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COMPUTING CODIMENSIONS AND GENERIC CANONICAL
FORMS FOR GENERALIZED MATRIX PRODUCTS

BO KÅGSTRÖM∗, LARS KARLSSON∗, AND DANIEL KRESSNER†

Abstract. A generalized matrix product can be formally written as A
sp
p A

sp−1
p−1 · · ·As2

2 As1
1 , where

si ∈ {−1,+1} and (A1, . . . , Ap) is a tuple of (possibly rectangular) matrices of suitable dimensions.
The periodic eigenvalue problem related to such a product represents a nontrivial extension of gener-
alized eigenvalue and singular value problems. While the classification of generalized matrix products
under eigenvalue-preserving similarity transformations and the corresponding canonical forms have
been known since the 1970ies, finding generic canonical forms has remained an open problem. In
this paper, we aim at such generic forms by computing the codimension of the orbit generated by all
similarity transformations of a given generalized matrix product. This can be reduced to computing
the so called cointeractions between two different blocks in the canonical form. A number of tech-
niques are applied to keep the number of possibilities for different types of cointeractions limited.
Nevertheless, the matter remains highly technical; we therefore also provide a computer program
for finding the codimension of a canonical form, based on the formulas developed in this paper. A
few examples illustrate how our results can be used to determine the generic canonical form of least
codimension. Moreover, we describe an algorithm and provide software for extracting the generically
regular part of a generalized matrix product.

1. Introduction. Consider a matrix pair (A1, A2), where A1, A2 ∈ Cn2×n1 .
By the well-known Kronecker canoncial form (KCF) [7] there are square invertible
matrices P1, P2 such that the transformed pair (P−1

2 A1P1, P
−1
2 A2P1) is block diagonal

with each diagonal block taking the form

(Jm(λ), Im) or (Im, Jm(0)) or (Fm, Gm) or (FT
m, GT

m),

where

Jm(λ) =





λ 1

λ
. . .
. . . 1

λ





︸ ︷︷ ︸
m×m

, Fm =





1 0
. . .

. . .

1 0





︸ ︷︷ ︸
m×(m+1)

, Gm =





0 1
. . .

. . .

0 1





︸ ︷︷ ︸
m×(m+1)

(1.1)
for some λ ∈ C. Regular blocks take the form (Jm(λ), Im) or (Im, Jm(0)), with m ≥ 1,
corresponding to finite or infinite eigenvalues, respectively. Singular blocks take the
form (Fm, Gm) or (FT

m, GT
m), with m ≥ 0, and correspond to so called Kronecker

∗Department of Computing Science, Ume̊a University, Ume̊a, Sweden (bokg@cs.umu.se,
larsk@cs.umu.se).

†Seminar fur angewandte Mathematik, ETH Zurich, Switzerland (kressner@math.ethz.ch)
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2 B. K̊agström, L. Karlsson, and D. Kressner

indices. More specifically, (Fm, Gm) corresponds to right indices and (FT
m, GT

m) to
left indices. The matrix pair (A1, A2) itself is called singular if its Kronecker form
contains at least one singular block.

Identifying the KCF of a singular matrix pair (A1, A2) is an ill-posed problem.
In view of the resulting numerical challenges, it is natural to ask for the most generic
forms in the set of all n2 × n1 matrix pairs, possibly with additional side constraints
on the matrices A1 and A2. It is well known that the generic form of a square matrix
pair, n = n1 = n2, solely consists of n regular 1 × 1 blocks (1,λk) with λk $= λj

for k $= j. For the subset of square singular matrix pairs, Waterhouse [28] showed
that the generic KCFs consist of two singular blocks (Fj , Gj) and (FT

n−j+1, G
T
n−j+1),

with j = 1, . . . , n. In the rectangular case, % = n1 − n2 > 0, there are generically (n2

mod %) blocks (Fα+1, Gα+1) with α = 'n2/%(,%−(n2 mod %) blocks (Fα, Gα), and
no regular block [22, 3]. For the other rectangular case, % = n2−n1 > 0, the result is
similar. There are generically (n1 mod %) blocks (FT

α+1, G
T
α+1) with α = 'n1/%( and

%− (n1 mod %) blocks (FT
α , GT

α). From these early results on, tremendous progress
has been made in understanding and computing less generic KCFs, see [16] for an
overview. Recent results include generic KCFs for zero-structured matrix pairs [15]
and matrix pairs of fixed normal rank [2].

This paper considers a nontrivial extension of matrix pairs (A1, A2) (matrix pen-
cils A1 − λA2). For a fixed sign tuple s = (s1, . . . , sp), where sk ∈ {−1,+1}, and a
fixed dimension tuple n = (n1, n2, . . . , np), let A = (A1, . . . , Ap) be a matrix tuple
with

Ak ∈

{
Cnk⊕1×nk if sk = 1,
Cnk×nk⊕1 if sk = −1.

(1.2)

Here and in the following we let

k ⊕ 1 := k mod p+ 1,

which simply means that k ⊕ 1 = k + 1 for 1 ≤ k ≤ p − 1 and p ⊕ 1 = 1. This
paper aims at identifying generic canonical forms of such a matrix tuple under the
equivalence transformation

Ak +→

{
P−1
k⊕1AkPk if sk = 1,

P−1
k AkPk⊕1 if sk = −1,

(1.3)

with invertible matrices Pk ∈ Cnk×nk , k = 1, . . . , p.

A more intuitive understanding of the transformation (1.3) can be gained by
regarding the matrix tuple as a generalized matrix product

Asp
p A

sp−1

p−1 · · ·As1
1 . (1.4)
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Note that this matrix product should be understood in a formal sense; we explicitely
admit rectangular factors Ak for sk = −1. If, however, all factors Ak with sk = −1
are square and invertible, the product (1.4) becomes well-defined in the usual sense
and (1.3) corresponds to a similarity transformation of (1.4) and all other products
with cyclically permuted factors:

Asp
p A

sp−1

p−1 · · ·As2
2 As1

1 +→ P−1
1 Asp

p A
sp−1

p−1 · · ·As2
2 As1

1 P1,

As1
1 Asp

p A
sp−1

p−1 · · ·As2
2 +→ P−1

2 As1
1 Asp

p A
sp−1

p−1 · · ·As2
2 P2,

...

A
sp−1

p−1 · · ·As2
2 As1

1 Asp
p +→ P−1

p A
sp−1

p−1 · · ·As2
2 As1

1 Asp
p Pp.

A number of applications lead to generalized matrix products of the form (1.4), includ-
ing periodic control systems [27]. More specifically, applications leading to products
with rectangular factors can be found in [24, 26, 19]. The generalized singular value
problem for a matrix pair (A,B) can – at least theoretically – be seen as a generalized
matrix product eigenvalue problem As4

4 As3
3 As2

2 As1
1 with A4 = AT , A3 = BT , A2 = B,

A1 = A, and sign tuple s = (+1,−1,−1,+1) [8, 23].

As explained by Sergeichuk in [20, 21, 25], canonical forms under the transfor-
mation (1.3) were known for a long time in representation theory. In particular,
the representations of a quiver associated with (1.4) were classified independently by
Nazarova [18] as well as by Donovan and Freislich [6] in the 1960’s and 70’s. Numerical
algorithms for extracting the Kronecker-like structure of (1.4) can be found in [21, 25].
They share the difficulties with the GUPTRI algorithm [4, 5] in the sense that certain
rank decisions have a critical impact on their robustness. These rank decisions can be
avoided if we only aim at identifying the generic Kronecker-like structure induced by
the dimensions n1, . . . , np of the involved factors. For this purpose, we count the codi-
mension of the orbit generated by all similarity transformations of a canonical form,
see Section 3. In theory, the most generic canonical form among all possible canoni-
cal forms of a given matrix tuple is simply the one of least codimension. In practice,
however, the matter is complicated by the sheer number of different canonical tuples
potentially contributing to the codimension count. In Section 4, we therefore describe
generic canonical forms only for the special case s = (+1, . . . ,+1). In Section 5, we
develop an algorithm, based on simple unitary transformations, for extracting the
generically regular part of a generalized matrix product. Finally, some conclusions
and open questions are summarized in Section 6.

2. Preliminaries. In the following, we consider the sign tuple (s1, . . . , sp) to
be fixed. We will make use of the following notation. Let A = (A1, . . . , Ap) be a
matrix tuple with dimensions conforming to (1.2). A tuple P = (P1, . . . , Pp) is called
a transformation tuple if each Pk is nk ×nk and invertible. Then B = (B1, . . . , Bp) =
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P{A} denotes the equivalence transformation (1.3) with respect to P :

Bk =

{
P−1
k⊕1AkPk if sk = 1,

P−1
k AkPk⊕1 if sk = −1.

The direct sum of two matrix tuples C,D is denoted by C ⊕D and defined as

([
C1 0
0 D1

]
, · · · ,

[
Cp 0
0 Dp

])
.

As an immediate consequence, the relation

(P ⊕Q){C ⊕D} = P{C}⊕Q{D}

holds provided that the dimensions of P and Q conform to the dimensions of C and
D, respectively.

Theorem 2.1 ([21]). Let A = (A1, . . . , Ap) be a matrix tuple of conforming
dimensions (1.2). Then there is a transformation tuple P such that P{A} can be
written as the direct sum of tuples taking one of the following forms.

(i) Jm(λ) = (Jm(λ), . . .) with λ ∈ C \ {0}, (nonzero, finite Jordan tuple)
(ii) Nm(k) = (· · · , Jm(0), . . .), (zero/infinite Jordan tuple with block at pos. k)

(iii) Rm(k1, k2) =

{
(. . . , Fm, . . . , Gm, . . .) if sk1 $= sk2 ,
(. . . , Fm, . . . , GT

m, . . .) if sk1 = sk2 ,
(right singular tuple with blocks at pos. k1 and k2)

(iv) Lm(k1, k2) =

{
(. . . , FT

m, . . . , GT
m, . . .) if sk1 $= sk2 ,

(. . . , FT
m, . . . , Gm, . . .) if sk1 = sk2 ,

(left singular tuple with blocks at pos. k1 and k2)

where . . . denotes a sequence of identity matrices of appropriate dimension. This
decomposition is uniquely determined up to permutation of the summands. Note
that the order of Fm and Gm in (iii) and (iv) of Theorem 2.1 is not important; the
roles of Fm and Gm can be interchanged by applying a permutation.

