

= sup
w∈W\{0}

〈Tu,w〉Z
‖w‖Z

≤ ‖Tu‖Z .

With the choice Z := W , the implication ii’) ⇒ ii) is obvious from (3.8). We
now check ii) ⇒ ii’). Indeed, observing the proven implication ii) ⇒ i), we have
for any subspace Z ⊆ Z

K eZ×Z(U,Z) = inf
u∈U\{0}

‖Tu‖Z
‖u‖ eZ

sup
z∈Z\{0}

〈Tu, z〉Z
‖Tu‖Z‖z‖Z

≥ C−1
KZ×Z(W,Z).

To complete the first part of the proof in the nontrivial case where the r.h.s.
of (3.10) is nonzero, it suffices to use ii) and ii’) with the admissible choice
C := K eZ×Z(U,W )−1 > 0. This shows i) ⇔ ii) ⇔ ii’) and (3.10).
We now show i) ⇒ iii). Clearly, (3.11) characterizes Q as the H-orthogonal
projection by definition of the Gelfand triple. Further, T is easily checked to
be surjective. Thus, for all z ∈ Z there exists u ∈ U with Tu = Qz, for which
〈Tu,Qz〉Z = 〈u, z〉Z′×Z with i) yields iii). Finally, iii) ⇒ i) is clear using (3.9)
and (3.11).

Corollary 3.7. Let Z̃, Z be separable Hilbert spaces. Let Ui ⊆ Z̃, i ∈ N,
and W ⊆ Z be closed subspaces. Let T ∈ L(Z̃ ,W ) be given by (3.9). Set
κi := K eZ×Z(Ui,W ), i ∈ N. Assume further

〈Tui, T uj〉Z = 0 = 〈ui, uj〉 eZ ∀ui ∈ Ui, uj ∈ Uj, i "= j. (3.12)

Then K eZ×Z(
∑

i∈N
Ui,W ) ≥ infi∈N κi.
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Proof. We assume κ := infi∈N κi > 0, as the statement is trivial otherwise.
Since any u ∈

∑
i∈N

Ui has the form u =
∑

i∈N
ui with (unique) ui ∈ Ui \ {0},

i ∈ N, we have using (3.12) and Proposition 3.5 “ii) ⇒ i)”

‖Tu‖2Z =
∑

i∈N

‖Tui‖2Z ≥
∑

i∈N

κ2
i ‖ui‖2eZ ≥ κ

∑

i∈N

‖ui‖2eZ = κ2‖u‖2eZ .

Using Proposition 3.5 “i) ⇒ ii)” shows the claim.

Corollary 3.8. Let Z̃i, Zi, i = 1, 2, be separable Hilbert spaces. Let Ui ⊆ Z ′
i

and Wi ⊆ Z̃i, i = 1, 2, be subspaces. Set κi := K eZi×Zi
(Ui,Wi), i = 1, 2.

Then K( eZ1⊗ eZ2)×(Z1⊗Z2)
(U1⊗U2,W1⊗W2) ≥ κ1κ2 and K( eZ1× eZ2)×(Z1×Z2)

(U1×
U2,W1 ×W2) ≥ κ1 + κ2.

Proof. The proof follows similarly to Corollary 3.7 from Proposition 3.5.

We now formulate and prove a result which will allow the construction of stable
finite element spaces for solving (2.11). We note that for the presented proof it
is essential that at(·, ·) is symmetric and elliptic in the sense of Assumption 2.1.
We write ∂tU := {∂tu ∈ L2(J ;V ′) : u ∈ U} for any subspace U ⊆ X .

Theorem 3.9. Let Assumption 2.1 hold. There exists a constant c > 0, only
dependent on at(·, ·), s.t. the inf-sup condition (3.1) holds with γU ,V ≥ cκ1 > 0
for all closed subspaces U ⊆ X , V = V1 × V2 ⊆ Y satisfying

1. κ1 := KY′
1×Y1(∂tU ,V1) > 0,

2. U ⊆ V1,

3. U|t=0 := {u|t=0 : u ∈ U} ⊆ V2 .

Proof. On the set Z := Z1 × Z2 := Y1 × Y2 we consider 〈·, ·〉Z defined by

〈z, z̃〉Z :=

∫

J
at(z1(t), z̃1(t))dt+ 〈z2, z̃2〉H ∀z, z̃ ∈ Z. (3.13)

By Assumption 2.1, 〈·, ·〉Z is a scalar product, (Z, 〈·, ·〉Z) is a Hilbert space,
and the induced norm ‖·‖Z is equivalent to ‖·‖Y , and similarly for the du-
als Z ′ and Y ′. In particular, κ̃1 := KZ′

1×Z1(∂tU ,V1) ≥ c̃κ1with the pairing
〈∂tx, z1〉Z′

1×Z1 =
∫
J 〈∂tx(t), z1(t)〉V ′×V dt, x ∈ X , z1 ∈ Z1, for a constant c̃ > 0

only depending on at(·, ·). Let T : X → V ⊆ Z be given by

〈Tx, v〉Z = 〈x, v〉X×Z := (Bx)(v) ∀x ∈ X , v ∈ V . (3.14)

Note that 〈·, ·〉X×Z : X × Z → R is bilinear and continuous, and thus T is
well-defined, see Remark 3.6. Define I : X → Z by Ix := (x, x(0)) ∈ Z, x ∈ X ,
which is well-defined, since x(0) ∈ H (see (2.8)) and X ⊆ Y1.
Let u ∈ U be arbitrary. Since for a.e. t ∈ J there holds 〈∂tu(t), u(t)〉V ′×V =
1
2∂t‖u(t)‖

2
H , from (3.14) we obtain

2〈Tu, Iu〉Z = ‖u‖2Z1
+ ‖Iu‖2Z + ‖u(Tend)‖2H . (3.15)

Due to U ⊆ V1 and U|t=0 ⊆ V2 we have IU ⊆ V . Thus, (3.14) yields

‖Tu− Iu‖Z = sup
v∈V\{0}

〈Tu− Iu, v〉Z
‖v‖Z

= sup
v∈V\{0}

〈∂tu, v1〉Z′
1×Z1

‖v‖Z
≥ κ̃1‖∂tu‖Z′

1
,
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from which we obtain with (3.15)

‖Tu‖2Z ≥ ‖Tu− Iu‖2Z + ‖u‖2Z1
≥ c̃2κ2

1‖∂tu‖2Z′
1
+ ‖u‖2Z1

≥ cκ1‖u‖2X ,

where c > 0 depends only on at(·, ·) due to norm equivalences ‖·‖Z′
1
∼ ‖·‖Y′

1
and

‖·‖Z1 ∼ ‖·‖Y1 and by definition of c̃ > 0. As u ∈ U was arbitrary, Proposition 3.5
“i) ⇒ ii)” shows KX×Y(U ,V) ≥ cκ1, which is (see Example 3.4) the claim.

