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Tunneling through a one-dimensional Eckart barrier is investigated using a recently developed propagation
scheme based on semi-classical wave-packets. This version of the time-dependent discrete variable representa-
tion method yields linear equations for the parameters, is fully adaptive, and does not require a frozen Ansatz
in order to approximate the exact solution of the Schrödinger equation accurately. We rely on an analytical
result to derive a new algorithm to spawn a second family of semi-classical wave-packets after the tunneling
has occurred. Numerical results for a benchmark problem demonstrate the accuracy of the new method.

PACS numbers: 03.65.Sq, 82.20.Wt, 02.70.Hm, 02.60.Cb
Keywords: semi-classical, time-dependent Schrödinger equation, wave-packets, tunneling, spawning, time-
dependent discrete variable representation

I. INTRODUCTION

Semi-classical wave-packets were introduced1,2 in order
to deal with the time-dependent Schrödinger equation in
the semi-classical scaling, i.e.,

i ε
∂ψ

∂t
= Hψ, (1)

where ψ = ψ(x, t) is the wave-function depending on the
spatial variables x = (x1, . . . , xN ) ∈ RN and the time
t ∈ R. The Hamiltonian operator H, which depends on
ε, is H = T + V with the kinetic and potential energy
operators

T = −
N∑

j=1

ε2 ∂2

∂x2
j

and V = V (x),

where the real-valued potential V acts as a multiplication
operator on ψ in L2(RN ).

In molecular quantum dynamics, (1) is a Schrödinger
equation for the nuclei on an electronic energy
surface in the time-dependent Born–Oppenheimer
approximation3–7. In this situation, ε2 is the mass ratio8

between the electrons and nuclei, of magnitude 10−4.
Semi-classical wave-packets were employed for an ana-

lytic proof that the wave function can be approximated
with high asymptotic accuracy in ε by complex Gaus-
sians times polynomials1,2. Recently, they have been put
to use in a numerical scheme for multi-particle quantum
dynamics in the semi-classical regime9. In the quadra-
ture version of this algorithm, the relation with the time-
dependent discrete variable representation TDDVR10,11

and quantum-dressed classical mechanics12 is evident.
The wave-packets constitute an orthogonal basis that
adapts in time to the evolution at hand. Time-dependent
adaptive spaces and grids arise in the same natural man-
ner. In one space dimension, the semi-classical wave-

packets are just scaled and shifted Hermite polynomi-
als times complex Gaussians, but in higher space dimen-
sions they are both more general and more suitable than
tensor products of Hermite functions9. An advantage
of the semi-classical wave-packets is the freedom given
by their supplementary parameters. This freedom yields
linear equations for parameters that are fully adaptive
and do not have to be fixed as sometimes happens in the
TDDVR10. Making use of this freedom, the algorithm
in Ref. 9 proves not only suitable for higher-dimensional
cases, but it is time-reversible and ensures an unitary
propagation, hence perfect norm conservation. As long
as the approximation remains valid we even have no drift
in the energy. Last but not least: the classical picture
of the dynamics is ε-blurred: for ε → 0 we get classical
dynamics with its advantageous numerical propagator:
Störmer-Verlet. Larger ε puts in more and more quantum
effects, and it complies well with the Born-Oppenheimer-
Approximation.

Methods based on wave-packets suffer if the widths of
the basis functions become too large. Tunneling thus
seems difficult to address, since the occurrence of a delo-
calized wave function would imply large width and re-
quire a large number of wave-packets10,11. Tunneling
through the Eckart potential is, on the one hand, a simple
model for bi-molecular reaction dynamics (e.g. H + H2

exchange reaction) and on the other hand, a non-trivial
benchmark test for the accuracy of the semi-classical
approximation10,11,13,14. So, we stick to the one dimen-
sional case in this work and use the Eckart potential for
the numerical experiments.

