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Eidgenössische Technische Hochschule

CH-8092 Zürich
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hp-FEM FOR SECOND MOMENTS OF

ELLIPTIC PDES WITH STOCHASTIC DATA

PART 1: ANALYTIC REGULARITY

BASTIAN PENTENRIEDER AND CHRISTOPH SCHWAB

Seminar for Applied Mathematics, ETH Zentrum, Zürich, Switzerland

Abstract. For a linear second order elliptic partial differential operator A :
V → V ′, we consider the boundary value problems Au = f with stationary
Gaussian random data f over the dual V ′ of the separable Hilbert space V in
which the solution u is sought. The operator A is assumed to be deterministic
and bijective. The unique solution u = A−1f is a Gaussian random field over
V . It is characterized by its mean field Eu and its covariance Cu ∈ V ⊗V . For a
class of piecewise analytic covariance kernels Cf ∈ V ′⊗V ′ for Gaussian data f ,
we prove analytic regularity of the covariance Cu of the Gaussian solution u in
families of countably normed spaces. To this end, we investigate shift theorems
for the (non-hypoelliptic) deterministic tensor PDEs (A⊗A)Cu = Cf proposed
in [14] for the covariance Cu. The non-hypoelliptic nature of A ⊗ A implies
that sing supp(Cu) is in general strictly larger than sing supp(Cf ). Based on
our regularity results, we outline an hp-Finite Element strategy from [7, 8]
to approximate Cu stemming from covariances of stationary Gaussian data
f . In the second part [8] of this work, we prove that this discretization gives
exponential rates of convergence of the FE approximations, in terms of the
number of degrees of freedom.

AMS Subject classification: 65N30

1. Introduction

The efficient numerical solution of partial differential equations (PDEs) with ran-
dom data has drawn substantial interest in recent years, in particular due to its
significance for uncertainy quantification (UQ) in engineering. In such problems,
one can roughly distinguish between two types of data uncertainty: uncertainty
in loadings, uncertainty in coefficients and even in domains of problem definitions.
Whereas in the mathematical theory of such PDEs the focus has been on rather
rough noise in data (such as, e.g., white noise) without correlation, in engineering
applications the focus is on so-called “colored” noise, where spatial and temporal
correlations in input data are estimated from observations.
Computational strategies for this kind of problem can be roughly divided into two
classes: sampling methods and parametric, deterministic methods. The former class
contains, in particular, Monte Carlo (MC) as well as Quasi-Monte Carlo (QMC)
methods. It is based on the computation of a solution “ensemble” based on a
suitable data “ensemble” of M i.i.d. draws of the problem data, and amounts to
the solution of M many, independent deterministic PDE problems. Deterministic,
statistical quantities of engineering interest are then estimated from the solution
ensemble by means of statistical estimators such as e.g. sample average or empirical
variance estimators. The latter class consists of parametric methods which aim at
the deterministic approximation of the law of the unknown random solution. We
mention only the so-called polynomial chaos approach and its generalizations which

Date: March 3, 2010.
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2 B. PENTENRIEDER AND CH. SCHWAB

aim at computing a spectral representation of the unknown random fields in terms
of polynomials of the (assumed i.i.d) random parameters in the input data. Once
again, from the computed probability densities, the computation of moments and
other quantities of statistical interest is achieved by numerical integration.
Alternatively, one could attempt to directly compute statistical moments of the
random solution in terms of the corresponding moments of the random data. This
is, in general, not possible due to the nonlinear dependence of the moments of
the random solution on the corresponding moments of the random data so that
closure hypotheses must be imposed which are, to some extent heuristic. Also, a
finite number of statistical moments is in general insufficient to determine a random
field completely with the notable exception of Gaussian Random Fields: these are
completely determined by their first and second moments, i.e. by their mean fields
and their covariances. In the so-called FOSM1 (“FOSM” for short) perturbation
analysis, explicit and linear PDEs are obtained for the direct computation of the
second moments of the random solution which are, of course, only accurate up to
terms which are of second and higher order in the perturbation amplitude.
Whereas the mean field corresponds to the solution of a deterministic PDE in the
physical domain D of the problem, the second moment or covariance (resp. two-
point correlation) is a deterministic quantity which is to be computed in twice the
number of variables, i.e. in cartesian product domain ! := D × D. For physical
domains D ⊂ R3, the efficient numerical solution of problems in ! = D × D is,
at first sight, prohibitive due to the so-called curse of dimensionality. In [14, 15]
and in [8], however, the use of sparse tensor products of multilevel Finite Element
Spaces in the domain D has been shown to be able to avoid the complexity increase
in the deterministic covariance computations due to the doubling of the dimension
of the computational domain. Deterministic second moment solvers which scale
log-linearly in the number N of degrees of freedom for the solution of the mean
field problem have been given in [14, 15]. The reduction of complexity is, however,
achieved only for rather smooth covariance functions (belonging to so-called “spaces
of mixed highest derivatives”). This assumption is not realistic: two-point spatial
correlation functions widely used in statistical modeling do exhibit singular supports
on the diagonal of the domain D × D. This implies only rather limited regularity
in scales of Sobolev spaces of mixed dominating derivative and, accordingly, poor
approximation properties of the sparse tensor product approximations in [14, 15]
of such functions.
To exhibit a new, tensorized hp-Finite Element approximation scheme for such
covariance functions for an elliptic model problem in one spatial dimension is the
purpose of the present paper and the related reference [8]. We prove in [8] that
it converges exponentially, for covariance functions with singular support on the
diagonal ∆ := {(x, y) : x, y ∈ D, x = y} ⊂ ! which are analytic in D × D\∆. Key
ingredient in achieving this is the assumption of stationarity of the random input
data f . We present a Finite Element approximation algorithm for the computation
of the solution which only requires hp-discretization of the (deterministic) elliptic
differential operator. We state an exponential convergence result which will be
proved in [8]. It is based on an analytic regularity theory for the tensor differential
operator A ⊗ A where A is a second order differential operator acting in a one
dimensional domain D. The presentation of this regularity theory is the principal
purpose of the present paper. It is structured as follows: in Section 2, we present the
class of PDEs of interest and define, in particular, Gaussian data f and Gaussian
solution fields u, and derive tensorized equations of the k-point correlation functions
of u. Section 3 introduces a specific class of elliptic problems in the unit interval

1First Order, Second Moment
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D = (0, 1) and the associated mean and covariance equations to be investigated
in the following. Several classes of parametric, analytic data covariance functions
Cf which are frequently used in practice are also presented. We also introduce the
tool of countably normed, weighted Sobolev spaces in order to quantify the analytic
regularity of these covariances. Section 4 is devoted to a detailed description of the
regularity of the solution covariance Cu, for the data covariance classes introduced
in Section 3, in particular to the classification of the singular supports of Cu and
its regularity in terms of the countably normed spaces. Section 5 discusses the
behaviour of the analytic regularity bounds for the covariance Cu in the case of
small correlation length, i.e. the (co)variance of u is concentrated near the diagonal
∆ of ! = D×D. Section 6 outlines the hp-Galerkin Finite Element approximation
of the solution’s covariance Cu by a hp-Finite Element approximation in D×D from
[8] designed to resolve the singular support of Cu while maintaining exponential
convergence.

2. Elliptic linear operator equations with Gaussian data

In this section, we provide the general problem framework within which the present
paper resides. At first, the notion of a Gaussian measure is introduced leading us
to the definition of Gaussian random fields. Then, we will admit these ones as right
hand side to a linear operator equation and state properties of the corresponding
solution. Finally, the last subsection gives a definition of the statistical moments
associated with a random field and supplies deterministic equations that allow to
compute the moments of the solution from the moments of the right hand side.
The presentation of the material follows [3, 13].

2.1. Gaussian random fields. Throughout this work, (Ω,F , P) shall denote a
generic probability space.

Definition 2.1 (Borel algebra B(V )). Let V be any complete metric space. Then,
we define B(V ) to be the σ-algebra which is generated by the open subsets of V ,
i.e. B(V ) is the smallest σ-algebra containing all open subsets of V .