Example 3.10. Theorem 3.9 applies to the pair U := X , V := Y, in which case
we have κ1 = 1.

We will apply Theorem 3.9 in a setting described more closely by the following
proposition. For a subspace E ⊆ H1(J) we write E′ := {e′ ∈ L2(J) : e ∈ E},
where e′ ∈ L2(J) denotes the distributional derivative of e ∈ H1(J).

Proposition 3.11. Let Ek ⊆ H1(J), Fk ⊆ L2(J), k ∈ N0, and U! ⊆ V ′,
V! ⊆ V , " ∈ N0, be closed subspaces. Assume that (U!)!∈N0 and (V!)!∈N0 are
nested, that is U! ⊆ U!+1 and V! ⊆ V!+1, " ∈ N0. Set

τ := inf
k∈N0

KL2(J)×L2(J)(E
′
k, Fk) and η := inf

!∈N0

KV ′×V (U!, V!).

Let L ∈ N0. Define the subspaces U ⊆ X and V1 ⊆ Y1 by

U :=
∑

0≤k+!≤L

Ek ⊗ U! and V1 :=
∑

0≤k+!≤L

Fk ⊗ V!, (3.16)

where k, " range over N0. Then KY′
1×Y1(∂tU ,V1) ≥ ητ .

Proof. Consider the auxiliary space Ṽ1 :=
∑

0≤k+!≤L E′
k ⊗ V! ⊆ Y1. The claim

follows using Proposition 3.5, (3.10), once η̃ := KY′
1×Y1(∂tU , Ṽ1) ≥ η and τ̃ :=

KY1×Y1(Ṽ1,V1) ≥ τ are established. To see η̃ ≥ η, consider T : Y ′
1 → Ṽ1, given

by
〈Ty′1, ṽ1〉Y1×Y1 = 〈y′1, ṽ1〉Y′

1×Y1 ∀y′1 ∈ ∂tU , ṽ1 ∈ Ṽ1.

Since U! ⊆ U!+1 and V! ⊆ V!+1, " ∈ N0, defining

G0 := E′
0 and Gk := E′

k ∩
(

k−1⋃

k′=0

E′
k′

)⊥L2(J)

∀k ∈ N

we have ∂tU =
∑L

k=0 Gk ⊗ UL−k and Ṽ1 =
∑L

k=0 Gk ⊗ VL−k. Note that
Gk ⊥L2(J) Gk′ for all nonnegative integers k < k′ ≤ L. In particular, for
all k = 0, 1, . . . , L we have T (Gk ⊗ UL−k) ⊆ Gk ⊗ VL−k. Using Lemma 3.8 and
Lemma 3.7 we obtain η̃ ≥ η. Lastly, τ̃ ≥ τ follows easily from (3.8).

4 Discrete weighted least squares formulation

In order to describe the discretization and the solution process for (2.11), we
assume that we are given operators N : Y → Y ′ and M : X → X ′ such that
〈·, ·〉N := 〈N·, ·〉Y′×Y is a scalar product on Y and 〈·, ·〉M := 〈M·, ·〉X ′×X is
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a scalar product on X . We assume that the induced norms ‖·‖N and ‖·‖M
provide equivalent norms to ‖·‖Y and ‖·‖X , i.e.,

∃dN , DN > 0 : dN ‖v‖Y ≤ ‖v‖N ≤ DN ‖v‖Y ∀v ∈ Y (4.1)

and

∃dM, DM > 0 : dM‖u‖X ≤ ‖u‖M ≤ DM‖u‖X ∀u ∈ X . (4.2)

Throughout this section we will assume that U ⊆ X and V ⊆ Y are closed
subspaces s.t. the inf-sup condition (3.1) holds. Let M := dimU ∈ N ∪ {∞}
and N := dimV ∈ N∪ {∞} be the dimensions of U and V . Let {φm}m∈[M ] ⊂ U
and {ψn}n∈[N ] ⊂ V be bases. We define (possibly bi- or semi-infinite) matrices
N ∈ RN×N , B ∈ RN×M and M ∈ RM×M by

Nn′,n := (Nψn)(ψn′ ), Bn,m := (Bφm)(ψn), Mm,m′ := (Mφm′)(φm), (4.3)

n, n′ ∈ [N ], m,m′ ∈ [M ], and f ∈ RN as the (possibly infinite) column vector
with components fn := f(ψn), n ∈ [N ]. We call B the system matrix and f

the load vector w.r.t. the chosen bases. The norm equivalences (4.1)–(4.2) can
be restated by saying that the synthesis operators J : "2

N
([N ]) → V , defined

by J v :=
∑

n∈[N ] vnψn for all v ∈ "2
N
([N ]), and I : "2

M
([M ]) → U , defined by

Iw :=
∑

m∈[M ] wmφm for all w ∈ "2
M
([M ]) are (quasi-isometric) isomorphisms.

Example 4.1. Define M : X → X ′ as the Riesz operator, characterized by
〈Mu, u′〉X ′×X = 〈u, u′〉X for all u, u′ ∈ X . Then ‖·‖M ≡ ‖·‖X .

Example 4.2. Assume {ψn}n∈[N ] can be rescaled to a Riesz basis (Christensen,
2003) for Y, i.e., there exist constants 0 ≤ λ ≤ Λ s.t.

λ‖v‖2!2([N ]) ≤

∥∥∥∥∥∥

∑

n∈[N ]

vn
ψn

‖ψn‖Y

∥∥∥∥∥∥

2

Y

≤ Λ‖v‖2!2([N ]) ∀v ∈ "2([N ]). (4.4)

Define N : Y → Y ′ by 〈Nψn,ψn′〉Y′×Y := δnn′cn‖ψn‖2Y , n, n′ ∈ [N ], where
cn > 0 are constants with 0 < c := infn∈[N ] cn ≤ supn∈[N ] cn =: c < ∞. Then

N ∈ RN×N is a nonnegative diagonal matrix. Note that (4.4) implies

λ/c‖v‖2N ≤ ‖Jv‖2Y ≤ Λ/c‖v‖2N ∀v ∈ "2N([N ]),

and thus the norm equivalence (4.1) holds with dN =
√
c/Λ, DN =

√
c/λ. This

renders Riesz bases particularly well-suited for what follows.