Let us anticipate here the results in the notation of the
next sections that explain the technical details. Figures
1 and 2 show the squared absolute value of the wave-
function together with its representation in terms of co-
efficients ck of basis functions at the some times shortly
after the tunneling. The initial state for Figure 1 was a
typical Gaussian.
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FIG. 1. The numerical solution (for u(0) = ϕ0) at several times: upper lines display |u|2 and lower lines show |ck|; the dotted
line represents the spawned Gaussian, the colors indicate the phase of the wavefunction15.

Note the difference between scales of the reflected and
tunneled parts of the wave-function. The higher order
coefficients are responsible for the tunneled part, but not
all 512 considered terms are necessary. The dashed line

that appears on the right domain represents the spawned
Gaussian as computed by our algorithm, whereas the dot-
ted line displays the potential.
Figure 2 reflects the case when we take as an initial wave-
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FIG. 2. The numerical solution (for u(0) = ϕ3) at several times: upper lines display |u|2 and lower lines show |ck|; the dotted
line represents the spawned Gaussian, the colors indicate the phase of the wavefunction15.

packet a polynomial times a Gaussian with same position
and width parameters as in the previous case but slightly
less momentum, in order to have only slightly less total
energy in the system. The results show that our spawning

technique reduces dramatically the number of used basis
functions, while keeping the error resonably small. More
numerical results and the exact values of the parameters
used are presented in the last section.
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The main difficulty in the simulation is the fact that
typical solutions have wavelength of order ε, move with
velocity of order 1 in a non-confining potential, and have
spreading width starting from order

√
ε. Note that too

small ε and large final times make the Fourier method
computationaly intensive. The existent wave-packets
methods behave better for smaller ε but need many basis-
functions for a spreading wavefunction as in the tun-
neling problem. In analogy with the multiple spawning
approach16, we give a rigorously justified spawning algo-
rithm which specifies when and how to add a new family
of semi-classical wave-packets during the tunneling in one
dimension.

In the next section we briefly discuss the semi-classical
wave-packets and sketch their use for a practical solution
of the problem (1). We make use of a mathematically
rigorous proof17 that in the 1D tunneling problem with
a smooth bounded potential, the part of the wave func-
tion that tunnels is a Gaussian to leading order in ε at
sufficiently large times. This analytical result gives for-
mulas for the emerging wave function that unfortunately
are not of practical use. The question of how to spawn
the new Gaussian is answered in the third section by an
algorithm involving the semi-classical wave-packets. The
same algorithm is valid for the case of a reflected Gaus-
sian. Numerical experiments validating our new method
are presented in the last section.

II. THE ANSATZ

A. Semi-classical wave-packets

Since the analytical tunneling result has been proved
only in the one dimensional case, we stick here to N =
1 and refer to Ref. 2 and 9 for the construction and
propagation algorithms in the higher dimensional case.
A Gaussian wave-packet is parametrized as18

ϕε
0[q, p,Q, P ](x) = (πε)−1/4 (Q)−1/2 ·

exp
(

i

2ε
PQ−1(x− q)2 +

i

ε
p(x− q)

)
, (2)

where q, p ∈ R represent the position and momentum,
respectively, and Q, P ∈ C satisfy the compatibility con-
ditions:

QP − PQ = 0, (3)
QP − PQ = 2i . (4)

The last two relations are equivalent to requiring that

Y =
(

Re Q Im Q
Re P Im P

)

be symplectic, an important property for the numerical
integration19 of conservation laws.
A complete L2-orthonormal set of functions

ϕk(x) = ϕε
k[q, p,Q, P ](x) (5)

for non-negative integers k, is recursively constructed as
follows2: Let x denote the position operator (acting on
functions of x by multiplication with x) and y = −iε∇x

the momentum operator, and introduce the raising oper-
ator R and lowering operator L as

R = − i√
2ε

(
P (x− q) + Q(y − p)

)
,

L =
i√
2ε

(P (x− q) + Q(y − p)) .

