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Optimal image alignment with random projections

of manifolds: algorithm and geometric analysis
Effrosyni Kokiopoulou, Daniel Kressner and Pascal Frossard

Abstract—This paper addresses image alignment based on ran-
dom measurements. Image alignment consists in estimating the
relative transformation between a query image and a reference
image. We consider the specific problem where the query image is
not given exactly, but rather provided in a compressed form with
linear measurements captured by a vision sensor. According to
the theory behind compressed sensing, image alignment can still
be performed effectively in this case, provided that the number
of measurements is sufficiently large. We cast the alignment
problem as a manifold distance minimization problem in the
linear subspace defined by the measurements. We then show
that, when the reference image is sparsely represented over
parametric dictionaries, the corresponding objective function can
be decomposed as the difference of two convex functions (DC).
Thus the optimization problem becomes a DC program, which
in turn can be solved globally optimally by, e.g., a cutting plane
method. The quality of the solution is typically affected by the
number of random measurements and the condition number of
the manifold that describes the transformations of the reference
image. We show that the manifold condition number remains
bounded in our image alignment problem, which means that the
relative transformation between two images can be determined
optimally in a reduced subspace.

Index Terms—Pattern transformations, transformation mani-
folds, sparse representations, random projections, manifold con-
dition number.

I. INTRODUCTION

The problem of image alignment is of paramount im-

portance and enjoys numerous applications in various fields

including pattern recognition, computer vision and medical

image analysis, to name just a few [1]. The comparison of

two visual patterns is generally only meaningful if they are

aligned first, so that their distance reflects their structural and

geometric differences. Image alignment consists of estimating

the relative transformation between patterns. The transformed

version of a pattern can be described as a point of a sub-

manifold in a high dimensional space, which is usually called

the transformation manifold. The manifold distance (MD) is

the minimum distance between the query image p and the

manifold generated by the reference image s, see Figure 1.
In certain applications, we might not have access to the full

query image or it might be computationally too expensive to

deal with the complete image. In this paper, we only work

with a few random projections of the query image. According

to the theory of compressed sensing (CS), a few random

E. Kokiopoulou and D. Kressner are with the Seminar for Applied Math-
ematics, Department of Mathematics, ETH Zurich, CH-8092 Zurich email:
{effrosyni.kokiopoulou,daniel.kressner}@sam.math.ethz.ch
P. Frossard is with the Signal Processing Laboratory (LTS4), Institute of

Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne e-mail: pascal.frossard@epfl.ch.

Transformation manifold
M

query pattern
p

Euclidean distance

Manifold distancereference
pattern

s

s(η∗)

transformed
pattern

Fig. 1. Manifold distance is the minimum distance from a query point p to
the transformation manifold M spanned by the transformed versions of s.

projections of a sparse (or nearly sparse) signal are sufficient to

preserve its salient information. Moreover, in [2], [3], [4] it is

shown that random projections of signal manifolds result into

approximately isometric embeddings, i.e., pairwise Euclidean

distances are nearly preserved in the reduced space.

In the context of image alignment, we use linear measure-

ments in order to estimate the relative geometric transforma-

tion between a query and a reference image. While the use

of linear measurements permits to reduce the computational

complexity of the estimation, it further permits to extend

the image alignment problem to imperfect settings where the

representation of the query image is provided in a compressed

form by low complexity vision sensors.

In this paper, we propose a new method for image align-

ment, which estimates the globally optimal transformation

between a query image and a reference image s, using a
sufficient number of random measurements. For this purpose,

we represent s as a sparse linear combination of geometric
primitives, called atoms, which are chosen from a parametric,

possibly redundant dictionary. This representation permits to

build a parametric definition of the transformation manifold,

which describes the possible transformations of the reference

image. The image alignment problem can then be cast as

a manifold distance minimization problem. Building on our

previous work [5], [6], we then formulate the pattern alignment

problem with random measurements as a DC program by

showing that the objective function can be represented as a

difference of convex functions (DC). DC programs are non-

convex problems that can be solved by efficient globally

optimal algorithms by exploiting their special structure. Our

approach therefore provides a feasible way to perform image
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alignment with random measurements.