Example 4.3. This example is motivated by the well-known BPX (Bramble
et al., 1990) operator, cf. (Xu, 1992, Section 5). Let {0} = V−1 ⊆ V! ⊆ V!+1 ⊆
V be closed, nested subspaces, s.t.

⋃
!∈N0

V! is dense in V . Let Q! : V →
V! ∩ (V!−1)⊥H , " ∈ N0 be the H-orthogonal projector. Assume, 0 < dV ≤ DV

are constants s.t.

∀v ∈ V : dV ‖v‖2V ≤
∑

!∈N0

22!‖Q!v‖2H ≤ DV ‖v‖2V .
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Then, as in (Oswald, 1998, Lemma 1) it follows that also

∀v ∈ V : D−1
V ‖v‖2V ′ ≤

∑

!∈N0

2−2!‖Q!v‖2H ≤ d−1
V ‖v‖2V ′ .

Further, let Ek ⊆ H1(J), k ∈ N0, be closed subspaces s.t.
⋃

k∈N0
Ek is dense in

H1(J) and Pk : H1(J) → Ek, k ∈ N0, be linear projectors satisfying PkPk′ = 0
for all nonnegative integers k "= k′. Assume that with constants 0 < dE ≤ DE,
where E ∈ {L2(J), H1(J)}, for all e ∈ H1(J) there holds

dE‖e‖2E ≤
∑

k∈N0

22kt‖Pke‖2L2(J) ≤ DE‖e‖2E for

{
t = 0, E = L2(J)

t = 1, E = H1(J).

Consider the operators M+ and M−, defined on H1(J)⊗ V by

M± =
∑

k∈N0

∑

!∈N0

(
22! + 22k2−2!

)±1
Pk ⊗Q!.

It can be easily checked that

1. M+ extends continuously to an operator M ∈ L(X ,X ′) s.t. with dM ∼
min{dL2(J)dV , dH1(J)D

−1
V } and DM ∼ max{DL2(J)DV , DH1(J)d

−1
V } the

norm equivalence (4.2) holds up to constants of the equivalence ‖·‖2X ∼
‖·‖2L2(J;V ) + ‖·‖2H1(J;V ′).

2. M− extends continuously to the inverse of M.

3. As in (4.3), let M± ∈ RM×M and M0 ∈ RM×M be the matrices with
components given by (M±φm′)(φm) and 〈φm′ ,φm〉L2(J;H), respectively.

Then M−1
+ = M−1

0 M−M
−1
0 .

Therefore, the inverse of the matrix M = M+ of the operator M can be effi-
ciently applied to a vector, as required by Algorithm 4.5. Similarly, an operator
N ∈ L(Y,Y ′) satisfying (4.1) can be constructed.

Proposition 4.4. Let U ⊆ X , V ⊆ Y be closed subspaces satisfying the inf-sup
condition (3.1). Assume norm equivalences (4.1)–(4.2). Let N, B and M be
defined by (4.3). There holds

γU ,V

DNDM
=: γ̃ ≤ ‖Bu‖N−1

‖u‖M
≤ Γ̃ :=

‖B‖L(X ,Y′)

dN dM
∀u ∈ "2M([M ]) \ {0}. (4.5)

Moreover, with M#/2M1/2 := M and N#/2N1/2 := N, we have

κ2 := κ2(M
−#/2B#N−1BM−1/2) ≤ Γ̃/γ̃. (4.6)

Further, there is a unique minimizer u′ ∈ "2
M
([M ]) of

find w ∈ "2M([M ]) s.t. ‖Bw− f‖N−1
!→ min (4.7)

and u′ := Iu′ ∈ U satisfies (3.3) with ‖·‖′Y := ‖·‖N .
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Proof. Note that (4.5) implies that for any singular value σ of the matrix
N−#/2BM−1/2, we have 0 < γ̃ ≤ σ ≤ Γ̃ < ∞, from which (4.6) follows at
once. To see (4.5), let u ∈ "2

M
([M ]) \ {0}, and u := Iu ∈ U . Then

‖Bu‖N−1

‖u‖M
= sup

v∈!2
N
([N ])\{0}

v#Bu

‖u‖M‖v‖N
= sup

v∈V\{0}

(Bu)(v)

‖u‖M‖v‖N
,

which, using (4.1)–(4.2) and (3.1) yields (4.5). Finally, existence and uniqueness
of a minimizer of (4.7) can be easily checked using (4.6), and equivalence to (3.3)
is seen from the identity

‖Bw− f‖N−1 = sup
v∈!2

N
([N ])\{0}

v#(Bw − f)

‖v‖N
= sup

v∈V\{0}

|(BIw)(v) − f(v)|
‖v‖N

for all w ∈ RM with ‖w‖M < ∞ by definition of B, f and N.

Note that the solution u′ ∈ RM to (4.7) is the unique minimizer of

‖N−#/2BM−1/2ũ′ −N−#/2f‖2
!→ min with ũ′ := M1/2u′, (4.8)

and, equivalently, solves the normal equations

M−#/2B#N−1BM−1/2ũ′ = M−#/2B#N−1f with ũ′ := M1/2u′, (4.9)

where the preconditioned matrix is symmetric positive definite with condition
number κ2 bounded by means of (4.6). While the conjugate gradient (CG) algo-
rithm can be applied to (4.9), we adapt the analytically equivalent least squares
algorithm based on bidiagonalization of Paige & Saunders (1982). The method
can be reformulated to require the computation of the action of M−1 and N−1

only (Benbow, 1999, Section 4.3), i.e., no Cholesky (or similar) decomposition
of M or N needs to be computed. Since this formulation is not very well known
we give the complete algorithm below.