Define

ϕk+1 =
1√

k + 1
Rϕk . (6)

It then turns out that these functions are orthonormal,
as the eigenfunctions of the hermitian operator LR =
RL + I. Moreover, we have

ϕk−1 =
1√
k
Lϕk ,

(the right-hand side is zero if k = 0), and the functions ϕk

are polynomials of degree k multiplied by the Gaussian
ϕ0. Since the above relations imply (see Ref. 2, equation
(3.28))

x− q =
√

ε

2
(
QR + QL

)
, (7)

we obtain the recurrence relation

Q
√

k + 1 ϕk+1(x) =
√

2
ε

(x− q)ϕk(x)−Q
√

k ϕk−1(x) ,

which permits us to compute the functions ϕk at any
given value x. In the one dimensional case we get (scaled)
Hermite polynomials times ϕε

0[q, p,Q, P ].
Let us emphasize the differences between this and TD-

DVR methods10–12: the role of a complex width param-
eter A(t) that is decomposed as Im A(t) and ReA(t)
(and sometimes fixed as in the frozen Gaussian ap-
proach) in the TDDVR is played here by two complex
parameters Q(t) and P (t) that will adapt themselves
to the dynamics and keep the matrix Y (t) symplectic.
Each state ϕε

k[q(t), p(t), Q(t), P (t)] is concentrated in po-
sition near q(t) and in momentum near p(t); the position
and momentum uncertainties are

√
(k + 1

2 )ε |Q(t)| and
√

(k + 1
2 )ε |P (t)|.

We approximate solutions to the equation (1) in the
form of a finite linear combination of wave-packets, with
a common highly oscillatory phase factor,

u(x, t) = eiS(t)/ε
K∑

k=0

ck(t) ϕε
k[q(t), p(t), Q(t), P (t)](x) .

(8)
This Ansatz is motivated by the remarkable fact that
in the case of a quadratic (possibly time-dependent) po-
tential V , the functions eiS(t)/ε ϕε

k[q(t), p(t), Q(t), P (t)]



Tunneling dynamics and spawning with adaptive semi-classical wave-packets 5

are exact solutions to the Schrödinger equation2 if the
position and momentum parameters follow the classical
equations of motion

q̇ = p, ṗ = −∇V (q) ;

the linearized equations of motion

Q̇ = P, Ṗ = −∇2V (q) Q ;

and S(t) =
∫ t
0 ( 1

2p(s)2 − V (q(s)) ds is the classical ac-
tion. On the other hand, for a non-quadratic potential,
the wave function can be expanded in the orthogonal
basis of wave-packets with time-dependent coefficients,
with parameters determined by the equations of motion
corresponding to a local quadratic approximation of the
potential.

B. Propagation

We now give a full algorithmic description of the adap-
tive time-stepping. Assume that the step-size ∆t is given,
and let the real scalars qn, pn, Sn, the complex Qn,
Pn, and the complex coefficient vector cn = (cn

k )k∈K,
K = {0, · · · , K}, be such that

un = eiSn/ε
K∑

k=0

cn
k ϕε

k[qn, pn, Qn, Pn]

is an approximation to the solution of the Schrödinger
equation (1) at time tn = n∆t. To compute the approx-
imation un+1 at time tn+1, we proceed as follows:

1. Compute qn+1/2, Qn+1/2, and Sn+1/2,− via

qn+1/2 = qn +
∆t

2
pn,

Qn+1/2 = Qn +
∆t

2
Pn, (9)

Sn+1/2,− = Sn +
∆t

4
(pn)2 .

2. Compute pn+1, Pn+1, and Sn+1/2,+ via

pn+1 = pn −∆t∇V
(
qn+1/2

)
,

Pn+1 = Pn −∆t∇2V
(
qn+1/2

)
Qn+1/2, (10)

Sn+1/2,+ = Sn+1/2,− −∆t V
(
qn+1/2

)
.

