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Abstract

A Multiscale generalized hp-Finite Element Method (MSFEM) for time harmonic wave propagation in bands
of locally periodic media of large, but �nite extent, e.g., photonic crystal (PhC) bands, is presented. The
method distinguishes itself by its size robustness, i.e., to achieve a prescribed error its computational e�ort
does not depend on the number of periods. The proposed method shows this property for general incident
�elds, including plane waves incident at a certain angle to the in�nite crystal surface, and at frequencies in
and outside of the bandgap of the PhC. The proposed MSFEM is based on a precomputed problem adapted
multiscale basis. This basis incorporates a set of complex Bloch modes, the eigenfunctions of the in�nite
PhC, which are modulated by macroscopic piecewise polynomials on a macroscopic FE mesh. The multiscale
basis is shown to be e�cient for �nite PhC bands of any size, provided that boundary e�ects are resolved
with a simple macroscopic boundary layer mesh. The MSFEM, constructed by combing the multiscale
basis inside the crystal with some exterior discretisation, is a special case of the Generalised Finite Element
Method (g-FEM). For the rapid evaluation of the matrix entries we introduce a size robust algorithm for
integrals of quasi-periodic micro functions and polynomial macro functions. Size robustness of the present
MSFEM in both, the number of basis functions and the computation time, is veri�ed in extensive numerical
experiments.

Key words: Finite Photonic Crystals, Multiscale FEM, Generalised FEM, Scattering, Helmholtz equation
, Fast Quadrature of quasi-periodic functions.
2010 MSC: 35J05, 35J20, 35J25, 65N30, 78M10, 78M30 , 65D30

1. Introduction

Photonic crystals (PhC) structures [40] are dielectric materials with a periodic �ne structure, i.e., locally
the material turns out to be the periodic repetition of the same dielectric pattern. Light injected into
the PhC is di�racted and refracted by the many dielectric scatterers arranged in the periodic arrays. The
superposition of di�raction and refraction may lead to exceptional properties of the propagation of light,
which occur especially at wavelengths comparable to the periodicity length. The light in PhC structures is
dispersive and its propagation properties depend additionally on the wavelength. Such special properties are
the localisation of light in PhC waveguides, its lossless bending around corners, its slowing down resulting in
high intensities [4, 46] or the negative refraction [62, 57], to name but a few. Several examples of applications
of PhCs can be found in [39, 75]. Periodic optical material are also used at wavelengths much larger or
much smaller than the periodicity length [16] to exploit di�erent physical properties; however, this also poses
di�erent challenges for numerical methods which will not be studied in the present work.

The properties of a particular PhC structure are rarely predictable with experience alone, and therefore
numerical simulations are frequently used. Those simulations have to meet the issue of resolving the waves

Email addresses: holger.brandsmeier@sam.math.ethz.ch (Holger Brandsmeier), kersten.schmidt@inria.fr (Kersten
Schmidt), schwab@math.ethz.ch (Christoph Schwab )

1The research of this author was supported by the European Research Council under grant 247277
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in the small periodic and homogeneous parts of the devices. Most of the PhC devices consist of a large
number of dielectric scatterers each of size comparable to the wavelength. Hence, their simulation by direct
application of standard discretisation schemes like the �nite element method (FEM) or the �nite di�erence
time domain method (FDTD) results in particularly high computational costs as the crystal's cell scale has
to be resolved by the discretisation scheme. However, simpli�cations of the model allow to predict several
properties of engineering interest without fully scale-resolving FE computations.

A signi�cant simpli�cation is to study the wave propagation in an in�nite crystal with the same dielectric
pattern as the �nite crystal. In this model, the Floquet transform [47] is used, resulting in parametrised
eigenvalue problems on the unit cell which can be e�ciently solved by various methods [11], from plane wave
expansion [41] to hp-FEM [68] and to adaptive eigenvalue solvers [25]. The solutions, called Bloch modes,
are eigenmodes in the in�nite crystal and can be assembled to the well-known band diagrams. Even with
this simpli�ed model, already quite some properties of the light propagation inside large �nite PhCs and
on its interface to an homogeneous medium can be deduced from the band diagram. Predictive simulations
increase in accuracy the larger the �nite crystal is.

A step further is to model the interface of an homogeneous material in one half-plane and a periodic
material in the other one. For rectangular periodicity the Floquet-Bloch transform in the direction of the
interface can be applied leading to a family of problems in an in�nite strip with quasi-periodic boundary
conditions [22], where the semi-in�nite periodic part can be approximated by transparent boundary conditions
for periodic waveguides [42, 17, 77]. These boundary conditions have been extended to the case of localised
perturbations of the otherwise fully periodic space where only the area of the perturbation and the unit cell
have to be discretised by a FEM [21].

Eigenmodes in localised perturbations or line \defects" inside in�nite PhCs can be modelled by the
supercell approach [76, 67] leading to the same eigenvalue problems and numerical methods as for the
in�nite crystal, just on a larger computational domain. An extension to PhC waveguides of �nite extent in
one direction, the so called open supercell approach, has been studied in [72, 67].

With the progress in the development of photonic crystal devices, more advanced structures are stud-
ied [78] which include bends and branchings. These can be combined to form complex PhC circuits like
directional couplers [45] or Mach-Zehnder interferometers [74]. Such demanding PhC structures consist of
a �nite, but large number of scatterers in which the wave propagation can hardly be predicted by model
reductions like an in�nite crystal or a line defect inside an in�nite crystal.

For these advanced structures, e�cient high resolution algorithms to accurately simulate large �nite PhC
structures are needed. A measure to compare algorithms is their e�ciency, which we de�ne in the present
work as quotient of the achieved accuracy divided by the required computational e�ort. Algorithms with an
e�ciency independent of the number of scatterers in the PhC are desirable. We call such an algorithm size
robust and an algorithm without this property size dependent. The computational e�ort will be measured
either in the number of degrees of freedom (nDOFs), e.g., the number of unknowns in a linear system that
is solved in an algorithm, or in the algorithm's CPU time. Direct application of discretisation schemes like
FEM or FDTD are unsuited for these simulations as they are fully size dependent, i.e., their computational
e�ort is at least proportional to the number n of scatterers. With the progress in the development of larger
and more complex PhC structures it becomes essential to have more e�cient simulation methods that are
ideally size robust or are weakly size dependent with a computational e�ort strictly less than O(n).

In elliptic systems, for example in heat conduction or elastodynamics, the high complexity of large,
locally-periodic structures can be avoided by using homogenisation techniques [7, 59] which amounts to a
size robust discretisation method in our terminology. Applying these techniques the periodic structures can
be accurately modelled by a homogeneous material with an e�ective material coe�cient. Similar techniques
have been applied for wave-propagation in periodic media if the periodicity lengths are much smaller than the
wavelength [30, 18]. For photonic crystals where the wavelength is of the order of the size of the periodicity
length the crystal can no longer be accurately replaced by an e�ective material. An e�ective material can,
for instance, hardly describe speci�c e�ects like bandgaps or slow light in �nite PhC structures.

For the scattering on �nite PhC structures, two di�erent approaches have been proposed for numerical
simulations that are more e�ective compared to the direct application of FEM or FDTD. The �rst, originally
the scattering or S-matrix approach, applies to PhC circuits [56], that is a network of waveguides and
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localized defects like PhC bends or junctions inside a PhC background. Inside the waveguides, the solution
is represented by a �nite number of (guided) modes of the in�nite waveguide. The solution in each defect area
is solved independently using the waveguide modes as the incoming and out-going radiation conditions. The
e�ciency of this approach can be further enhanced by using only a few Wannier functions per period [12] or
an hierarchy of Dirichlet-to-Neumann operators [34]. This (approximative) mode decomposition is intended
to gain a size-robust method; however, justifying investigations for large circuits have not been shown yet.
The second approach is to study reection and transmission of plane waves or Gaussian beams on a �nite
PhC by directly coupling plane waves to propagating and decaying Bloch modes at the surface of the crystal
[36, 38]. The methods works by approximately conserving the reection and transmission coe�cients on the
surface. To the knowledge of the authors; however, it has not yet been studied if the discretization error
remains at the same order regardless of the number of scatterers in the PhC and thus if the method is indeed
size robust. We refer to Istrate and Sargent [37] for a review of methods to calculate the eigenstates in so
called PhC heterostructures including the above mentioned PhC waveguides and �nite PhCs.

In this article we will propose a numerical method in the framework of the generalised FEM (g-FEM).
The g-FEM was introduced by Babu�ska et. al. [79, 6] as a combination of the classical Finite Element Method
(FEM) and the Partition of Unity Method (PUFEM [54]). In contrast to many mesh-free methods with
special basis functions, the g-FEM keeps the standard FEM basis functions and uses standard meshes (in 2D
triangular or quadrilateral) to form the partition of unity. We will propose a Multiscale generalised hp-Finite
Element Method (MSFEM) for photonic crystal bands with two-scale basis functions. The �ne scale basis
consists of Bloch modes whereas the coarse basis are continuous, piecewise polynomials on a macroscopic
mesh. The piecewise polynomials of maximal degree pmac ≥ 1 localise the �ne scale basis functions. The two
scale basis functions obtained by modulating Bloch-modes of in�nite PhC's which resolve the microscopic
structure of the PhC with macroscopic hp-Finite Element shape functions constitute a partition of unity
FEM in the sense of [54].

Beyond the continuous, piecewise linear macroscopic FE spaces required for PUFEM the two scale basis
contains further basis functions for pmac > 1 and the method will converge for pmac →∞ similar to p-FEM,
regardless of the choice of the microscopic FE-space. The strength of the method; however, is its problem
adapted �ne scale basis which seems to imply as shown in the present work an error reduction that is
independent of the size of the crystal, i.e., size robustness.

The �ne scale basis is speci�cally adapted to the local structure of the PhC. It contains decaying and
non-decaying Bloch modes at the frequency of the incident wave. This macroscopic space can be an h-, p-
or hp-FE space in which case we will call the resulting method a multiscale h-, p- or hp-FEM.

The presently proposed method extends ideas from the generalised FEM for elliptic homogenization
problems with periodic micro-structure by Matache et. al. [52, 51] and R�uegg [64] to PhC's. Related work
for numerical homogenization in the non-periodic setting is [32, 33, 1]. The multiscale FEM (MSFEM) is
introduced here for the scattering of incident waves by a model photonic crystal band which is of in�nite
extent in one direction, but is of �nite and possibly large extent in the other direction. Numerical results
for plane waves at di�erent incident angles are reported which strongly indicate the size robustness of the
presently method.

The outline of this paper is as follows. The exact model will be introduced in Section 2, which we
reduce to a family of problems on a thin and �nite strip by (i) applying a Floquet-Bloch transform in the
in�nite direction and (ii) using a transparent boundary condition. In Section 3 we study the accuracy of
a basis consisting of only a few Bloch modes multiplied with macroscopic polynomials in the crystal, both
for frequencies inside and outside the bandgap. The multiscale FEM with Bloch modes and polynomials in
macroscopic cells will be introduced in Section 4, including the coupling to an exterior discretisation (e.g.,
high order p-FEM) in the homogeneous ambient outer space. In Sec. 5 a size-robust numerical integration
procedure for such multiscale basis functions is presented. Finally, we show the accuracy of the method for
several con�gurations of incident plane waves in Section 6 including convergence results for a p-re�nement
scheme. In all the experiments we computed the \exact" solution with a high order FE discretisation on a
mesh resolving the �ne scale of the crystal and high order transparent boundary conditions, i.e., we compare
to a fully size dependent method.
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2. Model problem

2.1. Governing equations

The time-harmonic transverse magnetic (TM) and transverse electric (TE) �elds in 2D PhC structures
are described by (see, e.g., [40])

−∇·∇ e(x) =
(
ω

c0

)2

ε(x) e(x) for all x ∈ R2, (1-TM)

−∇·
(
ε−1(x)∇h(x)

)
=
(
ω

c0

)2

h(x) for all x ∈ R2, (1-TE)

where ω ∈ R is the frequency, e(x) and h(x) are the out-of-plane electric and magnetic �elds, c0 is the
vacuum speed of light, and ε(x) is the relative dielectricity. We assume ε(x) to be real, strictly positive and
bounded, i.e., there exists lower and upper bounds εmin, εmax ∈ R≥0 such that 0 < εmin ≤ ε(x) ≤ εmax <∞
for almost all x ∈ R2.

For notational convenience we collect the two scalar valued equations (1) in the generalised Helmholtz
equation

∇· (a(x)∇u(x)) + b2(x, ω)u(x) = 0, (2)

where the presumed properties of ε(x) transfer to the coe�cient functions a(x) and b2(x, ω), i.e., 0 <
amin ≤ a(x) ≤ amax < ∞ and 0 < b2min ≤ b2(x, ω) ≤ b2max < ∞ for almost all x ∈ R2 and some
amin, amax, b

2
min, b

2
max ∈ R≥0. The coe�cient functions are a(x) = 1, b2(x, ω) = ( ωc0 )2ε(x) for the TM mode

and a(x) = ε−1(x), b2(x, ω) = ( ωc0 )2 for the TE mode.
To admit a unique solution the generalised Helmholtz equation has to be completed by appropriate

radiation conditions (RC′s for short) at in�nity:

RC(u− uinc) = 0, (3)

where uinc is the �eld incident from in�nity, which might be a plane wave or a Gaussian beam. The radiation
condition of Sommerfeld is adequate for �nite scatterers, but not for scatterers of semi in�nite extent, which
are studied in the present work. We will detail the radiation condition RC (3) for such an in�nite scatterer
in Sec. 2.3.

The two equations (1) together with the radiation condition (3) not only de�ne the out-of-plane �elds,
rather they de�ne the magnetic and electric �elds completely, since their in-plane components can be ob-
tained using the equations

−µ0h(x) = ∇⊥e(x), ε0ε(x)e(x) = ∇⊥h(x),

where µ0 and ε0 are the vacuum permittivity and dielectricity constants and v⊥ denotes the vector v rotated
by 90◦.

2.2. Geometric setting

In the present work we will study the in�nite PhC barrier which is a band made by photonic crystals Ωcr
∞

with in�nite extent in one direction, which we �x to e1 = (1, 0)>, and �nite extent in all other directions,
especially in the direction e2 = (0, 1)> (see Fig. 1a). In the PhC crystal Ωcr

∞ the dielectricity is locally
periodic, meaning that

ε(x+ ai) = ε(x) for all x ∈
(
Ωcr
∞ ∩ (Ωcr

∞ − ai)
)
and i = 1, 2, (4)

where a1,a2 ∈ R2 are the principal directions of periodicity [40]. The crystal is globally periodic in direction
a1 = |a1|e1 but only locally periodic in direction a2. The fact that a periodicity direction a1 exists which
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x2

x1

Ωcr
∞

Ωair
∞

Ωair
∞

(a) model problem

Ωstrip
1 Ω1

a1

a2

Ω2

a1

a2
Ω2Ωstrip
2

(b) computational domains

Figure 1: PhC crystal barrier model problem for a hexagonal PhC. (a) The crystal Ωcr
∞ has in�nite extent in x1 direction and

is embedded in homogeneous space Ωair
∞ . (b) Two possibilities Ω1 and Ω2 for computational domains are shown. They are

de�ned by di�erent directions of periodicity a1 and a2. In an intermediate step the strips Ωstrip
1 and Ωstrip

2 are used.

coincides with the direction of the crystal`s surface ensures that the whole geometry is periodic and that a
global periodicity cell Ωstrip|with width |a1| in the direction e1|exists (see Fig. 1b).

The parallelogram-shaped domain formed by the vectors a1, a2 is the fundamental periodicity domain

Ω̂ := {α1a1 + α2a2 : αi ∈ (0, 1), i = 1, 2} ,

which we will refer to as the unit cell. The choice of the periodicity directions a1, a2 for the unit cell Ω̂ is
not unique, as shown in Fig. 1b for the example of a hexagonal lattice.