With B(V ) at hand, the generalization of the standard definition of R-valued ran-
dom variables is straightforward:

Definition 2.2 (V -valued random variable in (Ω,F , P)). Let V be a complete
metric space. A V -valued random variable in (Ω,F , P) is a mapping X : Ω → V
which is F -B(V )-measurable:

I ∈ B(V ) ⇒ X−1(I) ∈ F

Remark 2.3 (random vector, stochastic process, random field). If V = Nd, Zd, Rd,
etc. with d > 1, it is common to call the random variable X a random vector, since
the values that are assumed by X are d-dimensional vectors. Analogously, in case
of V being a function space such as C0([0, T ]) or L2(D) with a domain D ⊂ Rd,
d ≥ 1, the terms stochastic process and random field are often used—depending on
whether the argument of the functions in V is a time or space variable.

Definition 2.4 (law/distribution of X). Let X be a V -valued random variable in
(Ω,F , P). Then, the law (or distribution) of X is the measure X#P on (V, B(V ))
given by

X#P(A) := P(X−1(A)), A ∈ B(V ).

In particular, X#P(V ) = P(Ω) = 1 so that (V, B(V ), X#P) is a probability space.

Since they require only the notion of an open set, the above definitions are mean-
ingful whenever V is equipped with a metric. However, in the remainder of this
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work, we will focus on the particular case where V is a separable Hilbert space.
We consider random data and solutions by introducing probability measures on the
pair (V, B(V )) which are Gaussian, i.e. we consider data and solutions which are
Gaussian random fields. In the following, we will mostly speak of random fields in-
stead of random variables, since the spaces V we have in mind are function spaces.
The norm and inner product in V are written as ‖ · ‖V and 〈·, ·〉, respectively.

Definition 2.5 (operator sets L(V ), L+(V ) and L+
1 (V ); trace class). Let V be a

separable Hilbert space. By L(V ), we mean the Banach space of continuous linear
operators from V into itself. Furthermore, L+(V ) shall be the set of all symmetric
and non-negative T ∈ L(V ),

〈Tx, y〉 = 〈x, T y〉 ∀x, y ∈ V,

〈Tx, x〉 ≥ 0 ∀x ∈ V.

Finally, we denote by L+
1 (V ) the set of all operators Q ∈ L+(V ) of trace class, i.e.

of all Q ∈ L+(V ) for which

TrQ :=
∞∑

k=1

〈Qek, ek〉 < ∞

holds for a complete orthonormal system (ek)k∈N in V . (Notice that TrQ equals
the sum of Q’s eigenvalues repeated according to their multiplicity.)

In the following, we give definitions for mean and covariance of a probability measure
on the measurable space (V, B(V )), regardless whether this one is the law of some
random field X : Ω → V or not. The relation of these quantities to the so-
called mean-field and covariance kernel of a random field will be established in
Remark 2.16.

Definition 2.6 (mean of a measure). Let µ be a probability measure on (V, B(V ))
such that ∫

V
‖x‖V µ(dx) < ∞.

Then,

v -→
∫

V
〈x, v〉µ(dx)

is a continuous linear functional from V into R. Thus, according to the Riesz
representation theorem, there exists a unique a ∈ V such that

∫

V
〈x, v〉µ(dx) = 〈a, v〉 ∀v ∈ V.

a is called the mean of µ. We will write

a =

∫

V
xµ(dx).

Definition 2.7 (covariance of a measure). Let µ be a probability measure on
(V, B(V )) with mean a and

∫

V
‖x‖2

V µ(dx) < ∞.

Then,

(v1, v2) -→
∫

V
〈v1, x − a〉〈v2, x − a〉µ(dx)
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defines a continuous bilinear form on V ×V . Thus, again by the Riesz theorem, for
every fixed v1 ∈ V , there exists a unique Qv1 ∈ V such that

∫

V
〈v1, x − a〉〈v2, x − a〉µ(dx) = 〈Qv1, v2〉

for all v2 ∈ V . The mapping v -→ Qv is continuous and linear, i.e. Q ∈ L(V ). We
call Q the covariance or covariance operator of µ.

Proposition 2.8. Let µ be a probability measure on (V, B(V )) with mean a and
covariance operator Q. Then, Q ∈ L+

1 (V ), i.e. Q is symmetric, non-negative and
of trace class.

Proof. See e.g. [3, Proposition 1.8]. !

In general, there will be many different probability measures having the same mean
and covariance. In order for one of these to be Gaussian, it must possess a particular
characteristic function:

Definition 2.9 (Gaussian measure). Let V be a separable Hilbert space, a ∈ V
and Q ∈ L+

1 (V ). A Gaussian measure Na,Q on (V, B(V )) is a probability measure
with mean a, covariance operator Q and characteristic function

N̂a,Q(v) :=

∫

V
ei〈v,x〉Na,Q(dx) = ei〈a,v〉− 1

2 〈Qv,v〉 ∀v ∈ V.

Theorem 2.10. For every pair (a, Q) ∈ V ×L+
1 (V ), there exists a unique Gaussian

measure with mean a and covariance operator Q.

Proof. See e.g. [3, Theorem 1.12]. !

Definition 2.11 (Gaussian random field). A V -valued random field X in (Ω,F , P)
is called Gaussian, if its law X#P is a Gaussian measure on (V, B(V )).

Lemma 2.12. Let X : Ω → V be a Gaussian random field with measure µ = Na,Q

on (V, B(V )). Furthermore, let T ∈ L(V, K) be a continuous linear mapping from
V into a Hilbert space K. Then, T ◦ X is a K-valued Gaussian random field with
law T#µ = NTa,TQT∗ , where T ∗ denotes the transpose of T .

Proof. See e.g. [3, Proposition 1.18]. !

2.2. Linear operator equations. Let V be a separable Hilbert space with its
dual V ′. Furthermore, let A ∈ L(V, V ′) be a bounded linear operator from V into
V ′ with associated bilinear form

a : V × V → R, a(w, v) := V ′〈Aw, v〉V ,

where V ′〈·, ·〉V denotes the standard duality pairing. We consider the problem:
Given an f ∈ V ′,

(2.1) find u ∈ V such that a(u, v) = V ′〈f, v〉V ∀v ∈ V.

By the Lax–Milgram lemma, the existence of constants K < ∞, γ > 0 with

|a(w, v)| ≤ K‖w‖V ‖v‖V ∀w, v ∈ V,(2.2)

a(v, v) ≥ γ ‖v‖2
V ∀v ∈ V,(2.3)

guarantees that A ∈ L(V, V ′) is boundedly invertible and that the operator norm
of the inverse A−1 is not larger than γ−1, i.e.: For every f ∈ V ′, problem (2.1) has
a unique solution u = A−1f ∈ V satisfying the a priori estimate

(2.4) ‖u‖V = ‖A−1f‖V ≤
1

γ
‖f‖V ′ .
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We are interested in operator equations of the form Au(ω) = f(ω), where the right
hand side is a random field f : Ω → V ′. Suitable function spaces for random data
and solution are provided by the following generalization of the classical Lp-spaces:

Definition 2.13 (Bochner spaces Lk(Ω; H)). Let k ≥ 1. For any separable Hilbert
space H , we denote by Lk(Ω,F , P; H) the Banach space of all random fields X :
Ω → H for which

‖X‖Lk(Ω,F ,P;H) :=

(∫

Ω
‖X(ω)‖k

H P(dω)

) 1
k

is finite. In particular, the Hölder inequality implies the inclusion

Lm(Ω,F , P; H) ⊂ Lk(Ω,F , P; H) ∀m ≥ k.

If k = 2, Lk(Ω,F , P; H) is a Hilbert space. As an abbreviation for Lk(Ω,F , P; H),
we shall write Lk(Ω; H).

For the important special case of Gaussian random data f : Ω → V ′, the application
of Lemma 2.12 with operator T = A−1 ∈ L(V ′, V ) implies that the solution u :
Ω → V , u(ω) -→ (A−1 ◦ f)(ω), is again Gaussian:

Theorem 2.14. Let f ∈ L2(Ω; V ′) be a Gaussian random field with mean af ∈ V ′

and covariance operator Qf ∈ L+
1 (V ′). If (2.2) and (2.3) hold, the equation

Au = f in L2(Ω; V ′)

admits a unique solution u ∈ L2(Ω; V ) which is Gaussian as well. In particular, its
mean and covariance are given by

au = A−1af ∈ V, Qu = A−1Qf (A−1)∗ ∈ L+
1 (V ).