Algorithm 4.5 (Generalized least squares). For B ∈ RN×M , N,M ∈ N0,
N ≥ M , of full rank, M ∈ RM×M and N ∈ RN×N s.p.d., f ∈ RN , returns an
approximate solution wi! ∈ RM to (4.7)

1. (a) (v1, ṽ1,β1) := Normalize(f ,N)

(b) (u1, ũ1,α1) := Normalize(B#v1,M)

(c) d1 := u1, w0 := 0, φ̄1 = β1, ρ̄1 = α1

2. For i = 1, 2, . . . , i" do the following steps (or until convergence)

(a) (vi+1, ṽi+1,βi+1) := Normalize(Bui − αiṽi,N)

(b) (ui+1, ũi+1,αi+1) := Normalize(B#vi+1 − βi+1ũi,M)

(c) ρi :=
√
ρ̄2i + β2

i+1, ci := ρ̄i/ρi, si := βi+1/ρi

(d) θi+1 := siαi+1, ρ̄i+1 := −ciαi+1, φi := ciφ̄i, φ̄i+1 := siφ̄i

(e) wi := wi−1 + (φi/ρi)di, di+1 := ui+1 − (θi+1/ρi)di

Normalize : RK × RK×K - (s,S) .→ (z, z̃, z) ∈ RK × RK × R, with S s.p.d.
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1. Solve Ss" = s for s". Set z :=
√
s#s" and (z, z̃) := (z−1s", z−1s)

In exact arithmetic, the CG algorithm applied to (4.9) produces after k steps
an approximate solution wk ∈ RM with ‖M1/2wk −M1/2u′‖2 ≤ Cβk, where

β =
√
κ2−1√
κ2+1 , u

′ ∈ RM is the exact minimizer of (4.7), and κ2 is the condition

number given in (4.6), see (Golub & Van Loan, 1996, Theorem 10.2.6). Hence,
with wk := Iwk ∈ U and u′ := Iu′ ∈ U , we have ‖wk − u′‖X ∼ ‖wk − u′‖M ≤
Cβk. If M < ∞, then wM is the exact solution to (4.7), which is independent
of M, and we may assume dM = 1 = DM using Example 4.1. Combining with
Theorem 3.1, we obtain the following result.

Proposition 4.6. Let U ⊆ X , V ⊆ Y be closed subspaces satisfying the inf-sup
condition (3.1). Assume norm equivalences (4.1)–(4.2). Let wk ∈ RM be the
k-th iterate of Algorithm 4.5 applied to the tuple (B,M,N, f), and u := B−1f ∈
X . Then wk := Iwk ∈ U satisfies

‖u− wk‖X ≤ C(βk + inf
w∈U

‖u− w‖X ), 0 ≤ β < 1, C > 0 (4.10)

where β and C only depend on the ratios γ−1
U ,V‖B‖L(X ,Y′), d

−1
N DN , and d−1

MDM.
If M < ∞, then wM satisfies (4.10) with β = 0 and a C > 0 independent of M.

5 Space-time tensor product spaces

For the purpose of this section assume we are given a sequence of nested sub-
spaces Ek ⊆ Ek+1 ⊂ H1(J), k ∈ N0, and V! ⊆ V!+1 ⊂ V , " ∈ N0, such that∑

k∈N0
Ek is dense in H1(J) and

∑
!∈N0

V! is dense in V . For each L,∆L ∈ N0

and ρ ∈ R≥0 ∪ {∞} (with the convention ∞ · 0 = 0) we define

ftp) full tensor product spaces U (ρ)
L ⊂ X and V(ρ)

L,∆L ⊂ Y by

U (ρ)
L =

∑

0≤k,ρ!≤L

Ek ⊗ V!, V(ρ)
L,∆L =

∑

0≤k,ρ!≤L

(Ek+∆L ⊗ V!)× V! (5.1)

stp) sparse tensor product spaces Û (ρ)
L ⊂ X and V̂(ρ)

L,∆L ⊂ Y by

Û (ρ)
L =

∑

0≤k+ρ!≤L

Ek ⊗ V!, V̂(ρ)
L,∆L =

∑

0≤k+ρ!≤L

(Ek+∆L ⊗ V!)× V! (5.2)

where k, " ∈ N0 in all cases. The choice of ρ is discussed in Section 5.1.

5.1 Convergence rates

In this section we comment on convergence rates that can be expected for the
Galerkin least squares solution (3.3) due to the quasi-optimality estimate (3.4).
To state these, we assume existence of one-parametric families of Hilbert spaces
Gt ⊆ G0, t ≥ 0, s.t. (G0, G1) = (L2(J), H1(J)) and W s ⊆ W−1, s ≥ −1,
s.t. (W−1,W 0,W 1) = (V ′, H, V ). Further we assume existence of projectors
Pk : L2(J) → Ek, k ∈ N0, and Q! : V ′ → V!, " ∈ N0, with the properties

‖Id−Pk‖L(Gt! ,Gt) ! 2−k(t!−t) and ‖Id−Q!‖L(W s! ,W s) ! 2−!(s!−s)/m
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for all 0 ≤ t ≤ t" and −1 ≤ s ≤ s" with some t" ≥ 1, s" ≥ 1 and “order” 2m > 0
of the operator at(·, ·). For simplicity, and in order to relate to the numerical
experiments below, we specialize on the case dimEk ∼ 2k, dim V! ∼ 2d!, d ∈ N.
For sufficiently smooth solutions we will see the predicted convergence rates
confirmed in the numerical examples in Section 7 with W−1 = H−1(D), W 0 =
L2(D) and W s = Hs(D) ∩H1

0 (D), s ≥ 1.

5.1.1 Full tensor product spaces

For k = L, " = max{" ∈ N0 : ρ" ≤ L}, L ∈ N0 we obtain

‖Id−Pk ⊗Q!‖L(Gt!⊗W s! ,Gt⊗W s) ! 2−k(t!−t) + 2−!(s!−s)/m ! (dimU (ρ)
L )−r

with an admissible rate r ≥ 0 to be determined. The choice ρ = s!−s
m(t!−t)

equilibrates the two errors, in which case we find the admissible values

r ≤ 1
1

t!−t +
dm
s!−s

=






1 for Gt ⊗W s = L2(J)⊗H
2
3 for Gt ⊗W s = L2(J)⊗ V
3
4 for Gt ⊗W s = H1(J)⊗ V ′,

(5.3)

while the choice ρ = 1 yields

r ≤ 1

2
min

{
t" − t,

s" − s

dm

}
=






1 for Gt ⊗W s = L2(J)⊗H
1
2 for Gt ⊗W s = L2(J)⊗ V
1
2 for Gt ⊗W s = H1(J)⊗ V ′.

(5.4)

In both cases we have set t" = s" = 2, d = 1 and m = 1.