The crystal may be surrounded by a a1-periodic dielectric material on both sides, e.g., a special surface
structure or several homogeneous layers of constant thickness, and homogeneous material outside of the band
−L− ≤ x2 ≤ L+ for su�ciently large L−, L+ > 0. If the surrounding dielectric is na1-periodic for some
n ∈ N one may replace a1 by na1 and continue with the scaled unit cell. The structured domain between
the homogeneous exterior Ωair

∞ and the crystal Ωcr
∞ is denoted by Ωstr

∞ , and it holds Ωcr
∞ ∪ Ωstr

∞ ∪ Ωair
∞ = R2.

We call k(x, ω) := a−1(x)
√
b2(x, ω) the wavenumber which takes constant values k+ and k− in the two

half-planes x2 > L+ and x2 < −L− of Ωair
∞ .

2.3. Radiation condition for the in�nite scatterer

A radiation condition is used to ensure uniqueness, but it also limits the model to yield only physically
meaningful solutions. An in�nite scatterer, as studied here, is not a physical model. We consider the in�nite
scatterer as the limit problem n1 →∞ of a physical model of scattering on a �nite crystal with an n1 × n2

array of scatterers embedded in free space. The radiation condition for the �nite crystal is the Sommerfeld
radiation condition. In both models the response to external excitations uinc is searched, where the excitation
may contain a geometric optics part, i.e., plane waves. As is customary in scattering problems, the response
is described by the total �eld u = usc + uinc, the sum of the scattered �eld usc and the incident �eld uinc.
We assume the incident �eld to consist of a �nite number of incoming plane waves and a wave optics part
vanishing for |x1| → ∞.

After reection and refraction by the in�nite dielectric band Ωcr
∞ ∪ Ωstr

∞ the solution u may contain a
�nite number of out-going plane waves and a scattered geometric optics part ugo. In contrast, for the �nite
scatterer the scattered �eld usc does not contain a geometric optics part. Therefore, for dielectric scatters
which extends at least in one direction towards in�nity the Sommerfeld radiation condition in its integral
form is only applied to the so called di�racted �eld (see [5, 50])

ud := usc − ugo.
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We apply this condition to the half-planes x2 ≥ L+, x2 ≤ −L− of Ωair
∞ separately, i.e., we require the �elds

to ful�ll for x(r, ϕ) = (r cos(ϕ),±r sin(ϕ)± L±)> that

lim
R→∞

∫ π

0

∣∣∂rud(x)− ik±ud(x)
∣∣2 R dϕ = 0, (5)

where k± are the wave-numbers in the two half-planes.
The geometric optics part of the incident �eld uinc, consisting of a �nite number of plane waves, leads to

reected and transmitted waves ugo on the two sides of the band and a wave inside the band propagating
along the band which is incoming from one side and out-going to the other [28].

Remark 1 (On guided modes). We will show in Sec. 2.9, that with condition (5) the solution is uniquely
de�ned except for a �nite number of linearly independent solutions to the homogeneous Helmholtz equa-
tion (2). These solution, the guided modes ugj (also called trapped modes), propagate along the band and
decay in all other directions. The guided modes have been investigated for homogeneous dielectric bands [9]
as well as PhC bands [67]. As we consider the band Ωcr

∞ as a limit problem of the �nite crystal where guided
modes do not exist, it is reasonable to exclude them for the limit problem. Hence, only the geometric optics
part ugo determines the behaviour at in�nity in all directions (|x| → ∞).

To summarise, the radiation condition RC consists of the Sommerfeld radiation condition in integral
form (5) in the two half-planes outside the in�nite PhC band applied to the di�racted �eld ud. Moreover,
RC excludes a �nite number of guided modes ugj . With this condition the solution is now well-de�ned, see
Sec. 2.9. The handling of the scattered geometric optics part ugo for an incident plane wave will be explained
in Sec. 2.7.

2.4. The strong formulation

x2

x1

uinc

Γnref
− Γnref

+

Γqp

Γqp

Lair

Figure 2: In�nite photonic barrier model problem. An incident �eld uinc in x2 directions induces an electromagnetic �eld
inside a PhC, here with np = 7 periods. This can be seen as an example of a �nite crystal with dielectric rods (dark shaded),
e.g., εr = 8.9 (aluminium oxide) and radius r = 0.3, inside air (light shaded) with εr = 1. The blue highlighted area is the unit

cell bΩ.
The whole space, R2, is the natural domain for the wave equation (2), but needs to be reduced to a

�nite computational domain Ω for simulations. Due to the global periodicity in the direction e1 we can
apply the Floquet transform F [47] to the solution u(x). The transform introduces a Floquet parameter
k1 ∈ [−π/|a1|, π/|a1|) =: B1 in the one-dimensional Brillouin zone B1. For every Floquet parameter
k1, the transformed functions uk1(·) := (Fu)(k1, ·) are quasi-periodic solutions to problems on a reduced
domain with data uinc

k1
(·) := (Fuinc)(k1, ·). This reduced domain is the strip Ωstrip (see Fig. 1b) which we

have de�ned in Sec. 2.2. The real solution u can then be recovered by the inverse Floquet transformation
which requires all the solutions uk1 for k1 ∈ B1. In a second step the problems on the strip Ωstrip are
reduced to problems on a �nite computational domain Ω, a parallelogram with sides parallel to a1 and a2.
The boundary ∂Ω of Ω is made of the parts Γqp and Γnref := Γnref

− ∪ Γnref
+ , where Γqp is parallel to a2 and

Γnref to a1, see Fig. 2. The computational domain Ω contains (i) a strip of np crystal cells in a domain
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Ωcr = Ωcr
∞ ∩ Ω, (ii) possibly two surrounding sub-domains of dielectric material Ωstr = Ωstr

∞ ∩ Ω and (iii) an
exterior homogeneous layer Ωair = Ωair

∞ ∩ Ω, that extends into Ωair
∞ with only a �nite depth Lair ∈ R+. The

solution outside the computational domain Ω is represented by Dirichlet-to-Neumann (DtN) operators Mk1

acting on Γnref .
For each given Floquet parameter k1 ∈ B1, we are searching for solutions uk1 that satisfy (see Fig. 2)

∇·
(
a(x)∇ uk1(x)

)
+ b2(x, ω)uk1(x) =0 for all x in Ω, (6a)

uk1(x+ a1) =eik1|a1| uk1(x) for all x on Γqp, (6b)

(∂n −Mk1)uk1(x) =(∂n −Mk1)uinc
k1 (x) for all x on Γnref , (6c)

where ∂n = n · ∇ and n the outward pointing normal on a point x ∈ Γnref .
Details about the Floquet transform and quasi-periodicity condition (6b) are given in Sec. 2.6, while the

DtN operators Mk1 are described in Sec. 2.8. In Section 2.7 we will discuss incident plane waves and it will
be explained how to treat the Floquet parameters k1 for this incident �eld.

2.5. The variational formulation

In the following, we discretise the model (6) with the Galerkin method. To this end, the strong for-
mulation will be replaced by a variational one. The associated Sobolev space H1

k1
(Ω) on the bounded

computational domain Ω ⊂ R2 is given by

H1
k1(Ω) :=

{
uk1 ∈ H1(Ω) : uk1(x+ a1) = eik1|a1| uk1(x) ∀x ∈ Γqp

}
.

Then the variational formulation of (6) reads:

Find uk1 ∈ H1
k1(Ω), such that Φk1(uk1 , v) = f(v) for all v ∈ H1

k1(Ω), (7a)

with the sesquilinear form Φk1(u, v) and the (anti-)linear form f(v) de�ned by

Φk1(u, v) :=
∫

Ω

a(x)∇u(x) · ∇ v(x) dx−
∫

Ω

b2(x, ω)u(x)v(x) dx

+
∫

Γnref
Mk1u(x)v(x) dS, (7b)

f(v) :=
∫

Γnref
(∂n +Mk1)uinc(x) v(x) dS. (7c)

2.6. Formulation on the in�nite strip

The problem on R2 is reduced to a family of problems on Ωstrip using the 1-dimensional Floquet transform
and its inverse [47, 48, 44], as de�ned by

uk1(x) = (Fu)(k1,x) =
1
|B1|

∑
m∈Z

u(x1 −m|a1|, x2) eik1m|a1|, (8a)

u(x) =
(
F−1uk1

)
(x) =

∫
B1

uk1(x) dk1, (8b)

where we consider uk1(x) as a function in k1 and x which is a1-quasi-periodic in x, i.e., uk1(x1, x2) =
eik1|a1|uk1(x1 + |a1|, x2).

The Floquet transform F is applied to (2) which decouples the equation and results in (6a), a family of
problems with Floquet parameter k1 posed only on Ωstrip. The quasi-periodicity of uk1 transforms into the
boundary condition (6b).

For general incident �elds like a Gaussian beam, uk1 is non-zero for all k1 ∈ B. However, the parameter
k1 can be sampled and the integral in (8b) e�ciently approximated with the composite trapezoidal rule.
For incident planes waves only one k1 contributes which will be seen in the following section.
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2.7. Scattering of plane waves

Even though plane waves carry in�nite energy and are not physical, the scattering of plane waves is
commonly studied, as the �eld emitted from any localised electromagnetic source which is far away from
the scatterer locally approaches that of a plane wave. An incident plane wave with wave vector kinc ∈ R2

and amplitude 1 is given by

uinc(x) = eikinc·x. (9)

The incident �eld satis�es the Helmholtz equation in the homogeneous space, i.e., it holds that |kinc|2 = k2
−

(or k2
+). We de�ne the Floquet transform of uinc as

uinc
k1 (x) = (Fuinc)(k1, ·) := δ(Tkinc

1 − k1)uinc(x), (10)

with Dirac's δ-distribution and T being the projection into the Brillouin zone B1 = [−π/|a1|, π/|a1|] such
that Tkinc

1 ∈ B1 and kinc
1 − Tkinc

1 = j 2π/|a1| for some j ∈ Z. It can be easily seen that the inverse Floquet
transform (8b) of uinc

k1
recovers uinc. This special de�nition for plane waves is necessary since the formal

Floquet transform (8a) does not determine uinc
k1

(·) for Tkinc
1 6= k1 (does not converge). However, the quasi-

periodicity of the Floquet transform and its formal commutativity with the di�erential operators leading
to (6a) and (6b) are recovered with the de�nition (10).

Due to the δ-distribution in (10) we will compute the solution uk1(x) of (6) only for the single Floquet
parameter k1 = Tkinc

1 . However, note that uk1 has an in�nite amplitude, and we will therefore not compute
uk1(x) itself, but rather its shape uk1,S where uk1 = uk1,Sδ(Tk

inc
1 − k). Applying the inverse transform (8b)

is then equivalent to extending the shape uk1,S quasi-periodically in a1.

2.8. The DtN operator

The strip Ωstrip still has in�nite extent in a2-direction (cf. Fig. 1). However, most of the space is
occupied by homogeneous material, namely by two semi-in�nite sub-domains in Ωair. The solutions of (2)
in a homogeneous medium are well known to be superpositions of plane waves [27].

This allows to restrict (2) to a �nite computational domain Ω with the additional boundary Γnref and
an approximated transparent boundary condition on Γnref . We refer to [26] for a survey of transparent
boundary conditions. If this boundary condition can be constructed so that the solution for the problem
posed on Ω is identical to the solution of the Floquet transformed Helmholtz equation (2) in the in�nite
strip Ωstrip (restricted to Ω), then it is called exact. A transparent boundary condition that is not exact
introduces an error which is inherent to the model (6). In this section we introduce an exact transmission
condition by means of DtN operators M±ex,k1

which have been derived by an expansion in plane waves in the

homogeneous space Ωair
∞ . The DtN operatorMex,k1 for the exact transmission condition can be approximated

to any accuracy by the truncated DtN operator Mk1 [61].
The two boundaries Γnref

+ and Γnref
− are the lines [x+

1 , x
+
1 + |a1|]×{x+

2 } and [x−1 , x
−
1 + |a1|]×{x−2 }, both

parallel to the x1-axis. For Γnref
+ and Γnref

− we have the DtN operatorsM+
k1

= Mk1

∣∣
Γnref

+
andM−k1 = Mk1

∣∣
Γnref
−

,

respectively, which will be an approximation to the exact DtN maps M±ex,k1
given by

M±ex,k1
usc
k1(x1, x

±
2 ) = −∇usc

k1(x1, x
±
2 ) · n

= − 1
|a1|

∑
j∈Z

iK±,(j)2

∫ x±1 +|a1|

x±1

usc
k1(x′1, x

±
2 ) eij 2π

|a1|
(x1−x′1)

eik1(x1−x′1) dx′1, (11)

with K
±,(j)
2 := +

√
(k±)2 − (k1 + 2πj/|a1|)2 depending on the wave-numbers k− and k+ of the homogeneous

regions (cf. Sec. 2.2) and where we use the positive square root +
√
r :=

√
r and +

√
−r := i

√
r for any

r ∈ R≥0. The positive square root selects only out-going or decaying waves. Real K
±,(j)
2 correspond to

propagating plane waves which are out-going and purely imaginary K
±,(j)
2 to evanescent plane waves which
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decay exponentially for x2 → ±∞. Hence, the exact transparent boundary condition given by (11) is in
accordance with the radiation condition de�ned in Sec. 2.3.

As we assume the boundary Γnref to be located in the homogeneous domain Ωair, the normal derivative of
u and therefore usc

k1
are continuous. Hence, (11) holds for the interior or exterior normal derivative on Γnref .

The evanescent plane waves decay the faster the larger their values of j and it is possible to get
accurate approximations to M±ex,k1

by truncation, i.e., taking only the �nite sum with |j| ≤ nDtN in

(11) for some nDtN ∈ N. The well-posedness of the variational formulation may be lost in a direct
truncation, i.e., arti�cal modes belonging to higher Fourier coe�cients may appear. We use a modi-
�ed DtN condition [29], which preserves well-posedness of the original problem by replacing the coef-

�cients K
±,(j)
2 for |j| > nDtN in (11) by the j-independent values k± ∈ R+. With the abbreviation

(Gjusc
k1

)(x1, x2) := 1
|a1|

∫ x±1 +|a1|
x±1

usc
k1

(x′1, x2) e
ij 2π
|a1|

(x1−x′1)
eik1(x1−x′1) dx′1 we de�ne the approximate DtN

maps by

M±k1u
sc
k1(x1, x

±
2 ) = −

∑
|j|≤nDtN

iK±,(j)2 (Gjusc
k1)(x1, x

±
2 )−

∑
|j|>nDtN

ik±(Gjusc
k1)(x1, x

±
2 )

= −
∑

|j|≤nDtN

i(K±,(j)2 − k±)(Gjusc
k1)(x1, x

±
2 )− ik±usc

k1(x1, x
±
2 ), (12)

where we used the de�nition of the Fourier expansion and its inverse. For su�ciently large nDtN the induced
modelling error decays exponentially in nDtN and Lair [61], and already moderate values of Lair and nDtN

yield a negligible modelling error.
Equation (6) is posed in terms of the total �eld uk1 , but Mk1 acts on the scattered part usc

k1
. Using the

identity uk1 = usc
k1

+ uinc
k1

the boundary condition (6c) is obtained exactly. The solution uk1 on Ωstrip (see
Sec. 2.6) is identical to the solution uk1 of (6) on Ω if the exact DtN map Mex,k1 is used. But we use the
truncated DtN map Mk1 in (6)) and thus a modelling error occurs. The overall error of our method is the
sum of this modelling error and the discretisation error (see below). However, this article focuses on an
e�cient discretisation for Ωcr and not on transparent boundary conditions, so we �x some large values for
Lair and nDtN and do not distinguish between the approximated uk1 and the exact uk1 , both are simply
denoted by uk1 .

As a �nal remark on computational aspects, inserting Mk1 (see (11)) into (7) reveals that certain double
integrals need to be evaluated numerically. These integrals are separable and can be rewritten as sums∑
|j|≤nDtN of products of one dimensional integrals in x1 and x′1 respectively.

2.9. Well-posedness of the variational formulation

In this section we will explain why the solution uk1(x) of (7) is well-de�ned for a.e. k1. For a �nite
number of Floquet parameters k1 the formulation has a non-trivial null space spanned by the guided modes
ugj . As they do not contribute to the solution (see Rem. 1) we could exclude them by Lagrange multipliers
or by using linear system solvers ignoring the null space (e.g., Krylov subspace solvers). In the present work
we will assume for simplicity that (7) is not simulated for these values of k1, i.e., we assume that the kernel
ker(Φk1) is trivial.