At the same time, the results from [4] suggest that the

number of measurements necessary for proper alignment de-

pends on the condition number of the pattern transformation

manifold. We perform a geometric analysis of this manifold,

showing that it is well conditioned and providing an explicit

upper bound on the condition number. Moreover, we estimate

this number numerically by establishing an efficient procedure

for computing the principal curvature at a certain point on

the manifold. These results confirm that the required number

of measurements is bounded in our problem, and that image

alignment can be solved efficiently in a reduced subspace. In

summary, the contribution of this paper consists of providing

(1) a globally optimal approach to image alignment with

random projections and (2) theoretical as well as numerical

insights into the geometric properties of the pattern trans-

formation manifolds that influence the number of necessary

measurements.

The rest of this paper is organized as follows. In Sec. II

we formulate the problem of image alignment from random

measurements. In Sec. III we discuss the representation of

transformation manifolds using sparse geometric expansions.

We then show in Sec. IV that the distance between the query

pattern and the transformation manifold is a DC function

of the transformation parameters. In Sec. V we provide a

geometric analysis of transformation manifolds which con-

firms that a limited number of measurements is sufficient for

accurate alignment. Finally, experimental results are presented

in Sec. VI.

II. PROBLEM FORMULATION

In this paper, we are interested in estimating the relative

transformation η∗ that matches best two visual patterns. This

problem is very common in image processing or computer

vision applications that rely on image alignment or matching

of views. In particular, we consider the problem where only a

compressed version of the query pattern is available, which is

given by linear measurements captured by the vision sensor.

Formally, we consider that images undergo transformations

described by the parameter η. We further consider that all the
transformed versions s(η) of the reference pattern s can be
represented by a low dimensional transformation manifoldM.

Then, we assume that we have m random projections of the

query pattern p, obtained by computing inner products with m
random signals z1, . . . , zm. The image alignment problem is

equivalent to a manifold distance minimization problem in the

linear subspace defined by the measurement vectors. It can be

formulated as a parameter estimation problem as follows.

Transformation estimation problem

η∗ = arg min
η

f(η), where

f(η) =
m
∑

i=1

|〈s(η), zi〉 − 〈p, zi〉|. (1)

The optimization problem (1) for determining the best

transformation parameters η∗ is typically non-convex [7]. This

makes it hard to solve using traditional methods, such as

M

τ

s(η)

Fig. 2. A large τ corresponds to a well conditioned manifold, which has a
low curvature.

steepest descent or Newton-type methods due to their local

convergence property and the presence of an unknown number

of local minima. We show in the next section how the trans-

formation manifold could be described in a parametric form.

This enables to write the objective function as a difference of

two convex (DC) functions, as shown in Section IV. This in

turn allows us to formulate the optimization problem as a DC

program and solve it globally by a cutting plane method [8,

Thm 5.3].

One still has to choose the number of measurements

that leads to efficient transformation estimation. The optimal

number of random projections is hard to define in practice.

Suppose that we project the transformation manifolds spanned

by two distinct patterns on m random vectors z1, . . . , zm.

In order to make sure that matching points in the reduced

space is close to matching the corresponding points in the

initial high-dimensional space, the embedding should be nearly

isometric, that is, pairwise Euclidean distances should be

nearly preserved. Only if this is the case, one can reliably

perform image alignment in the reduced space and estimate

the unknown transformation.

Recently, Baraniuk and Wakin [2] provide an estimate ofm
that is linear in d and logarithmic in n, the number of pixels
in the image. We revisit the main result from [2].

Theorem 1: Let M be a compact d-dimensional manifold
in Rn having condition number 1/τ , volume V , and geodesic
covering regularity R. Fix 0 < ε < 1 and 0 < ρ < 1. Let Z
be a random orthoprojector from Rn to Rm and

m ≥ O
(d log(nV Rτ−1ε−1) log(ρ−1)

ε2

)

. (2)

Suppose m < n. Then, with probability exceeding 1 − ρ, the
following statement holds: For every pair of points x, y ∈ M,

(1 − ε)

√

m

n
≤

‖Zx − Zy‖2

‖x − y‖2
≤ (1 + ε)

√

m

n
. (3)

Roughly speaking, Theorem 11 is proved by determining a

high-resolution sampling on the manifold and then applying

the Johnson-Lindenstrauss lemma [9] to the sampled points.