2.3. Deterministic moment equations. This subsection investigates the prob-
lem Au = f with A ∈ L(V, V ′) and a general (not necessarily Gaussian) random
field f ∈ Lk(Ω; V ′), k ≥ 1. If (2.2) and (2.3) hold for the bilinear form associated
with A, then u ∈ Lk(Ω; V ) since we have estimate (2.4) for P-a.e. ω ∈ Ω:

‖u‖k
Lk(Ω;V ) =

∫

Ω
‖u(ω)‖k

V P(dω) ≤ γ−k

∫

Ω
‖f(ω)‖k

V ′ P(dω) = γ−k‖f‖k
Lk(Ω;V ′)

Typically, one deals with statistical information on the random fields X : Ω → H ,
especially with their moments (here, X represents u or f , and H stands for V
or V ′, respectively). The moments of order k of a random field taking values in
H are sometimes also referred to as k-point correlations. They are deterministic
quantities taking values in the k-fold tensor product spaces

(2.5) H(k) = H ⊗ · · ·⊗ H︸ ︷︷ ︸
k times

.

The natural norm of H(k) is denoted by ‖ · ‖H(k) . It satisfies

(2.6) ‖v1 ⊗ · · ·⊗ vk‖H(k) = ‖v1‖H · · · ‖vk‖H ∀v1, . . . , vk ∈ H.

(For tensor products of Hilbert spaces and related norms, see e.g. [10, Chapter 2.4].)
Now, let X(k) : Ω → H(k) be defined by X(k)(ω) := X(ω) ⊗ · · · ⊗ X(ω). Then,
property (2.6) ensures X(k) ∈ L1(Ω; H(k)):

‖X(k)‖L1(Ω;H(k)) =

∫

Ω
‖X(ω)⊗ · · ·⊗ X(ω)‖H(k) P(dω)

=

∫

Ω
‖X(ω)‖H · · · ‖X(ω)‖H P(dω) = ‖X‖k

Lk(Ω;H)

In particular, this implies that the expectation of X(k) : Ω → H(k) (i.e. the integral
of X(k) over the sample space Ω) is a well-defined quantity in the space H(k):
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Definition 2.15 (statistical moments). Let X ∈ Lk(Ω; H) with k ∈ N. By the
k-th moment of the random field X , we mean the expectation of X(k):

MkX :=

∫

Ω
X(k)(ω) P(dω) =

∫

Ω
X(ω) ⊗ · · ·⊗ X(ω) P(dω) ∈ H(k)

Remark 2.16 (connection between moments and mean/covariance). For every ran-
dom field X ∈ L1(Ω; H), we have the integral transformation

M1X =

∫

Ω
X(ω) P(dω) =

∫

H
v X#P(dv).

This equation in the space H shows that the first moment of X is identical with the
mean of its law X#P (cf. Definition 2.6). If X ∈ L2(Ω; H), then M2X −M1X ⊗
M1X ∈ H ⊗ H , and

(v1, v2) -→
〈
M2X −M1X ⊗M1X, v1 ⊗ v2

〉
H⊗H

defines a continuous bilinear form on H × H (here, 〈·, ·〉H⊗H denotes the inner
product on the space H ⊗ H). One can show that this bilinear form is identical
with the one in Definition 2.7. For this reason, we have

〈
M2X −M1X ⊗M1X, v1 ⊗ v2

〉
H⊗H

= 〈Qv1, v2〉 ∀v1, v2 ∈ H,

where Q ∈ L+
1 (H) is the covariance operator of the law X#P. It is common to call

M1X the mean-field and M2X−M1X⊗M1X the covariance kernel of the random
field X . In the next section, we will give a concrete example for the representation
of the covariance operator by means of its kernel.

Remark 2.17. If f ∈ L2(Ω; V ′) is a Gaussian random field, the solution u ∈ L2(Ω; V )
is guaranteed to be Gaussian as well by Theorem 2.14. In this case, the law of u
is uniquely determined by its mean and covariance (cf. Definition 2.9 and Theo-
rem 2.10). Hence, according to Remark 2.16, it is sufficient to compute only the
first two moments of u.

In order to derive an equation for Mku, we consider the k-fold tensor product of
A ∈ L(V, V ′):

A(k) := A ⊗ · · ·⊗ A︸ ︷︷ ︸
k times

A(k) is a mapping from V (k) into (V ′)(k). Thus, the tensorized problem correspond-
ing to

Au = f in Lk(Ω; V ′)

reads

A(k)u(k) = f (k) in L1(Ω; (V ′)(k)).

Integrating both sides over Ω yields the deterministic k-th moment equation
∫

Ω
A(k)u(k)(ω) P(dω) =

∫

Ω
f (k)(ω) P(dω) in (V ′)(k) .

Since A(k) is a continuous linear operator, it commutes with the integration. For
this reason, the above identity is equivalent to the operator equation

(2.7) A(k)Mku = Mkf.

With (2.7), we have finally obtained an equation that allows to compute the k-th
moment of u from the k-th moment of f in a fully deterministic way (see also [16]).
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3. Problem setting

3.1. Stochastic model equation. Let D = [0, 1] be the unit interval and b > 0 a
constant. We consider the stochastic model equation
(3.1)

Au(ω) = −uxx(·, ω) + b2u(·, ω) = f(·, ω) in (H1(D))′

ux(0, ω) = ux(1, ω) = 0

}

for P-a.e. ω ∈ Ω,

where the load term f and therefore the solution u randomly depend on ω ∈ Ω.
The functions u and f are construed as random fields in (Ω,F , P) with values
in H1(D) and its dual (H1(D))′, respectively (cf. Section 2). The bilinear form
a : H1(D)×H1(D) → R associated with the linear operator equation (3.1) is given
by

(3.2) a(w, v) =

∫

D

(
w′(x) v′(x) + b2w(x) v(x)

)
dx.

For the bilinear form a, we shall also use the notation

a(w, v) =

∫

D

〈(
d/dx
b2 id

)
w,

(
d/dx
id

)
v

〉
dx.

The bilinear form a : H1(D) × H1(D) → R satisfies (2.2), (2.3) with continuity
constant Kb = 1+ b2 and coercivity constant γb = min{1, b2} > 0. Thus, all results
from Sections 2.2 and 2.3 apply.

Assumption 3.1. We assume f to be a Gaussian random field, and let M1f = 0
without loss of generality. Then, equation (2.7) immediately implies M1u = 0, and
due to Remark 2.17, the law of u is completely determined by M2u.

In the context of the model problem, the Hilbert space V from Sections 2.2 and 2.3
is given by H1(D). Correspondingly, the following definition is helpful with regard
to the tensor product spaces V (k):

Definition 3.2 (tensor product Sobolev spaces). Let k ∈ N and ν = (ν, . . . , ν) be
a k-tuple of non-negative integers ν. Then, the tensor product Sobolev space of
order ν on Dk = D × · · ·× D is defined by

Hν(Dk) := Hν(D) ⊗ · · ·⊗ Hν(D).

The space Hν(Dk) can be characterized as the set of all functions g : Dk → R for
which ∥∥∂α1

x1
∂α2

x2
· · ·∂αk

xk
g
∥∥

L2(Dk)
< ∞, if max

{
α1, α2, . . . , αk

}
≤ ν.

Notice that–in comparison to the classical Sobolev spaces–we have the inclusions:

Hν(Dk) ⊂ H l(Dk), if ν ≥ l and Hm(Dk) ⊂ Hν(Dk), if m ≥ k ν

With ν = 1, the spaces Hν(Dk) allow us to state the variational equivalent to the
moment equations (2.7):

(3.3)

∫

Dk

〈(
d/dx1

b2 id

)
⊗ · · ·⊗

(
d/dxk

b2 id

)
Mku,

(
d/dx1

id

)
⊗ · · ·⊗

(
d/dxk

id

)
M

〉
dx

=

∫

Dk

Mkf M dx ∀M ∈ H1,...,1(Dk)

The formulation (3.3) supplies a deterministic way for computing the moments
of the solution u from the moments of the right hand side f (independent of f
being Gaussian or not). Eliminating randomness in this fashion comes at a price,
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however: whereas the stochastic problem (3.1) was posed on the physical domain
D, the dimension of the domain in the k-th moment equation is the hypercube Dk.
Nevertheless, at least in principle, approach (3.3) works for arbitrary k as long as
f ∈ Lk(Ω; V ′) (cf. Section 2.3). For Gaussian data and for a FOSM2 perturbation
analysis of nonlinear problems, only first and second moments, the so-called mean-
field and the 2-point correlation, of random fields are of interest.

Definition 3.3 (mean-field, 2-point correlation/correlation kernel). For k = 1 and
k = 2 in Definition 2.15, we set Eu := M1u and Cu := M2u, respectively.