The procedure to show uniqueness for the PhC band on the bounded domain Ω with quasi-periodic
boundary conditions in a1-direction and a truncated DtN operator Mk1 in a2-direction is very similar to
uniqueness proofs for the wave equation in bounded domains, e.g., in [35], except that the guided modes
need to be excluded. We will therefore strongly follow the discussion in [35, Sec. 2.4.3].

Lemma 2. The sesquilinear form Φk1(·, ·) is H1
k1

(Ω)-coercive.

Proof. First we note that H1
k1

(Ω) ⊂ L2(Ω) ⊂ H−1
k1

(Ω) is a Gelfand triple (see, e.g., [31]), where H−1
k1

(Ω) is
the dual space of H1

k1
(Ω). For H1

k1
(Ω)-coercivity we have to show that some positive constants C,α > 0

exist so that for every u ∈ H1
k1

(Ω) a G�arding inequality∣∣Φk1(u, u) + C‖u‖2L2(Ω)

∣∣ ≥ α‖u‖2H1(Ω), (13)
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holds. In particular it is su�cient to show that Re(Φk1(u, u)) + C‖u‖2L2(Ω) ≥ α‖u‖2
H1
k1

(Ω)
. First we note,

that

Re
∫

Γnref
Mk1u(x)u(x) dS ≥ 0

holds, which can be shown using the Fourier series expansion of the trace of u ∈ H1
k1

(Ω) on Γnref and the

fact that factors K
±,(j)
2 in (11) are purely imaginary or real and positive. The remaining part of Φk1 is

H1
k1

(Ω)-coercive with C = b2max + amin and α = amin, and (13) is proved.

Proposition 3 (Well-posedness of (7)). or all Floquet parameter k1 ∈ R such that ker Φk1 = ∅, then the
variational formulation (7) admits a unique solution uk1 ∈ H1

k1
(Ω) for every right hand side f ∈ H−1

k1
(Ω).

Proof. As the domain Ω is bounded and its boundary ∂Ω is Lipschitz continuous the embedding H1
k1

(Ω) ⊂
L2
k1

(Ω) is compact. Together with the just proven H1
k1

(Ω)-coercivity the Fredholm alternative applies. As
we assumed ker Φk1 = ∅ the Fredholm alternative gives the desired uniqueness of uk1 .

In particular f ∈ H−1
k1

(Ω) holds if uinc ∈ H1
loc(R2), i.e., incident plane waves (cf. Sec. 2.7) are a valid

choice for uinc.

3. Bloch modes and best-approximation of �nite crystals solutions

In this section several approximations of solutions u for the �nite crystals (7) will be investigated; �rst,
using the eigenmodes in the corresponding in�nite crystal, the Bloch modes, and second using the Bloch
modes multiplied with macro-polynomials, the functions which are potentially Floquet modes [47].

In�nite crystals are fully periodic crystals, i.e., Ωcr = R2 in (4), and the 2-dimensional Floquet transform,
a generalisation of (8), can be applied in two dimensions, see e.g., [68, 20]. For practical reasons, which will
be explained later, we will use the Bloch transform instead. The Bloch transform is the Floquet transform
multiplied by e−ik·x. It transforms (2) into a family of problems posed only on Ω̂ ⊂ R2, to which we shall refer

to as unit cell problems. It reads as follows: Find all triples (ũk ∈ H1(Ω̂)/{0},k ∈ B + iR2 ⊂ C2, ω ∈ R≥0)
so that

(∇+ik)>
(
a(x)(∇+ik)

)
ũk(x)+b2(x, ω)ũk(x) = 0. for all x in Ω̂, (14a)

ũk(x± aj) =ũk(x) for all j = 1, 2 and x on ∂Ω̂, (14b)

where the frequency ω is, by de�nition in (2), part of b2(x, ω) and B is the two-dimensional Brillouin zone

[47]. The Brillouin zone arises from the 2π-periodicity of eix. For Ω̂ = [0, a]2 we have B = [−π/a, π/a]2.
The solutions ũk(x) of the unit cell problem are periodically extended to the whole space R2. The functions
ũk(x)eik·x are then called Bloch modes.

The combinations (k, ω) for which a non-vanishing solution ũk exists with real wave vectors k = (0, k) ⊂
R2 are shown in Fig. 3(a), where we used the notion of the scale independent frequency ω̂ := ωa

2πc0
. Such

a plot is called a band diagram. Bloch modes with real wave vectors k ∈ R2 are propagating modes
which are bounded and carry �nite energy. Bloch modes with complex wave vectors k ∈ C2\R2 are called
evanescent modes. They are unbounded and carry in�nite energy in R2. The evanescent modes are shown
in Fig. 3(b). Both �gures Figs. 3(a) and 3(b) have to be imagined mirror symmetric with respect to the ω̂
axis. Additionally the evanescent modes in Fig. 3(b) occur in quadruples with the wave vectors k, k, −k,
−k (see, e.g., [20]). The real part Rek is furthermore 2π/|a2|-periodic.

Photonic crystals guide the light di�erently depending on the frequency ω. For certain frequencies no
Bloch modes with real wave vectors exist. These frequencies are called bandgap frequencies and intervals
of bandgap frequencies are called the bandgaps. At such frequencies, light can not propagate in the crystal
and is reected out. Inside the crystal the �elds decay from the both surfaces of the crystal Ωcr and the



3.1 Ordering of Bloch modes 11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

TM

PSfrag replaements

ω̂
=

(ω
a
)/

(2
π
)

kπ/a

ω̂ = 0.215
ω̂ = 0.300
ω̂ = 0.625

(a) propagating modes

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7  

 

TM

PSfrag replaements

ω̂
=

(ω
a
)/

(2
π
)

Im k

ω̂ = 0.215
ω̂ = 0.300
ω̂ = 0.625

(b) evanescent modes

Figure 3: Band diagram for waves in x2-direction (k = (0, k)>, a = |a2|). (a) Shows pairs (ω̂,k) for which propagating Bloch
modes exist. (b) The imaginary part Im k shows how fast non-propagating Bloch modes decay.

decay constant is given by ± Imk, see Fig. 3(b). The bandgaps are numbered from the lowest frequency to
the highest. For example ω̂ = 0.3 (see Fig. 3(a)) is a bandgap frequency in the �rst bandgap.

The frequencies for which Bloch modes with real wave vectors exist are called propagating frequencies and
the corresponding intervals are the bands of the crystal. For example ω̂ = 0.215 is a propagating frequency
where two Bloch modes with real wave vectors exist, they have k/a = ±2.81. The second solution is due to
the symmetry of the Helmholtz operator and is always the complex conjugate of the �rst solution. Another
example is the frequency ω̂ = 0.625 where four Bloch modes with real wave vectors exist, see Figs. 4(a)
and 4(b). These three frequencies describe di�erent phenomena and will serve as examples to illustrate the
size-robustness of our MSFEM in all following sections.

An immediate consequence of the inverse Floquet-Bloch transform is that bounded solutions u of (2) for
in�nite crystals are superpositions of the solutions ũk of the unit cell problem (14)

u(x) =
∫
B
ũk(x)eik·x dk, for all x in R2. (15)

In this representation formula, the integration is only over propagating Bloch modes, as evanescent modes
are unbounded and irrelevant for physical solutions on in�nite crystals.

At a few frequencies, at which the bands possess a stationary point, two or more Bloch modes degenerate.
The resulting modes, which take the form of polynomials multiplied with Bloch modes, are called Floquet
modes [47] and have a vanishing group velocity [77, Proposition 6.4].

In our development of the generalized hp-FEM as a tensorization of hierarchic macroscopic and microsopic
FE spaces a hierarchical ordering of Bloch modes will be crucial. Therefore, we adopt the following ordering
principle.

3.1. Ordering of Bloch modes

We de�ne the set of all Bloch modes as

Bk1 :=
{
ũk(x)eikx : (ũk,k) solution of (14) with Re k2 ∈ (−π, π]

}
,
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(a) 1st Bloch mode for ω̂ = 0.625, real and imaginary parts,
k = 0.237015

(b) 2nd Bloch mode for ω̂ = 0.625, real and imaginary parts,
k = 2.572892

(c) Real part of solution for ω̂ = 0.625

(d) Imaginary part of solution for ω̂ = 0.625

(e) Real part of solution for the bandgap frequency ω̂ = 0.300, view from x1-direction. The decay of the solution is easily visible.

Figure 4: Field plots for solutions of the �nite crystal with np = 7 in comparison to the Bloch modes of the in�nite crystal.
There are four propagating Bloch modes for ω̂ = 0.625 the two functions of (a) and (b) and their complex conjugates with the
wave vectors −k.

for a �xed Floquet parameter k1 and a �xed frequency ω. We equip Bk1 with an ordering of the elements

ũ
(i)
k (x)eik(i)x ∈ Bk1 by their degree of exponential growth or decay, i.e., | Im k

(1)
2 | ≥ | Im k

(2)
2 | ≥ . . .. The

ordering of modes with equal | Im k2| is arbitrary. Moreover, we de�ne Bk1(nbloch) to be the subspace of
Bk1 containing the �rst nbloch modes of Bk1 according to this order. As we will practically use numerical
approximations to (14) we abuse notation slightly and denote by Bk1 also sets of approximative Bloch modes
where their accuracy will be clear from the context. We partition Bk1 into the set of propagating Bloch
modes

Bpropk1
:=
{
ũk(x)eikx ∈ Bk1 : Im k2 = 0

}
,
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Figure 5: A size dependent mesh for a �nite crystal with np = 7 periods. Per period of the crystal 9 curvilinear quadrilateral
cells are used, plus two elements in the exterior domain Ωair ∪ Ωstr.

and the sets of exponentially decaying B+dec
k1

and exponentially growing B-deck1
Bloch modes

B+dec
k1

:=
{
ũk(x)eikx ∈ Bk1 : Im k2 > 0

}
, B-deck1 :=

{
ũk(x)eikx ∈ Bk1 : Im k2 < 0

}
. (16a)

In this work we will study the approximation quality of set of dominant Bloch modes

Bdomk1 :=
{
ũk(x)eikx ∈ Bk1 : Im k2 = Im k

(1)
2

}
,

which contains only the propagating Bloch modes Bdomk1
= Bpropk1

for frequencies ω outside the bandgap and

only the weakest decaying and growing Bloch modes for bandgap frequencies Bdomk1
⊂ B+dec

k1
∪ B-deck1

(cf.
(16a)).

3.2. Solving the unit cell problem

The Bloch modes can be approximated by considering (14) as an eigenvalue problem with eigenfunction
ũ and eigenvalues (k, ω) and solving it using a FEM discretisation and a numerical eigenvalue solver. There
are two alternatives to pose (14) as an eigenvalue problem. For a �xed k ∈ C2, (14) is a linear eigenvalue
problem in ω2 ∈ R≥0. Fig. 3(a) has been created by sampling k = (0, k) with k ∈ [0, π/a]. ARPACK [49]
was used as eigenvalue solver. For the discretisation the FEM solver Concepts [15] with polynomial degree

p = 10 in all 9 curvilinear cells of the unit cell Ω̂ = [0, 1]2 has been used.
The alternative is to �x a frequency ω ∈ R≥0 and search for k ∈ B + iR2 ⊂ C2, as used in [20, 19].

With the Bloch transform the eigenvalue k occurs as a linear or quadratic factor in the PDE instead of a
non-linear factor eik·aj in the boundary condition for the Floquet transform.

As eigenvalues have to be scalar, we used the representation

k = λ(sin(θ), cos(θ))> + koff for λ ∈ C, θ ∈ [0, 2π],koff ∈ C2

with o�set koff , direction θ and length λ. We �x all parameters except λ and obtain a quadratic eigenvalue
problem in λ, i.e., the eigenvalue problem is of the form (λ2A + λB + C)ũk(x) = 0 for some operators A,
B, C. The quadratic eigenvalue problem is linearised as described in [80, Sec. 3.10.2]. Then, the linearised
problem is discretised and solved as described for Fig. 3(a). Fig. 3(b) has been created by sampling ω ∈ R≥0

and �xing θ = 0 and koff = 0.

3.3. Best-approximation of �nite crystal solutions by Bloch modes and macro-polynomials

This section examines how well the solutions u for the problem (6) for a �nite PhC with np periods,
the �nite crystal solutions, can be matched by a few Bloch modes ũk(x)eik·x modulated by macroscopic
polynomials for a given frequency ω. We investigate in particular size robustness, i.e., how the approximation
accuracy behaves using a �xed number of degrees of freedom as the number of periods in the �nite PhC
increases.

3.3.1. Perpendicular incidence

The �nite crystal solutions u for the �nite crystals (6) have been computed with p-FEM on a size
dependent mesh (see Fig. 5) and are su�ciently well discretised (uniform polynomial degree p = 23 in all

cells). As incident �elds uinc we choose plane waves eikinc·x with kinc = (0, ω)> (see 2.7), i.e., incident
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perpendicularly from left in view of Fig. 4. The solutions for ω̂ = 0.625, np = 7 is illustrated in Figs. 4(c)
and 4(d). Although not obvious, a linear combination of the four Bloch modes of Figs. 4(a) and 4(b) can
accurately represent the �nite crystal solution in Figs. 4(c) and 4(d). We will show this hereafter by means
of an L2-projection. The solutions for frequencies in the bandgap behave di�erently, they decay inside the
crystal. This can be clearly seen in the example shown in Fig. 4(e) for the frequency ω̂ = 0.300 lying near
the centre of the �rst bandgap. Here, already 7 periods are su�cient to reect most of the �eld.

Best-approximation by highly resolved pure Bloch modes. In a �rst step in Fig. 6(b) we approximated for
ω̂ = 0.625 and varying number of periods np the �nite crystal solution u with a linear combination of
Bloch modes ũk(x)eik·x ∈ Bdomk1

. The Bloch modes have been computed numerically by solving the unit
cell problem (14) with p-FEM (cf. previous section) for di�erent polynomial degrees pbloch. Fig. 6(b) shows
the relative L2-error for the L2-projection of the quasi-periodically extended Bloch modes (see Figs. 4(a)
and 4(b)) onto u. Each curve corresponds to a �nite crystal solution u for a �xed number of periods np,
e.g., for np = 7 the function u is displayed in Figs. 4(c) and 4(d).

The approximation by the L2-projection was done away from the crystal's surfaces, more precisely in the
domain of inner cells Ωinner. The domain Ωinner ⊂ Ωcr is the crystal Ωcr without the �rst and last period of
the crystal, see Fig. 6(a). It is observed that for each np a saturation level is obtained when the error level
does not decrease further. Approximated Bloch modes with polynomial degrees pbloch inside this saturation
level su�ciently resolve the analytic solution of (14). This saturation level thus expresses to which accuracy
the exact Bloch modes|the solutions for in�nite crystals|approximate the solution for �nite crystals with
np periods. The four Bloch modes (nDOF = 4) at ω̂ = 0.625 are su�cient to approximate the solution for
�nite PhC's with up to np = 200 periods at a relative L2(Ωinner)-error of about 10−4. This result indicates
that a size robust method based on Bloch modes exists.

Best-approximation by Bloch modes multiplied with macro-polynomials|�rst example: ω̂ = 0.625. We
match Bloch modes ũk(x)eik·x ∈ Bdomk1

modulated by macroscopic polynomials to the �nite crystal so-
lutions (see Fig. 6(c)). The polynomials have a maximal polynomial degree pmac, which will be varied. We
used for the matching again the L2-projection in Ωinner. In this case we �xed the Bloch mode discretisation
to pbloch = 25, which gives a saturation level in terms of Fig. 6(b). By adding macroscopic polynomials with
pmac = 1 or pmac = 2 the L2(Ωinner)-best approximation error decreases by about two magnitudes to ap-
proximately 10−6. Small crystals can even be approximated with an error as low as 10−8. A further increase
of the polynomial degree pmac leads to exponential convergence, but with a base notably depending on the
number of periods np. Thus for large np a lower error than 10−6 is only expected for impractically large
pmac. Moreover, the convergence already breaks down at pmac = 5 for np = 3 periods due to redundancies
in the basis. This break down may even occur earlier, depending on conditioning of the polynomial basis.