The following linguistic conventions will be useful. The tuples Theorem 2.1.(i)
and (ii) are called Jordan tuples and the tuples appearing in Theorem 2.1.(iii) and (iv)
are called singular tuples. We say that the Jordan tuple Nm(k) from Theorem 2.1 (ii)
belongs to λ = 0 if sk = 1 and to λ = ∞ if sk = −1. If there are several Jordan tuples
belonging to a particular eigenvalue λ (may it be nonzero finite, zero, or infinite),
we let qj(λ) denote the dimension of the jth tuple. That is, the tuple has the form
Jqj(λ)(λ) (if λ is nonzero and finite) or Nqj(λ)(k) for some k (otherwise). In the
following, we will always assume the ordering q1(λ) ≥ q2(λ) ≥ · · · . A matrix tuple
A is called regular if its canonical form only contains Jordan tuples, and singular
otherwise.
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The codimension of the orbit of the tuple A only depends on its canonical form
described by Theorem 2.1. It can be computed as the sum

ctotal = cJordan + csingular + cJordan,singular

with the summands defined as follows.
1. cJordan is the sum of cointeractions between Jordan tuples:

cJordan =
∑

λ

q1(λ) + 3q2(λ) + 5q3(λ) + · · · ,

where the sum is taken over all eigenvalues λ of A, including zero and in-
finite eigenvalues, and qj(λ) denotes the decreasingly ordered dimensions
of each Jordan tuple belonging to λ;

2. csingular is the sum of cointeractions between singular tuples described in
Section 3.3;

3. cJordan,singular is the sum of cointeractions between Jordan tuples and sin-
gular tuples described in Section 3.4.

Table 3.1
Summary of the main result on counting codimensions.

3. Codimension of the tuple orbit. The set of all tuples that can be obtained
from A by an equivalence transformation (1.3) forms a manifold in the space CN ,
where N =

∑p
k=1 nknk⊕1. In the definition of N , each Ak contributes nknk⊕1 to the

dimension of the manifold. This manifold will be denoted by

orbit(A) =
{
P{A} : P is a transformation tuple

}
. (3.1)

The dimension of an orbit is the dimension of its tangent space at a specified tuple in
the manifold, and the codimension is the dimension of the normal space of the orbit
at the same specified tuple. Trivially, the dimension and the codimension of the orbit
add up to N . The aim of this section is to count the codimension of this manifold
in terms of the generalized Kronecker structure of A. More specifically, Table 3.1
provides a summary of the main result we are aiming at and the rest of this section
is devoted to proving and filling in the details of Table 3.1.

3.1. Breakdown into cointeractions. We will follow the strategy of Demmel
and Edelman [3] to compute the codimension as the sum of cointeractions between
simple building blocks of the tangent space of orbit(A) at A. To compute this tangent
space, we choose the transformation matrices Pk = I + δXk for sufficiently small δ.
Note that P−1

k = (I + δXk)−1 = I − δXk + O(δ2). This shows that – to first
order – the elements of the correspondingly transformed tuple P{A} take the form
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Ak+δ(AkXk−Xk⊕1Ak) if sk = 1 and Ak+δ(AkXk⊕1−XkAk) if sk = −1. Therefore
the tangent space of orbit(A) at A consists of matrix tuples in the image of the linear
operator

Sylv : X +→ Y with Yk =

{
AkXk −Xk⊕1Ak if sk = 1,
AkXk⊕1 −XkAk if sk = −1.

(3.2)

Note that the matrices Xk are nk×nk but the matrices Yk are nk⊕1×nk for sk = 1 or
nk ×nk⊕1 for sk = −1. If d denotes the dimension of the kernel of the linear operator
Sylv then the codimension of orbit(A) is given by

p∑

k=1

nknk⊕1 −
( p∑

k=1

n2
k − d

)
= d−

1

2

p∑

k=1

(nk⊕1 − nk)
2. (3.3)

The term 1
2

∑p
k=1(nk⊕1 − nk)2 counts the differences in the dimensions of Ak and

disappears if all factors are square. It remains to determine d.

It is not hard to see that the dimension of the kernel of Sylv does not change when
A undergoes an equivalence transformation by a transformation tuple P , see (1.3).
We can therefore assume without loss of generality that A is in the canonical form
described by Theorem 2.1. To break down the dimension count into the individual
tuples in this canonical form, we first investigate the direct sum of two tuples: A =

B⊕ C. Let us partition Xk =

[
X

(k)
11

X
(k)
21

X
(k)
12

X
(k)
22

]
conformally such that (3.2) can be written

as

AkXk −Xk⊕1Ak =

[
BkX

(k)
11 −X(k⊕1)

11 Bk BkX
(k)
12 −X(k⊕1)

12 Ck

CkX
(k)
21 −X(k⊕1)

21 Bk CkX
(k)
22 −X(k⊕1)

22 Ck

]

for sk = 1, and analogously for sk = −1. The number d of linearly independent
solutions to AkXk −Xk⊕1Ak = 0 is the sum of the number of linearly independent
solutions to each of the four (decoupled) subblocks. We therefore obtain

d = d(B,B) + d(B, C) + d(C,B) + d(C, C), (3.4)

where d(B, C) is the dimension of the kernel of the linear operator

Sylv(B, C) : X +→ Y with Yk =

{
BkXk −Xk⊕1Ck if sk = 1,
BkXk⊕1 −XkCk if sk = −1,

(3.5)

and the other quantities in (3.4) are analogously defined. This discussion extends
in a straightforward way to direct sums of more than two tuples. Following [3],
we introduce the concepts of interactions and cointeractions between the individual
components of a direct sum.
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Definition 3.1. Let A = B1 ⊕ · · · ⊕ Bt with each tuple Bj having dimensions(
n(j)
1 , n(j)

2 , . . . , n(j)
p

)
. Then the interaction d(Bi,Bj) between Bi and Bj is the dimen-

sion of the kernel of Sylv(Bi,Bj) defined in (3.5). The cointeraction between Bi and
Bj is defined as

c(Bi,Bj) := d(Bi,Bj)−
1

2

p∑

k=1

(
n(i)
k⊕1 − n(i)

k

)(
n(j)
k⊕1 − n(j)

k

)
. (3.6)

A direct extension of (3.4) shows that d is the sum of all possible interactions, yielding
the following result.

Lemma 3.2. The codimension of the orbit of A = B1 ⊕ · · · ⊕ Bt is the sum of
cointeractions c(Bi,Bj) for all combinations of i and j with i, j ∈ [1, t].

Proof. The result follows from

t∑

i,j=1

c(Bi,Bj) =
t∑

i,j=1

d(Bi,Bj)−
1

2

t∑

i,j=1

p∑

k=1

(
n(i)
k⊕1 − n(i)

k

)(
n(j)
k⊕1 − n(j)

k

)

= d−
1

2

p∑

k=1

t∑

i,j=1

(
n(i)
k⊕1 − n(i)

k

)(
n(j)
k⊕1 − n(j)

k

)

= d−
1

2

p∑

k=1

[ t∑

i=1

(
n(i)
k⊕1 − n(i)

k

)]2
= d−

1

2

p∑

k=1

(
nk⊕1 − nk

)2
.

In particular when A is in canonical form, Lemma 3.2 reveals that counting
all cointeractions between canonical tuples yields the codimension of its orbit. In
the following, it will be more convenient to count the interactions and obtain the
cointeractions according to Definition 3.1.

3.2. Interactions between Jordan tuples. First, we count interactions be-
tween Jordan tuples. For this purpose, the following proposition turns out to be
helpful.

Proposition 3.3. Consider the tuples

B = (. . . , B, . . .),
↑
k

C = (. . . , C, . . .),
↑
l

with matrices B and C at positions k and l, respectively, and otherwise containing
identities. Then

d(B, C) =

{
dim{X : BX = XC} if sk = sl,
dim{X : BXC = X} if sk $= sl.
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Proof. By shifting the indices, we may assume without loss of generality that
k = 1. Assume sk = sl = 1. Then d(B, C) is the kernel dimension of the operator (3.5).
Any element X = (X1, . . . , Xp) in this kernel satisfies

BX1 = X2, X2 = X3, . . . , Xl−1 = Xl, Xl = Xl+1C, Xl+1 = Xl+2, . . . , Xp = X1.
(3.7)

Removing all trivial dependencies yields the equation BX1 = X1C and hence d(B, C)
is solely determined by the kernel dimension of this equation. The proof for sk = sl =
−1 is entirely analogous.

Now assume sk = 1 but sl = −1. Then (3.7) needs to be replaced by

BX1 = X2, X2 = X3, . . . , Xl−1 = Xl, XlC = Xl+1, Xl+1 = Xl+2, . . . , Xp = X1.

Removing all trivial dependencies yields the equation BX1C = X1. Again, the proof
for sk1 = −1, sk2 = 1 is analogous.

Lemma 3.1 in [9] on the unique solvability of periodic Sylvester equations implies
that the kernels of Sylv(J#(λ),Jm(µ)) for λ $= µ, Sylv(J#(λ),Nm(k)) and Sylv(N#(k),Jm(λ))
are all trivial. In the consideration of interactions between Jordan tuples, we can
therefore restrict the cointeraction counts to the cases (J#(λ),Jm(λ)) and (N#(k1),Nm(k2)).

Lemma 3.4. c(J#(λ),Jm(λ)) = min{$,m}.