Eu ∈ H1(D), Eu(x) =

∫

Ω
u(x, ω) P(dω)(3.4)

is called mean-field of u.

Cu ∈ H1,1(D2), Cu(x, y) =

∫

Ω
u(x, ω)u(y, ω) P(dω)(3.5)

is called 2-point correlation or correlation kernel of u.

By Assumption 3.1, the mean-field Eu of the solution to our model problem (3.1)
is zero. For this reason, the correlation kernel Cu coincides with the covariance
kernel Cu−Eu⊗Eu mentioned in Remark 2.16. In this situation, we may represent
the covariance operator Qu ∈ L+

1 (H1(D)) by means of the kernel Cu ∈ H1,1(D2)
as follows:

(Quv)(x) =

∫

D

(
Cu(x, y) v(y) + ∂yCu(x, y) v′(y)

)
dy

From now on, we shall be concerned with Cu only.

3.2. Problem formulation.

Notation 3.4. For the unit square, its diagonal and boundary, we will write:

! :=
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}
, ∆ :=

{
(x, y) ∈ ! : x = y

}
,

Γ :=
{
(x, y) ∈ ! : x = 0 ∨ x = 1 ∨ y = 0 ∨ y = 1

}
= ∂!

This paper is dedicated to assessing the regularity of the 2-point correlation Cu ∈
H1,1(!) for the stochastic model equation described in Section 3.1. Cu is the
solution to the following variational problem (cf. (3.3) with k = 2):

Problem 3.5. Find Cu ∈ H1,1(!) such that

B(Cu, C) = F (C) ∀C ∈ H1,1(!),

where

B(Cu, C) :=

∫∫

!

(
∂x∂yCu ∂x∂yC + b2∂xCu ∂xC + b2∂yCu ∂yC + b4Cu C

)
dy dx,

F (C) :=

∫∫

!

Cf C dy dx.

Problem 3.5 is well-posed since B is continuous with constant K2
b = (1 + b2)2 and

coercive with γ2
b = min{1, b4} > 0. Major challenges for the analysis to follow will

arise from Cf being allowed to feature a singularity on the diagonal ∆. Before spec-
ifying precise assumptions on the 2-point correlation Cf , we introduce countably
normed spaces based on weighted Sobolev spaces (see e.g. [2]).

2FOSM = First Order, Second Moment
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Definition 3.6 (spaces Bl
β,d(0, 1)). Let 0 ≤ β < 1. Then, for all l ∈ N and natural

numbers k ≥ l,

|v|Hk,l
β (0,1) :=

∥∥xβ+k−lv(k)
∥∥

L2(0,1)
(3.6)

defines a seminorm. If v ∈ H l−1(0, 1) and if there exist constants C > 0, d ≥ 1
such that

|v|Hk,l
β (0,1) ≤ C dk−l(k − l)! ∀k ≥ l,(3.7)

then we write v ∈ Bl
β,d(0, 1), or simply v ∈ Bl

β(0, 1).

The countably normed spaces Bl
β,d(0, 1) contain functions that are analytic in (0, 1)

and may feature an algebraic singularity at x = 0. Examples of functions in
Bl

β,d(0, 1) are v(x) = xα with α > − 1
2 or v(x) = ln(x).

Lemma 3.7. If v ∈ Bl+1
β,d (0, 1), then v′ belongs to the space Bl

β,d(0, 1).

Proof. According to Definition 3.6, v ∈ Bl+1
β,d (0, 1) means

v ∈ H l(0, 1),
∥∥xβ+k−(l+1)v(k)

∥∥
L2(0,1)

≤ C dk−(l+1)(k − (l + 1))!

for all k ≥ l + 1. From this, it immediately follows

v′ ∈ H l−1(0, 1),
∥∥xβ+(k−1)−l(v′)(k−1)

∥∥
L2(0,1)

≤ C d(k−1)−l((k − 1) − l)!

for all (k − 1) ≥ l, which implies v′ ∈ Bl
β,d(0, 1). !

Lemma 3.8. Bl+1
β,d (0, 1) ⊂ Bl

β",d(0, 1) with β$ ∈ [0, 1) arbitrary.

Proof. Let v ∈ Bl+1
β,d (0, 1). Then, v satisfies

v ∈ H l(0, 1),
∥∥xβ+k−(l+1)v(k)

∥∥
L2(0,1)

≤ C dk−(l+1)(k − (l + 1))!

for all k ≥ l + 1. v ∈ H l−1(0, 1) follows from the inclusion H l(0, 1) ⊂ H l−1(0, 1).
Now, let β$ ∈ [0, 1) arbitrary. For the l-th derivative of v, it holds:

(3.8)
∥∥xβ"+l−lv(l)

∥∥
L2(0,1)

≤ ‖v(l)‖L2(0,1) < ∞

For derivatives of order k ≥ l + 1, we have:
∥∥xβ"+k−lv(k)

∥∥
L2(0,1)

≤
∥∥xβ+k−(l+1)v(k)

∥∥
L2(0,1)

(due to β$ > β − 1)

≤ C dk−(l+1)(k − (l + 1))! ≤
C

d
dk−l(k − l)!

Combining this result with (3.8), we can write:

∥∥xβ"+k−lv(k)
∥∥

L2(0,1)
≤ max

{
‖v(l)‖L2(0,1),

C

d

}
dk−l(k − l)! ∀k ≥ l

Thus, v ∈ Bl
β",d(0, 1). !

Assumption 3.9. In addition to Assumption 3.1, we assume the Gaussian random
field f to be stationary, i.e. its correlation kernel Cf is translation invariant:

Cf (x, y) = Cf (x + t, y + t) for all t with (x + t, y + t) ∈ !

Thus, Cf can be written as a function of the difference z = x − y, z ∈ [−1, 1]:

Cf = Cf (z), z = x − y(3.9)
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Furthermore, it is assumed

Cf

∣∣
[0,1]

∈ Bl
β,d(0, 1) ∩ C0([0, 1])(3.10)

with some l ∈ N, β ∈ [0, 1) and d ≥ 1.

Notice:

(1) From (3.5), it becomes clear that Cf in (3.9) has to be an even function
so that it is sufficient to formulate assumption (3.10) with respect to the
interval [0, 1] instead of [−1, 1].

(2) Cf ∈ C0([0, 1]) constitutes an extra requirement only in case l = 1; for
l ≥ 2, the continuity in [0, 1] follows from Cf ∈ Bl

β,d(0, 1) ⊂ H1(0, 1) ⊂
C0([0, 1]).

Assumption 3.9 is reasonable in the sense that one can find correlation models in
the literature on spatial statistics which meet (3.9) and (3.10). Examples will be
given at the end of the next subsection.

3.3. Examples of correlation kernels. It is important to realize that not every
function C : ! → R satisfying (3.9) and (3.10) is automatically 2-point correlation
of some random field.

Definition 3.10 (positive definiteness). Let T be a set and C : T × T → R. The
function C is positive (semi-)definite, if

(3.11)
k∑

i=1

k∑

j=1

ai aj C(ti, tj) ≥ 0

for all k ∈ N, {t1, . . . , tk} ⊂ T and a1, . . . , ak ∈ R.

Every 2-point correlation Cf : ! → R has to be positive definite: Let k ∈ N
and x1, . . . , xk ∈ D. Then, for any linear combination of the random variables
f(x1, ·), . . . , f(xk, ·), it must hold:

∫

Ω

(
a1f(x1, ω) + . . . + akf(xk, ω)

)2
P(dω) ≥ 0(3.12)

⇔
k∑

i=1

k∑

j=1

ai aj

∫

Ω
f(xi, ω)f(xj , ω) P(dω)

︸ ︷︷ ︸
= Cf (xi, xj)

≥ 0

The opposite direction is also true, i.e. every positive definite function is correlation
kernel for some random field.

Theorem 3.11 (cf. Theorem 1.2 in [1] and the references there). The class of
positive definite functions coincides with the class of correlation kernels.

Remark 3.12. Usually, the above theorem is stated in terms of covariance instead
of correlation. In its proof, argument (3.12) is then replaced by the fact that the
variance of a1f(x1, ·) + . . . + akf(xk, ·) is non-negative for any choice of the ai.
The opposite direction works with a centered random field so that covariance and
correlation kernels are identical anyway (see [1, 11] and the references therein).