The results shown in Fig. 6(d) express why we used the domain of inner cells Ωinner in the previous
experiments. This �gure illustrates the convergence of the L2-projection on the whole crystal Ωcr. The error
levels of about 10−4 are clearly higher than for Fig. 6(c) even for larger pmac. This indicates that the Bloch
modes, the solutions of in�nite crystals, do not accurately describe the solutions for �nite crystals up to
their surfaces.

This observation is the motivation to propose a special mesh, the so called boundary layer mesh, for the
macroscopic scale. This boundary layer mesh consists of three cells, two small cells on the crystal's surface
and a large cell in the interior. In view of Fig. 6(c) in the inner cells, already a polynomial degree pmac as
small as 1 is a very good approximation. Higher values of pmac improve the approximation of the solution
in the two cells on the surface. This is illustrated in Fig. 6(e) in which we show the relative error of the
L2-projection to only the �rst cell of the crystal. Already pure Bloch modes (pmac = 0) achieve error levels
below 10−3 and pmac = 4 is enough to reach 10−6 the error level comparable to the L2-projection on Ωinner

in Fig. 6(c). This shows that a basis of Bloch modes multiplied with piecewise polynomials converges very
fast on the surface of the crystal. Moreover, we observed that this basis is superior to a pure polynomial
basis on Ωfirst, not resolving the material discontinuities, in the sense that fewer functions are required to
achieve a particular error.
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Ωinner ΩcenterΩfirst Ωcr

(a) The framed area is the domain containing all cells (all of Ωcr) and the highlighted area the domain of
inner cells Ωinner excluding the �rst period Ωfirst and the last period of the crystal. The single cell in the
centre of the crystal is denoted by Ωcenter.
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(b) L2-projection of pure Bloch modes (pmac = 0) for the inner cells Ωinner.
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(c) L2-projection of polynomials multiplied with Bloch
modes for the inner cells Ωinner and �xed pbloch = 25.
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(d) L2-projection of polynomials multiplied with Bloch
modes for the whole crystal Ωcr and �xed pbloch = 25.
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(e) L2-projection of polynomials multiplied with Bloch
modes for the �rst cell of the crystal with �xed pbloch = 25.
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(f) L2-projection of polynomials multiplied with Bloch
modes for the center cell Ωcenter of the crystal with �xed
pbloch = 25.

Figure 6: Best-approximation error by L2-projection of polynomials multiplied with Bloch modes in varying matching domains
onto �nite crystal solution u for np number of periods. The matching domains are for b), c) the inner cells Ωinner, for d) the
whole crystal Ωcr, for e) the �rst cell Ωfirst and for f) the center cell Ωcenter. The Bloch modes (e.g. Figs. 4(a) and 4(b) for
ω̂ = 0.625) have been discretised with p-FEM with maximal polynomial degree pbloch. In c)-f) the Bloch modes have been
modulated with piecewise polynomials with maximal polynomial degree pmac. All the solid lines correspond to the propagating
frequency ω̂ = 0.625 (nbloch = 4) and the dashed and dash-dotted lines are for the propagating frequency ω̂ = 0.215 (nbloch = 2)
and the bandgap frequency ω̂ = 0.300 (nbloch = 2).
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The number of periods nouter in the two macro cells on the crystal surface does not have to be one.
A boundary layer mesh with larger boundary cells might reduce the error in the interior but increase the
error in the �rst cells. The best approximation in a minimal interior cell, the single centre cell Ωcenter =
(0, a)× (bnp−1

2 c, b
np+1

2 c) (see Fig. 6(a)), can be seen as a lower bound for larger interior cells. In Fig. 6(f)
the relative error for the centre cell Ωcenter is shown for ω̂ = 0.625. Already for pmac = 0 the relative error is
lower than 10−6. This error level correspond approximately to the saturation level for the much larger inner
cell Ωinner (see Fig. 6(c)). Decreasing the size of the inner cells would not lead to Thus, we may conclude for
the frequency ω̂ = 0.625 that it is e�cient to use a boundary layer mesh with maximally sized inner cells
having np− 2 periods and in which a single crystal period on each side of the surface is resolved by a macro
cell (nouter = 1).

Best-approximation by Bloch modes multiplied with macro-polynomials|second example: ω̂ = 0.215 and
ω̂ = 0.300. The frequency ω̂ = 0.625 studied above is a propagating frequency with nbloch = |Bdomk1

| = 4
linearly independent Bloch modes ũk(x)eik·x ∈ Bpropk1

. We will also compare the approximation quality for

the propagating frequency ω̂ = 0.215 with nbloch = 2 linearly independent Bloch modes ũk(x)eik·x ∈ Bpropk1
and for the bandgap frequency ω̂ = 0.215 with nbloch = 2 linearly independent evanescent Bloch modes
ũk(x)eik·x ∈ B-deck1

∪ B+dec
k1

with | Im k2| = 0.70. For ω̂ = 0.215 and ω̂ = 0.300, the approximation results of
the single example crystal with np = 100 periods have been included in Figs. 6(b){6(f). The same properties
are observed as for ω̂ = 0.625. Both frequencies have only half as many Bloch modes as ω̂ = 0.625 and we
see that the error levels for the matching domains Ωcr and Ωfirst are higher for the same pmac. Moreover,
in order to minimize a global error on Ωcr for propagating frequencies the error in Ωinner is more important
than that in Ωfirst. However, for bandgap frequencies which decay inside the crystal the error in Ωfirst can
sometimes be more important than the error in Ωinner. In this sense, simulations at bandgap frequencies are
in general easier. Already heuristic methods like the simulation only for a certain number of periods and
extension of the solution by zero, lead to size robust methods for large �nite PhC's.

3.3.2. Oblique incidence

We now investigate the approximation quality of the basis based on the dominant Bloch modes and
macroscopic polynomials for oblique incidence. We use the example frequency ω̂ = 0.230 which has a
bandstructure in dependence of k1 as depicted in Figs. 7(a) and 7(b). The bandstructures have been
computed as solutions of the quadratic eigenvalue problem described in Sec. 3.2 by sampling k1 and specifying
koff = (k1, 0)> and θ = π

2 . The chosen frequency ω̂ = 0.230 is particularly interesting as there are only
propagating modes for ϕ > 47◦ and otherwise the frequency is in the bandgap, i.e., changing incident angle
results in a notably change of the crystal behaviour.

Selection of dominant Bloch modes for bandgap frequencies. We compare three di�erent sets of Bloch modes
based on the set Bdomk1

, this set always contains the set Bpropk1
for the propagating regime and in the bandgap

regime it contains

(D1) the dominant decaying Bloch modes B+dec
k1

∩ Bdomk1
and dominant growing Bloch modes B-deck1

∩ Bdomk1

(D2) only the dominant decaying Bloch modes B+dec
k1

∩ Bdomk1
,

(D3) the dominant decaying Bloch modes B+dec
k1

∩Bdomk1
and dominant arti�cially propagating Bloch modes

B̂-deck1
, where

B̂-deck1 :=
{
ũk(x)ei(k1x1+Re k2x2) : ũk(x)eikx ∈ B-deck1 ∩ B

dom
k1

}
.

The set B̂-deck1
is a set of propagating modes which has the same periodic part as the Bloch modes B-deck1

, but

which discards the exponential growth of the modes B-deck1
in direction x2.

Exemplary for pmac = 2, the best approximation results for the selection rules (D1){(D3) are displayed
in Fig. 7(c). For (D1), an error of about 10−4 is obtained independent of ϕ for both small crystals (np = 3)
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(d) Condition of L2-projection matrix for pmac = 2.

Figure 7: Best-approximation for oblique incidence for the example frequency ω̂ = 0.230 (nbloch = 2 for all ϕ) which is a
bandgap frequency for incident angles ϕ < 47◦ and propagating otherwise. The bandstructure for ω̂ = 0.230 is displayed in
a) and b). Specifying an incident angle ϕ is equivalent to specifying the Floquet parameter k1 of the model problem (6).
The L2-best approximation result is displayed in c) exemplary for a crystal with very few periods (np = 3) and many periods
(np = 50). We compared the approximation quality in c) and the condition number in d) for di�erent selection rules (D1),
(D2), (D3) for the sets of Bloch modes.
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and large crystals (np = 50). This concludes that the method is size and incident angle robust. Moreover,
it is robust with respect to the decay strength Im k2 as no degeneration is observed close to ϕ = 47◦.
However, in Fig. 7(d) we see that the condition numbers for the selection rule (D1) can become huge for
large np and away from the propagating regime. On the other hand selection rule (D2) in Figs.7(c) and 7(d)
shows that in this problematic case (large | Im k2| and np) the modes B-deck1

∩ Bdomk1
are not necessary. This

observation suggests, that there exists a selection rule which has reasonable condition numbers independent
of ϕ and np and achieves an approximation error of 10−4. For small crystals it behaves like (D1), close to
the propagating regime like (D1) and for large crystals and away from the propagating regime like (D2).
Indeed such a selection rule is given by (D3). The selection rules (D1) and (D3) both also work equally well
for the �rst cell Ωfirst, whereas (D2) does not work for the �rst cell. For (D2) and ω̂ = 0.230 or ω̂ = 0.300
only nbloch = 1 Bloch mode ũk(x)eik·x is used which even has a linearly dependent real part Re ũk(x)eik·x

and imaginary part Im ũk(x)eik·x. This dependence is due to the wave vector beeing on the boundary of
the Brillouin zone (Re k2 = π) and the symmetry properties of Bloch modes.

4. The Multiscale FEM

The multiscale FEM has many similarities to other FEM variants. We will especially contrast it to
standard FEM, by which we mean all FEM variants that use piecewise polynomial basis functions on a
meshM. For example the h-, p-FEM [10, 73] and hp-FEM [69] variants or spectral elements [13, 60] belong
to this category. The main di�erence of the multiscale FEM to other FEMs is the use of basis functions
which have variations on multiple, clearly de�ned scales. Hence, the multiscale FEM belongs to the large
class of generalised FEMs (g-FEM) with possibly non-polynomial basis functions. A multiscale FEM for
homogenisation problems with local periodicity has been introduced in [52, 64]. Our work extends this
approach to the simulation of PhC structures at resonance frequencies for which homogenisation does not
apply. For these structures we will use a two-scale basis with Bloch modes (see Section 3) as microscopic
basis functions. Rather than restricting ourselves to the speci�c case of Bloch modes we will introduce
hereafter how to construct a two-scale multiscale FEM for a more general basis of quasi-periodic micro
functions and C0-piecewise polynomial macro functions.

Our multiscale FEM is designed to be e�cient for the particular locally periodic structure of a �nite
PhC structure in Ωcr. As this structure is generally not apparent in the exterior domain Ωext = Ωstr ∪Ωair,
our presentation focuses on combining multiscale FEM with an arbitrary exterior discretisation in Ωext.
The combined method is thus a hybrid FEM of the interior and exterior discretisations. The method
approximates the variational formulation (7) in a �nite-dimensional subspace V gfem

k1
of the original space

H1
k1

(Ω) of the variational formulation:

�nd ugfem
N ∈ V gfem

k1
: Φk1(ugfem

N , vN ) = f(vN ) for all vN ∈ V gfem
k1

, (17)

where Φk1 and f are given in (7). The solution ugfem
N is a linear combination of the basis functions bgfem

of V gfem
k1

ugfem
N (x) =

ngfem∑
`=1

αgfem
` bgfem

` (x) for all x in Ω, (18)

with the coe�cients αgfem
` ∈ C and where ngfem is the dimension of V gfem

k1
.

The space V gfem
k1

on the computational domain Ω is constructed from two spaces: the space V ext
k1
⊂

H1
k1

(Ωext) on the exterior domain Ωext and the MSFEM space V multi
k1

⊂ H1
k1

(Ωcr) on the crystal domain
Ωcr. The two spaces are each suitable for solving the Helmholz equation (2) on the subdomains Ωext and
Ωcr, with suitable boundary conditions.

In Sec. 4.1 we de�ne the space V multi
k1

and its multiscale basis functions. Then we explain in Sec. 4.2 how

to combine the multiscale space V multi
k1

with some exterior FE space V ext
k1

to form the hybrid space V gfem
k1

.
The hybridisation for the concrete example of standard FEM as exterior discretisation V ext

k1
will be given in

Sec. 4.3.
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4.1. Multiscale basis functions

In the �nite crystal Ωcr two scales are apparent: a microscopic scale with oscillations on the size of a
single unit cell and a macroscopic scale with oscillations on the size of the whole crystal. The multiscale space
V multi
k1

takes advantage of this structure by introducing basis functions with good approximation properties
at these microscopic and macroscopic scales.

Accordingly, the basis functions bmulti are the two-scale functions

bmulti
i (x) = bmac

i1 (x) bmic
i2 (x), for i = (i1, i2) and 1 ≤ i1 ≤ nmac, 1 ≤ i2 ≤ nmic (19a)

spanning the space

V multi
k1 = span

{
bmulti
i : 1 ≤ i1 ≤ nmac, 1 ≤ i2 ≤ nmic

}
= V mic

k1 ⊗ V
mac
per , (19b)

where nmic and nmac are the number of micro and macro functions. The space has tensor product structure
generated by the below de�ned spaces V mic

k1
and V mac

per . Every micro function bmic will be combined with

every macro function bmac and the dimension nmulti of V multi
k1

is nmicnmac. It is sometimes convenient to

linearly enumerate the basis functions as bmulti
` = bmulti

i,j with the packing operator N2 → N : (i1, i2) 7→ ` :=
i1 + (i2 − 1)nmic.

The Figures 8(b) and 8(c) illustrate the multiscale structure. The macro polynomials bmac are piecewise
polynomials on a macroscopic mesh Mmac

cr (see Fig. 8(a)). The cells Kmac ∈ Mmac
cr of this mesh are

parallelograms which are aligned with the periodic pattern and contain 1×n full repetitions of the unit cell
for some n ∈ N. The micro basis functions are quasi-periodic functions on R2 spanning the space V mic

k1
,

bmic
i2 (x) = eiki2 ·x bper

i2
(x), Emic

k1 =
{
bmic
i2 : 1 ≤ i2 ≤ nmic

}
, V mic

k1 = V mic
k1 (nmic) = span Emic

k1 .

The micro functions have periodic parts bper
i2
∈ H1

per(Ω̂) and wave vectors ki2 ∈ C2 where k1,i2 = k1 so

that bmic
i2

satis�es the boundary condition (6b). For example the functions bper can be solutions of the unit
cell problems (14) for wave vectors ki2 , i.e. the �rst nbloch Bloch modes are a valid choice for bmic where
V mic
k1

= V mic
k1

(nbloch) = spanBk1(nbloch) (cf. Sec. 3.1). The spaces V mic
k1

(nbloch) obtained by successively

adding micro basis functions are hierarchical, i.e., V mic
k1

(1) ⊂ V mic
k1

(2) ⊂ . . ..

Macro basis functions. The macro basis functions bmac can be any polynomial basis functions which are
a1-periodic on the mesh Mmac

cr (see Fig. 8(a)) and have tensor product structure on the reference cell of
each macro cell Kmac ∈Mmac

cr . We use tensor product basis functions due to Karniadakis and Sherwin [43]
which are basically integrated Legendre polynomials. Such a basis is known to result in well-conditioned
system matrices for standard FEM, see [24]. The macro functions bmac span the space

V mac
per = V mac

per (Mmac
cr ,pmac

1 ,pmac
2 ) = span

{
bmac
i1 : 1 ≤ i1 ≤ nmac

}
, (20)

of dimension nmac which is determined by the mesh Mmac
cr and the maximal polynomial degree distribu-

tions pmac
1 ,pmac

2 ∈ N` in the two local directions in each of the ` cells Kmac ∈ Mmac
cr . In the present work

we restrict ourself to a �xed meshMmac
cr as displayed in Fig. 8(a) and a uniform macro polynomial degree

pmac on each cell Kmac ∈ Mmac
cr and in both x1- and x2-directions. The corresponding spaces V mac

per (pmac)
are hierarchical with V mac

per (1) ⊂ V mac
per (2) ⊂ . . . .