5.1.2 Sparse tensor product spaces

For L ∈ N0, ρ ∈ R≥0 ∪ {∞} consider the sparse tensor projector Q(ρ)
L =∑

0≤k+ρ!≤L(Qk −Qk−1) ⊗ (P! − P!−1). In the case t" = s" = 2, d = 1, m = 1
and ρ = 1 we may choose any r < 1 to obtain

‖Id−Q(ρ)
L ‖L(Gt!⊗W s! ,Gt⊗W s) ! (dim Û (ρ)

L )−r for

{
Gt ⊗W s = L2(J)⊗ V

Gt ⊗W s = H1(J)⊗ V ′

by standard arguments, and ‖Id−QL‖L(Gt!⊗W s! ,X ) ! (dim Û (ρ)
L )−r by com-

bining the two cases. Compared to the full tensor case (5.4) the approximation
rate attainable for smooth solutions is therefore nearly doubled, cf. (5.4). More
generally, spaces of the form given in Remark 6.4 need to be used. For a detailed
discussion we refer to (Schwab & Stevenson, 2009, Section 7).

5.2 Hierarchic tensor product Riesz bases

Let ∇Θ
k , k ∈ N0, and ∇Σ

! , " ∈ N0, be index sets s.t. {θλ : λ ∈
⋃

k′≤k ∇Θ
k′} is a

basis for Ek, k ∈ N0 and {σµ : µ ∈
⋃

!′≤! ∇Θ
!′} is a basis for V!, " ∈ N0. Then

Θ := {θλ}λ∈∇Θ is a basis for H1(J) and Σ := {σµ}µ∈∇Σ is a basis for V , where
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∇Θ :=
⋃

k∈N0
∇Θ

k and ∇Σ :=
⋃

!∈N0
∇Σ

! . Defining, for each L,∆L ∈ N0 and
ρ ∈ R≥0 ∪ {∞}, the index sets

∇(ρ)
L :=

⋃

0≤k,ρ!≤L

∇Θ
k ×∇Σ

! , ∇(ρ)
L,∆L :=

⋃

0≤k,ρ!≤L

∇Θ
k+∆L ×∇Σ

!

and

∇̂(ρ)
L :=

⋃

0≤k+ρ!≤L

∇Θ
k ×∇Σ

! , ∇̂(ρ)
L,∆L :=

⋃

0≤k+ρ!≤L

∇Θ
k+∆L ×∇Σ

! ,

U (ρ)
L is spanned by θλ⊗σµ, (λ, µ) ∈ ∇(ρ)

L , and V(ρ)
L,∆L is spanned by (θλ⊗σµ,σµ′),

(λ, µ) ∈ ∇(ρ)
L,∆L, µ

′ ∈
⋃

ρ!≤L ∇Σ
! , similarly for Û (ρ)

L and V̂(ρ)
L,∆L.

We have indicated in Example 4.1 and Example 4.2 how suitable operators N
and M satisfying (4.1)–(4.2) can be obtained. For the rest of the paper, we
focus on the construction relying on Riesz bases.

Assumption 5.1. The collection Σ ⊂ V can be rescaled to a Riesz basis for H,
similarly for V . The collection Θ can be rescaled to a Riesz basis for L2(J).

With this assumption, it is easy to see that the collection
{(

θλ ⊗ σµ

‖θλ‖L2(J)‖σµ‖V
, 0

)}

(λ,µ)∈∇Θ×∇Σ

∪
{(

0,
σµ

‖σµ‖H

)}

µ∈∇Σ

(5.5)

is a Riesz basis for Y. From this, we construct N as in Example 4.2.

Assumption 5.2. In addition to Assumption 5.1, Σ ⊂ V can be rescaled to a
Riesz basis for V ′, and Θ ⊂ H1(J) can be rescaled to a Riesz basis for H1(J).

Under Assumption 5.2, (Griebel & Oswald, 1995, Proposition 1&2) imply that

the collection
{
c−1
λµθλ ⊗ σµ : (λ, µ) ∈ ∇Θ ×∇Σ

}
, where c2λµ = ‖θµ‖2H‖σµ‖2V +

‖θλ‖2H1(J)‖σµ‖2V ′ , is a Riesz basis for X . From this, we constructM analogously
to Example 4.2.

Remark 5.3. Piecewise polynomial bases on triangulations satisfying Assump-
tion 5.1 have been constructed in e.g. (Nguyen, 2005), and bases on an interval
satisfying Assumption 5.2 in e.g. (Donovan et al., 1996). However, the require-
ments of Assumption 5.2 remain, from the practical point of view, much stronger
than those of Assumption 5.1. This issue has been addressed in (Stevenson &
Chegini, 2010) and in Example 4.3, for more details we refer to a forthcoming
work (Andreev, ip). We emphasize, however, that M and N assume differ-
ent roles in the resolution of the discrete weighted least squares problem (4.7).
While N ensures well-posedness and the quality of the exact solution via the
quasi-optimality estimate (3.4), M acts mainly as a preconditioner: the exact
solution of (4.7) corresponds to the exact solution of (3.4) with constants c and
C determined by the choice of N .

5.3 Parametric representation

For each L,∆L ∈ N0, ρ ∈ R≥0 ∪ {∞} we call B(ρ)
L,∆L and B̂

(ρ)
L,∆L the system

matrices corresponding to the pairs (U (ρ)
L ,V(ρ)

L,∆L) and (Û (ρ)
L , V̂(ρ)

L,∆L), constructed
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as in (4.3) w.r.t. the unscaled tensor product bases, e.g.

B̂
(ρ)
L,∆L =





(
〈B(θλ ⊗ σµ), (θλ′ ⊗ σµ′ , 0)〉Y′×Y

)

(λ′,µ′)∈b∇(ρ)
L,∆L,(λ,µ)∈b∇(ρ)

L

(θλ(0)〈σµ,σµ′ 〉H)
µ′∈

S
ρ#≤L ∇Σ

# ,(λ,µ)∈b∇(ρ)
L



 . (5.6)

Similarly, the load vectors are given by

f̂
(ρ)
L,∆L =





(
〈F, (θλ′ ⊗ σµ′ , 0)〉Y′×Y

)

(λ′,µ′)∈b∇(ρ)
L,∆L

(〈h,σµ′ 〉H)µ′∈
S

ρ#≤L ∇Σ
#



 , (5.7)

and f
(ρ)
L,∆L analogously, replacing ∇̂ by ∇. For notational convenience, in an

expression like N−#/2B̂
(ρ)
L,∆LM

−1/2 we implicitly restrict M and N to the in-

dices ∇̂(ρ)
L and ∇̂(ρ)

L,∆L×
⋃

ρ!≤L ∇Σ
! , respectively. We denote by u

(ρ)
L,∆L, u

(ρ)
L,∆L :=

Iu(ρ)
L,∆L and û

(ρ)
L,∆L, û

(ρ)
L,∆L := Iû(ρ)

L,∆L the corresponding discrete Galerkin least
squares solutions of the minimization problem (4.7), where N is defined as in
(4.3) w.r.t. respective bases.