Proof. By Proposition 3.3, d(J#(λ),Jm(λ)) is the dimension of the linear space of
all matrices satisfying the Sylvester equation J#(λ)X −XJm(λ) = 0. The statement
of the lemma now follows from standard results, see also Proposition A.1.1.

The following result shows not only that the statement of Lemma 3.4 extends
to interactions between Jordan tuples belonging to λ ∈ {0,∞}, but also that there
are no interactions between a Jordan tuple belonging to λ = 0 and a Jordan tuple
belonging to λ = ∞.

Lemma 3.5. c(N#(k1),Nm(k2)) = min{$,m} if sk1 = sk2 and c(N#(k1),Nm(k2)) =
0 if sk1 $= sk2 .

Proof. If sk1 = sk2 then the result follows as in the proof of Lemma 3.4. If
sk1 $= sk2 then Proposition 3.3 implies that c(N#(k1),Nm(k2)) is the dimension of the
linear space of all matrices satisfying the Stein equation N#X1Nm − X1 = 0. The
statement of the lemma now follows from Proposition A.1.3.

Let us summarize the interactions between Jordan tuples. If λ is an eigenvalue
(may it be finite, zero, or infinite) with Jordan blocks of sizes q1(λ) ≥ q2(λ) ≥ q3(λ) ≥
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· · · then the sum of all cointeractions caused by λ is given by

cJordan(λ) = q1(λ) + 3q2(λ) + 5q3(λ) + · · · , (3.8)

just as in the case of standard Jordan canonical and Kronecker canonical forms [3].
The sum of all cointeractions between Jordan tuples is therefore

cJordan =
∑

λ

q1(λ) + 3q2(λ) + 5q3(λ) + · · · ,

which proves the first item in Table 3.1.

3.3. Interactions between singular tuples. For tuples of the form

B = (. . . , B1, . . . , B2, . . .),
↑
k1

↑
k2

C = (. . . , C1, . . . , C2, . . .),
↑
l1

↑
l2

we will see that the periodic Sylvester equation (3.5) reduces to different types of
equations, depending on the relative placement of the nontrivial blocks and the sign
tuple. There is an overwhelming number of possibilities for the placement and signs.
In the following, we discuss several techniques to reduce this number and tame the
classification to a certain extent.

Excluding shared positions and assuming p = 4 w.l.o.g.. First, we show
how to exclude the special case when the nontrivial coefficients in B and C share a
position. This is achieved by constructing tuples having the same interaction but no
shared position.

Consider first the case k1 = l1 and sk1 = 1. Then the kernel of the Sylvester
operator (3.5) satisfies the equation

B1Xk1 = Xk1⊕1C1.

By introducing a slack matrix X̃, we obtain the two equations

B1Xk1 = X̃, X̃ = Xk1⊕1C1,

corresponding to the extended (p+ 1)-tuples

B̃ = (. . . , B1, . . . , B2, . . .),
↑
k1

↑
k2+1

C̃ = (. . . , C1, . . . , C2, . . .).
↑

k1+1
↑

l2+1

As the slack matrix does not change the dimension of the kernel of the periodic
Sylvester operator, the interactions of the original and the extended tuples are the
same. However, the terms of the subtracted sum in (3.6) change, meaning that the
cointeractions may change after the slack matrix has been introduced.
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Similarly, for k1 = l1 and sk1 = −1 the corresponding matrix equation

B1Xk1⊕1 = Xk1C1

can be extended such that B1 is moved one position to the right, without changing
their interaction but possibly changing their cointeraction.

We may therefore assume without loss of generality that ki $= lj for i, j = 1, 2.
Furthermore, by an argument used in the proof of Proposition 3.3, identities at the
same position in both tuples correspond to trivial matrix equations that can be re-
moved. We can therefore assume without loss of generality that B and C are both
tuples of p = 4 matrices.

Taming 384 cases. Now assuming p = 4 and no shared position there are
precisely six different possibilities for the placement of the blocks in B and C, as
illustrated in the first row of Table 3.2. When taking into account the 16 possible
sign combinations, see the first column of Table 3.2, we get 96 different equations
in total. Even worse, since each tuple can correspond either to a left or a right
singular tuple, there are four different combinations of coefficients in these equations.
Hence, in total there would be 384 different cases for which we have to compute the
corresponding interaction. Fortunately, many of these cases are equivalent, which
helps reduce the computation significantly.

Omitting trivially satisfied parts of the matrix equations, it turns out that there
are only eight genuinely different types of matrix equations associated with the 384 dif-
ferent cases, see Table 3.3. It is important to note that the coefficients B̃1, B̃2, C̃1, C̃2

of the matrix equations do not necessarily have the same order as the coefficients
B1, B2, C1, C2 in B, C and need to be adjusted according to the matrix equation vari-
ant, see Table 3.4. Note that the symbols R# and Lm are used to denote right and
left singular tuples, see Theorem 2.1.

It is best to illustrate the procedure to obtain the matrix equation and the inter-
action by a concrete example.

Example 3.6. Consider s = (+1,+1,−1,+1) and

B = R#(2, 4) = (I, F#, I, G
T
# ), C = Rm(1, 3) = (Fm, I, Gm, I).

The corresponding matrix equations satisfied by the kernel of the operator (3.5) are
X1 = X2Fm, F#X2 = X3, X4 = X3Gm, GT

# X4 = X1, which boils down toGT
# F#X2Gm =

X2Fm. Using GT
# F# = JT

#+1(0) and applying flip matrices1 from both sides we obtain

1A flip matrix, Pflip, is a permutation matrix with ones on the anti-diagonal and zeros everywhere
else.
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sign
tuple

(B1, I,B2, I )

( I, C1, I,C2)

( I,B1, I,B2)

(C1, I,C2, I )

(B1,B2, I, I )

( I, I,C1,C2)

( I, I,B1,B2)

(C1,C2, I, I )

(B1, I, I,B2)

( I,C1,C2, I )

( I,B1,B2, I )

(C1, I, I,C2)

++++ VIII:1 VIII:3 I:4 I:4 I:3 I:2

+++- II:1 IV:1 II:2 IV:3 IV:3 II:2

++-+ IV:3 II:2 II:2 IV:3 II:1 IV:1

++-- V:1 V:1 III:2 III:4 VII:1 VI:1

+-++ II:2 IV:3 IV:3 II:2 II:1 IV:1

+-+- III:2 III:4 V:1 V:1 V:1 V:1

+--+ V:1 V:1 VI:1 VII:1 III:2 III:1

+--- IV:3 II:2 IV:1 II:1 IV:1 II:1

-+++ IV:1 II:1 IV:3 II:2 IV:3 II:2

-++- V:1 V:1 VII:1 VI:1 III:4 III:2

-+-+ III:1 III:2 V:1 V:1 V:1 V:1

-+-- II:1 IV:1 IV:1 II:1 II:2 IV:3

--++ V:1 V:1 III:1 III:2 VI:1 VII:1

--+- IV:1 II:1 II:1 IV:1 II:2 IV:3

---+ II:2 IV:3 II:1 IV:1 IV:1 II:1

---- VIII:3 VIII:1 I:1 I:1 I:2 I:3
Table 3.2

Given singular tuples B, C and a sign tuple s = (±1,±1,±1,±1) this table gives the corre-
sponding matrix equation type and variant. For example, IV:3 refers to matrix equation type IV and
variant 3.

the equation J#+1(0)XFm = XGm, which only has the trivial solution according to
Proposition A.1.2a and hence the interaction between both tuples is 0.

We now show how the same result can be obtained from the tables. The setup
corresponds to the third column and row “++-+” in Table 3.2. At the corresponding
entry we have II:2, which means Equation II variant 2. Table 3.3 reveals that
Equation II is given by B̃1B̃2XC̃1 = XC̃2. According to Table 3.4, variant 2 means
the following relation between the coefficients: B̃1 = B2 = GT

# , B̃2 = B1 = F#,
C̃1 = C1 = Fm, C̃2 = C2 = Gm. Moreover, the column “R#Rm” in Table 3.4 shows
that the correspondingly modified pair of singular tuples is given by B̃ = L#, C̃ = Rm.
Finally, the corresponding entry in column “L#Rm” and row “II” of Table 3.5 states
the interaction between the two tuples: 0.

Tables 3.2–3.4 can be derived by simple but tedious algebraic manipulations. To
speed up the process and reduce the risk of errors, we derived these tables using an
automated procedure. In contrast, the relations in Table 3.5 are nontrivial and require
further explanation.

Theorem 3.7. The interactions stated in Table 3.5 are correct.
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Type Equation

I B̃1B̃2X = XC̃1C̃2

II B̃1B̃2XC̃1 = XC̃2

III B̃1B̃2XC̃1C̃2 = X
IV B̃1XC̃1C̃2 = B̃2X
V B̃1XC̃1 = B̃2XC̃2

VI

{
B̃1X = B̃2Y
XC̃1 = Y C̃2

VII

{
B̃1X = Y C̃1

B̃2X = Y C̃2

VIII

{
B̃1X = Y C̃1

B̃2Y = XC̃2

Table 3.3
Classification of matrix equation types.

Variant B̃1 B̃2 C̃1 C̃2 R#Rm R#Lm L#Rm L#Lm

1 B1 B2 C1 C2 R#Rm R#Lm L#Rm L#Lm

2 B2 B1 C1 C2 L#Rm L#Lm R#Lm R#Lm

3 B1 B2 C2 C1 R#Lm R#Rm L#Lm L#Rm

4 B2 B1 C2 C1 L#Lm L#Rm R#Lm R#Rm

Table 3.4
Coefficient relation table. Depending on the matrix equation variant, this table states how the

coefficients need to be modified before using Table 3.5. For example, variant 4 yields for B = R!,
C = Rm the modified tuples eB = L!, eC = Lm.