To build the spaces V mac
per (pmac) it is convenient to use so called shape functions smac

ι̂ : [0, 1]2 → R,
which are restrictions of macro functions bmac pushed-back onto the reference cell, i.e., smac

ι̂ (F−1
Kmacx) =

bmac
i (x)

∣∣
Kmac . Here FKmac : [0, 1]2 → Kmac is the element map of the macro cell Kmac. Moreover, the shape

functions have tensor product structure smac
ι̂ (x̂) = smac

ι̂1
(x̂1) smac

ι̂2
(x̂2) and there are pmac + 1 polynomials in

each direction, i.e., 0 ≤ ι̂1, ι̂2 ≤ pmac. As the macro mesh in the crystalMmac
cr consists of parallelograms only,

the element maps are a�ne and both the macro basis functions and the shape functions are polynomials. In
most FEMs it is convenient for the evaluation of the bilinear forms to work with the shape functions smac

rather than to work directly with the macro basis functions bmac. The bilinear forms can be written as sums
of integrals over Kmac and each Kmac can be considered individually with its own set of shape functions
smac
ι̂ , whereas bmac

` possibly has a support of several cells Kmac. The relation between the shape function

index ι̂ and the macro index i1 is given via the local to global mapping mglob
Kmac : (ι̂,Kmac)→ i1.
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(a) Global macro cell discretisation Mmac of Ω containing a crystal with np = 7 periods. The three
multiscale cells K1, K2, K3 form a mesh Mmac

cr of Ωcr on which the macro functions bmac are de�ned.
Similarly, the two standard-FEM cells K4, K5 form a mesh Mmac

ext of Ωext and are used for the exterior
discretisation.

x1

x2

u(x1, x2)

bper

bqp

bmic

(b) The micro basis function bmic is the product of a
periodic function bper with a quasi-periodic function
bqp
k = eikx.
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u(x1, x2)

K1 K2

bmac

bmulti

(c) The macro basis function bmac is a polyno-
mial in the macro cells K1 and K2. The multi-
scale basis function bmulti is the product of the
micro and macro basis functions.

x2

x1

(d) Mesh Mmic of the unit
cell made out of 9 curvilin-
ear quadrilateral micro cells.
The macro basis functions
are in each micro cell a ten-
sor product of polynomials
on the reference cell. The
unit cell is discretised with a
uniform polynomial degree.
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u(x1, x2)

Γover K1 K2K4
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1

bext
3
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2

(e) Illustration of the overlap cell handling to achieve a globally continuous

hybrid space V gfem
k1

⊂ H1(Ω). Basis functions like bmulti
1 are supported

purely inside the crystal and are not a�ected. Functions that are supported
on the boundary Γover between multiscale and exterior cells need special
attention. The shape function bmulti

2 cannot be matched continuously on
Γover with polynomials on K4 and is dropped. To match the shape function
bext
3 on K4 the special constant micro function bmic ≡ 1 is introduced which
is in our illustration multiplied with a linear macro function (dotted).

Figure 8: Illustration of the multiscale basis functions (b), (c), the macro and micro meshes (a), (d) and the special handling
of basis functions on Γover (e).
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tensor product structure
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Figure 9: Dependencies, naming scheme and index conventions for basis functions used in Multiscale FEM. Next to the arrows
the rules are displayed according to which the indices are related. The indices are the shape function indices ι̂, the multiscale

indices i and the scalar indices `, ˆ̀ of the spaces V gfem
k1

, V multi
k1

, V ext
k1

.

Hierarchical structure of MSFEM. The above mentioned hierarchy of the spaces V mic
k1

(nmic) and V mac
per (pmac)

implies a hierarchy of two-scale space V multi
k1

= V multi
k1

(nmic, pmac) = V mic
k1

(nmic)⊗ V mac
per (pmac) in both nmic

and pmac. The symbol ⊗ stands for the tensor product in the sense of the representation formula (19).
A better approximation in MSFEM can be achieved by increasing nmic or pmac or a combination of both.
Many powerful techniques for standard FEM are also applicable to MSFEM. The space V mac

per (pmac) can be

generalised by using h-, p- or hp-re�nements ofMmac
cr and the dimension nmulti of V multi

k1
can be reduced by

sparse tensor approximation techniques [70].

Basis function naming schemes and dependencies. Figure 9 illustrates the naming scheme of basis and shape
functions as used in this article as well as their indices and relation.

Unit cell problem. The micro functions bmic are usually not known analytically, they are FEM solutions
of special unit cell problems on some micro mesh Mmic. In all our tests the micro functions bmic are
approximations to the Bloch modes and solutions to the unit cell problem (14). The micro mesh Mmic

used for the approximation is shown in Fig. 8(d). The unit cell problem (14) was solved as described in
Sec. 3.2. The polynomial degree pbloch used to solve (14) on Mmic was always chosen su�ciently high so
that a saturation level was reached, see Fig. 6.

Conformity of V multi
k1

in H1
k1

(Ωcr). The micro functions bmic are constructed to be a1-quasi-periodic with
wave number k1 and they are globally continuous, i.e., they are in H1

k1
(Ωcr). The macro functions are

a1-periodic and continuous on Ωcr. Hence, each multiscale basis function bgfem is in the space H1
k1

(Ωcr), as
it is as a product of a micro and a macro function. Thus the space V multi

k1
spanned by the functions bgfem is

H1
k1

(Ωcr)-conforming.

Remark 4. Plane wave methods [3, 14] could be considered as a special case where no macro basis exists,
i.e., bmac ≡ 1, and the micro functions are plane waves (bper ≡ 1). In plane wave methods, the reduction of
the discretisation error is achieved by increasing the number of wave vectors k. On the other hand, h-, p-
or hp-FEM can be considered as a special case where the micro basis is trivial, i.e., bmic ≡ 1, and the macro
basis are polynomials. Here, a better approximation is achieved by re�ning the meshMmac

cr or increasing the
maximal polynomial degree pmac respectively. Since bmac form in particular a partition of unity, the present
proposed method can be considered as a special case of PUFEM [54].

Remark 5 (Dispersion and pollution error). The dispersion error [2] in a homogeneous medium is the (best-
approximation) error in the wave-vector k ∈ R2 of a plane wave eik·x when approximated in the discrete
space. Thus, it represents the error in the phase shift i(k−kappr) ·x for some (long) distance x. The analog
for the photonic crystal is the error to correctly approximate a propagating Bloch mode. In the proposed
MSFEM for photonic crystal bands, a quasi 1D setting, the Bloch modes are included in the basis leading to
an absence of a dispersion error for a single Floquet parameter k1 (as for plane-wave methods in 1D). For
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non-plane incoming waves the Brillouin zone for the Floquet transform in direction x1 has to be sampled
(see Sec. 2.6) and a dispersion error occurs which decays with the number of sampling points.

A pollution error may occur additionally as a loss of stability of the discrete approximation of the
sesquilinear forms [58]. For homogeneous media, this is the case for large wave-numbers |k|, and so for
large frequencies ω. The interesting phenomena in PhCs occur in a certain frequency range (the incident
wave and periodicity length are of the same order), and the pollution error of our method is consequently
equivalent to the discretisation error.

4.2. Hybridisation of the multiscale FEM|general case

The two spaces V ext
k1

and V multi
k1

need to be combined to the g-FEM space V gfem
k1

⊂ H1
k1

(Ω). For this we
will de�ne how the basis functions bgfem of V gfem

k1
are constructed using the basis functions bext and bmulti of

V ext
k1

and V multi
k1

. The functions bgfem belong to one of the following three categories:

(B1) the exterior basis functions bext supported inside Ωair \ Γover,

(B2) the multiscale basis functions bmulti supported inside Ωcr \ Γover and

(B3) mixed basis functions bover supported both in Ωair and Ωcr (overlapping functions).

The basis functions bext and bmulti without support on Γover can be taken directly as basis functions bgfem

as they are also continuous on the whole domain Ω if extended by zero. Only functions bext and bmulti

with support on Γover need to be matched on Γover in order to create continuous functions in Ω. If a
linear combination of exterior functions bext can be matched continuously with a linear combination of
multiscale functions bmulti on Γover, then these linear combinations form a function bover. However, to �nd
non-trivial linear combinations might not be possible (see Fig. 8(e)). To match two spaces Vm and Vs, where
Vm = V multi

k1
and Vs = V ext

k1
or vice versa, two operations are possible for each basis function bm of the

master space Vm that does not vanish on Γover:

(M1) The function bm is extended continuously into the domain of Vs and this extension is added as a new
basis function in Vs (enrichment). The extension and bm form an overlap function bover

` which can

be selected as a basis function of V gfem
k1

(B3).

(M2) The function bm is removed from Vs and thus will not appear as basis function of V gfem
k1

(omission).

One of the two operations is applied to each non-matching basis function in V multi
k1

and V ext
k1

. Let the modi�ed

spaces be Ṽ multi
k1

and Ṽ ext
k1

. The modi�cation procedure assures that the space V gfem
k1

can be constructed

by simply inserting basis functions of Ṽ multi
k1

and Ṽ ext
k1

that vanish on Γover (categories (B1),(B2)), and by

pairwise matching of two respective functions b1 ∈ Ṽ multi
k1

, b2 ∈ Ṽ ext
k1

with support on Γover (category (B3)).

If the number of basis functions in Ṽ ext
k1

and Ṽ multi
k1

are ñext and ñmulti, then the number of basis functions

in V gfem
k1

is ngfem = ñmulti + ñext − nover where nover is the number of functions in (B3).

The challenge is to select the spaces V ext
k1

and V multi
k1

and to perform the hybridisation (M1) and (M2)

so that the hybrid space V gfem
k1

has good properties. Enrichment of the space (M1) can help for good
approximation properties but omission (M2) leads to less nDOFs, reduced computational cost and possibly
simpler implementations. Although the matching a�ects the approximation quality for a constant np it does
not a�ect the asymptotic behaviour for large np very much as the extension in the enrichment process can
be limited to a certain depth into Ωcr for all np and the e�ect of the functions bover is thus concentrated
close to Γover. Depending on the choice of the matching and the exterior discretisation V ext

k1
, a certain nDOF

is required to discretise ugfem
N su�ciently accurate in Ωair and Ωcr. But these nDOFs are constant for all

np. In particular, if the method is size robust for one exterior discretisation it is size robust for all exterior
discretisations. Thus it is su�cient to analyse the multiscale basis for a single exterior discretisation.
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Remark 6. An alternative approach to create the hybrid space V gfem
k1

is to use a non-conforming method

where V gfem
k1

is no longer a subspace of H1
k1

(Ω) and to use mortar elements [8] near the boundary Γover. For
mortar elements the variational formulation (7) changes and terms are introduced which penalise disconti-
nuities on Γover. It is harder to analyse such a non-conforming method but it has advantages for implemen-
tations as neither V multi

k1
nor V ext

k1
need to be altered , while retaining good approximation properties for an

appropriate penalisation.

4.3. Hybridisation of multiscale FEM with standard FEM

In this section we describe a concrete realisation of the hybridisation for the case that the exterior
discretisation is standard FEM.

Exterior discretisation with standard FEM. A possible discretisation for the exterior domain is the standard
FEM (e.g., p-FEM) on a mesh Mmac

ext of Ωext = Ωair ∪ Ωstr (see Fig. 8(a)). The mesh can be chosen
su�ciently �ne to resolve the material interfaces in the structured layer Ωstr but can contain large cells with
high polynomial degrees for an e�cient discretisation of the homogeneous parts in Ωair. The H1

k1
(Ωext)-

conforming basis functions bext are constructed by combining shape functions to globally continuous and
a1-periodic functions on Ωext and then multiplying them by eik1x1 to ful�l the quasi-periodicity condition
of H1

k1
(Ωext). For the sake of the hybridisation the mesh Mmac

ext is assumed to be conforming to Mmac
cr so

that no hanging nodes occur.

Hybridisation. It is possible to perform the hybridisation by exclusively enriching both spaces V multi
k1

and

V ext
k1

(M1) so that no basis function bmulti or bext need to be dropped. Another approach has been used in
the multiscale FEM proposition [64], where only V ext

k1
was enriched by extending the multiscale functions

into the homogeneous exterior domain, but V multi
k1

was not enriched at all. In contrast we prefer not to
enrich the space V ext

k1
and not to modify the exterior discretisation scheme for implementation reasons. The

hybridisation of V multi
k1

, V ext
k1

into Ṽ multi
k1

, Ṽ ext
k1

is performed three steps (see Fig. 8(e))

• all functions bmulti with support on Γover are omitted (M2),

• all functions bext with polynomial degree p ≤ pmac are extended into Ωcr (M1),

• the functions bext with polynomial degree p > pmac are omitted (M2)|in analogy to the minimum
rule in the p-FEM.

The extension of the polynomial functions to Ωcr is performed by adding a special micro function bmic
? (x) =

eik1x1 with periodic part bper ≡ 1 and wave vector k = (k1, 0)> and by matching the periodic part
bext(x)e−ik1x1 of bext(x) with bmac. The addition of bmic

? is only necessary in the overlapping cells tan-
gent to the interface Γover (the cells K2,K4 ∈ Mmac in Fig. 8(a)). Additionally, we propose to add bmic

?

globally on the whole of Ωcr. Then the g-FEM space V gfem
k1

becomes a true generalisation of the standard

FEM as V gfem
k1

is a superset of a standard FEM space on the meshMmac.

A disadvantage of this hybridisation is that some multiscale functions bmulti are dropped. Especially the
vertex DOFs on Γover are dropped, i.e., these micro functions bmic are not part of Ṽ multi

k1
any more. To relax

this restriction we propose to use small single-period multiscale cells close to Γover, e.g., K2, K4 in Fig. 8(a).
Then, the functions bmic are at least contained in K3. The discretisation error in K2, K4 can be selectively
controlled by taking higher pmac in these cells (enrichment) which does not a�ect the goal to achieve size
robustness as K2 and K4 only contain one period of the crystal. The addition of the small cells K2 and K4

is also essential to resolve the boundary layer e�ect discussed in Sec. 3.3.

Remark 7. A similar hybridisation procedure could be applied for an exterior discretisation with global plane
waves. For this several new micro functions bmic (with varying wave vectors k and constant periodic part
bper ≡ 1) need to added (M1) and matched with the exterior plane waves. Only the macro functions bmac

that are linear on Γover need to be combined (in the sense of (19)) with the newly added micro functions.
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4.4. Well-posedness of the discrete problem

In contrast to elliptic problems (e.g. heat conduction), the well-posedness of a Galerkin method for
inde�nite problems (e.g., for Helmholtz equation (2)) does not directly follow from the well-posedness of
the variational formulation (7) on the whole space H1

k1
(Ω), even for conforming discretisations with an

N -dimensional subspace VN ⊂ H1
per(Ω). It is usually not guaranteed that the discrete problem (17) has a

unique solution ugfem
N , especially when the discretisation is very coarse. But at least uniqueness can often be

shown for a su�ciently �ne discretisation. This also applies in the present case of g-FEM spaces V gfem
pmac

and
predicts a unique solution when the polynomial degree pmac exceeds some value p?mac ∈ N. Here, we used
the g-FEM space V gfem

pmac
with macro polynomial degree pmac and an exterior standard FEM discretisation

with pext ≥ pmac.

Proposition 8 (Well-posedness of the Multiscale FEM discretisation). Given an in�nite sequence (V gfem
pmac

)∞pmac=1

of discrete g-FEM spaces V gfem
pmac

⊂ H1
k1

(Ω) with macroscopic polynomial degree pmac, then there exists some

p?mac ∈ N so that (17) has a unique solution u
(pmac)
k1

in V gfem
pmac

for pmac ≥ p?mac. In this case, the quasi-optimal
error estimate ∥∥uk1 − u(pmac)

k1

∥∥
H1(Ω)

≤ C min
v∈V gfem

pmac

∥∥uk1 − v∥∥H1(Ω)
(21)

holds, where C > 0 is a pmac-independent constant and uk1 is the solution of (7).