3. Update the coefficient vector cn+1 = (cn+1
k )k∈K as

cn+1 = exp
(
−∆t

i

ε
Fn+1/2

)
cn, (11)

e.g., by a few steps of the Arnoldi iteration9. Here,
Fn+1/2 = (fk")k,"∈K is the Hermitian matrix with
entries

fk" =
〈
ϕn+1/2

k

∣∣∣ Wn+1/2
∣∣∣ ϕn+1/2

"

〉
, (12)

where ϕn+1/2
k = ϕε

k[qn+1/2, pn+1, Qn+1/2, Pn+1]
are the basis functions and

Wn+1/2(x) = V (x)− Un+1/2(x)

is the remainder in the local quadratic approxima-
tion to V , given at q = qn+1/2 by Un+1/2(x) =
V (q)+∇V (q) (x−q)+ 1

2∇
2V (q) (x−q)2. Note that

fk" actually depends only on qn+1/2 and Qn+1/2,
but not on pn+1 and Pn+1, since the imaginary
parts in the arguments of the Gaussian cancel out
in (12).

4. Compute qn+1, Qn+1, and Sn+1 via

qn+1 = qn+1/2 +
∆t

2
pn+1,

Qn+1 = Qn+1/2 +
∆t

2
Pn+1, (13)

Sn+1 = Sn+1/2,+ +
∆t

4
(pn+1)2.

The algorithm is of second order accuracy in the param-
eters q, p,Q, P, S, and ck and enjoys a number of attrac-
tive conservation and limit properties: time-reversibility,
symplecticity and L2-norm conservation, and robustness
in classical limit ε → 0. Regarding the position and
momentum parameters q and p, the algorithm coincides
with the Störmer–Verlet method applied to the corre-
sponding classical equations of motion. In the limit of
taking the full basis set ϕk, with all k ∈ N, the vari-
ational approximation used in the remainder propaga-
tor becomes exact and the algorithm converges towards
the Strang splitting (or symmetric Lie–Trotter splitting)
exp(− i

ε∆tH) ≈ exp(− i
ε

∆t
2 T ) exp(− i

ε∆tV ) exp(− i
ε

∆t
2 T )

of the Schrödinger equation. We refer to Ref. 9 for more
details and the treatment of the higher dimensional case
that clarifies the flexibility of this Ansatz.

C. Tunneling

It is well known that a one-dimensional, semi-classical
wave packet with low energy scattered on a potential
barrier gives rise to an exponentially small tunneling
piece, in the semiclassical limit, which propagates be-
yond the potential barrier V . Less well known is the fact
that this tunneling piece always has a Gaussian shape,
irrespective of the details of the incoming wave choice
(8), in the semiclassical limit. This statement is true as
soon as the tunneling piece is away from the potential
barrier, not necessarily in a scattering regime, and the
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characteristics of the Gaussian are determined by the
classical dynamics. The fact that Gaussians always
emerge in semi-classical tunneling, which provides the
theoretical foundation of the spawning, is proven in17.
The result, in a setup suitable for the present analysis,
reads as follows:

Assume the potential x '→ V (x) is an analytic function
on R, such that lim|x|→∞ |V (x)| = 0, which has a unique
maximum V0 > 0 at x = 0. Let u(x, 0) be a semiclassical
wave packet of the form (8), centered around (q, p) in
phase space with q < 0 and p > 0, such that p2/2 < V0.
Then, for t > t0 > 0, the solution of (1) decomposes
as u(x, t) = uref (x, t) + utrans(x, t), where, for ε << 1,
the reflected part, uref (x, t), is negligible for x > 0
whereas utrans(x, t) is negligible for x < 0. Moreover,
utrans(x, t) = Cε3/4e−γ/εuG(x, t) + o(ε3/4e−γ/ε), for
some γ > 0 and C ∈ C, where uG(x, t) is a semi-classical
Gaussian wave packet concentrated around a classical
trajectory (q(t), p(t)). The other characteristics of uG

can be computed and depend on the details, just as C
and γ do.