Equation (Modified) Matrix Tuples
Type R#Rm R#Lm L#Rm L#Lm

I min($,m) min($,m+ 1) min($ + 1,m) 1 + min($,m)
II 0 $ 0 $+ 1
III 0 0 0 0
IV m m+ 1 0 0
V max(0,m− $) $+m+ 1 0 max(0, $−m)
VI max(0,m− $− 1) $+m+ 2 0 max(0, $−m− 1)
VII max(0,m− $+ 1) $+m 0 max(0, $−m+ 1)
VIII 1 + min($,m) min($,m) min($,m) 1 + min($,m)

Table 3.5
Table of interactions depending on the matrix equation type (rows) and coefficients (columns).

Note that the modified matrix tuples eB, eC according to the matrix equation variant, see Table 3.4,
need to be used.
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Proof. The proof proceeds by formulating the matrix equation corresponding to
an entry in Table 3.5 and applying Proposition A.1, which states the kernel dimensions
of all matrix equations needed in this process. To illustrate the process, we will
prove the entries of column “R#Rm”. The following obvious relations are needed:
FmGT

m = Jm(0)T and FT
mGm = Jm+1(0).

For B = R#, C = Rm, that is the interaction of two right singular tuples, Equa-
tion I becomes JT

# (0)X − XJT
m(0) = 0. Here, and in the following, the transposes

of Jordan blocks can be removed by applying flip matrices. According to Proposi-
tion A.1.1, the kernel of this matrix equation (and hence the interaction) is min($,m).
Equation II becomes JT

# (0)XFm −XGm = 0 and – according to Proposition A.1.2a
– its kernel dimension is 0. Equation III becomes JT

# (0)XJT
m(0) − X = 0 and –

according to Proposition A.1.3 – its kernel dimension is 0. Equation IV becomes
F#XJT

m(0)−G#X = 0 and – according to Proposition A.1.4a – its kernel dimension is
m. Equation V becomes F#XFm−G#XGm = 0 and – according to Proposition A.1.5a

– its kernel dimension is max(0,m− $). Equation VI becomes

{
F#X −G#Y = 0
XFm − Y Gm = 0

and – according to Proposition A.1.6a – its kernel dimension is max(0,m−$−1). Equa-

tion VII becomes

{
F#X − Y Fm = 0
G#X − Y Gm = 0

and – according to Proposition A.1.7a – its

kernel dimension is max(0,m− $+1). Equation VIII becomes

{
F#X − Y Fm = 0
GT

# Y −XGT
m = 0

and – according to Proposition A.1.8a – its kernel dimension is 1 + min($,m).

Example 3.8. As another example on how to use Tables 3.3–3.5, consider the
tuples

R#(2, 3) = (I, F#, G
T
# ), Lm(1, 3) = (FT

m, I, GT
m)

with sign tuple s = (−1,+1,+1). The first step is to standardize the tuples so that
they conform to the conventions of the tables. We get rid of the shared third position
by appending a fourth component with positive sign and moving GT

m to the fourth
position. The standardized form of the tuples is

B = R#(2, 3) = (I, F#, G
T
# , I), C = Lm(1, 4) = (FT

m, I, I, GT
m)

with sign tuple (−1,+1,+1,+1). According to Table 3.2, the corresponding matrix
equation is type II variant 2. Table 3.4 reveals that variant 2 implies the use of
L#Lm instead of R#Lm. Finally, Table 3.5 produces the interaction $+1 for Equation
II with these modified matrix tuples.

3.4. Interactions between Jordan and singular tuples. After having dis-
cussed interactions between Jordan tuples and between singular tuples in Sections 3.2
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and 3.3, respectively, it remains to discuss the mixed case: interactions between Jor-
dan and singular tuples.

Similarly to the case of interactions between singular tuples, there are several
types of reduced matrix equations that may result, depending on the relative place-
ment of the coefficients as well as the sign tuple. Similarly as in Section 3.3 we can
exclude shared positions and – since the Jordan tuple contains only one nontrivial
coefficient J – restrict ourselves to p = 3. For p = 3, there are six possible relative
placements, listed in the first row of Table 3.6, and there are eight possible sign com-
binations. The reduced matrix equations are of types I – IV in Table 3.3 with the
replacements B̃1B̃2 = J and C̃1C̃2 = J . Table 3.6 shows the reduced matrix equation

Signs
(J, I, I )

(I,C1,C2)

(I,B1,B2)

(J, I, I )

( I, J, I )

(C1,I,C2)

(B1,I,B2)

( I, J, I )

( I, I, J)

(C1,C2,I )

(B1,B2,I )

( I, I, J)

+++ I:3 I:2 I:1 I:1 I:3 I:2

++- II:1 IV:1 II:1 IV:1 III:3 III:2

+-+ II:1 IV:1 III:1 III:2 II:1 IV:1

+-- III:1 III:2 II:1 IV:1 II:1 IV:1

-++ III:1 III:2 II:1 IV:1 II:1 IV:1

-+- II:1 IV:1 III:1 III:2 II:1 IV:1

--+ II:1 IV:1 II:1 IV:1 III:1 III:1

--- I:1 I:1 I:3 I:2 I:1 I:1
Table 3.6

Given singular/Jordan tuples B, C and a sign tuple s = (±1,±1,±1), this table gives the cor-
responding reduced matrix equation and variant.

and variant for each case of a regular tuple interacting with a singular tuple and vice
versa. Note that the block J is either Jm(λ) with λ $= 0 (corresponding to Jm(k))
or Jm(0) (corresponding to Nm(k)). Before the interactions can be obtained, the
coefficients and tuples need to be adjusted according to Table 3.7. Finally, Table 3.8

Variant J C̃1 C̃2 J#Rm J#Lm N#Rm N#Lm

1 J C1 C2 J#Rm J#Lm N#Rm N#Lm

3 J C2 C1 J#Lm J#Rm N#Lm N#Rm

Variant B̃1 B̃2 J R#Jm L#Jm R#Nm L#Nm

1 B1 B2 J R#Jm L#Jm R#Nm L#Nm

2 B2 B1 J L#Jm R#Jm L#Nm R#Nm

Table 3.7
Coefficient relation table. Depending on the matrix equation variant, this table states how the

coefficients and tuples need to be modified before using Table 3.8.
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gives the interaction between a Jordan and a modified singular tuple. The entries of
this table follow from Proposition A.1 as in the proof of Theorem 3.7.

Equation (Modified) Matrix Tuples
Type J#Rm N#Rm J#Lm N#Lm

I 0 min($,m) 0 min($,m+ 1)
II 0 0 $ $
III 0 0 0 0

Equation (Modified) Matrix Tuples
Type R#Jm R#Nm L#Jm L#Nm

I 0 min($,m) 0 min($ + 1,m)
III 0 0 0 0
IV m m 0 0

Table 3.8
Table of interactions depending on matrix equation type (rows) and modified tuples (columns).

Again we use an example to illustrate how the interaction between a singular and
a Jordan tuple can be obtained from the tables above.

Example 3.9. Consider s = (−1,−1,+1) and

B = R#(1, 3) = (F#, I, G#), C = Nm(2) = (I, Jm(0), I),

corresponding to row “--+” and column 5 in Table 3.6. The corresponding entry
states IV:1, referring to equation type IV variant 1. In variant 1, no tuples need to
be modified and hence row “IV” and column “R#Nm” of Table 3.8 provides rightaway
the interaction between both tuples: m.

As mentioned in the introduction, the generic canonical form of a rectangular
matrix pencil (p = 2, s = (+1,−1), n2 $= n1) solely consists of singular blocks.
Tables 3.6–3.8 allow to extend this statement to general p.

Theorem 3.10. Let A = (A1, . . . , Ap) be a matrix tuple of the form (1.2). If the
dimensions n1, . . . , np do not satisfy

∑

sk=1

(nk⊕1 − nk) =
∑

sk=−1

(nk − nk⊕1) (3.9)

then the generic canonical form of A solely consists of singular tuples.

Proof. Assume that A does not satisfy (3.9) but has a Jordan tuple J# (or N#)
with $ ≥ 1. Since (3.9) does not hold, the canonical form of A must contain at least
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one singular tuple C. A necessary condition for the canonical form to be generic is
that there is no mutual interaction between J# and any singular block C:

d(J#, C) + d(C,J#) = 0. (3.10)

This can be seen from the fact that (3.6) implies c(J#, C) + c(C,J#) = d(J#, C) +
d(C,J#). Hence, if (3.10) was violated, the cointeraction between J# and C (or vice
versa) would not vanish and the canonical form cannot be generic.

If J# and C do not share a position, we can apply a cyclic permutation of the
coefficients, which does not affect either interaction, such that the standardized Jordan
and singular tuples take the form (J, I, I) and (I, C1, C2), respectively. This setting
corresponds to columns 2 and 3 in Table 3.6. For the reduced sign tuples ++-, +-+,
-+-, and --+, the mutual interaction is $ according to rows II and IV of Table 3.8.
Hence, for (3.10) to hold the reduced sign tuple must be of the form +++, +--, ---,
or -++. In all these cases, the dimensions m1, . . . ,mp of the corresponding singular
tuple satisfy

∑

sk=1

(mk⊕1 −mk) =
∑

sk=−1

(mk −mk⊕1). (3.11)

To see this, first note that both C1 and C2 have the same sign in all of the specified
sign tuples. Thus, one of the sums in (3.11) contains nothing but zeros, while the
other sum contains one +1, one −1 and otherwise only zeros.

If J# and C share a position, we may assume without loss of generality that the
tuples take the form (J, I) and (C1, C2). Applying Tables 3.6 and 3.8 to the expanded
tuples shows that the mutual interaction is $ for the sign tuples +-, -+, and 0 for 0
for the sign tuples ++ and --. Note that the singular tuples satisfy (3.11) in the latter
case.