6 Application to heat conduction

In this section we discuss one specific construction of subspaces Ek ⊆ H1(J),

k ∈ N0, and V! ⊆ V , " ∈ N0, from which we proceed to define U (ρ)
L , V(ρ)

L,∆L and

Û (ρ)
L , V̂(ρ)

L,∆L as in Section 5. These are shown in Proposition 6.3 to satisfy the
inf-sup condition (3.1) uniformly in the choice of L,∆L ∈ N0, ρ ∈ R≥0 ∪ {∞}.

6.1 Temporal discretization

We define the subspaces Ek ⊂ H1(J), k ∈ N0, consisting of all continuous,

piecewise affine functions w.r.t. a uniform partition Tk := {tkn := nhk}2
k+1

n=0 ⊂ J ,
where hk := Tend2−(k+1), of the interval J into 2k+1 subintervals. In particular,
dimEk = 2k+1 + 1 and dimE′

k = 2k+1 for all k ∈ N0.

Proposition 6.1. For all ∆k ∈ N0: infk∈N0 KL2(J)(E
′
k, Ek+∆k) ≥ 1− 2−∆k.

Proof. The proof is provided in Appendix A.

6.2 Spatial discretization

For the concrete example Example 2.2 of heat conduction we assume first that
D ⊂ Rd is a bounded open polytope with a polyhedral boundary. We assume
that we are given a sequence of nested triangulations T!, " ∈ N0, of D and define
V! ⊂ V := H1

0 (D), " ∈ N0, as the space of piecewise polynomial continuous
functions on D w.r.t. T!, and in particular V! ⊆ V!+1, " ∈ N0. We make the
following assumption on the sequence V!, " ∈ N0.

Assumption 6.2. The L2(D)-orthogonal projector Q! : L2(D) → V! is stable

in H1(D) uniformly in " ∈ N0, i.e., sup!∈N0
supv∈V \{0}

‖Q#v‖V

‖v‖V
=: η−1 < ∞.
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For piecewise linear continuous functions w.r.t. quasi-uniform triangulations
{T!}!∈N0 , among others, this assumption is indeed satisfied, see e.g. (Bramble
et al., 2002). From the results in Section 3, we obtain the following.

Proposition 6.3. Let Assumption 6.2 hold. Let ∆L ∈ N. For any pair of sub-

spaces (U ,V) ∈ {(U (ρ)
L ,V(ρ)

L,∆L), (Û
(ρ)
L , V̂(ρ)

L,∆L)}L∈N0 the inf-sup condition (3.1)

holds with γU ,V ≥ τη, where τ = 1− 2−∆L and η > 0 is as in Assumption 6.2.

Proof. By Proposition 6.1, we have KL2(J)×L2(J)(E
′
k, Ek+∆L) ≥ τ := 1 −

2−∆L. Let η > 0 be as in Assumption 6.2. By Proposition 3.5, iii) ⇒ ii),
inf!∈N0 KV ′×V (V!, V!) ≥ η. The claim follows from Proposition 3.11.

Remark 6.4. The result remains valid for spaces of the form U = Û (ρ1)
L + Û (ρ2)

L

and V = V̂(ρ1)
L,∆L + V̂(ρ2)

L,∆L with ∆L ∈ N and ρ1, ρ2 ∈ R≥0 ∪ {∞}.

6.3 Biorthogonal spline wavelet bases

As anticipated in Section 5, in order to obtain efficient preconditioners for (4.7),
we will employ Riesz bases. We give a simple construction on the interval here.
For more general constructions see (Primbs, 2010) and references therein.
Set ∇Θ

0 = {(n, 0)}2n=0, and for k ∈ N define ∇Θ
k = {(n, k) : n ≤ 2k+1 odd}. For

each λ = (n, k) ∈ ∇Θ
k with k ∈ N, let θλ ∈ H1(J) be the piecewise (w.r.t. Tk)

affine function which attains the values




θλ(tkn−1)
θλ(tkn)

θλ(tkn+1)



 =






(
0,− 3

2 ,
1
2

)#
if tkn−1 = 0,

(
1
2 ,−

3
2 , 0

)#
if tkn+1 = Tend,(

1
2 ,−1, 12

)#
else,

and zero at all other nodes. For λ = (n, 0) ∈ ∇0 we define θλ as the standard
nodal interpolant s.t. θ(n,0)(t

0
n′) = δnn′ , with linear interpolation in between.

The collection {θλ : λ ∈ ∇k, k ∈ N0} ⊂ H1(J) consists of biorthogonal piecewise
linear spline wavelets and can be rescaled to a Riesz basis for the spaces for
L2(J), similarly for H1(J), we refer to (Han & Shen, 2006), and thus satisfy
Assumption 5.1–5.2.
In order to describe the basis for the space V , we specialize on the case that the
spatial domainD is the intervalD = (−1, 1) ⊂ R. Extension to product domains
of the form (−1, 1)d is straightforward; for more general constructions we refer
to (Urban, 2009) and references therein. Here, we employ the same biorthogonal
spline wavelet basis for the spatial discretization as in the temporal direction,
adapting it slightly to conform with the homogeneous boundary conditions of
V = H1

0 (D). Thus, we set ∇Σ
0 := {(1, 0)} and ∇Σ

k := {(n, k) : n ≤ 2k+1 odd}
for k ∈ N and let the collection {σµ}µ∈∇Σ

k
⊂ V be the obvious adaptation of

the functions {θλ}λ∈∇Θ
k
to the interval D for each k ∈ N0.

The collection Σ satisfies Assumption 5.1, but fails to satisfy Assumption 5.2.
As discussed in Remark 5.3 this, however, is not critical for what follows. In
fact, measuring the Riesz basis constants w.r.t. ‖·‖V ′ for {σµ}µ∈∇Σ

k
normalized

in V ′ reveals that they deteriorate only moderately with k.
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7 Numerical examples

In this section we complement the theory of previous sections by numerical
examples, which demonstrate the efficiency of the proposed space-time wavelet
discretization scheme and the potential of the sparse space-time Galerkin least
squares method.