This result corresponds in the present tunneling
situation to those proven in Ref. 20 and 21 for tran-
sitions through electronic avoided crossings in the
Born-Oppenheimer approximation and in Ref. 22 for
wave functions obtained in semiclassical above barrier
reflection situations.

Unfortunately, the explicit formulas for the emerging
wave function, given by this remarkable analysis are not
necessarily of practical use. By combining the analytical
result with the numerical techniques, we obtain a rig-
orously founded spawning technique that specifies when
and how to add a new family of semi-classical wave-
packets during the tunneling in one dimension.

III. SPAWNING THE GAUSSIAN

We start with a linear combination (8) of wave-packets
corresponding to a family of parameters q, p,Q, P and
take the number of basis functions K large enough to ac-
curately propagate the wave-function even somewhat on
the far side of the barrier. The energy balance (numer-
ical conservation of the energy) can indicate whether K
should be increased. The position parameter q indicates
whether the propagation time is sufficient. The theory
says that the part of the wave-function beyond the bar-
rier is approximately a Gaussian after sufficient time. Us-
ing only the parameters of the propagated wave-function
q, p,Q, P, S, (ck)k≤K we want to create the new set of pa-
rameters a, b, A, B, d0 so that the tunneled wave-packet
is approximately d0 ϕ0[a, b, A, B].

The main observation is that the coefficients ck for
large indices k are responsible for the correct represen-
tation of the tunneled part of the wave-function. After

tunneling has occurred, we decompose the wave-function
into two parts

u(t) = v(t) + w(t) =
∑

k<K0

ck(t)ϕk +
K∑

k=K0

ck(t)ϕk

where w is expected to be approximately a Gaussian:

w(t, x) ≈ d0 ϕ0[a, b, A, B](x) .

Of course, ‖w‖2 =
∑K

k=K0
|ck|2 )= 1, but ϕ0[a, b, A, B] is

normed, so we may set d0 = ‖w‖. Note that the choice
of K0 is not critical, as long as the two parts of the wave-
function are well separated (i.e., the coefficients ck in the
middle range of k are nearly zero).
The estimated position and momentum are

a =
〈w, xw〉
‖w‖2 , b =

〈w,−iε∇w〉
‖w‖2 .

Using (7) and the orthogonality of the basis functions,
we get

a = q +
√

2ε

‖w‖2 Re

(
Q

K∑

k=K0+1

ckck−1

√
k

)
, (14)

and

b = p +
√

2ε

‖w‖2 Re

(
P

K∑

k=K0+1

ckck−1

√
k

)
. (15)

We use Ref. 2, equation (3.28)

ε

2
|A|2 =

〈
w, (x− a)2w

〉

‖w‖2 ,

together with the last two equalities in order to get

|A|2 = −2
ε
(q − a)2 +

1
‖w‖2

(
|Q|2θ1 + 2Re (Q2θ2)

)
,

where

θ1 =
K∑

k=K0

|ck|2(2k + 1)

θ2 =
K−2∑

k=K0

ck+2ck

√
(k + 1)(k + 2) .

Analogously we obtain a formula for |B|2:

|B|2 = −2
ε
(p− b)2 +

1
‖w‖2

(
|P |2θ1 + 2Re (P 2θ2)

)
.

At the expense of multiplying d0 by a phase, we can
choose a real A > 0. Then the second compatibility
relation (4) ensures that ImB = 1/A and hence

A =
√
|A|2 (16)

B =
√

A2 |B|2 − 1 + i

A
. (17)
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The equations (14), (15), (16), (17) give the parameters
of the spawned Gaussian in the tunneling problem. Note
that the same algorithm will provide the parameters of
the Gaussian that emerges in the reflection problem.
Let us point out here the weak point of the method: for
an accurate spawning we may need a large number K
of basis functions in the case of large initial momentum.
The computing time prior to spawning in this case may
be substantial. However, spawning reduces dramatically
the number of basis functions that are needed after tun-
neling has occurred, allowing for long time propagations.