The above theorem implies that besides d and n, the numberm
depends logarithmically on other properties of the manifold,

such as its condition number 1/τ , volume V and geodesic

covering regularity R. Note that R is closely related to the

condition number [2] and we will omit its definition. Intu-

itively, the condition number of M is defined as 1/τ , where

1Note that even if f(η) in (1) is based on the 1-norm distance in our
formulation, Theorem 1 still provides insights on the required number of
measurements, by the equivalence of norms in finite-dimensional spaces (i.e.,
a good match in the 1-norm yields a good match in the 2-norm).
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(a) (b)

(c) (d)

Fig. 3. Sample Gaussian atoms; (a) bx = 0, by = 0, ax = 10, ay = 5,
ω = 0, (b) bx = 0, by = 0, ax = 10, ay = 5, ω = −π/6, (c) bx = 0,
by = −10, ax = 10, ay = 5, ω = −π/6 (d) bx = 5, by = −10, ax = 10,
ay = 5, ω = −π/6

τ is the maximum radius of a sphere that, when placed tangent
to any point inM, it intersectsM only at that point (see [10]

for a precise definition). This is illustrated graphically in Fig.

2 showing that a large τ implies a well conditioned manifold.
Therefore, the condition number is an important property of

M towards characterizing the number m of required random

measurements. We show in Section V that our transformation

manifold is well conditioned, which means that the number of

necessary measurements is clearly bounded in the problem (1).

III. TRANSFORMATION MANIFOLDS

A. Visual pattern representation

We show in this section how one could build a parametric

transformation manifold for a reference pattern s. We first
explain the representation of the pattern as a linear combi-

nation of geometric functions (usually called atoms), taken

from a structured parametric and possibly redundant dictionary

D = {φγ , γ ∈ Γ} spanning the input space. This represen-
tation aims at capturing the most prominent features of the

pattern. The atoms in a parametric dictionary are constructed

by applying geometric transformations to a generating mother

function denoted by φ. A geometric transformation γ ∈ Γ can
be represented by the action of an operator U(γ) and therefore
the parametric dictionary takes the form

D = { φγ = U(γ)φ, γ ∈ Γ}. (4)

A transformation γi, defining the ith atom, is composed of
elementary transformations of the following three types.

• Translation by bi = [bix biy]#. U(bi) moves the gen-
erating function across the image, i.e., U(bi)φ(x, y) =
φ(x − bix, y − biy).

• Rotation by ωi. U(ωi) rotates the generating function
by the angle ωi, i.e., U(ωi)φ(x, y) = φ(cos(ωi)x +
sin(ωi)y, cos(ωi)y − sin(ωi)x).

• Anisotropic scaling by ai = [aix aiy]#. U(ai) scales the
generating function anisotropically, i.e., U(ai)φ(x, y) =
φ( x

aix
, y

aiy
).

These elementary transformations yield a transformation γi =
(bi, ai, ωi) ∈ Γ as a synthesis of translations, anisotropic

scalings, and rotations. It can be observed that applying a

transformation on the mother function is equivalent to trans-

forming the coordinate system from {x, y} to {x̃, ỹ} before
applying φ(·). In particular, the ith atom φγi

= U(γi)φ(x, y)
with γi = (bi, ai, ωi) ∈ Γ can be regarded as the pullback

φγi
(x, y) = φ(Ψγi

(x, y)), (5)

where (x̃, ỹ) := Ψγi
(x, y) satisfies

[

x̃
ỹ

]

=

[
1

aix
0

0 1
aiy

]

︸ ︷︷ ︸

A

[

cosωi sinωi

− sinωi cosωi

]

︸ ︷︷ ︸

R(ωi)

[

x − bix

y − biy

]

︸ ︷︷ ︸

t

= AR(ωi)t. (6)

The approximation of a pattern s with atoms from the

dictionaryD can be obtained in different ways. Even if finding

the sparsest approximation of s is generally a hard problem,
effective sub-optimal solutions are usually sufficient to capture

the salient and geometric structure of the pattern with only a

few atoms. In this work, we have chosen to use Orthogonal

Matching Pursuit (OMP) [11, Sec. 9.5.3], which is a simple

yet effective algorithm for computing sparse approximations

in practice.