Testing a given function for positive definiteness by means of (3.11) is in general
difficult and we refrain from listing sufficient conditions for positive definiteness.
Instead, we give references to the literature allowing to check that the following
examples actually are admissible correlation kernels.
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Example 3.13. Let

Cf (x, y) := c1 − c2 |x − y|γ , γ ∈ (0, 1), c1 ≥ c2 > 0.

This function constitutes an admissible correlation model on the unit interval,
whose positive definiteness can be deduced from Pólya’s criterion (see [9]). Cf

satisfies assumptions (3.9) and (3.10). In particular, one can show that

Cf ∈ Bl
β,d(0, 1) with

{
l = 1, β ∈

(
1
2 − γ, 1

)
, d = 1 if γ ∈

(
0, 1

2

]

l = 2, β ∈
(

3
2 − γ, 1

)
, d = 1 + ε if γ ∈

(
1
2 , 1

)

where the value ε > 0 may be chosen arbitrarily small (see [7, Examples 2.11 and
2.16]).

Example 3.14 (damped sine or hole effect model; cf. Section 2.1 in [11]). Let

Cf (x, y) :=

(
|x − y|

λ

)−1

sin

(
|x − y|

λ

)
, λ > 0.

This model is a special case of a more general class of correlation kernels called the
Bessel family. Its positive definiteness follows from a theorem by Schoenberg (see,
e.g., [12]). The data’s spatial correlation function Cf obviously satisfies assump-
tion (3.9). In order to verify (3.10), we set z = x − y and write

Cf (z) =
( z

λ

)−1
sin

( z

λ

)
=

∞∑

i=0

(−1)i

(
1

λ

)2i z2i

(2i + 1)!
, z ∈ [0, 1].

Now, we investigate the derivatives

C(k)
f (z) =

∑

i∈N0:
i≥k/2

(−1)i

(
1

λ

)2i z2i−k

(2i + 1)(2i − k)!
, k ∈ N0.

Since 2i − k is non-negative for all summands, the L2(0, 1)-norm of C(k)
f can be

bounded as follows:

‖C(k)
f ‖L2(0,1) ≤

∑

i∈N0:
i≥k/2

λ−2i

(2i + 1)(2i − k)!
‖z2i−k‖L2(0,1)︸ ︷︷ ︸

≤ 1

≤
1

k + 1

(
1

λ

)k ∑

i∈N0:
i≥k/2

1

(2i − k)!

(
1

λ

)2i−k

≤
1

k + 1

(
1

λ

)k

e
1
λ

Obviously, all derivatives are square-integrable on (0, 1) even without multiplication
by the weighting factor in seminorm (3.6); Cf does not exhibit any singularity
at z = 0. In fact, we may choose l, β and d arbitrarily and will always find
assumption (3.10) satisfied,

Cf

∣∣
[0,1]

∈ Bl
β,d(0, 1) ∩ C0([0, 1]).

With regard to bound (3.7), the trivial estimate

|Cf |Hk,l
β (0,1) ≤ ‖C(k)

f ‖L2(0,1) ≤
1

k + 1

(
1

λ

)k

e
1
λ

≤
e

1
λ

(l + 1)λl

(
1

dλ

)k−l 1

(k − l)!
dk−l(k − l)! ≤

e
d+1
dλ

(l + 1)λl
dk−l(k − l)!

holds for all k ≥ l.
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Example 3.15 (power-exponential models; cf. Section 2.1 in [11]). Let

Cf (x, y) := exp

(
−
|x − y|γ

λγ

)
, γ ∈ (0, 2], λ > 0.

A proof that these models are positive definite is given in [5]. Setting z = x − y,
the derivatives of Cf (z) can be written as

C(k)
f (z) = λ−kg(k)

( z

λ

)
, z ∈ [0, 1], k ∈ N0,

with the auxiliary function g(t) := exp(−tγ). Cf is in L2(0, 1); thus, we choose
l = 1 and estimate the seminorm (3.6) by:

|Cf |2Hk,1
β (0,1)

=
∥∥zβ+k−1C(k)

f

∥∥2

L2(0,1)
=

∫ 1

0
z2β+2k−2λ−2kg(k)

( z

λ

)2
dz

= λ2β−1

∫ 1/λ

0
t2β+2k−2g(k)(t)2 dt

= λ2β−1

∫ 1/λ

0

[
tk−γg(k)(t)

]2
t2γ+2β−2 dt

≤ λ2β−1 max
t≥0

[
tk−γg(k)(t)

]2
∫ 1/λ

0
t2γ+2β−2 dt

For β > 1
2 − γ, we obtain:

|Cf |Hk,1
β (0,1) ≤

1√
2γ + 2β − 1

(
1

λ

)γ

max
t≥0

∣∣tk−γg(k)(t)
∣∣

=
1√

2γ + 2β − 1

(
1

λ

)γ

max
t≥0

∣∣tk−γg(k)(t)
∣∣

(k − 1)!
︸ ︷︷ ︸

=: mγ(k)

(k − 1)!

The maximum in the last line was evaluated for different values of γ up to an order
of k = 60 (with the aid of Mathematica). The results are shown in Figure 3.1. We
observe that the curves on the left hand side are decreasing, whereas the curves
on the right hand side are increasing while approaching straight lines. In any case,
this suggests that mγ(k) can be bounded by a term of the form C dk−1, i.e. that
assumption (3.10) is satisfied by the function Cf . In particular, the constant d need
not be chosen larger than approximately 1.5.

For further examples of stationary correlation models, see [1, 11].

4. Regularity of Cu

In this section, we examine location and order of the singularities in Cu which arise
from the singularity in Cf (cf. Assumption 3.9). The results to be found are funda-
mental for the design of appropriate hp-finite element spaces for the approximation
of Cu (see the second part [8] of this paper or [7, Chapters 4 and 5]).

Proposition 4.1 (strong solution). If Cu : ! → R satisfies

(4.1)

(
∂2

x∂2
y − b2∂2

x − b2∂2
y + b4 id

)
Cu = Cf in !

∂xCu ≡ 0 on {0, 1}× I

∂yCu ≡ 0 on I × {0, 1}





,

then Cu is the solution of Problem 3.5.
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Figure 3.1. Logarithmic plot of mγ(k) for k ≤ 60
Left: γ = 0.25 (solid), 0.5 (dotted), 0.75 (dash-dot), 1.0 (dashed)
Right: γ = 1.25 (solid), 1.5 (dotted), 1.75 (dash-dot), 2.0 (dashed)

Remark 4.2 (non-hypoellipticity; cf. Section 1 in [4]). The symbol associated with
the differential operator in (4.1) is given by

P (iξ) = ξ2
1ξ2

2 + b2ξ2
1 + b2ξ2

2 + b4 = (ξ2
1 + b2)(ξ2

2 + b2).

According to [6, Theorem 11.1.1], hypoellipticity is equivalent to

(4.2)
∂α1

ξ1
∂α2

ξ2
P (iξ)

P (iξ)
→ 0 as ξ → ∞ in R2

for all (α1, α2) ∈ N2
0 \ {(0, 0)}. We select α1 = 2, α2 = 0 in order to obtain

∂2
ξ1
P (iξ)/P (iξ) = 2/(ξ2

1 + b2). With ξ1 = const, ξ2 → ∞, it is obvious that (4.2)
does not hold. Thus, the differential operator in (4.1) is not hypoelliptic. We shall
see the consequences of this fact on the singular support of Cu later.

Neglecting the boundary conditions for a moment, the next two lemmas provide an
integral representation of stationary solutions Cu(z), z = x − y, to the differential
equation in (4.1) and assess the regularity of these solutions.

Lemma 4.3. Let g ∈ C0([−1, 1]) and b > 0. Then, the general solution to the
ordinary differential equation

(4.3) v(4)(z) − 2b2 v′′(z) + b4 v(z) = g(z) ∀z ∈ (−1, 1)

is given by

v(z) = Jg(z) + c1 cosh(b z) + c2 sinh(b z) + c3 z cosh(b z) + c4 z sinh(b z)(4.4)

with ci ∈ R and

Jg(z) =

∫ z

0

(
z − t

2 b2
cosh

(
b (z − t)

)
−

sinh
(
b (z − t)

)

2 b3

)
g(t) dt.(4.5)

In particular: If g is an even function, Jg is even as well—in this case, v is even,
iff c2 = c3 = 0.