IV. NUMERICAL RESULTS

The first question to address is whether our propaga-
tion scheme can reproduce the results obtained by the
TDDVR10. First, we have to describe the problem in
Ref. 10 in terms of our parameters and of atomic units
that are suitable for numerical computations.
The Eckart potential is

V (x) =
V0

cosh2(ax)
,

with V0 = 100 kJ/mol = 100 · 3.8008 · 10−4 Eh and
a = 2Å−1 = 2 · 0.52918 alu−1.
The parameter ε2 is the mass ratio between the elec-
trons and the considered system mass of 1 amu, hence
ε = 0.02342. Note that this value of ε is large enough
in order to address the one dimensional problem by the
Fourier method on a large computational domain. This
will provide us a very good approximation for the ex-
act solution of (1). The unit of time in (1) is then
1/ε = 1.0327 fs.
The propagation starts with a Gaussian u(x, 0) =
ϕε

0[q(0), p(0), Q(0), P (0)](x). The initial position of the
wave-packet is q(0) = −4Å = −4/0.52918 and the initial
momentum is p(0) = ε · 20Å−1 = ε · 20 · 0.52918. Tak-
ing the initial Q(0) = 1/

√
2 · 0.4 and P (0) = i

√
2 · 0.4

lets us exactly reproduce the case treated in Ref. 10
(see Figure 3). Note the perfect conservation of the to-
tal energy of 3.1192 · 10−2 Eh during the propagation
in Figure 4. With this choice of parameters, one can
easily compare the solution given by our algorithm with
that provided by the split-step Fourier method of Ref.
25, see Figure 5. In order to compute an approximation
of the L2- and L∞-norm (or max-norm) of the error,
both solutions are evaluated on an uniform grid with
4096 points in the computational box [−9π, 9π] that is
reqired by the Fourier method. Note that the wave-
packet propagation happens on the whole real line, so
there is no need to impose artificial boundary conditions.
Moreover, smaller ε would require many more frequen-
cies (and points) in the Fourier method in order to make
an accurate comparison. We chose the time-step to be
0.005, and we used 512 basis functions in the wave-packet
Ansatz. The right part of Figure 5 shows the same os-
cillations in the tunneling probability

∫∞
0 |u(t, x)|2dx as

FIG. 3. Energy-resolved transmission probabilities; the nu-
merical computed values are compared with the analytic
result23,24

FIG. 4. Evolution of the energy during the propagation

in Ref. 10, but we clearly have a stabilization near the
correct value after tunneling occurs. In the left part of
Figure 5 we notice that the approximation deteriorates
during the tunneling, and it remains constant thereafter.
To avoid approximating two independently propagating
waves by only one wave-packet, we spawn a new fam-
ily as described in the previous section. The left side
of Figure 6 shows the L2- and L∞-norm (or max-norm)
of the spawing error |w(x) − d0ϕ0[a, b, A, B](x)| at dif-
ferent possible spawing times during and after the tun-
neling. The constant K0 was chosen to be 50, so one
can cope with many fewer basis-functions by introducing
the second wave-packet, see Figures 1 and 2. The right
side of Figure 6 and Figure 2 present the correspond-
ing simmulation results in the case when we take as an
initial wave-packet u(x, 0) = ϕε

3[q(t), p(t), Q(t), P (t)](x)
with the same q(0), Q(0), P (0) and slightly less momen-
tum p(0) = 0.95 · ε · 20Å−1, hence with the total energy
2.9264 · 10−2 Eh.

In conclusion, the spawning technique reduces dramat-
ically the number of basis functions used, while keeping
the error resonably small.
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FIG. 5. Comparison with the Fourier solution: time evolution of the error (left) and of the tunneling probability (right)

FIG. 6. Spawning error at different possible spawning times for u(0) = ϕ0 (left) and for u(0) = ϕ3 (right)
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