Initially, OMP chooses the residual r0 = s and then

proceeds iteratively by selecting in the kth step the atom
φγk

that best matches the residual rk−1 i.e., γk =
argγ∈Γ max |〈rk−1, φγ〉|. Then γk is removed from the resid-

ual by projection: rk = (I − Pk)rk−1, where Pk is the

orthogonal projector onto span{φγk
}. After K steps of OMP,

the pattern s is approximated by a sparse linear combination
of K atoms:

s ≈
K
∑

k=1

ξkφγk
. (7)

We propose the use of a dictionary of two-dimensional

atoms capturing the geometric information in an image. The

generating function φ of D used in this paper is the Gaussian

φ(x, y) =
1

ρ
exp(−(x2 + y2)). (8)

Figure 3 shows a few sample Gaussian atoms corresponding

to various geometric transformations γ. In addition, Figure
4 illustrates the progressive approximation of a human face

from a Gaussian dictionary using OMP. Observe that already

very few atoms are sufficient to capture the main geometric

characteristics of the pattern and that the representation (7)

does not need to be very accurate before it is useful for

alignment purposes.

B. Transformation manifolds

In the following, we show how all the geometric transfor-

mations of the reference image s build a parametric trans-
formation manifold. We restrict scalings to be isotropic, i.e.,

the geometric transformation η takes the form η = (b, α, ω)
consisting of a translation b = [bx, by], an isotropic scaling α,
and a rotation ω. The manifold M of all such transformed

images can be expressed mathematically as

M =
{

s(η) := U(η)s, η = (b, α, ω)
}

. (9)
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Fig. 4. Progressive OMP approximation of a human face (leftmost) with 20, 50, 80, 110 and 140 Gaussian atoms (from left to right).

Fig. 5. Samples from the transformation manifold of the human face. From left to right, the samples correspond to rotation angles from 0 to 2π with step
π/4.

Fig. 6. Random projections in 3D of the rotation manifold of Figure 5. The
samples correspond to rotation angles from 0 to 2π with step π/500. The
color/shading is a linear map of the rotation angles.

Although the manifold resides in a high-dimensional space, its

intrinsic dimension d is rather small and equal to the number of
transformation parameters, which is 4. Figure 5 shows a few

samples from the transformation manifold of a human face,

with the transformation restricted to a rotation. The random

projections of the resulting manifold are illustrated in Figure

6.

In general, all possible transformations η forms a group, the
so called similitude group SIM(2) of the plane. As in (6), we

denote

R(ω) =

[

cosω sinω
− sinω cosω

]

, 0 ≤ ω < 2π,

as the rotation matrix for the angle ω. If (b, α, ω) and

(b′, α′, ω′) are two elements of the SIM(2) group, then the
group law [12] is given by

(b, α, ω) ◦ (b′, α′, ω′) = (b + αR(−ω)b′, αα′, ω′ + ω). (10)

In the following, we replace the reference image s by its

approximation (7). Using the pullback interpretation (5) it

follows that the transformation η applied to s results in

s(η) = U(η)s =
K
∑

k=1

ξkU(η)φγk
=

K
∑

k=1

ξkφη◦γk
, (11)

where η ◦ γk is a composition of transformations. In other

words, the transformation is applied to each constituent atom

individually. Furthermore, the group law (10) can be employed

to determine the updated parameters of the transformed atoms.

Let us emphasize the importance of equation (11): it allows

to express the manifold equation (9) in closed form with

respect to the transformation parameters η. The definition of
the manifold in (11) is used in the optimization problem (1).

We show that the resulting manifold distance problem can then

be defined as the difference of two convex functions, which

permits the use of the DC programming methodology that is

proposed in the next section.

IV. DC DECOMPOSITION

A. Properties of DC functions

The purpose of this section is to show that the objective

function (1) is DC. We start with some definitions and basic

properties about DC functions [8], [13], [14]. Let X ⊆ Rn be

convex. A function f : X → R is called DC on X if there

exist two convex functions g, h : X → R such that

f(x) = g(x) − h(x). (12)

A representation of this form is called DC decomposition of

f . DC decompositions are clearly not unique; for any convex
function c(x), the decomposition f(x) = (g(x) + c(x)) −
(h(x) + c(x)) is also DC. We will make use of the following
two properties.