Proof. Equation (4.3) is a linear ODE of fourth order with constant coefficients and
an inhomogeneity g. The functions cosh(b z), sinh(b z), z cosh(b z) and z sinh(b z)
span the space of solutions to the corresponding homogeneous equation. The linear
combination

vh(z) :=
z

2 b2
cosh(b z) −

sinh(b z)

2 b3
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satisfies

v(k)
h (0) = δk,3 ∀k ∈ {0, 1, 2, 3},

where δij denotes the Kronecker delta. For such a function, it is known that

vp(z) :=

∫ z

0
vh(z − t) g(t) dt

is a particular solution of the inhomogeneous equation. Setting Jg = vp, the proof
is complete. !

Lemma 4.4. Let g ∈ C0([−1, 1]). In addition, let g|[0,1] belong to Bl
β,d(0, 1) and v

be any solution to the ordinary differential equation (4.3),

v(4)(z) − 2b2 v′′(z) + b4 v(z) = g(z) ∀z ∈ (−1, 1).

Then, v ∈ Bl+4
β,d (0, 1) ∩ C4([−1, 1]).

Proof. The proof is split into several steps.
First step. We claim that the derivatives of v are given by

v(2n) =
n−2∑

j=0

(j + 1) b2jg(2n−4−2j) + n b2n−2v′′ + (1 − n) b2nv,(4.6a)

v(2n+1) =
n−2∑

j=0

(j + 1) b2jg(2n−3−2j) + n b2n−2v(3) + (1 − n) b2nv′.(4.6b)

The second line follows from the first one. The first line is proven by induction.
For n = 0, 1, we verify directly that

v(2·0) = 0 + 0 b−2v′′ + (1 − 0) b0v, v(2·1) = 0 + 1 b0v′′ + (1 − 1) b2v .

The induction step “n → n + 1” for n ≥ 1 is obtained as follows:

v(2(n+1)) =
(
v(2n)

)′′

=
n−2∑

j=0

(j + 1) b2jg(2n−4−2j+2) + n b2n−2v(4) + (1 − n) b2nv′′ .

Now, use (4.3) and n − 1 ≥ 0:

v(2(n+1)) =
n−2∑

j=0

(j + 1) b2jg(2(n+1)−4−2j)

+ n b2n−2
(
g + 2b2 v′′ − b4 v

)
+ (1 − n) b2nv′′

=
n−1∑

j=0

(j + 1) b2jg(2(n+1)−4−2j) + (n + 1) b2nv′′ + (1 − (n + 1)) b2n+2v .

For convenience of notation, the two expressions (4.6a) and (4.6b) are merged into
one:

(4.7) v(k) =
k−4∑

i=0

αi g(k−4−i) +
3∑

i=0

γi,k v(i) ∀k ∈ N0,
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where

αi :=

{(
i
2 + 1

)
bi if i is even,

0 if i is odd,
(4.8)

γ0,k := 12Z(k)
(
1 −

k

2

)
bk, γ1,k := 12Z+1(k)

(
1 −

k − 1

2

)
bk−1,

γ2,k := 12Z(k)
k

2
bk−2, γ3,k := 12Z+1(k)

k − 1

2
bk−3.

(4.9)

Writing v(k) in this manner, both cases which were distinguished in (4.6) (i.e.,
between even/odd differentiation order) are “hidden” in αi and γi,k.
Second step. v|[0,1] ∈ H l+3(0, 1)
From g ∈ C0([−1, 1]), it follows that v ∈ C4([−1, 1]) and in particular v, v′, . . . ,
v(4) ∈ L2(0, 1). With g ∈ Bl

β,d(0, 1), we have g(j) ∈ L2(0, 1) for all j ≤ l − 1. Thus,

the representation of v(k) by (4.7) is a linear combination of L2-functions as long
as k ≤ l + 3. This implies v(k) ∈ L2(0, 1) for all k ≤ l + 3, which is equivalent to
v ∈ H l+3(0, 1).
Third step. We show |v|Hk,l+4

β
(0,1) ≤ C̄ dk−(l+4)(k − (l + 4))! for all k ≥ l + 4.

For k ≥ l + 4, we split (4.7) as follows:

v(k) =

k−(l+4)∑

i=0

αi g(k−4−i)

︸ ︷︷ ︸
=: s1

+
k−4∑

i=k−(l+4)+1

αi g(k−4−i) +
3∑

i=0

γi,k v(i)

︸ ︷︷ ︸
=: s2

.

In general, s1 is a linear combination of non-square-integrable functions on (0, 1),
whereas all functions occurring in s2 belong to L2(0, 1). By the triangle inequality,
we obtain the following bound:

|v|Hk,l+4
β (0,1) =

∥∥zβ+k−(l+4)v(k)
∥∥

L2(0,1)

≤
∥∥zβ+k−(l+4)s1

∥∥
L2(0,1)

+
∥∥zβ+k−(l+4)s2

∥∥
L2(0,1)

.(4.10)

Next, a bound for the first summand on the right hand side is derived.

∥∥zβ+k−(l+4)s1

∥∥
L2(0,1)

≤
k−(l+4)∑

i=0

|αi| ·
∥∥zβ+k−(l+4)g(k−4−i)

∥∥
L2(0,1)

≤
k−(l+4)∑

i=0

|αi| ·
∥∥zβ+(k−4−i)−lg(k−4−i)

∥∥
L2(0,1)

≤ C

k−(l+4)∑

i=0

|αi| d(k−4−i)−l((k − 4 − i) − l)!

= C dk−(l+4)(k − (l + 4))!

k−(l+4)∑

i=0

|αi| d−i (k − l − 4 − i)!

(k − l − 4)!

≤ C dk−(l+4)(k − (l + 4))!
k−(l+4)∑

i=0

|αi| d−i 1

i!
.
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With definition (4.8), we can estimate further:

∥∥zβ+k−(l+4)s1

∥∥
L2(0,1)

≤ C dk−(l+4)(k − (l + 4))!
∞∑

j=0

|α2j | d−2j 1

(2j)!

= C dk−(l+4)(k − (l + 4))!
∞∑

j=0

(j + 1)

(
b2

d2

)j
1

(2j)!

= C dk−(l+4)(k − (l + 4))!
∞∑

j=0

(j + 1)!

(2j)!
︸ ︷︷ ︸
≤ 1

(
b2

d2

)j
1

j!

≤ C exp

(
b2

d2

)
dk−(l+4)(k − (l + 4))! .(4.11)

It remains to investigate the second summand in (4.10):

∥∥zβ+k−(l+4)s2

∥∥
L2(0,1)

≤ ‖s2‖L2(0,1)

≤
k−4∑

i=k−(l+4)+1

|αi| · ‖g(k−4−i)‖L2(0,1) +
3∑

i=0

|γi,k| · ‖v(i)‖L2(0,1) .

Defining C̃ := max
{
‖g‖Hl−1(0,1), ‖v‖H3(0,1)

}
and b̃ := max{1, b}, we obtain:

∥∥zβ+k−(l+4)s2

∥∥
L2(0,1)

≤ C̃

(
k−4∑

i=k−(l+4)+1

|αi| +
3∑

i=0

|γi,k|

)

≤ C̃
(
l max

{
|αk−(l+4)+1|, . . . , |αk−4|

}

+ 4 max
{
|γ0,k|, . . . , |γ3,k|

})
.

With k ≥ l + 4 ≥ 5 in definition (4.9):

∥∥zβ+k−(l+4)s2

∥∥
L2(0,1)

≤ C̃

(
l
(k

2
− 1

)
b̃k−4 + 4

k

2
b̃k

)
≤

1

2
C̃ b̃4 (l + 4) b̃k−4 k

=
1

2
C̃ b̃l+4 (l + 4)

(
b̃
d

)k−(l+4)
k

(k − (l + 4))!
︸ ︷︷ ︸

(,)

dk−(l+4)(k − (l + 4))! .

Since the expression (,) converges to 0 for k → ∞, it is in particular bounded for all
k ≥ l + 4. Together with (4.10) and (4.11), this means that there exists a constant
C̄ such that

|v|Hk,l+4
β (0,1) ≤ C̄ dk−(l+4)(k − (l + 4))! for all k ≥ l + 4.

v ∈ H l+3(0, 1) was already proven above. Thus, we have shown v ∈ Bl+4
β,d (0, 1). !