In summary, all singular tuples that are admissible in the sense of (3.10) sat-
isfy (3.11). Hence, when we remove these singular tuples from the canonical form of
A then the dimensions of the resulting regular matrix tuple still violate (3.9). This is
a contradiction as the coefficients of a regular tuple must be square, for which (3.9)
is trivially satisfied.

Note that (3.9) is necessary but generally not sufficient in order to guarantee that
A has a non-vanishing regular part. The following definition is motivated by the fact
that (3.9) is satisfied if and only if the corresponding block cyclic embedding is a
square matrix pencil, see for example [17].

Definition 3.11. A matrix tuple of the form (1.2) is called squarish if its
dimension and sign tuples satisfy (3.9).
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3.5. Software for counting the codimension. The results from this section
have been incorporated into a Python script codimension.py that can be used to
count and verify the codimension of a tuple in canonical form. The script is available at
http://www.sam.math.ethz.ch/NLAgroup/codimensions.html and http://www8.

cs.umu.se/~larsk/codimension.py. The canonical structure needs to be specified
on input by a text file. For example, for s = (+1,−1,+1,−1) and A = J2(1) ⊕
J2(1)⊕ L1(1, 3)⊕ L1(1, 4), this text file should take the following form:

s = (+1,-1,+1,-1)

J(2,1)

J(2,1)

L(1,1,3)

L(1,1,4)

The script then closely follows the procedure described above to compute the in-
teractions between all canonical tuples symbolically. The sum of these interactions
yields the dimension of the kernel of the linear matrix operator (3.2) and hence the
codimension of orbit(A). Additionally, the script produces a Matlab function that
constructs the matrix belonging to the Kroneckerized linear matrix operator (3.2).
The kernel dimension of this matrix equals the kernel dimension of the linear oper-
ator; this automatically generated Matlab function can therefore be used to verify
the codimension of A numerically.

4. The special case s = (+1, . . . ,+1). In principle, the results of Section 3
allow us to check whether a given canonical form is generic, simply by verifying that
its codimension is zero. In practice, however, the technical complexity of the current
formulation of these results gives little hope for a compact and elegant description of
all generic canonical forms in the general case. The aim of this section is to point out
special cases for which generic canonical forms can be obtained quite conveniently
from our results. In particular, we will focus on the case s = (+1, . . . ,+1).

4.1. Contragredient equivalence: p = 2, s = (+1,+1). Canonical forms for
a product of two matrices, i.e., p = 2 and s = (+1,+1), have received some attention
in the literature, see [12, 14]. In this special case, the equivalence relation (1.3) is
sometimes called contragredient equivalence of (A1, A2). The canonical form under
contragredient equivalence is an immediate corollary of Theorem 2.1.

Corollary 4.1. Consider a matrix pair (A1, A2) with A1 ∈ Cn2×n1 and A2 ∈
Cn1×n2 . Then there are invertible matrices P1 ∈ Cn1×n1 , P2 ∈ Cn2×n2 such that
(P−1

2 A1P1, P
−1
1 A2P2) can be written as the direct sum of pairs taking one of the

following forms:

(i) Jm(λ) = (Jm(λ), I) with λ ∈ C \ {0}, (nonzero Jordan pair)
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(ii) Nm = (Jm(0), I), (zero Jordan pair)
(iii) Rm = (Fm, GT

m), (right singular pair)
(iv) Lm = (FT

m, Gm). (left singular pair)

This decomposition is uniquely determined up to permutation of the summands.

In the following, we count codimensions of the orbit of the matrix pair (A1, A2)
under contragredient equivalence using the general results from Section 3. For this
purpose, we represent the number and sizes of the canonical pairs as follows.

• For each zero or nonzero eigenvalue λ, let q1(λ) ≥ q2(λ) ≥ q3(λ) ≥ · · · denote
the decreasingly ordered sizes of its Jordan pairs.

• Let ε1 ≥ ε2 ≥ ε3 ≥ · · · denote the decreasingly ordered sizes of the right
singular pairs.

• Let η1 ≥ η2 ≥ η3 ≥ · · · denote the decreasingly ordered sizes of the left
singular pairs.

Then the codimension count is

ctotal = cJordan + csingular + cJordan,singular,

with the cJordan, csingular and cJordan,singular depending on qi, γi, εi, ηi as explained below.

Interactions between Jordan pairs. The results in Section 3.2, see in par-
ticular (3.8), imply that the total (co)interaction between Jordan pairs belonging to
zero and nonzero eigenvalues is given by

cJordan =
∑

λ

(q1(λ) + 3q2(λ) + 5q3(λ) + · · · ) . (4.1)

Interactions between singular pairs. Suppose that B, C are singular pairs,
i.e., B ∈ {Rεi ,Lηi} and C ∈ {Rεj ,Lηj}. According to the procedure in Section 3.3,
we first expand these pairs into tuples of length p = 4:

B = (B1, I, B2, I), C = (I, C1, I, C2), s = (+1,+1,+1,+1).

Inspecting Table 3.2 we obtain matrix equation VIII variant 1 from the second col-
umn in row “++++”. Since no modification of the tuples is needed for variant 1, the
interaction between B and C can be directly read off from row “VIII” of Table 3.5:

d(Rεi ,Rεj ) = 1 +min(εi, εj), d(Rεi ,Lηj ) = min(εi, ηj),
d(Lηi ,Rεj ) = min(ηi, εj), d(Lηi ,Lηj ) = 1 +min(ηi, ηj).

The cointeractions are obtained by accounting for the differences among dimensions
according to (3.6):

c(Rεi ,Rεj ) = min(εi, εj), c(Rεi ,Lηj ) = 1 +min(εi, ηj),
c(Lηi ,Rεj ) = 1 +min(ηi, εj), c(Lηi ,Lηj ) = min(ηi, ηj).
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Hence, the sum of all cointeractions between right singular pairs is

cright = ε1 + 3ε2 + 5ε3 + · · · ,

the sum of all cointeractions between left singular pairs is

cleft = η1 + 3η2 + 5η3 + · · · , (4.2)

and the sum of all cointeraction between left and right singular pairs as well as right
and left singular pairs is

cleft,right = 2
∑

i,j

(1 + min{εi, ηj}). (4.3)

In summary, the total cointeraction between singular pairs is csingular = cright + cleft +
cleft,right.

Interactions between Jordan and singular pairs. It remains to discuss the
case of interactions between Jordan and singular pairs. Suppose that B ∈ {Jq,Nq}
is a Jordan pair and C ∈ {Rεj ,Lηj} is a singular pair. Expansion into the case p = 3
yields the tuples

B = (J, I, I), C = (I, C1, C2), s = (+1,+1,+1).

This corresponds to equation type I variant 3, see column 2 in row “+++” of Table 3.6.

The case of a singular pair B and a Jordan pair C is expanded into

B = (B1, I, B2), C = (I, J, I), s = (+1,+1,+1),

which corresponds to equation type I variant 1, see column 5 in row “+++” of Table 3.6.

In the case of a nonzero eigenvalue, for a Jordan pair Jq, Table 3.8 reveals zero
(co)interaction. In the case of a zero eigenvalue, for a Jordan pair Nq, the combined
(co)interactions are given by

c(Nq,Rεj ) + c(Rεj ,Nq) = min(q, εj + 1) + min(εj , q),

c(Nq,Lηj ) + c(Lηj ,Nq) = min(q, ηj) + min(ηj + 1, q).

Hence, the total (co)interaction between Jordan pairs and singular pairs (and vice
versa) is

cJordan,singular =
∑

i,j

min{2qi(0), 2εj + 1}+
∑

i,j

min{2qi(0), 2ηj + 1}. (4.4)
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The generic canonical form of (A1, A2) under contragredient equiva-
lence. In the following, we derive the generic canonical form for a matrix pair (A1, A2)
with s = (+1,+1) using the results presented above.

Consider the case n2 < n1. This directly implies that the canonical form contains
at least n1−n2 left singular pairs Lηi accounting for the difference in the dimensions.
An inspection of (4.2) reveals η1 = · · · = ηn1−n2 = 0 in the generic case. By (4.3),
the generic canonical form may not contain any right singular blocks and hence,
using (4.1) and (4.4), the rest must be composed of Jordan pairs J1(λi) belonging to
n2 mutually different nonzero eigenvalues λi. This yields ctotal = n2; note, however,
that the codimension n2 is compensated by the fact that the n2 eigenvalues λi are
fixed for orbits. In summary, the generic canonical form is given by

J1(λ1)⊕ · · ·⊕ J1(λn2)⊕ L0 ⊕ · · ·⊕ L0︸ ︷︷ ︸
n1−n2 times

.

Similarly in the case n1 < n2, the generic canonical form is given by

R0 ⊕ · · ·⊕R0︸ ︷︷ ︸
n2−n1 times

⊕J1(λ1)⊕ · · ·⊕ J1(λn1).

4.2. The generic canonical form for general p. In the following, we derive
the generic canonical form for a matrix tuple (A1, . . . , Ap) with s = (+1, . . . ,+1).
With a few exceptions the arguments are quite similar to Section 4.1; we will therefore
keep the discussion somewhat brief.

First, it is clear that the generic canonical form may only contain 1× 1 Jordan
tuples and singular tuples of the form R0 or L0. Moreover, the following lemma
imposes some constraints on the positions of the singular blocks.

Lemma 4.2. Let s = (+1, . . . ,+1). Then

1. c
(
R0(k1, k2),L0(l1, l2)

)
+ c

(
L0(l1, l2),R0(k1, k2)

)
= 0

⇔ k1 < k2 ≤ l1 < l2 or l1 < l2 ≤ k1 < k2 or k1 < l1 < l2 < k2;
2. c

(
R0(k1, k2),R0(l1, l2)

)
+ c

(
R0(l1, l2),R0(k1, k2)

)
= 0

⇔ k1 ≤ l1 < l2 ≤ k2 or l1 ≤ k1 < k2 ≤ l2;
3. c

(
L0(k1, k2),L0(l1, l2)

)
+ c

(
L0(l1, l2),L0(k1, k2)

)
= 0

⇔ k1 ≤ l1 < l2 ≤ k2 or l1 ≤ k1 < k2 ≤ l2 or k1 < k2 < l1 < l2 or
l1 < l2 < k1 < k2.