7.1 Preconditioning

We set q ≡ 1 and Tend = 2 in (2.2)–(2.4), and measure the extreme singular

values of the preconditioned system matrixN−#/2B
(ρ)
L,∆LM

−1/2 for∆L ∈ {0, 1}.
We set ρ = ∞, i.e., the spatial discretization is kept fixed at " = 0. Figure 7.1
illustrates that the introduction of an additional time discretization level in the
test space V(ρ)

L,∆L by choosing ∆L = 1 renders the system (4.9) well-conditioned
uniformly in L ∈ N0. Note that the condition number increases exponentially
as L → ∞ for ∆L = 0 as the temporal resolution is increased, as was already
indicated in (Babuška & Janik, 1990, Theorem 2.2.1).
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Figure 7.1: Maximal (“continuity constant”) and minimal (“inf-sup constant”)

singular values of the preconditioned system matrix B
(ρ)
L,∆L on different dis-

cretization levels L ∈ N0 for ρ = ∞ with ∆L = 0 (left) and ∆L = 1 (right).

7.2 Smooth solution

We consider the heat equation with the solution u(t, x) = cos(xπ/2)e−t, (t, x) ∈
J × D, where J = (0, Tend) with Tend = 2. The initial condition u(0, ·) is in
H1

0 (D), and the solution is inHt!(J)⊗(Hs!(D)∩H1
0 (D)) for arbitrary t", s" ≥ 1,

in particular for t" = s" = 2. For the definition of U (ρ)
L and V(ρ)

L,∆L in (5.1) we

set ∆L = 1. We measure the error of the Galerkin least squares solution u(ρ)
L,∆L

for various L ∈ N0 in the space L2(J,H1
0 (D)) for ρ ∈ {1, 12} and, in addition

the error of the solution in L2(J, L2(D)) and the error in the initial condition in
L2(D) for ρ = 1. The results are shown in Figure 7.2. For ρ = 1 we recover the
rates given in (5.4), and for ρ = 1

2 we recover the rate given in (5.3). The error
in the initial condition decays with rate one w.r.t. the total number of degrees
of freedom.
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Figure 7.2: Convergence of the Galerkin least squares solution u(ρ)
L,∆L in different

norms for a smooth problem from Section 7.2 with ρ = 1 (left) and ρ = 1
2

(right).

7.3 Non-smooth coefficient

We consider equation (2.2)–(2.4) on J ×D = (0, Tend)× (−1, 1), Tend = 2 with
r.h.s. g ≡ 1, initial condition h ≡ 0 and the piecewise constant q ∈ L∞(J ×
D) given by q(t, x) = 1 − 1

2 sign (2 + x− 2t), (t, x) ∈ J × D. We set ρ = 1

and ∆L = 1, and compute the Galerkin least squares solution u(ρ)
L,∆L for L ∈

{0, . . . , 7} using Matlab’s solver lsqr applied to (4.8) with relative residual

tolerance 10−10. The last solution u(ρ)
7,∆L is then used as the reference solution.

The errors u(ρ)
L,∆L − u(ρ)

7,∆L estimated in X using the norm equivalence (4.2),

and measured in L2(J,H1
0 (D)) and L2(J, L2(D)) are shown in Figure 7.3 (left)

for L ∈ {0, . . . , 6}, together with the L2(D) error in the initial condition. All
four converge; the rate, however, suffers from the low regularity of the solution.

Timings of various algorithmic components for the computation of u(ρ)
L,∆L as

function of the total number of degrees of freedom are shown in Figure 7.3

(right). As L increases, the time for the assembly of the right hand side f
(ρ)
L,∆L

and for the assembly of the system matrix B
(ρ)
L,∆L, which is done in parallel

on 16 processes, scales linearly in the number of degrees of freedom, while the
parallelization overhead in the assembly of the system matrix is visible for small
L. Similarly, time per iteration of the least squares solver scales linearly in the
number of degrees of freedom.

7.4 Nonsmooth initial data

In this example we choose the initial data h ∈ L2(D) \H1(D), namely h(x) :=
χ(−1,0)(−x−1)+χ(0,1)(−x+1), a.e. x ∈ D, as well as g ≡ 1 and q ≡ 1. Using the

Fourier series expansion of h it is easy to check that h ∈ H1/2−ε(D)\H1/2(D) for
any ε ∈ (0, 12 ), and the solution u does not belong to H1(J)⊗(H2(D)∩H1

0 (D)).
With ρ = 1 and ∆L = 1 in (5.1), the numerical solution converges slowly in
X , while for the initial data we obtain the optimal convergence rate 1/4 in the
total number of degrees of freedom, see Figure 7.4. Similar behavior arises for
an incompatible initial data h ∈ H1(D) \H1

0 (D).
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Figure 7.3: Left: Estimated errors of the Galerkin least squares solution for
a non-smooth diffusion coefficient q, see Section 7.3. Right: Timings of the

application of lsqr, assembly of the system matrix B
(ρ)
L,∆L, the load vector

f
(ρ)
L,∆L and of one iteration of lsqr as function of the total number of degrees of
freedom for the example in Section 7.3.
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the solution (right) to (2.2)–(2.4) with g ≡ 1, q ≡ 1 and a nonsmooth initial
data h /∈ H1

0 (D), see Section 7.4.
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7.5 Sparse space-time tensor product

We choose Tend = 2, q ≡ 1 and h ≡ 0, and g(t, x) = sin(πt/2)2 cos(x+cos(πt/2)),
(t, x) ∈ J ×D. The corresponding solution to (2.2)–(2.4) is displayed in Figure
7.5 (right). We set ρ = 1, ∆L = 1 and estimate the error in X of the full

tensor product (FTP) Galerkin least squares solution u(ρ)
L,∆L and the sparse

tensor product (STP) Galerkin least squares solution û(ρ)
L,∆L for L ∈ {0, . . . , 6}.

To do so, we use u(ρ)
7,∆L as the reference solution and estimate the error in X

using the norm equivalence (4.2). The results are shown in Figure 7.5 (left). In
accordance with Section 5.1 we obtain the convergence rate 1/2 w.r.t. the total
number of degrees of freedom in the FTP case and a rate which approaches one
as L is increased in the STP case. For L = 6 the number of degrees of freedom
used for the STP solution is over one order of magnitude smaller than for the
FTP solution, without significant loss in accuracy.
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Figure 7.5: Estimated errors of the Galerkin least squares solutions u(ρ)
L,∆L (FTP)

and û(ρ)
L,∆L (STP) (left), and the solution (right) to (2.2)–(2.4) with q ≡ 1,

h ≡ 0, ρ = 1, ∆L = 1 and a nonseparable source g as in Section 7.5.