Theorem 4.5. Let Cf satisfy Assumption 3.9. With JCf
defined by (4.5), the

unique solution Cu to Problem 3.5 admits the representation

(4.12) Cu(x, y) = C∆
u (x − y) + CΓ

u (x, y),
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where

C∆
u (z) = JCf

(z) +
J ′′

Cf
(1)

b3 sinh b

(
2 cosh(b z) − b z sinh(b z)

)
,(4.13a)

CΓ
u (x, y) = −(C∆

u )′(1 − x)
cosh(b y)

b sinh b
− (C∆

u )′(x)
cosh

(
b (1 − y)

)

b sinh b

− (C∆
u )′(1 − y)

cosh(b x)

b sinh b
− (C∆

u )′(y)
cosh

(
b (1− x)

)

b sinh b
.

(4.13b)

Furthermore, C∆
u (z) is an even function of the difference z = x − y.

Proof. Due to Proposition 4.1, it suffices to verify that the Cu defined above solves
problem (4.1).
Differential equation. First, we check that Cu satisfies the differential equation in
(4.1). To this end, the differential operator is applied separately to the summands
C∆

u and CΓ
u : From (4.13a) and Lemma 4.3, it follows

(
∂2

x∂2
y − b2∂2

x − b2∂2
y + b4 id

)
C∆

u (x − y)

= (C∆
u )(4)(x − y) − 2b2 (C∆

u )′′(x − y) + b4 C∆
u (x − y) = Cf (x − y).

For CΓ
u , we find

(
∂2

x∂2
y − b2∂2

x − b2∂2
y + b4 id

)
CΓ

u (x, y)

=

{(
−∂2

x + b2 id
) (

−∂2
y + b2 id

)
CΓ

u (x, y)
(
−∂2

y + b2 id
) (

−∂2
x + b2 id

)
CΓ

u (x, y)

}

= 0

as a consequence from the special structure in (4.13b) and the fact that
(
−∂2

z + b2 id
)
cosh(b z) =

(
−∂2

z + b2 id
)
cosh

(
b (1 − z)

)
= 0 ∀z.

Boundary conditions. We verify that the homogeneous Neumann boundary condi-
tions in (4.1) are fulfilled: The second derivative of C∆

u is

(C∆
u )′′(z) = J ′′

Cf
(z) −

J ′′
Cf

(1)

sinh b
z sinh(b z).

Because of J ′′
Cf

(0) = 0 (cf. the proof of Lemma 4.3), it follows that (C∆
u )′′(0) =

(C∆
u )′′(1) = 0. For this reason, we obtain from (4.13b):

∂xCΓ
u (0, y) = +(C∆

u )′(y), ∂xCΓ
u (1, y) = −(C∆

u )′(1 − y)
∂yCΓ

u (x, 0) = +(C∆
u )′(x), ∂yCΓ

u (x, 1) = −(C∆
u )′(1 − x) .

By Lemma 4.3, JCf
is an even function, because Cf (z) is even. Thus, C∆

u (z) is
even as well, and (C∆

u )′(z) is odd. Along with the above identities, this yields:

∂xCu(0, y) = (C∆
u )′(−y) + ∂xCΓ

u (0, y) = −(C∆
u )′(y) + ∂xCΓ

u (0, y) = 0 ,

∂xCu(1, y) = (C∆
u )′(1 − y) + ∂xCΓ

u (1, y) = 0 ,

∂yCu(x, 0) = −(C∆
u )′(x) + ∂yCΓ

u (x, 0) = 0 ,

∂yCu(x, 1) = −(C∆
u )′(x − 1) + ∂yCΓ

u (x, 1) = (C∆
u )′(1 − x) + ∂yCΓ

u (x, 1) = 0 .

This completes the proof. !

Remark 4.6. From the proof of Theorem 4.5, one can see which roles the individual
summands C∆

u and CΓ
u in (4.12) play in the context of problem (4.1),

(
∂2

x∂2
y − b2∂2

x − b2∂2
y + b4 id

)
Cu = Cf in !,

∂xCu ≡ 0 on {0, 1}× I,

∂yCu ≡ 0 on I × {0, 1}.
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0 1

0

1

0 1

0

1

l l + 4

l + 3

l + 3

l + 3

l + 3

sing suppCf sing suppCu

Figure 4.1. Illustration of Corollary 4.7. The singularity of Cf

on the diagonal (order l) gives rise to singularities in Cu on the
diagonal (order l + 4) and the boundary (order l + 3).

C∆
u is a stationary function satisfying the differential equation; CΓ

u lies in the kernel
of the differential operator and compensates for the boundary conditions which C∆

u

cannot satisfy on its own (notice: A stationary function satisfying the homogeneous
Neumann conditions would have to be constant!).

The main result of this paper is:

Corollary 4.7 (singularities in Cu). Let Cf satisfy Assumption 3.9, i.e. in par-
ticular Cf ∈ Bl

β,d(0, 1). Then, the unique solution Cu to Problem 3.5 admits a
splitting

(4.14) Cu = C∆
u + CΓ

u

with

C∆
u (x, y) = w1(x − y), w1(z) an even function of z = x − y,(4.15a)

CΓ
u (x, y) = w2(1 − x)w3(y) + w2(x)w3(1 − y)

+ w3(x)w2(1 − y) + w3(1 − x)w2(y),
(4.15b)

where w1 ∈ Bl+4
β,d (0, 1)∩C4([−1, 1]), w2 ∈ Bl+3

β,d (0, 1), and w3 is an analytic function
on [0, 1] satisfying

(4.16) max
x∈[0,1]

∣∣w(k)
3 (x)

∣∣ ≤ b−1 coth(b) bk ∀k ∈ N0.

Proof. The representation of Cu by (4.14), (4.15) follows from Theorem 4.5. Since
C∆

u (z) solves equation (4.3) with right hand side g = Cf (z) ∈ Bl
β,d(0, 1) (cf. the

proof of Theorem 4.5), Lemma 4.4 yields C∆
u (z) ∈ Bl+4

β,d (0, 1) ∩ C4([−1, 1]). By

Lemma 3.7, we have (C∆
u )′(z) ∈ Bl+3

β,d (0, 1), and thus, with (4.13b), we obtain that

w2 = −(C∆
u )′ belongs to Bl+3

β,d (0, 1). The claim (4.16) follows from w3(x) = cosh(b x)
b sinh b

and
∣∣∣

d2k

dx2k
cosh(b x)

∣∣∣ =
∣∣b2k cosh(b x)

∣∣ ≤ b2k cosh(b)

∣∣∣
d2k+1

dx2k+1
cosh(b x)

∣∣∣ =
∣∣b2k+1 sinh(b x)

∣∣ ≤ b2k+1 sinh(b) ≤ b2k+1 cosh(b)

for all x ∈ [0, 1] and k ∈ N0. !
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Remark 4.8 (enlargement of the singular support). Corollary 4.7 shows

sing suppCu = ∆ ∪ Γ " ∆ = sing suppCf .

This increase of the solution’s singular support is a consequence of the non-hypoelliptic
nature of the differential operator A ⊗ A (see Remark 4.2). The principal conse-
quence of this observation for the design of efficient finite element approximations
of Cu is that not only the singularity on ∆ (see [8]) has to be resolved, but in
addition those on the boundary Γ (see [7, Chapter 4]).

Remark 4.9 (Dirichlet boundary conditions). An explicit representation of Cu can
also be derived for homogeneous Dirichlet boundary conditions. In this case, pro-
ceeding in an analogous way as above yields

Cu(x, y) = C∆
u (x − y) + CΓ

u (x, y),

where

C∆
u (z) = JCf

(z) −
JCf

(1)

sinh b
z sinh(b z),

CΓ
u (x, y) = −C∆

u (1 − x)
sinh(b y)

sinh b
− C∆

u (x)
sinh

(
b (1 − y)

)

sinh b

− C∆
u (1 − y)

sinh(b x)

sinh b
− C∆

u (y)
sinh

(
b (1 − x)

)

sinh b
.

The equivalent to Corollary 4.7 then has w2 ∈ Bl+4
β,d (0, 1) instead of w2 ∈ Bl+3

β,d (0, 1)
and a different bound (4.16) for the derivatives of the analytic function w3.

5. Small correlation lengths

Assume we are given an even template function Ĉf : R → R, from which we may
generate 2-point correlations Cλ

f : [−1, 1] → R by

(5.1) Cλ
f (x − y) := Ĉf

(
x − y

λ

)
, λ > 0.

In this context, the parameter λ is sometimes referred to as correlation length. A
situation as in (5.1) was already encountered before in Examples 3.14 and 3.15.
With regard to establishing Assumption 3.9 for Cλ

f , i.e. in particular Cλ
f |[0,1] ∈

Bl
β,d(0, 1), we are interested in the behavior of the values l, β and d when λ becomes

smaller and smaller.
The application of the chain rule for differentiation yields the equation

(5.2) ‖zβ+k−l(Cλ
f )(k)‖L2(0,1) = λβ+l− 1

2 ‖zβ+k−l Ĉ(k)
f ‖L2(0, 1

λ ) ∀k ≥ l.