Proof. By the reduction technique discussed in Section 3.3, we may assume with-
out loss of generality that p = 4. Now, to verify the statement of the lemma, only
a finite number of possible block positions need to be verified. This verification has
been performed using the software described in Section 3.5. The obtained results,
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which can be downloaded from the web page of the software, confirm the statement
of the lemma.

From Lemma 4.2.1 it immediately follows that there are nmin = min(n1, . . . , np)
Jordan tuples J1(λi) belonging to mutually different eigenvalues λi. By removing
these Jordan tuples we may assume nmin = 0 for the rest of this section.

To illustrate the general procedure for obtaining the generic canonical structure,
we consider the example

n = (4, 3, 0, 2, 3, 1). (4.5)

A cyclic permutation of the coefficients (which does not change the codimension)
allows us to assume n1 = 0:

n ← (0, 2, 3, 1, 4, 3). (4.6)

Having n1 = 0 excludes right singular blocks, as the first dimension of R0(k1, k2)
is always 1. Hence, the generic canonical form solely consists of left singular blocks
L0(k1, k2), whose dimensions are

(m1, . . . ,mp) =
(
0, . . . , 0︸ ︷︷ ︸

k1

, 1, . . . , 1︸ ︷︷ ︸
k2−k1

, 0, . . . , 0︸ ︷︷ ︸
p−k2

)
. (4.7)

To determine the canonical structure we successively decompose the dimension vector
n into vectors of the form (4.7). Lemma 4.2 imposes some constraints on these 0/1
vectors. Any two 0/1 vectors must either be nested or at least one position apart
from each other. In particular, this implies that the decomposition of n contains a
string of consecutive 1s for any sequence of positive integers contained in n. Applied
to our example (4.6) this means that the decomposition will contain (0, 1, 1, 1, 1, 1),
which corresponds to L0(1, 6). We update n ← (0, 1, 2, 0, 3, 2) and apply the same
procedure to the longest sequence(s) of positive integers contained in n. Continuing
this process yields the following scheme:

Step n1 n2 n3 n4 n5 n6 k1 k2 canonical tuple

1 0 2 3 1 4 3 1 6 ! L0(1, 6)
2 0 1 2 0 3 2 1 3 ! L0(1, 3)
3 0 0 1 0 3 2 4 6 ! L0(4, 6)
4 0 0 1 0 2 1 4 6 ! L0(4, 6)
5 0 0 1 0 1 0 2 3 ! L0(2, 3)
6 0 0 0 0 1 0 4 5 ! L0(4, 5)

0 0 0 0 0 0

The general procedure for n = (n1, . . . , np) with n1 = 0 is as follows.

While n $= 0
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1. Find a longest sequence nk1+1, nk1+2, . . . , nk2 of positive integers.
2. Add the left singular tuples L0(k1, k2) to the generic canonical form.
3. Update nk1+1 ← nk1+1 − 1, nk1+2 ← nk1+2 − 1, . . . , nk2 ← nk2 − 1.

End While

It is easy to check that any two tuples L0(k1, k2), L0(k′1, k
′
2) generated by this proce-

dure satisfy the conditions of Lemma 4.2.3. Therefore the obtained canonical structure
is generic. Once the procedure has been completed, we need to apply the inverse of
the cyclic permutation, which was used to guarantee n1 = 0, to the canonical tu-
ples. This process is straightforward and shall only be illustrated with our example.
The generic canonical structures of the tuples belonging to the permuted and original
dimensions (4.6) and (4.5), respectively, take the following form:

(0, 2, 3, 1, 4, 3)

(FT
0 , I1, I1, I1, I1, G0)

⊕(FT
0 , I1, G0, I0, I0, I0)

⊕(I0, I0, I0, F
T
0 , I1, G0)

⊕(I0, I0, I0, F
T
0 , I1, G0)

⊕(I0, F
T
0 , G0, I0, I0, I0)

⊕(I0, I0, I0, F
T
0 , G0, I0)

!

(4, 3, 0, 2, 3, 1)

(I1, G0, F
T
0 , I1, I1, I1)

⊕(I0, I0, F
T
0 , I1, G0, I0)

⊕(I1, G0, I0, I0, I0, F
T
0 )

⊕(I1, G0, I0, I0, I0, F
T
0 )

⊕(I0, I0, I0, F
T
0 , G0, I0)

⊕(G0, I0, I0, I0, I0, F
T
0 )

=̂

R0(2, 3)

⊕L0(3, 5)

⊕R0(2, 6)

⊕R0(2, 6)

⊕L0(4, 5)

⊕R0(1, 6)

As already mentioned above, a cyclic permutation will not change the codimension.
Indeed, any two singular tuples fromR0(2, 3)⊕L0(3, 5)⊕R0(2, 6)⊕R0(2, 6)⊕L0(4, 5)⊕
R0(1, 6) satisfy the conditions of Lemma 4.2 and the canonical form is therefore still
of codimension 0.

5. Orthogonal reduction to square factors. Numerical algorithms, such as
the periodic QZ algorithm [1, 11], for solving the periodic eigenvalue problem asso-
ciated with a matrix tuple are not able to handle nonsquare coefficients directly. To
circumvent this restriction, we develop a numerically stable procedure for extract-
ing the square, generically regular part from a tuple. After having performed this
reduction, existing algorithms can be applied to the extracted square part.

For s = (+1, . . . ,+1), Section 4.2 shows that the generically regular square part
has order nmin = min{n1, . . . , np}. In general, this is not the case. In particular if
the matrix tuple is not squarish in the sense of (3.9) then Theorem 3.10 shows that
the generically regular square part has order 0 independent of nmin. To avoid this
degenerate situation, we will assume that the matrix tuple is squarish:

∑

sk=+1

(nk⊕1 − nk) =
∑

sk=−1

(nk − nk⊕1). (5.1)
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Unfortunately, as we will see in Example 5.3 below, even this assumption does not
imply that the generically regular square part has order nmin.

The reduction procedure to be described in the following has two stages, aimed
at reducing factors with sk = 1 and sk = −1, respectively, to square form.

Stage 1. To illustrate the idea of Stage 1 of the proposed extraction procedure,
we will first discuss a rather detailed example.

Example 5.1. Consider a matrix tuple for p = 6 with dimension tuple n =
(3, 5, 4, 5, 5, 2) and sign tuple s = (+1,−1,+1,−1,+1,−1). Then the generalized
product A−1

6 A5A
−1
4 A3A

−1
2 A1 takes the shape pictured below.

0)

−1 −1 −1
n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

The first step of the reduction procedure consists of compressing the n2 = 5 rows
of A1 using a QR factorization, which results in an upper trapezoidal matrix with a
generically nonsingular r2 × r1 block in the upper left corner (r1 = r2 = 3).

−1 −1 −1
n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

To obtain an equivalence transformation of the entire tuple, we have to pre-multiply
A2 by the orthogonal matrix from the QR factorization. Immediately after this update,
the two (n2 − r2) bottom rows of A2 are compressed by an RQ factorization and A3

is updated correspondingly.

1)

−1 −1 −1
n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

The thick lines illustrate the 2× 2 block upper triangular structure of each block of A.
The tuple corresponding to the upper left block has the dimensions r = (3, 3, 2, 5, 5, 2)
while the lower right block has the dimension n−r = (0, 2, 2, 0, 0, 0). Note that some of
the subblocks are degenerate in the sense of having one dimension equal to zero. Only
the upper left tuple may contain any regular part and is therefore processed further.
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We continue compressing the two leading columns of A3 to a 2×2 matrix using a QR
factorization. After the corresponding update of A4, we compress the three bottom
rows of A3 using an RQ factorization.

2)

−1 −1 −1
n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

Note that the remaining unreduced block tuple has dimensions (3, 3, 2, 2, 2, 2) and all
its coefficients with sk = 1 are square.

It is instructive to describe the procedure in Example 5.1 purely in terms of
integer operations on the dimension vector n = (n1, . . . , np). For this purpose, we
define

∆k =

{
nk⊕1 − nk, if sk = 1,
nk − nk⊕1, if sk = −1,

∆+ =
∑

sk=+1

∆k, ∆− =
∑

sk=−1

∆k. (5.2)

Lemma 5.2. ∆+ = −∆−.

Proof. We have

∆ =
p∑

k=1

(nk⊕1 − nk) =
p∑

k=1

nk⊕1 −
p∑

k=1

nk = 0,

which, combined with ∆+ +∆− = ∆, implies the result.

For a squarish tuple, (5.1) is equivalent to ∆+ = ∆−, which combined with
Lemma 5.2 implies

∆+ = ∆− = 0. (5.3)

Example 5.1 ctd.. To interpret the reductions performed in Example 5.1 as
operations on the dimensions, let r = (r1, . . . , rp) denote the dimensions of the unre-
duced tuple which remains to be processed.