Proof. This proposition is a direct application of [66, Satz 4.2.9], we check here its prerequisites. The
sesquilinear form Φ(·, ·) is the sum of aH1

k1
(Ω)-coercive sesquilinear form a(u, v) =

∫
Ω
a(x)∇u(x)·∇ v(x) dx

and a compact perturbation t(u, v) = Φ(u, v) − a(u, v). The variational formulation has a unique solution
uk1 (7) as shown in Prop. 3 and the only solution with zero right hand side is uk1 ≡ 0. Finally, we note that
(V gfem
pmac

)pmac is a dense sequence of �nite dimensional subspaces of H1
k1

(Ω).

Note, that the proposition applies also to p-FEM spaces Vp on the meshMmac with uniform polynomial
degree p = pmac as no special information of the functions bmic has been used. It can also be extended to
g-FEM spaces with a non-uniform polynomial degree distribution, where the minimal polynomial degree
has to exceed p?mac.

The underlying proof in [66, Satz 4.2.9] does neither determine p?mac nor on which parameters it depends.
We cannot exclude, that it even depends on np. However, in all our numerical experiments we observed
p?mac ≤ 2 for both p-FEM and MSFEM, and that p?mac did not depend on np at all. In numerical experiments,
the non-uniqueness would express itself in (almost) singular matrices or in an error for a particular pmac

which is larger than the error for pmac − 1. The increase in the error is an artifact of the discretisation,
that may occur if the quasi-optimality of FEM does not yet hold. We observed only an increase in the error
when increasing pmac from 1 to 2. This observation leads us to the following conjecture.

Conjecture 9 (Size-independent stability). Let the periodic function 1 with wave-vector k = (k1, 0)> and a
�nite set of Bloch modes at least containing the dominant Bloch modes Bdomk1

be included in the micro space

V mic
k1

of the g-FEM space V gfem
pmac

. Then, the minimal polynomial degree p?mac for uniqueness (see Prop. 8)
does not depend on np.

Remark 10. With Proposition 8 the well-posedness is guaranteed for su�ciently re�ned MSFEM spaces, if
no guided mode is present at the investigated frequency ω and investigated wavenumber k1, which was already
assumed in Sec. 2.3. Nevertheless, the required resolution p?mac in Prop. 8 for well-posedness might depend
on the distance of the wavenumber k1 to the wavenumber kg1 of a guided mode ug and (more generally) on
eigenmodes of the continuous problem for frequencies in a complex neighbourhood of the simulation frequency
ω ∈ R. In such resonance situations usually very high computational e�ort (high polynomial degrees) is
needed to obtain a stable discretisation. Near resonance situations are usually indicated by high condition
numbers.
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5. Computation of matrix entries by fast quadrature

This section is concerned with the linear system that has to be solved to determine the discrete solution
uN in the hybrid space V gfem

k1
. The linear system will be introduced in Sec. 5.1. The main di�culty is the

fast evaluation of integrals of the two-scale basis function bmulti in the macro cells Kmac ∈ Mmac
cr of the

crystal. The integration rule has to take the microscopic structure bmic of bmulti into account. A simple
integration rule that satis�es this requirement, the size dependent quadrature, is introduced in Sec. 5.2. The
computational e�ort of the size dependent quadrature scales linearly with the number of periods np. In
the remainder of this section we introduce an e�cient integration rule, the fast quadrature, which keeps the
accuracy of the size dependent quadrature, but which is size robust in terms of computational time, i.e.,
independent of np.

This algorithm is not limited to the here proposed multiscale FEM for the PhC bands in two space
dimensions with 1 × n-period macro cells. Rather it applies to any space dimension d and parallelepiped
macro cells with n1 × n2 × . . . × nd-periods for some number of periods n1, . . . , nd ∈ N. On such macro
cells the the algorithm can numerically integrate two-scale functions which are products of Ω̂-quasi-periodic
micro functions and polynomial macro functions. We will introduce the fast quadrature exemplary for a
2-dimensional �nite crystal with np,1 × np,2 periods. Furthermore, we will optimise the algorithm with
respect to pmac and give in Sec. 5.5 an explicit algorithm for fast quadrature whose computational e�ort is
equivalent to that of p-FEM on the coarse mesh Mmac

cr with polynomial degree p = pmac. This means the
assembly of system matrices for the two-scale basis functions bmulti with their highly oscillatory microscopic
parts is only as expensive as the integration of only the much smoother macroscopic part, i.e., two-scale
integration with fast quadrature is only as expensive as one-scale integration.

5.1. Computation of matrix entries

To solve (17) for the discrete solution ugfem
N a linear system Aα = f is assembled and solved for the

coe�cient vector α = (αgfem
`1

)N`1=1. Here, the system matrix and the vector of the right hand side are given
by

A =
(

Φk1(bgfem
`1

, bgfem
`2

)
)N
`1,`2=1

, f =
(
f(bgfem

`2
)
)N
`2=1

, (22)

where Φk1 is the sesquilinear form de�ned in (7b) and f the linear form de�ned in (7c).
The linear form (7c) involves only traces on the interface Γnref which is not adjacent to any cells Kmac ∈

Mmac
cr so f can be evaluated independent of np. Thus, we can restrict us in the following to the sesquilinear

form Φk1 .
The sesquilinear form Φk1 , de�ned in (7b), can be split into contributions for each macro cell Kmac ∈

Mmac by restricting the domain of integration from Ω (resp. Γnref) to Kmac (resp. Γnref ∩Kmac) and the
matrix entries are

A`2`1 = Φk1(bgfem
`1

, bgfem
`2

) =
∑

Kmac∈Mmac

ΦKmac(bgfem
`1

, bgfem
`2

). (23)

Clearly, the evaluation of ΦKmac for exterior macro cells Kmac ∈ Mmac
ext does not depend on the number of

periods np. For K
mac ∈ Mmac

cr the functions bgfem are two-scale functions bmulti, as de�ned in (19), and we
have to evaluate the sesquilinear forms

ΦKmac(bmulti
i , bmulti

j ) := aKmac(bmulti
i , bmulti

j ) + bKmac(bmulti
i , bmulti

j ), (24a)

with

aKmac(bmulti
i , bmulti

j ) :=
∫
Kmac

a(x)∇ bmulti
i (x) · ∇ bmulti

j (x) dx, (24b)

bKmac(bmulti
i , bmulti

j ) :=
∫
Kmac

b2(x, ω) bmulti
i (x) bmulti

j (x) dx. (24c)

See Fig. 9 for the index convention of bmulti.
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Ω̂ Kmac

bmac

bgfem

x1

x2

u(x1, x2)

Figure 10: Sketch of a macro cell Kmac over which the sesquilinear forms need to be evaluated. The basis function bmulti

oscillates on the length scale of one period. To resolve the oscillations the quadrature points from the unit cell bΩ are used, here
nquad = 3 Gauss-Legendre points (solid lines). The computational time depends only on nquad but the approximation quality
is as good as replicating the nquad points on all np periods (dashed lines).

5.2. A size dependent quadrature

This section explains a size dependent integration rule for periodic structures with np,1 × np,2-periods.
According to the discussion in the previous section (5.1) it is su�cient to describe a rule for one multiscale
cell Kmac ∈Mmac

cr with n1×n2 periods. For the PhC band only the special case of a 1×np,2-period crystal
and a 1× n2-period multiscale cell Kmac ∈Mmac

cr will be required. The integration rule works on two-scale
functions bmulti and does not only have to resolve the macroscopic-part, the polynomials bmac, but also the
microscopic part, the functions bmic, which oscillate on the level of a single unit cell Ω̂. So in general, as the
number of periods n = n1 n2 contained in Kmac grows, more quadrature points are needed to integrate up
to machine precision. One way to compute the integrals in ΦKmac(bmulti

i , bmulti
j ) is to choose an integration

rule on the unit cell Ω̂ and replicate the quadrature points on each repetition of Ω̂ contained in Kmac (see
Fig. 10). The integration of the unit cell can use the microscopic mesh Mmic (see Fig. 8(d)) and, e.g.,
Gauss quadrature points on the reference element of each micro cell Kmic ∈ Mmic. For a micro function
bmic a constant number of points is needed per unit cell Ω̂, as Ω̂ is the size of the smallest oscillation of
bmic. So after replication O(n) points are needed. To integrate only the much smoother macro function
bmac only O(p2

mac) points on Kmac are required. For a multiscale function bmulti the integration rules have
to be combined and the total number of points depends on p2

mac and n. We propose to use O(p2
mac) points

per unit cell which is su�cient to evaluate ΦKmac(bmulti
i , bmulti

j ) up any precision. Such a quadrature with

Ω̂-periodic points we call an Ω̂-periodic quadrature.
We note that the O(p2

mac) points per unit cell are a worst-case estimate and for large number of peri-

ods fewer points might be su�cient. Moreover, a general size dependent quadrature with non-Ω̂-periodic
quadrature points would still require O(n) points and would therefore be asymptotically equivalent to the

Ω̂-periodic one.

5.3. An algorithm for fast quadrature of two-scale functions with quasi-periodic micro structure

In this section we will show how to approximate the integrals to any accuracy, but with computational
complexity independent of the number of periods n of a macro cell Kmac ∈ Mmac

cr inside the crystal.
The obtained accuracy is up to round-o� errors equivalent to the size dependent quadrature presented in
the previous section. It will take advantage of the structure in the system matrix A induced by (i) the
multiscale functions bmulti, (ii) the periodicity of the dielectric pattern and so of a(x) and b2(x), (iii) the
quasi-periodicity of the micro functions bmic and (iv) the fact that the macro functions are polynomials. The
presented approach is an extension of [53, 65], where multiscale functions exhibit a tensor product structure
with purely periodic micro functions.
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The remainder of this section is organised as follows. First, we state Lemma 12, which allows to rearrange
the terms occurring in ΦKmac(bmulti

i , bmulti
j ) so that instead of an integral on Kmac only a weighted sum of

n-independent integrals on Ω̂ needs to be computed. The weights incorporate some sums S(r) =
∑nr
`=0 a

``k,
r = 1, 2 which can be evaluated by Lemma 13 with computational costs independent of n. The main result
of this section, the size robust assembling of the system matrix A, is then given in Theorem 15. All proofs
are constructive and thus the resulting formulas describe an algorithm for fast quadrature. The resulting
optimised algorithm will be presented in Sec. 5.5.

Remark 11. In this section we will use that powers an for a ∈ C and n ∈ N can be computed with O(1)
computational time up to machine precision.

Lemma 12. Consider a macro cell Kmac ⊂ Ωcr with n1×n2-periods, an a1- and a2-periodic function f(x)
(e.g. a(x) or b2(x)), the two-scale functions bmulti

i1,i2
and bmulti

j1,j2
with wave vectors ki2 ,kj2 ∈ C2 (in the form

of (19)), a component selector η ∈ {1, 2} and some derivative selectors di,dj with di1, di2, dj1, dj2 ∈ {0, 1}.
Then the integral

T =
∫
Kmac

f(x) Ddi1
η bmac

i1 (x) Ddj1
η bmac

j1 (x) Ddi2
η

(
bper
i2

(x) eiki2 ·x
)
Ddj2
η

(
bper
j2

(x) e−ikj2 ·x
)

dx, (25)

with the di�erential operator

Ddi
η u :=

{
u for di = 0, independent of η

∂xηu for di = 1,

can be rewritten as

T =
∑
i∈I

αiS
(1)
i S

(2)
i Qi, (26)

in which I is a �nite index set independent of n1 and n2; αi ∈ C are some coe�cients; the two sums S
(r)
i ,

r = 1, 2 take the form S
(r)
i = Sk,nr (a) =

∑nr−1
`=0 a``k for some a ∈ C, k ∈ N0; and the terms Qi are integrals

over Ω̂, which do not depend on n1, n2.

Lemma 13. For any n ∈ N, a ∈ C, k ∈ N0 the sum

Sk,n(a) =
n−1∑
`=0

a``k (27)

can be evaluated with O(k2) arithmetic operations, where the constant in O(k2) is independent of n.

The precise formulas for Sk,n(a) in (27) and T in (25) will be given in the proofs of the respective lemmas,
see particularly (31) for T and (33), (34), (35) for Sk,n(a). With these lemmas, we are in the position to
give the main result of a size robust assembly time of each entry of the element matrices ΦKmac(bmulti

i , bmulti
j )

and thus of the whole linear system.

Proposition 14 (Scale independent complexity of element matrix assembly). Let Kmac be a macro cell in
Ωcr with n1 × n2 periods. Then, the entries of the element matrix ΦKmac(bmulti

i , bmulti
j ) de�ned in (24a) can

be computed up to machine precision with complexity independent of n1 and n2.

Proof. We split the terms aKmac(bmulti
i , bmulti

j ) and bKmac(bmulti
i , bmulti

j ) of ΦKmac(bmulti
i , bmulti

j ) into single

terms T of the form (25). To split aKmac(bmulti
i , bmulti

j ) the chain rule is applied and the dot product is
decomposed as a sum of two component-wise multiplications. This leads to eight terms T of the form (25)
for aKmac(bmulti

i , bmulti
j ) and one for bKmac(bmulti

i , bmulti
j ). Thus the assumptions of Lemma 12 are satis�ed.

The application of Lemmas 12 and 13 completes the proof.
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Corollary 15 (Scale independent complexity of the assembly of the linear system). Given a crystal with
np1×np2 periods and macroscopic meshMmac consisting ofMmac

cr in the domain of the crystal Ωcr andMmac
ext

in the remaining exterior domain Ωext of Ω. Let Mmac
cr consisting of macro cells Kmac with n1(Kmac) ×

n2(Kmac) periods where the number of macro cells is independent of np1 and np2 . Then, the system matrix A
given in (22), can be evaluated accurately up to machine precision with complexity independent of the number
of periods np,1, np,2.

Proof. The corollary follows directly from Theorem 14 and the derivations and discussion in Sec. 5.1.

Remark 16. The approach also works for 3D �nite crystals and n1 × n2 × n3-period macro cells Kmac. In
this case instead of the TE and TM modes (1) we have the full vector valued Maxwell's equations and this
changes the ∇ in a(·, ·) into curl operators and the basis functions bmulti are vector valued. However, we
can still write aKmac(·, ·) as a sum of the terms (25).

5.4. Derivation of the fast quadrature

This section is devoted to the proofs of Lemmas 12 and 13.

Proof of Lemma 12. The proof consists in the decomposition of T into a sum of integrals Qi over the unit
cell Ω̂ only, each multiplied with a weight. These weights will be derived as products of two separate sums

S
(1)
i and S

(2)
i only depending on n1 or n2, respectively.

To achieve this separation of S
(1)
i and S

(2)
i we transform the parallelogram-shaped macro cell Kmac

onto the rectangular cell K̃ = [0, n1] × [0, n2] by an a�ne transformation. On K̃ we perform a monomial
expansion of bmac and apply the binomial theorem.