An immediate consequence is the following:

Proposition 5.1. Let l ∈ N, β ∈ [0, 1) and d ≥ 1. Furthermore, let Ĉf : R → R
be an even function with

(5.3) Ĉf ∈ H l−1(R) and ‖zβ+k−l Ĉ(k)
f ‖L2(0,∞) ≤ C dk−l(k − l)! ∀k ≥ l.

Then, the Cλ
f obtained from (5.1) satisfy Assumption 3.9 with the same values l, β

and d independent of λ.

Under condition (5.3), the influence of small correlation lengths λ is completely
“absorbed” by the factor λβ+l− 1

2 in (5.2), which exclusively affects the constant C in
the upper bound (3.7) for |Cλ

f |Hk,l
β (0,1). In particular, the above proposition implies

that the regularity results for Cu from the previous section do not deteriorate
as λ goes to 0. For this reason, a numerical method for the computation of Cu

based on these regularity results can in principle remain stable for arbitrarily small
correlation lengths.
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6. Galerkin FEM for Cu

6.1. Galerkin projection. Let us recall Problem 3.5,

find Cu ∈ H1,1(!) such that B(Cu, C̃) = F (C̃) ∀C̃ ∈ H1,1(!),(6.1)

with B and F being defined there. We consider the Galerkin discretizations

find sL ∈ SL such that B(sL, C̃) = F (C̃) ∀C̃ ∈ SL,(6.2)

with nested finite-dimensional ansatz/test spaces

(6.3) SL0 ⊂ SL0+1 ⊂ . . . ⊂ SL−1 ⊂ SL ⊂ SL+1 ⊂ . . . ⊂ H1,1(!).

Here, the subscript L denotes a “level of refinement” to be specified below. Exis-
tence and uniqueness of the Galerkin solutions sL follow from the continuity and
the coercivity of the bilinear form B(·, ·) in Problem 3.5. The properties imply that
B(·, ·) is regular on SL × SL. Moreover, the unique Galerkin approximations sL

satisfy the property of Galerkin orthogonality,

(6.4) B(Cu − sL, C̃) = 0 ∀C̃ ∈ SL.

By Galerkin finite element method, we refer to the computation of approximate
solutions sL to Cu based on (6.2), (6.3).

6.2. Quasi-optimality.

Definition 6.1 (best approximation error). For w ∈ H1,1(!) and a finite dimen-
sional subspace SL, we define the best approximation error

Z(w, SL, H1,1(!)) := inf
C̃∈SL

‖w − C̃‖H1,1(!).

Z(Cu, SL, H1,1(!)) provides a measure for the quality by which Cu can be approx-
imated from the space SL with respect to the H1,1-norm. Since the solution sL to
(6.2) is itself an element of SL, the best approximation error is obviously a lower
bound for the error ‖Cu − sL‖H1,1(!):

‖Cu − sL‖H1,1(!) ≥ inf
C̃∈SL

‖Cu − C̃‖H1,1(!) = Z(Cu, SL, H1,1(!))

On the other hand, ‖Cu − sL‖H1,1(!) cannot be worse than a certain multiple of
the best approximation error:

Lemma 6.2 (Céa). Let sL ∈ SL be the solution to (6.2). Then, it holds

‖Cu − sL‖H1,1(!) ≤
K2

b

γ2
b

Z(Cu, SL, H1,1(!)),

where K2
b is the continuity constant of the bilinear form B and γ2

b its coercivity
constant (see Section 3.2). In particular, these constants do not depend on the
ansatz space SL.

Remark 6.3 (quasi-optimality). Céa’s lemma shows that the approximate solu-
tion sL is, up to a constant, as good as the best approximation of Cu from the
subspace SL. In this sense, sL is said to be quasi-optimal.
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6.3. Ansatz spaces and approximability. In [7, Chapters 4 and 5], it is ex-
plained in detail how to construct appropriate hp-finite element spaces S∆

µ,L and

SΓ
p,L for the approximation of Cu’s summands C∆

u and CΓ
u , respectively. (Further-

more, the second part [8] of this paper is entirely dedicated to the approximation
of functions as C∆

u .) The numbers µ ≥ 1 and p ∈ N are parameters that con-
trol the polynomial degrees in the hp-approximations. They have to be chosen
in dependence of Cf (see [7, Remark 4.31 and proof of Theorem 5.49]). Due to
space constraints, we refrain from replicating the definitions of S∆

µ,L and SΓ
p,L here

and only cite the respective approximation results from [8] or Theorem 5.49 and
Corollary 5.50 in [7].

Theorem 6.4. Let S∆
µ,L be the sequence of hp-FE spaces from [7, Definition 5.19].

Then, there exists a constant µ ≥ 1 such that within the sequence
(
S∆

µ,L

)
L∈N

there

are hp covariance approximations v∆
L ∈ S∆

µ,L that converge, as N = dim(SL) → ∞,

at an exponential rate towards C∆
u in H1,1(!):

(6.5) ‖C∆
u − v∆

L ‖H1,1(!) ≤ c1 exp
(
−c2

3
√

N
)

,

where N = dimS∆
µ,L = O(L3) and c1, c2 are positive constants independent of N .

Theorem 6.5 (cf. Theorem 4.30, Corollary 4.32 in [7]). Let SΓ
p,L be the spaces from

[7, Definition 4.28]. Then, there exists choice of polynomial degrees p = p(L) ∈ N
such that the hp-FE spaces in the sequence

(
SΓ

p,L

)
L∈N

contain approximations vΓ
L ∈

SΓ
p,L which exhibit exponential convergence towards CΓ

u in H1,1(!):

(6.6) ‖CΓ
u − vΓ

L‖H1,1(!) ≤ c1 exp
(
−c2

4
√

N
)

,

where N = dimSΓ
p,L = O(L4) and c1, c2 are positive constants independent of N .

6.4. Exponential convergence.

Theorem 6.6 (convergence rate of the Galerkin FEM). Let f be stationary, V ′-
valued random loads with finite second moments and with piecewise analytic covari-
ance function Cf (x − y) that satisfies Assumption 3.9. Let further

(6.7) SL := S∆
µ,L + SΓ

p,L

be the ansatz space for the Galerkin FEM (6.2), (6.3). Then, one can find µ ≥ 1
constant and p = p(L) ∈ N such that the approximate solutions sL ∈ SL to Prob-
lem 3.5 obtained from the Galerkin FEM, converge at exponential rate towards the
exact solution Cu:

‖Cu − sL‖H1,1(!) ≤ c1 exp
(
−c2

4
√

N
)

,

where N := dimSL denotes the number of degrees of freedom and c1, c2 are positive
constants independent of N .

Proof. sL is the solution of problem (6.2). Thus, Lemma 6.2 yields:

‖Cu − sL‖H1,1(!) =
K2

b

γ2
b

inf
CL∈SL

‖Cu − CL‖H1,1(!)

≤
K2

b

γ2
b

‖Cu − CL‖H1,1(!) ∀CL ∈ SL

We choose µ ≥ 1, p = p(L) ∈ N as in Theorems 6.4, 6.5 and assume the approxi-
mations v∆

L ∈ S∆
µ,L, vΓ

L ∈ SΓ
p,L from there in order to set

CL = v∆
L + vΓ

L ∈ SL.
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With Cu = C∆
u + CΓ

u , the triangle inequality provides the error bound

‖Cu − sL‖H1,1(!) ≤
K2

b

γ2
b

(
‖C∆

u − v∆
L ‖H1,1(!) + ‖CΓ

u − vΓ
L‖H1,1(!)

)
.

By Theorems 6.4 and 6.5, we obtain:

‖Cu − sL‖H1,1(!) ≤
K2

b

γ2
b

(
c∆
1 exp

(
− c∆

2 L
)

+ cΓ
1 exp

(
− cΓ

2L
))

≤
K2

b (cΓ
1 + c∆

1 )

γ2
b

exp
(
− min

{
cΓ
2 , c∆

2

}
L
)

(6.8)

Because of N = dimSL = O(L4), there is a constant c > 0 such that L ≥ 4

√
N
c for

L → ∞. Inserting this into (6.8) concludes the proof. !
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