8 Conclusions

For a class of linear parabolic equation we have proposed a finite element space-
time sparse discretization, which reduces the problem to a finite, overdetermined
linear system of equations in the generic case of the test space being sufficiently
fine compared to the trial space. The scheme allows for space-time sparse trial
and test spaces which potentially leads to a substantial reduction in the com-
putational cost. We prove discrete stability of this discretization scheme. The
corresponding normal equations can be efficiently preconditioned, e.g. by means
of appropriate Riesz bases or based on the well-known BPX operator. The cor-
responding Galerkin least squares solution is shown to converge quasi-optimally
to the continuous solution in the natural space for the original equation. The
presented numerical examples illustrate and confirm the theory, but also expose
some limitations, calling for space-time adaptive algorithms to capture singu-
larities arising at the boundaries of the space-time cylinder.
In order to apply the presented Galerkin least squares discretization scheme to
linear parabolic equations with more general generators satisfying the G̊arding
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inequality, it suffices to generalize Theorem 3.9 to include that case. Finally,
we remark that we have specialized in Section 5 on finite element test and trial
spaces that consist of functions continuous in time; this is not essential, since
for a conforming method, only temporal continuity in the test space is expected.
For more details on these remarks we refer to future work (Andreev, ip).
Numerous helpful comments on preliminary versions of this paper by Christoph
Schwab, the anonymous referees, and several others are gratefully acknowledged.
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A Proof of Proposition 6.1

We show: for all integers K ≥ k ≥ 0 and all e ∈ Ek

inf
f∈EK

‖e′ − f‖2L2(J) ≤ 2−(K−k)

(

‖e′‖2L2(J) −
1

T

(∫

J
e′
)2

)

, (A.1)

with J = (0, T ) ⊂ R, and the estimate is sharp. From this, (6.1) then follows
using the characterization (3.8). Let

∀k ∈ N0 : Tk := {0 = tk0 < tk1 < · · · tkNk
< tkNk+1 = T} (A.2)

be the equidistant partition of J where Nk := dimEk − 2. Note that an L2(J)-

orthonormal basis forE′
k is given by the indicator functions χk

n := h−1/2
k χ(tkn,t

k
n+1)

,

n = 0, . . . , Nk, where hk := T
Nk+1 . Fix arbitrary k ∈ N0 and e ∈ Ek ⊂ H1(J).

Obviously, e′ ∈ L2(J) is a piecewise constant function w.r.t. the partition TK
for any integer K ≥ k, and thus

e′ =
NK∑

n=0

cKn χK
n and ‖e′‖2L2(J) =

NK∑

n=0

|cKn |2 with {cKn }NK
n=0 ⊂ R.

We denote the jump of e′ at any interior node tKn ∈ TK ∩ J by

δKn := e′(tKn +)− e′(tKn −) where e′(t±) := lim
h↓0

e′(t± h), ∀t ∈ J

and let δK = (δKn )NK
n=1 ∈ RNK denote the vector collecting the jumps of e′. We

can estimate the sum of squares of the jumps of e′ in the interior of J by

‖δK‖22 = ‖δk‖22 ≤ 4
Nk∑

n=0

‖cknχk
n‖2L∞(J) − 2

(
‖ck0χk

0‖2L∞(J) + ‖ckNk
χk
Nk

‖2L∞(J)

)

=
4

hk
‖e′‖2L2(J) − 2

(
|e′(0+)|2 + |e′(T−)|2

)
(A.3)

and the estimate is easily seen to be sharp for ckn = ck0(−1)n. Let now K ∈ N0,
K ≥ k be fixed. Having (A.3) in mind, we write δ := δK for short. In order to
estimate the l.h.s. of the assertion we construct a basis for the L2(J)-orthogonal
complement CK of EK in EK +E′

K , i.e., EK +E′
K = EK ⊕CK with EK ⊥L2(J)

CK . For that purpose, we introduce the piecewise linear discontinuous L2(R)
function

ψ : t .→ ψ(t) =






−1− 3
2 t, −1 < t < 0,

1− 3
2 t, 0 < t < 1,

0, else,

which has jumps 1/2, 2, 1/2 at locations t = −1, 0, 1, respectively. We have
‖ψ‖2L2(R) = 1

2 . Moreover, ψ is orthogonal to the integer translates of the hat

function t .→ max{1− |t− k|, 0}, k ∈ Z. Consider the scaled translates of ψ,

{ψK
n = ψ(·/hK − n)}n=1,...,NK (A.4)
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such that ψK
n is centered at tKn . It follows that (A.4) is a basis for CK with the

Gramian given by the tridiagonal matrix

MK
ψ =

1

2
hK‖ψ‖2L2(R)M

K
∆ψ where MK

∆ψ :=





2 1
2

1
2

. . .
. . .

. . . 2



 .

Note that MK
∆ψ is exactly the matrix of jumps of the scaled translates (A.4) at

the interior nodes TK∩J . Let d = (dn)
NK
n=1 ∈ RNK solve the equationMK

∆ψd = δ.

Note that ‖d‖2 ≤ ‖δ‖2, since for the spectrum ofMK
∆ψ we have σ(MK

∆ψ) ⊂ [1,∞)

by the Gerschgorin disk theorem. Set f := e′ −
∑NK

n=1 dnψ
K
n . By definition of

d, the function f ∈ L2(J) is piecewise linear w.r.t. the partition TK and has
no jumps in the interior of J , thus f ∈ EK . In fact, f is the L2(J)-orthogonal
projection of e′ onto EK , since (A.4) is a basis for CK . Using MK

ψ = 1
4hKMK

∆ψ,
‖d‖2 ≤ ‖δ‖2 and (A.3) we obtain

‖e′ − f‖2L2(J) = d#MK
ψ d =

hK

4
d#δ ≤ hK

4
‖δ‖22 ≤

hK

hk
‖e′‖2L2(J). (A.5)

This shows the claim if e(T ) = e(0). For a general e ∈ Ek consider w : t .→
w(t) = e(t)−e(0)−tb, where b = 1

T (e(T )− e(0)) = 1
T

∫
J e′.We have ‖w′‖2L2(J) =

‖e′‖2L2(J) − b2T , and inff∈EK ‖e′ − f‖2L2(J) = inff∈EK ‖w′ + b− f‖2L2(J) shows

(A.1). Retracing the steps of the proof reveals that (A.1) is sharp. This com-
pletes the proof.
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