0) Initially, rk = nk and ∆(0)
k = ∆k with ∆k defined in (5.2). This initial

configuration is shown in Figure 5.1 (0).
1) In the first step of the reduction procedure, A1 is reduced to a square matrix:

r2 ← r2 −∆(0)
1 = r1 and ∆(1)

1 = 0. A ∆(0)
1 ×∆(0)

1 diagonal block is split off
from A2: r3 ← r3 −∆(0)

1 . This does not affect ∆(0)
2 but ∆(0)

3 increases to

∆(1)
3 = r4 − r3 = n4 − (n3 −∆1) = ∆1 +∆3. (5.4)
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0)

k 1 2 3 4 5 6
sk + − + − + −

rk 3 5 4 5 5 2
rk⊕1 5 4 5 5 2 3

∆(0)
k 2 1 1 0 −3 −1

nk − rk 0 0 0 0 0 0

1)

k 1 2 3 4 5 6
sk + − + − + −

rk 3 3 2 5 5 2
rk⊕1 3 2 5 5 2 3

∆(1)
k 0 1 3 0 −3 −1

nk − rk 0 2 2 0 0 0

2)

k 1 2 3 4 5 6
sk + − + − + −

rk 3 3 2 3 2 2
rk⊕1 3 2 2 3 2 3

∆(2)
k 0 1 0 0 0 −1

nk − rk 0 2 2 3 3 0

Fig. 5.1. Table of dimension vectors and indices belonging to Example 5.1: 0) initial table, 1)
after first reduction step, 2) after second reduction step.

The configuration after the first reduction step is shown in Figure 5.1 (1),
with the modified quantities in bold face.

2) The next step consists of reducing A3 to a square matrix (r4 ← r4−∆(1)
3 = r3

and ∆(2)
3 = 0) and splitting off a correspondingly sized diagonal block from

A4 (r5 ← r5 −∆(1)
3 ). Note that ∆(1)

5 increases to

∆(2)
5 = r6 − r5 = n6 − (n5 −∆(1)

3 ) = ∆1 +∆3 +∆5, (5.5)

using (5.4). The configuration after the second reduction step is shown in
Figure 5.1 (2).

At this point the reduction of Stage 1 is complete as ∆(2)
k = 0 for all k with sk = +1.

Let us generalize the procedure described in Example 5.1. Suppose t−1 reduction
steps have been successfully completed and our aim is to reduce the next factor Akt

with skt = +1 to a square matrix. Letting kt+1 denote the smallest index with
kt+1 > kt and skt+1 = +1, the corresponding dimension table takes the following
form:

k · · · kt kt + 1 . . . kt+1 − 1 kt+1 · · ·
sk · · · + − . . . − + · · ·

rk · · · rkt rkt+1 · · · rkt+1−1 rkt+1 · · ·
rk⊕1 · · · rkt+1 rkt+2 · · · rkt+1 rkt+1⊕1 · · ·

∆(t−1)
k · · · ∆(t−1)

kt
∆(t−1)

kt+1 · · · ∆(t−1)
kt+1−1 ∆(t−1)

kt+1
· · ·
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Provided that ∆(t−1)
kt

≥ 0 the reduction step t consists of a QR factorization of Akt

and RQ factorizations of Akt+1, . . . , Akt+1−1, affecting the dimensions as follows:

rkt+1 ← rkt+1 −∆(t−1)
kt

= rkt ,

rkt+2 ← rkt+2 −∆(t−1)
kt

,
...

rkt+1 ← rkt+1 −∆(t−1)
kt

,

∆(t)
k =






0, if k = kt,

∆(t−1)
kt+1

+∆(t−1)
kt

, if k = kt+1,

∆(t−1)
kt+1 , otherwise.

(5.6)
Two things can go wrong at this point.

Breakdown 1 It is not admissible to perform the subtraction with ∆(t−1)
kt

on the

left side of (5.6) if rmin < ∆(t−1)
kt

for rmin = min{rkt+2, . . . , rkt+1}. However,

in this case there is no regular block left. More specifically, if rmin ≤ ∆(t−1)
kt

we can use RQ factorizations to split off rmin × rmin diagonal blocks from
Akt+1, . . . , Akt+1−1 such that the remaining tuple has at least one dimension
zero and is therefore singular.

Breakdown 2 When ∆(t)
kt+1

< 0 after the update (5.6), the subsequent reduction
step cannot be performed. This situation can be avoided as follows. Define

σk :=
∑

{∆# : $ ≤ k, s# = +1}. (5.7)

Then (5.6) implies σkt = ∆(t)
kt

by induction. Let k′ be such that σk′ = min σk.
If σk′ < 0 we perform the following cyclic permutation

π : (1, . . . , k′ − 1, k′, k′ + 1, . . . , p) +→ (k′ + 1, . . . , p, 1, . . . , k′ − 1, k′)

to the factors:

Ãj = Aπ(j), s̃j = sπ(j).

For the permuted product, σp becomes minimal among all σk. Note that (5.3)
implies σp = 0 and therefore all σk become nonnegative:

∆(t)
kt

= σkt ≥ 0. (5.8)

In the following, we will assume that the cyclic permutation described above has
already been performed and (5.8) is satisfied. Let k1, . . . , kpl denote all k with sk =
+1. Provided that Breakdown 1 does not occur, pl − 1 reduction steps (5.6) yield
∆(pl−1)

k1
= · · · = ∆(pl−1)

kpl−1
= 0. In addition, (5.3) implies σp = ∆(pl−1)

kpl
= 0. In other

words, all factors Ak with sk = +1 have been reduced to square form.

Algorithm 1 realizes the procedure described above.
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Algorithm 1 Orthogonal reduction to square factors (Stage 1)

Require: Matrix/dimension/sign tuples (A1, . . . , Ap), (n1, . . . , np), (s1, . . . , sp) satisfy-

ing (5.1), (5.8).

1: r ← n, ∆ ← 0.

2: for k ← 1, . . . , p− 1 do

3: if sk = 1 then

4: Partition Ak =
h

A
(k)
1 A

(k)
2

i

with A
(k)
1 of size rk⊕1 × rk.

5: Compute QR factorization A
(k)
1 = QkR.

6: Update Ak ← QH
k Ak =

"

A
(k)
11 A

(k)
12

0 A
(k)
22

#

with A
(k)
11 of size rk × rk.

7: ∆ ← rk⊕1 − rk, rk⊕1 ← rk.

8: else if sk = −1 then

9: if ∆ > rk⊕1 then

10: No regular part, exit the algorithm (Breakdown 1).

11: end if

12: Partition Ak =

"

A
(k)
1

A
(k)
2

#

with A
(k)
1 of size rk × rk⊕1.

13: Compute RQ factorization A
(k)
2 = RQH

k .

14: Update Ak ← AkQk =

"

A
(k)
11 A

(k)
12

0 A
(k)
22

#

with A
(k)
11 of size rk × (rk⊕1 −∆).

15: rk⊕1 ← rk⊕1 −∆.

16: end if

17: Update Ak⊕1 ←

(

Ak⊕1Qk, if sk⊕1 = 1,

QH
k Ak⊕1, if sk⊕1 = −1.

18: end for

Stage 2. Let (A1, . . . , Ap) be the tuple obtained from a successful completion of
Stage 1, i.e.,

Ak =

[
A(k)

11 A(k)
12

0 A(k)
22

]

, A(k)
11 ∈ C

rk⊕1×rk

with rk⊕1 = rk for sk = +1. To reduce the factors with sk = −1 to square form a
process very similar to Algorithm 1 can be used. Instead of giving a formal description
we feel that it is sufficient to illustrate the algorithm for two examples.

Example 5.1 ctd.. Stage 1 has resulted in r = (3, 3, 2, 2, 2, 2):

−1 −1 −1
n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1
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Stage 2 proceeds by applying an RQ factorization to A6, annihilating its first column.
After updating A1, we (re)compute its QR decomposition and obtain the following
picture.

−1 −1 −1
n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

Hence, a singular tuple of dimensions (1, 1, 0, 0, 0, 0) splits off at the top left corner
and the remaining middle tuple is square and of order 2.

Example 5.3. Finally, Figure 5.2 illustrates Stages 1 and 2 for a matrix tuple
with n = (3, 5, 4, 3, 5, 4) and s = (+1,−1,−1,−1,+1,+1). While nmin = 3, the
obtained reduced square part has only order 1.

6. Conclusions and Open Questions. In the first part of the paper, we have
provided formulas and software for computing the codimension of a generalized matrix
product in canonical form. These formulas have been used to describe and prove the
generic canonical form in the special case of a standard matrix product. In the most
general case, however, the complexity of the formulas does not admit a compact
and elegant description of the generic canonical form. It is presently not clear to us
whether there is an algebraic framework admitting such a description.

In the second part of the paper, we have – motivated by the results from the first
part – derived an orthogonal reduction algorithm for extracting square submatrices
from a generalized matrix product with rectangular factors. A product with square
coefficients is generically regular and admits the application of existing numerical
algorithms and software. The described algorithm is part of a larger effort to develop
a software package for computing eigenvalues and deflating subspaces of generalized
matrix products [9, 10].

Appendix A. Kernel dimensions of singular matrix equations.

Proposition A.1. Let the matrices Jm(λ), Fm, Gm be defined as in (1.1). Then
the following statements hold.

1. dim{X : J#(λ)X −XJm(λ) = 0} = min{$,m};
2. (a) dim{X : J#(λ)XFm −XGm = 0} = 0,

(b) dim{X : J#(λ)XFT
m −XGT

m = 0} = $;
3. dim{X : J#(0)XJm(λ)−X = 0} = 0 for every λ ∈ C;
4. (a) dim{X : F#XJm(λ) −G#X = 0} = m,

(b) dim{X : FT
# XJm(λ) −GT

# X = 0} = 0;
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Stage 1
!1 !1

!1 !1 !1

!1 !1 !1

!1

Stage 2
!1 !1

!1 !1 !1

!1

Fig. 5.2. Stages 1 and 2 applied to the generalized matrix product A6A5A
−1
4 A−1

3 A−1
2 A1 in

Example 5.3. Solid arrows indicate rows/columns affected by a reduction and hollow arrows indicate
rows/columns affected by an update.