The a�ne mapping Fc : R2 → R2

Fc(x̃) := F0(x̃) + c, F0(x̃) := a1x̃1 + a2x̃2, (28)

transforms K̃ onto the parallelogram-shaped macro cell Kmac with the corners c, c+n1a1, c+n1a1 +n2a2

and c+ n2a2. The unit cell of the transformed cell K̃ is the standard unit cell Ω̃ := [0, 1]2 = F−1
0 (Ω̂). The

determinant of the Jacobian of Fc or F0 is |Ω̂|.
Using the transformation Fc we represent T as an integral over K̃ and decompose the integral as sums

over translated standard unit cells Ω̃

T = |Ω̂|
∫

eK f(Fcx̃) (Ddi1
η bmac

i1 )(Fcx̃) (Ddj1
η bmac

j1 )(Fcx̃) (Ddi2
η bmic

i2 )(Fcx̃)(Ddj2
η bmic

j2
)(Fcx̃) dx̃

= |Ω̂|
∑
`∈A

∫
eΩ f(Fcx̃) (Ddi1

η bmac
i1 )(Fc(x̃+ `)) (Ddj1

η bmac
j1 )(Fc(x̃+ `)) (29)

(Ddi2
η bmic

i2 )(Fc(x̃+ `)) (Ddj2
η bmic

j2
)(Fc(x̃+ `)) dx̃

where we use the o�set vector ` and the index set A := [0, n1)× [0, n2) ⊂ N2.
The macro functions bmac are constructed as polynomials of maximal degrees p1 and p2 on a reference cell

K̂ = [0, 1]2. They remain polynomials (of the same maximal degrees) on Kmac and on K̃ as the mappings

FKmac : K̂ → Kmac and Fc : Kmac → K̃ are a�ne. The same holds for the derivatives of a macro function
bmac. Let the monomial decomposition of (Ddi1

η bmac
i1

)(Fcx̃) for some derivative selector di1, component
selector η and macro index i1 be given by

(Ddi1
η bmac

i1 )(Fcx̃) =
∑
ν∈P

α(i1,di1,η)
ν x̃ν . (30)

Here α
(i1,di1,η)
ν ∈ C are the monomial coe�cients, P = [0, p1] × [0, p2] is the set of polynomials degrees up

to orders p1, p2 and xν is the multi-index notation for xν11 xν22 .
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The micro functions (bmic
i2

)(Fcx̃) and their derivatives (Ddi2
η bmic

i2
)(Fcx̃) are e1- and e2-quasi-periodic

which enables us to write

(Ddi2
η bmic

i2 )(Fc(x̃+ `)) = (Ddi2
η bmic

i2 )(Fcx̃+ F0`) = eiki2 ·F0`(Ddi2
η bmic

i2 )(Fcx̃).

Inserting this equality and the monomial decomposition (30) of the macro functions bmac into (29) we get

T = |Ω̂|
∑
ν∈P

∑
µ∈P

α(i1,di1,η)
ν α(j1,dj1,η)

µ

∑
`∈A

ei(ki2−kj2 )·F0`

∫
eΩ f(Fcx̃) (x̃+ `)ν+µ (Ddi2

η bmic
i2 )(Fcx̃)(Ddj2

η bmic
j2

)(Fcx̃) dx̃.

Now, we apply the binomial theorem to (x̃+ `)ν+µ, transform Ω̃ back to Ω̂ and obtain

T =
∑
ν∈P

∑
µ∈P

α(i1,di1,η)
ν α(j1,dj1,η)

µ

ν+µ∑
m=0

(
ν1 + µ1

m1

)(
ν2 + µ2

m2

)
Sν+µ−m
A,i2,j2 Q

m,di2,dj2
f,i2,j2

(31)

with

SκA,i2,j2 :=
∑
`∈A

ei(ki2−kj2 )·F0``κ, Q
m,di2,dj2
f,i2,j2

:=
∫

bΩ f(x) (F−1
0 x)m Ddi2

η bmic
i2 (x)Ddj2

η bmic
j2

(x) dx.

The index set I in (26) stems from the three multi-index sums in (31) and Qi corresponds to Q
m,di2,dj2
f,i2,j2

which is an integral over Ω̂ of micro functions or their derivatives with the transformed monomials (F−1
0 x)m

of bounded polynomial degree m ∈ P .
It is left to show that the term SκA,i2,j2 can be decomposed into S

(1)
i and S

(2)
i . Inserting the de�nition

of the vector ` = `1e1 + `2e2 and of `κ = `κ1
1 `κ2

2 the summands separate in products of terms in `1 and `2
and with the de�nition (27) we obtain

SκA,i2,j2 =
∑
`∈A

(
e−i`1(ki2−kj2 )·F0e1 `κ1

1

) (
e−i`2(ki2−kj2 )·F0e2 `κ2

2

)
= Sκ1,n1(a1)Sκ2,n2(a2)

with ar = e−i(ki2−kj2 )·F0er for r = 1, 2, and the proof is complete.

Note, that the separation of S
(1)
i and S

(2)
i at the end of the proof would not have been possible if the

monomial expansion (30) would have been performed on the unit cell Ω̂ with the periodicity directions a1

and a2 and an o�set vector x̃off(`) = `1a1 + `2a2 instead of `.
For the optimised algorithm in Sec. 5.5 it is important to remark, that the tensor product structure of

the shape functions smac
ι̂ (cf. Sec. 4.1) allows to express the coe�cients α

(i1,di1,η)
ν in (30) in terms of the

coe�cients α
(ι̂)
ν of the monomial expansion of the shape function smac

ι̂ (x̂) =
∑p
ν=0 α

(ι̂)
ν x̂ν . For di1 = 0 the

coe�cients α
(i1,0,η)
ν are given by

α(i1,0,η)
ν =

((
1
n1

)ν1
α(ι̂1)
ν1

) ((
1
n2

)ν2
α(ι̂2)
ν2

)
=: α(ι̂1,n1)

ν1 α(ι̂2,n2)
ν2 (32a)

which follows from the identity

bmac
i1 (Fcx̃) = smac

ι̂1

( ex1
n1

)
smac
ι̂2

( ex2
n2

)
. (32b)

Similarly for di1 = 1 we derive expressions for the coe�cients of derivatives of bmac, which are derivatives
with respect to the coordinate x ∈ Kmac. Using the transformation of the gradient we obtain

(D1
ηb

mac
i1 )(Fcx̃) = (∇x,η bmac

i1 )(Fcx̃) = (J̃−>·,η ∇ex bmac
i1 )(Fcx̃)

= (J̃−>1,η ∇ex,1 bmac
i1 )(Fcx̃) + (J̃−>2,η ∇ex,2 bmac

i1 )(Fcx̃),
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where J̃−>·,η is the η-th column of the transpose inverse of the Jacobian J̃ . In view of (32b) we can now

express the coe�cient α
(i1,1,η)
ν as

α(i1,1,η)
ν = J̃−>1,η (ν1 + 1)α(ι̂1,n1)

ν1+1 α(ι̂2,n2)
ν2 + J̃−>2,η (ν2 + 1)α(ι̂1,n1)

ν1 α
(ι̂2,n2)
ν2+1 . (32c)

The entries of J̃−> can be given by the simple formula

J̃−>ij =
1

|Ω̂|
(−1)i+j a3−i,3−j for 1 ≤ i, j ≤ j, (32d)

for the transposed inverse of an 2 × 2-matrix. Here ai,j is the j-th component of the periodicity direction
ai.

Proof of Lemma 13. The proof falls into three parts, the proof of the two special cases a = 1 and k = 0 and
the more general case a 6= 1, k > 0.

For a = 1 pre-computed Bernoulli polynomials Bk(n) can be used to compute the sum in O(1) operations

Sk,n(1) =
n−1∑
`=0

`k =
Bk+1(n)−Bk+1(0)

k + 1
. (33)

The Bernoulli polynomials can be pre-computed according to the formula

Bk(x) =
k∑

n=0

1
n+ 1

n∑
`=0

(−1)`
(
n

`

)
(x+ `)k,

with computational e�ort O(k2).
For k = 0 and a 6= 1 we have the geometric series

S0,n(a) =
n−1∑
`=0

a` =
an − 1
a− 1

, (34)

which computes the sum in O(1) operations.
In all other cases, i.e., k > 0 and a 6= 1, we claim that

Sk,n(a) =
a

(1− a)k+1

k−1∑
j=0

αk,ja
j + an−1

k∑
j=0

βk,j(n)aj

 , (35a)

where the constants αk,j and βk,j(n) are recursively de�ned by

αk,j :=

{
1, j = 0, k − 1
(j + 1)αk−1,j + (k − j)αk−1,j−1, 1 < j < k − 1,

(35b)

βk,j(n) :=



−n, k = 1, j = 0,
n− 1, k = 1, j = 1,
nβk−1,0(n), k > 1, j = 0,
(n+ j)βk−1,j(n)− (k − j − n+ 1)βk−1,j−1(n), k > 1, 0 < j < k,

(1− n)βk−1,k−1(n), k > 1, j = k.

(35c)

The proof of (35) is by induction in k and is based on the observation, that Sk,n(a) is the Z-transform of

the sequence {xn,k` } with xn,k` = `k for 0 ≤ ` < n and xn,k` = 0 otherwise. We de�ne the Z-transform
equivalently with a` instead of a−` as

Sk,n(a) = Z(xn,k` ) =
+∞∑
`=−∞

a`xn,k` .
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Using the rule for di�erentiation of the Z-transform we deduce

Sk+1,n(a) = aS′k,n(a). (36)

Di�erentiating (34) and multiplying with a we get

S1,n(a) =
a

(a− 1)2

(
1 + an−1 (−n+ (n− 1) a)

)
,

which proves (35) for k = 1. Assuming (35) to hold for k, we will prove it for k + 1.
Di�erentiating (35) and multiplying by a we conclude in view of (36) that

Sk+1,n(a) = a

∑k−1
j=0 (j + 1)αk,jaj + an−1

∑k
j=0(n+ j)βk,j(n)aj

(1− a)k+1

+ a2(k + 1)

∑k−1
j=0 αk,ja

j + an−1
∑k
j=0 βk,j(n)aj

(1− a)k+2

(35)
=

a

(1− a)k+2

(
αk,0︸︷︷︸
αk+1,0

+
k−1∑
j=1

(
(j + 1)αk,j + (k + 1− j)αk,j−1

)
︸ ︷︷ ︸

αk+1,j

aj

αk,k−1︸ ︷︷ ︸
αk+1,k

ak + nβk,0(n)︸ ︷︷ ︸
βk+1,0(n)

an−1 + (1− n)βk,k(n)︸ ︷︷ ︸
βk+1,k+1(n)

an+k

+ an−1
k∑
j=1

(
(n+ j)βk,j(n)− (k − j − n+ 2)βk,j−1(n)

)
︸ ︷︷ ︸

βk+1,j(n)

aj
)
,

which proves (35) for k + 1. The constants αk,j and βk,j(n) in (35) and so Sk,n(a) can be computed with
O(k2) operations, and the proof is complete.

Remark 17. Apart from the Bernoulli polynomials for the special case a = 1 also the powers an can be
pre-computed (see Remark 11). The polynomials

∑k−1
j=1 αk,ja

j and
∑k
j=0 βk,j(n)aj can be stably evaluated

via the Horner scheme. The coe�cients of the Horner scheme can be likewise pre-computed.

5.5. An optimised algorithm for fast quadrature

It has already been shown in Cor. 15 that the fast quadrature algorithm has computational complexity
independent of np,1 × np,2 the size of the crystal. This means that the computational cost per DOF is
constant independent of np,1 × np,2. Thus the proposed multiscale FEM is indeed size robust in terms of
computational time if we can show that it is size robust in terms of ndof . However, the algorithm contains
several sums and the computational costs for each DOF can be large for large pmac. In this section a closer
investigation of the constants in the formulas reveals this dependence on pmac and shows how to optimize
it to a complexity of O(p5

mac) using sum factorisation techniques [55]. The complexity of the optimised
algorithm is up to a constant equivalent to the assembly time for tensor product polynomials of degree pmac.

An implementation of the fast quadrature needs to evaluate formula (31) for each pair of multiscale
functions bmulti

i and bmulti
j . The total number of evaluations per pair is O(1), there are 8 evaluations for the

sesquilinear form a(bmulti
i , bmulti

j ) and one evaluation for the sesquilinear form b(bmulti
i , bmulti

j ). The number
of basis functions bmulti is O(p2

mac) due to the tensor product structure and assumed constant number of
micro functions nmic. The complexity of the algorithm is thus O(p4

mac) times the complexity to evaluate

(31). In (31) the unit cell integrals Qi and the Z-transform of powers S
(1)
i , S

(2)
i need to be evaluated. The

former requires a unit cell quadrature of at most a complexity of O(p2
mac) (see Sec. 5.2 with n = 1). The

latter requires to evaluate one of the cases (33), (34) or (35). Only a time of O(1) is required to evaluate
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Algorithm 1: Fast quadrature algorithm

input : V gfem
k1

withMmic, pbloch, nmic,Mmac, pmac and exterior discretisation parameters, an

Ω̂-periodic material function f(x) (here f(x) = a(x))
output: Sti�ness part Astiff of system matrix

allocate space for Astiff
ext1

for Kmac ∈Mmac
ext do //all exterior elements2

standard assembly process for Kmac ; time: e.g., O(p5) for p-FEM3

allocate space for Astiff
cr (i1, j1, i2, j2) ; space: O(p4

mac n
2
mic)4

for Kmac ∈Mmac
cr do //all multiscale elements5

let Kmac be a multiscale cell with n1 × n2 periods and the index set A := [0, n1)× [0, n2).6

for di,dj ∈ {(0, 1), (1, 0)}, η ∈ {1, 2} do //8 combinations7

for η̂1 ∈ {0, 1} if di1 = 1, else η̂1 = 1 do //2 combinations for di1 = 1 in (32c)8

if di1 = 1 then J1 ← J̃−>η̂1+1,η else J1 ← 1 ; //see equation (32)9

for η̂2 ∈ {0, 1} if di2 = 1, else η̂2 = 0 do //2 combinations for di2 = 110

if di2 = 1 then J2 ← J̃−>η̂2+1,η else J2 ← 1 ; //see equation (32)11

for i2, j2 = 0, . . . , nmic − 1 do //all micro functions12

allocate space for S
κ1,(1)
A,i2,j2 , S

κ2,(2)
A,i2,j2 (only κ1, κ2 variable) ; space: O(pmac)13

allocate space for Q
m,di2,dj2
f,i2,j2

(only m variable) ; space: O(p2
mac)14

for κ1 = 0, . . . , pmac do //all values κ1 = ν1 + µ1 −m115

compute S
κ1,(1)
A,i2,j2 using Lem. 13 ; time: O(pmac)16

for κ2 = 0, . . . , pmac do //all values κ2 = ν2 + µ2 −m217

compute S
κ2,(2)
A,i2,j2 using Lem. 13 ; time: O(pmac)18

for m1,m2 = 0, . . . , pmac do //all monomial powers19

compute Q
m,di2,dj2
f,i2,j2

using unit cell quadrature ; time: O(p2
mac)20

allocate space for H1(ι̂2, ̂1, ̂2, ν1) ; space: O(p4
mac)21

allocate space for H2(ι̂2, ̂2, κ1) ; space: O(p3
mac)22

allocate space for H4(κ1, κ2) ; space: O(p2
mac)23

for κ1, κ2 = 0, . . . , pmac do24

H4(κ1, κ2)←
∑κ
m=0

(
κ1
m1

)(
κ2
m2

)
S
κ1,(1)
A,i2,j2S

κ2,(2)
A,i2,j2Q

m,di2,dj2
f,i2,j2

; time: O(p2
mac)25

for ι̂2, ̂2, κ1 = 0, . . . , pmac do26

H2(ι̂2, ̂2, κ1) ←27 ∑pmac
ν2=0

∑pmac
µ2=0(ν2 + 1)di1η̂1α(ι̂2,n2)

ν2+di1η̂1
(µ2 + 1)di2η̂2α(̂2,n2)

µ2+di2η̂2
H4(κ1, ν2 + µ2)

time: O(p2
mac)

for ι̂2, ̂1, ̂2, ν1 = 0, . . . , pmac do28

H1(ι̂2, ̂1, ̂2, ν1) ←
∑pmac
µ1=0(µ1 + 1)di2(1−η̂2)α

(̂1,n1)
µ1+di2(1−η̂2)H2(ι̂2, ̂2, ν1 + µ1)29

time: O(pmac)

for ι̂1, ι̂2, ̂1, ̂2 = 0, . . . , pmac do30

Astiff
cr (i1, j1, i2, j2)← Astiff

cr (i1, j1, i2, j2)31

+J1 J2

∑pmac
ν1=0(ν1 + 1)di1(1−η̂1)α

(ι̂1,n1)
ν1+di1(1−η̂1) H1(i2, ̂1, ̂2, ν1)32

time: O(pmac)

Astiff ← combine (Astiff
ext , A

stiff
cr ) //respect overlap handling33

return Astiff
34
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(33) and (34), a time of O(pmac) to evaluate (35a), and a time of O(p2
mac) to set up αk,j and βk,j(n) by

(35b) and (35c). So the complexity to evaluate the terms S
(1)
i , S

(2)
i and Qi for a �xed i is O(p2

mac). There
are O(p6

mac) of these terms to be summed, which leads to a total time of O(p8
mac) for a tuple (i, j). Such an

implementation thus has an overall complexity of O(p12
mac).