5. (a) dim{X : F#XGm −G#XFm = 0} = max{0,m− $},
(b) dim{X : F#XGT

m −G#XFT
m = 0} = $+m+ 1,

(c) dim{X : FT
# XGm −GT

# XFm = 0} = 0,
(d) dim{X : FT

# XGT
m −GT

# XFT
m = 0} = max{0, $−m};

6. (a) dim{(X,Y ) : F#X −G#Y = 0, XFm − Y Gm = 0} = max{0,m− $− 1},
(b) dim{(X,Y ) : F#X −G#Y = 0, XFT

m − Y GT
m = 0} = $+m+ 2,

(c) dim{(X,Y ) : FT
# X −GT

# Y = 0, XFm − Y Gm = 0} = 0,
(d) dim{(X,Y ) : FT

# X−GT
# Y = 0, XFT

m−Y GT
m = 0} = max{0, $−m−1};

7. (a) dim{(X,Y ) : F#X − Y Fm = 0, G#X − Y Gm = 0} = max{0,m− $+1},
(b) dim{(X,Y ) : F#X − Y FT

m = 0, G#X − Y GT
m = 0} = $+m,

(c) dim{(X,Y ) : FT
# X − Y Fm = 0, GT

# X − Y Gm = 0} = 0,
(d) dim{(X,Y ) : FT

# X−Y FT
m = 0, GT

# X−Y GT
m = 0} = max{0, $−m+1};
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8. (a) dim{(X,Y ) : F#X − Y Fm = 0, GT
# Y −XGT

m = 0} = 1 +min{$,m},
(b) dim{(X,Y ) : F#X − Y FT

m = 0, GT
# Y −XGm = 0} = min{$,m},

(c) dim{(X,Y ) : FT
# X − Y Fm = 0, G#Y −XGT

m = 0} = min{$,m},
(d) dim{(X,Y ) : FT

# X − Y FT
m = 0, G#Y −XGm = 0} = 1 +min{$,m}.

Proof.

1. This result is well known and can be found, e.g., in the book by Gant-
macher [7].

2. (a) From

J#(λ)XFm −XGm = J#(λ)[X, 0]− [0, X ] = 0

it follows that the last column of X is zero, from which it follows that
the previous last column of X is zero, and so on. Hence, only X = 0 is
an admissible solution.

(b) From

J#(λ)XFT
m −XGT

m = J#(λ)[Xe1, . . . , Xem]− [Xe2, . . . , Xem+1] = 0

it follows that the first column of X can be freely chosen. After this
choice, all the other columns of X are determined: Xe2 = Jm(λ)Xe1,
Xe3 = Jm(λ)Xe2 and so on. Hence, the dimension of the kernel is $,
the number of rows in X .

3. Since the eigenvalues of J#(0) are not the reciprocals of the eigenvalues of
Jm(λ), the Stein equation J#(0)XJm(λ)−X has the unique solution X = 0,
see, e.g., [13].

4. By transposition, the equation F#XJm(λ)−G#X = 0 is turned into JT
m(λ)XTFT

# −
XTGT

# = 0. By the same arguments as for 2b, the dimension of the kernel
is m. Analogously, it follows as in 2a that FT

# XJm(λ) − GT
# X = 0 has the

unique solution X = 0.
5. (a) The equation F#XGm − G#XFm = 0 in terms of the entries xij , i =

1, . . . , $+ 1, j = 1, . . . ,m, is equivalent to

xi+1,1 = 0, i = 1, . . . , $ (A.1)

xi,j − xi+1,j+1 = 0, i = 1, . . . , $, j = 1, . . . ,m− 1 (A.2)

xi,m = 0, i = 1, . . . , $ (A.3)

The equations (A.2) say that X is a Toeplitz matrix, i.e., its entries
are constant along the diagonals. Then (A.1) and (A.3) imply that the
outermost $ diagonals in the top right and in the bottom left parts are
zero. However, X has only $+m diagonals in total and therefore m ≤ $
implies X = 0. If m > $ there remainm−$ diagonals in the middle to be
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freely chosen and hence the dimension of all X satisfying the equation
is m− $.

(b) The equation F#XGT
m − G#XFT

m = 0 in terms of the entries xij , i =
1, . . . , $+ 1, j = 1, . . . ,m+ 1, gives

xi,j+1 − xi+1,j = 0, i = 1, . . . , $, j = 1, . . . ,m,

which is equivalent to saying that X is a Hankel matrix, i.e., X is con-
stant along the antidiagonals. The dimension of all ($ + 1) × (m + 1)
Hankel matrices is $+m+ 1.

(c) From

0 = FT
# XGm −GT

# XFm =

[
0 X
011 0

]
−

[
0 011
X 0

]
,

it follows that the first row/column and the last row/column of X are
zero, which implies that also the second row/column and the previous
last row/column are zero, and so on, eventually yielding X = 0.

(d) This result follows from 5a after transposing the equation.
6. (a) Partition X = [x1, X̃] and Y = [Ỹ , ym]. Then XFm − Y Gm = 0

decomposes into x1 = ym = 0 and X̃ = Ỹ . In other words, X =
X̃Gm−1 and Y = X̃Fm−1. Inserting this into F#X − G#Y = 0 gives
F#X̃Gm−1 −G#X̃Fm−1 = 0 and hence the result follows from 5a.

(b) Partition X = [X̃, xm+1] and Y = [y1, Ỹ ]. Then XFT
m − Y GT

m = X̃ −
Ỹ = 0. In other words, X = X̂GT

m+1 and Y = X̂FT
m+1 with X̂ =

[y1, X̃, xm+1]. Inserting this into F#X − G#Y = 0 gives F#X̂GT
m+1 −

G#X̂FT
m+1 = 0 and hence the result follows from 5b.

(c) This result follows, similarly as 6a, from 5a.
(d) This result follows from 6a after transposing the equation.

7. These results can be found in [3, Sec. 5].

8. (a) PartitionX =

[
X̃ c
r x#+1,m+1

]
, then the equation F#X−Y Fm decom-

poses into Y = X̃ and c = 0. Hence, the second equation GT
# Y −XGT

m

turns into GT
# X̃ −XGT

m. Adding a zero column to GT
# gives [G#, 0] =

JT
#+1(0) and we obtain the equivalent equation JT

#+1(0)
[
X̃
r

]
−XGT

m = 0.

Adding the trivially satisfied equation JT
#+1(0)

[
c

x!+1,m+1

]
− X · 0 = 0

to this equation yields JT
#+1(0)X − XJT

m+1(0) = 0. Applying 1 to the
transpose of the latter equation shows that the dimension of all such X
is min{$+ 1,m+ 1} = 1 +min{$,m}.

(b) The equation GT
# Y − XGm is equivalent to Y = [0, X̃], X =

[
0
X̃

]
for

some $ × m matrix X̃. The first equation F#X − Y FT
m = 0 thus re-

duces to J#(0)T X̃ − X̃Jm(0) = 0. This is equivalent to J#(0)(PflipX̃) −
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(PflipX̃)Jm(0) = 0, where Pflip denotes the flip matrix. Hence, the result
follows from 1.

(c) This result follows from 8b after transposing both equations.
(d) This result follows from 8a after transposing both equations.
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[19] C. Schröder. URV decomposition based structured methods for palindromic and even eigenvalue
problems. Preprint 375, Matheon, March 2007.

[20] V. V. Sergeichuk. Canonical matrices for linear matrix problems. Linear Algebra Appl., 317(1-
3):53–102, 2000.

[21] V. V. Sergeichuk. Computation of canonical matrices for chains and cycles of linear mappings.
Linear Algebra Appl., 376:235–263, 2004.

[22] P. Van Dooren. The Generalized Eigenstructure Problem. PhD thesis, Electronic Sciences
Lab.–USCEE Report 503, Univ. of Southern California, January 1979.

[23] C. F. Van Loan. Generalized Singular Values with Algorithms and Applications. PhD thesis,
The University of Michigan, 1973.

[24] A. Varga. Balancing related methods for minimal realization of periodic systems. Systems
Control Lett., 36(5):339–349, 1999.

[25] A. Varga. Computation of Kronecker-like forms of periodic matrix pairs. In Proc. of Sixteenth
International Symposium on Mathematical Theory of Networks and Systems (MTNS
2004), Leuven, Belgium, 2004.

[26] A. Varga. On solving discrete-time periodic Riccati equations. In Proc. of 16th IFAC World
Congress, Prague, July 3-8, 2005, 2005.

[27] A. Varga and P. Van Dooren. Computational methods for periodic systems - an overview. In
Proc. of IFAC Workshop on Periodic Control Systems, Como, Italy, pages 171–176, 2001.

[28] W. C. Waterhouse. The codimension of singular matrix pairs. Linear Algebra Appl., 57:227–
245, 1984.



Research Reports

No. Authors/Title

10-17 B. K̊agström, L. Karlsson and D. Kressner
Computing codimensions and generic canonical forms for generalized
matrix products

10-16 D. Kressner and C. Tobler
Low-Rank tensor Krylov subspace methods for parametrized linear
systems

10-15 C.J. Gittelson
Representation of Gaussian fields in series with independent coefficients

10-14 R. Hiptmair, J. Li and J. Zou
Convergence analysis of Finite Element Methods for H(div;Ω)-elliptic
interface problems

10-13 M.H. Gutknecht and J.-P.M. Zemke
Eigenvalue computations based on IDR

10-12 H. Brandsmeier, K. Schmidt and Ch. Schwab
A multiscale hp-FEM for 2D photonic crystal band

10-11 V.H. Hoang and C. Schwab
Sparse tensor Galerkin discretizations for parametric and random
parabolic PDEs. I: Analytic regularity and gpc-approximation

10-10 V. Gradinaru, G.A. Hagedorn, A. Joye
Exponentially accurate semiclassical tunneling wave functions in one
dimension

10-09 B. Pentenrieder and C. Schwab
hp-FEM for second moments of elliptic PDEs with stochastic data.
Part 2: Exponential convergence

10-08 B. Pentenrieder and C. Schwab
hp-FEM for second moments of elliptic PDEs with stochastic data.
Part 1: Analytic regularity

10-07 C. Jerez-Hanckes and J.-C. Nédélec
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