Fortunately, some optimisations are possible. The optimized algorithm for the sesquilinear form a(·, ·) is
Alg. 1 (see Fig. 9 for the notation of the indices). A similar algorithm works for the sesquilinear form b(·, ·)
with the material function f(x) = b2(x, ω) and with a single combination instead of the 8 combinations in
Alg. 1. The combination is given by the derivative selectors di = dj = 0 and where the component selector
η remains arbitrary. The algorithm uses memorisation and sum factorisation as in [55] and has the overall
complexity of O(p5

mac) in pmac. This is up to a constant equal to the time for an assembly for the standard
FEM on the coarse macro meshMmac

cr ; however, it resolves variations on the micro scale.

6. Numerical results

This section presents results of the multiscale FEM presented in the previous sections for the model prob-
lem described in Sec. 2. We will give results for the same test cases as studied for the L2-best approximation
of the multiscale basis in Sec. 3.3 and supplement the results with an experiment for oblique incidence. The
multiscale FEM is always compared to a scale-dependent p-FEM simulations of a high polynomial degree.
The p-FEM simulation is known to produce good approximations but with high computational costs in time
and memory for large np.

A C++ Implementation of the multiscale FEM solver of Section 4 has been integrated into the FEM
solver Concepts [15]. A tool chain to compute a �nite crystal solution ugfem for one test case is explained
in Alg. 2. Experiments for varying parameters of Alg. 2 will be shown in the remainder of this section.
Especially we vary the modelling parameters ω̂, ϕ and np but also the discretisation parameters pmac,
Mmac. We will always �x a set of micro functions Emic

k1
(nmic) based on Bdomk1

depending on ω̂ and ϕ.

The unit cell Ω̂ = [0, 1]2 and material parameters (see Fig. 2), the micro mesh Mmic (see Fig. 8(d)), the
polynomial degree pbloch = 25 (see discussion in Sec. 3.3), the exterior polynomial degree pext = 15, the size
of the air layer Lair = 6 and the number of terms in the DtN operator (nDtN = 7) have been �xed in all
experiments. The constants have been chosen so that the modelling error of the non-reecting boundary
condition is neglible and so that the over-all discretisation error is dominated by the error in Ωcr. We always
compare the method in the H1(Ωcr)-norms and the nDOFs with support in Ωcr which have been used for
the simulation. The nDOFs completely supported in Ωext and the error in Ωair have not been taken into
the analysis as the focus of the present work is the discretisation of Ωcr.

Algorithm 2: Toolchain for the multiscale FEM solver

de�ne normalised frequency ω̂ ; //compare to the bandstructure in Fig. 3

de�ne incidence angle ϕ ; //ϕ = 0 defines perpendicular incidence (default)1

setup incident plane wave (default amplitude 1) ; //see Sec. 2.72

compute Floquet parameter k1 = T (sin(ϕ)ω2) ;3

de�ne micro meshMmic of Ω̂ ; //see Fig. 8(d)4

de�ne polynomial degree pbloch to solve the unit cell problem (14) ;5

compute set of the set of �rst nbloch micro functions Bk1(nbloch) ; //see Sec. 3.26

de�ne exterior macro meshMmac
ext of width Lair ; //see Fig. 8(a)7

de�ne number of periods np of Ωcr and multiscale macro meshMmac
cr ; //see Fig. 8(a)8

de�ne macro polynomial degree pmac for V
multi
k1

and polynomial degree pext for V
ext
k1

;9

compute �nite crystal solution u using g-FEM solver ;10

postprocess u ; //e.g., compute H1(Ωcr)-error to a p-FEM reference simulation.11
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The reference �nite crystal solution uref has been computed with p-FEM on a size dependent mesh (see
Fig. 5) with uniform polynomial degree pref = 20. Since the PhC scatterer in the investigated example is
made of smooth dielectric circular rods, the p-FEM with curved cells ensures a high accuracy of the reference
solution [68]. We observed that the relative H1(Ωcr) error of uref is approximately constant for a �xed pref

independent of np. By computing a �nite crystal solution for small np with a polynomial degree p > pref

we assure that the error of usr is below 10−6 with small variations depending on ω̂. All H1(Ωcr)-errors are
measured with respect to uref .

The e�ciency of the g-FEM solutions ugfem are compared to the e�ciency of solutions usr of a size
dependent method, where we used again p-FEM with uniform polynomial degrees psr well below the reference
degree pref . The nDOFs completely determines the computational time used by p-FEM or multiscale FEM.
Note, that each DOF for multiscale FEM is up to a constant as expensive as a DOF for p-FEM (cf. Sec. 5),
and thus a comparison of nDOFs is su�cient. Using an adaptive hp-FEM instead of of p-FEM, a smaller
nDOFs may be obtained for a certain discretisation error, but no essentially di�erent numerical results are
expected.

The macro meshMmac
cr was always �xed to the one presented in Fig. 8(a) and the polynomial degree pmac

was varied. The set of micro functions Emic
k1

was chosen as the set of dominant Bloch modes Bdomk1
completed

by the special micro function bmic
? (see Sec. 4.3), consequently we always have nmic = nbloch + 1. In the

present work we will not show results for larger micro spaces V mic
k1

whose generators Emic
k1

contain higher

Bloch modes. For bandgap frequencies we modi�ed Emic
k1

according to the selection rule (D3) described in
Sec. 3.3.

6.1. Experiments for perpendicular incidence

First, we present the results for the test cases of Sec. 3.3 with ω̂ ∈ {0.215, 0.300, 0.625} and perpendicular
incidence (ϕ = 0) for several np.

Convergence in pmac. In Fig. 11(a) the convergence w.r.t. pmac is shown for ω̂ = 0.625. The error decreases
as pmac is increased which is in accordance to the best approximation error for the �rst cell (see Fig. 6(e)).
The �nal relative H1(Ωcr)-error is below 10−3 and even one magnitude lower for larger np. In Fig. 11(b)
all three frequencies ω̂ = 0.215, 0.300, 0.625 are compared, for an easier presentation for the extreme cases
np = 3 and np = 100. The computations have been done for the same values of pmac as in Fig. 11(a),
where we now present a plot in dependence of nDOFs instead of pmac. We observe in all three cases, for the
propagating frequency ω̂ = 0.215 with nbloch = 2, the bandgap frequency ω̂ = 0.300 with nbloch = 2 and the
propagating frequency ω̂ = 0.625 with nbloch = 4, a relative H1(Ωcr)-error lower than 10−3 with less than
1000 multiscale DOFs. For the propagating frequencies ω̂ = 0.215 and ω̂ = 0.625 the error decays for larger
np as then the error in the �rst cells becomes less and less important. For bandgap frequencies this is not
the case, as the �elds themselves decay and the �rst cells will always be most important.

Comparison to p-FEM. The results for a similar but more extensive experiment are shown in Fig. 12 for
the frequency ω̂ = 0.215. In this experiment all the solutions for np = 3 up to np = 50 have been computed
for pmac = 1, . . . , 9. The error for ndof = 8 (pmac = 1), ndof = 78 (pmac = 3) and ndof = 434 (pmac = 7)
is displayed. The plot shows that the error of multiscale FEM is almost independent of np and the error
even decreases for larger np. Additionally to the error of MSFEM, the plot also shows the error for a
p-FEM simulation using the size dependent mesh displayed in Fig. 5 that resolves the material interfaces.
The superiority of a size robust method over a size dependent method is clearly visible. For np = 50 the
multiscale FEM achieves about the same error with 434 DOFs for which p-FEM needs 50′000 DOFs. And
for larger np the di�erence in DOFs is even more pronounced. The nDOFs for p-FEM grow linearly with np

which leads to a linearly growing assembly time, a more than linear increase in the solver time and linearly
growing memory usage. In contrast to this, for multiscale FEM, the assembly time, solver time and memory
usage is practically constant. Already for np = 3 the multiscale FEM requires less DOFs as p-FEM, but as
the constant in the assembly time per DOF of multiscale FEM is larger than for p-FEM, the total runtime
of the solver is larger for very small np. We note that the size dependent mesh for p-FEM is necessary
to achieve exponential convergence. If the material interfaces would not have been resolved p-FEM would
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(a) Multiscale FEM for ω̂ = 0.625 (nbloch = 4)
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(b) Multiscale FEM for ω̂ = 0.215 (nbloch = 2), ω̂ = 0.625 (nbloch = 4) and ω̂ = 0.300 (nbloch = 2, bandgap). All simulations
have been done for pmac = 1, 2, . . . , 9 and for each pmac the used nDOFs and the achieved error are displayed.

Figure 11: Multiscale FEM for perpendicular incidence and the three frequencies studied in Sec. 3.3, see Fig. 3 for the
corresponding bandstructure. In all three cases the MSFEM is size robust for constant pmac and constant nDOFs. The
convergence graphs for ω̂ = 0.625 includes larger nDOFs due to the two additional micro functions.

reach only algebraic convergence which is con�rmed in practise. Apparently, p-FEM has to use more DOFs
for growing np to retain a particular error level.

6.2. MSFEM for oblique incidence

We also computed the error of MSFEM for oblique incidence for ω̂ = 0.230 as studied for the best-
approximation in Sec. 3.3. The results are shown exemplary for np = 20 in Fig. 13(a). The MSFEM
accuracy is not a�ected by the incident angle ϕ and thus the method works uniformly well deep inside the
bandgap, close to the propagating regime and inside the propagating regime. We note that this result relies
on the selection rule (D3). With the selection rule (D1) the condition number of the system matrix is even
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Figure 12: Multiscale FEM for perpendicular incidence and the frequency ω̂ = 0.215 in comparison to p-FEM. P-FEM is size
dependent and the error for a �xed nDOF increases with np, whereas MSFEM is size robust and achieves for a �xed nDOF a
constant error independent of np.

larger than that of the L2-best projection and the method fails before reaching even an error level of 10−2.
The reduction of the condition numbers is subject of future research.

Experimental investigation of the transmission coe�cient. An important quantity for manufacturing a PhC
structure is its transmission coe�cient T , it is desired to control T . If a PhC is used to shield a waveguide
it is desired to have a very small value for T , so that most of the �eld is transported along the waveguide.
To couple a �eld into the waveguide a high value of T ≈ 1 is desired. Often the transmission coe�cient of
a complicated PhC device is deduced by the bandstructure of the corresponding in�nite PhC. The band-
structure of the in�nite crystal give the general idea of the value of T , but there are some e�ects unique to
�nite PhCs.

As a generalisation of reection and transmission coe�cients for wave optics [63], we de�ne T as the
power transmission coe�cient [71]

T =
en(uk1 , np + Lair)
en(uinc

k1
, np + Lair)

,

where the power ux en(u, y) of a �eld u over an interface line x2 = y is given by

en(u, y) = Im
∫ a

0

∂u

∂x2
(x1, y) u(x1, y) dx1.

The transmission coe�cient for ω̂ = 0.230, varying incident angles ϕ and several sizes of the crystal is
displayed in Fig. 13(b). We displayed the transmission coe�cient as computed by p-FEM with polynomial
degree p = 20 and by MSFEM with pmac = 3. The p-FEM computation for p = 20 has resolved the �eld
uk1 with high precision and thus the computed transmission coe�cient is expected to be very accurate. The
MSFEM for pmac = 3 with its only 78 DOFs approximates the transmission coe�cient so accurate, that in
Fig. 13(b) no di�erence between the two computations can be seen. As predicted by the in�nite PhC, the
transmission coe�cient is very small for large crystals and away from the propagating regime. Parts of the
�eld are reected on both interfaces of the crystal. Depending on the number of periods np and the angle ϕ
there can be destructive or constructive interference between the two reected �elds. This explains why the
reection coe�cient can vary strongly in the propagating regime, which cannot be predicted by knowing the
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(b) Transmission coe�cient as computed by p-FEM with p = 20 and MSFEM with pmac = 3.

Figure 13: Multiscale FEM for np = 20 and oblique incidence for the frequency ω̂ = 0.230 (nbloch = 2) which is a bandgap
frequency for incident angles ϕ < 47◦ and propagating otherwise. Compare this result to the bandstructure, reection coe�cient
and best-approximation result in Fig. 7. In a) we observe the MSFEM accuracy is incident angle robust, it works inside the
bandgap (fast decaying modes) on the boundary of the bandgap (slow decaying modes) and in the propagating regime (no
decay in modes). In b) the power transmission coe�cient is displayed for varying np. No di�erence can be seen between the
transmission coe�cient computed by p-FEM with more than 50‘000 DOFs and MSFEM with only 78 DOFs.
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behaviour of waves in the in�nite crystal. Note that for small crystals (np = 5), the transmission coe�cient
can actually be smaller in the propagating regime than in the bandgap.

The results of this section show that the dominant Bloch modes Bdomk1
modulated by macroscopic con-

tinuous, piecewise polynomials of degree pmac ≥ 1 are a very promising basis to numerically approximate
�nite crystal solutions. In the next section we will extent this result and propose a FEM which has this
basis build-in into its basis functions. For pmac = 1 the Bloch modes modulated by macro polynomials form
a partition of unity, i.e., the Bloch modes themselves are contained in the space. Moreover, the modulation
by macroscopic polynomials localises the Bloch modes and allows the �nite crystal e�ects. Higher values for
pmac are useful close to the boundary of the crystal for the transition of the solution in the exterior space
into solutions of the in�nite crystal.

7. Conclusion

In this article, we introduced a size robust multiscale basis and multiscale FEM for PhC structures, as a
special case of the Generalised Finite Element Method. The multiscale basis consists of quasi-periodic micro
functions and piecewise polynomial macro functions. The micro functions can be automatically computed
as numerical solutions of a unit cell problem. In particular, we used the unit cell problem (14) and solved
for the dominant Bloch modes Bdomk1

(cf. Sec. 3). Together with a boundary layer mesh (see Fig. 8(a))
this basis can approximate solutions inside the PhC band size robustly. Using this multiscale basis we
constructed a MSFEM which can be coupled to an arbitrary exterior discretisation. The e�ciency of the
MSFEM can be controlled by changing the set of micro functions Emic

k1
, the macroscopic mesh Mmac, and

the polynomial degree pmac. Moreover, the MSFEM allows h-, p- or hp-re�nements on the macroscopic part
and sparsi�cation techniques of the tensor product V multi

k1
= V mic

k1
⊗ V mac

per . The MSFEM is size robust for
the PhC barrier and to achieve a particular error it only requires a few DOFs independent of the size of
the crystal, the angle of the incident �eld or the frequency ω̂. In particular, the method works inside and
outside the bandgap of the corresponding in�nite crystal. For large PhC structures, the method is much
faster than size dependent standard discretisation schemes like FDTD or h-, p- and hp-FEM but it is already
useful for smaller crystals. For example for np = 3 it requires only the same nDOFs than p-FEM. For each
DOF the MSFEM only requires a constant computational time which is not more expensive than a constant
multiple of the time for a p-FEM DOF. This is due to the e�cient integration rule for two-scale functions
with quasi-periodic micro structure described in Sec. 5.

Various simulation techniques have been proposed for PhC crystals of di�erent sizes. Very small PhC
structures with only a few periods (np � ∞) can be e�ciently simulated by direct discretisation schemes
like p-FEM [67]. In�nitely large PhC structures can be reduced by a Floquet- or Bloch-transformation
to a family of computationally manageable problems where each can be simulated by direct discretisation
schemes. An in�nitely large PhC with a localised perturbation or an in�nitely PhC in a half space can
be treated by special DtN operators as proposed by Fliss et al. [23]. For the practical case of large PhC
structures present methods are still not satisfactory. The proposed MSFEM for PhC bands can be extended
to 2D structures where the techniques presented in this article are building blocks. This is work in progress
and will be reported elsewhere.

Moreover, further work has to be done in the numerical analysis of the MSFEM. The conjecture of
size-independent stability, Conj. 9, is not yet proven and the size-independence results are only numerically
con�rmed.
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