Proposition 1 (Properties of DC functions [13, Sec 4.2]):

Let f = g−h and fi = gi−hi, i = 1 . . . , m be DC functions.

Then the following functions are also DC:

(a)
∑m

i=1 λifi =
[
∑

{i:λi≥0} λigi −
∑

{i:λi<0} λihi

]

−
[
∑

{i:λi≥0} λihi −
∑

{i:λi<0} λigi

]

.

(b) |f | = 2 max{g, h}− (g + h).

B. DC form of the objective function

We now combine Proposition 1 with our previous results

[6] to prove the main result of this paper.

Theorem 2: The objective function f in (1) is DC.
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Proof: Recall that

f(η) =
m
∑

i=1

|〈s(η), zi〉 − 〈p, zi〉|

=
m
∑

i=1

∣
∣
∣

K
∑

k=1

ξk〈φηk
, zi〉 − 〈p, zi〉

∣
∣
∣, (13)

where ηk = η ◦ γk. In [6] we have shown that (i) the

transformed generating functions φηk
are DC, (ii) the inner

products 〈φηk
, z〉 between the atoms and a fixed pattern z are

DC, and (iii) the inner product 〈s(η), z〉 =
∑K

k=1 ξk〈φηk
, z〉

is also a DC function of η.
In particular, each function 〈s(η), zi〉 =

∑K
k=1 ξk〈φηk

, zi〉
corresponding to a measurement vector zi, with 1 ≤ i ≤ m, is
DC. Note that fi(η) := 〈s(η), zi〉 − 〈p, zi〉 remains DC since
the second term is constant and does not depend on η. Assume
now that the DC decomposition of each function fi is given

by fi(η) = gi(η) − hi(η).
By Proposition 1(b), the absolute value of a DC function is

DC and hence

|fi(η)| = 2 max{gi, hi}− (gi + hi) = g̃i(η) − h̃i(η),

is also DC. Finally, the objective function in (13) is DC since

it is simply a sum of M DC functions:

f(η) =
m
∑

i=1

|fi(η)| =
m
∑

i=1

(g̃i(η) − h̃i(η))

=
m
∑

i=1

g̃i(η)

︸ ︷︷ ︸

g(η)

−
m
∑

i=1

h̃i(η)

︸ ︷︷ ︸

h(η)

.

!

C. DC programs

An optimization problem is called a DC program if it takes

the form

min
x

f(x) = g(x) − h(x), (14)

s.t. x ∈ X = {x ∈ R
n : δ(x) ≤ 0},

where g, h : X → R are convex functions and δ : Rn → R

is a convex function. Assume that (14) is solvable and denote

its global minimum by ω∗. The next proposition provides an

optimality condition for (14).

Proposition 2 ([8]): The point x∗ ∈ X is an optimal

solution to the DC problem (14) if and only if there exists

t∗ ∈ R such that

0 = inf{−h(x) + t : x ∈ X, t ∈ R, g(x)− t ≤ g(x∗)− t∗}.
(15)

In this work, we have chosen to solve the DC Program (14)

by the outer approximation cutting plane algorithm proposed

in [8, Sec 5.3], for its simplicity and also due to the fact

that the parameter space in our problem is four-dimensional.

However, we should mention that our framework could also be

combined with other DC solvers such as Branch-and-Bound

schemes [8, Sec 5.1, Sec 5.2] and DCA [15].

M ⊂ Rn

H ⊂ R4

∂
∂ηi

Ni

s(η)

f

η

ηj

ηi

Fig. 7. The parameter space H provides a parametrization of the transfor-
mation manifold M.

V. GEOMETRIC ANALYSIS OF TRANSFORMATION

MANIFOLDS

We have seen in Section II that the condition number of the

manifoldM is an important factor towards characterizing the

numberm of random measurements needed. At the same time,

it is also known that the condition number is closely related

to classical notions of curvature in differential geometry via

the second fundamental form. In particular, P. Niyogi et al in

[10, Proposition 6.1] show that the condition number 1/τ is
an upper bound of the principal curvature (defined below) at

any point on the manifold.

In this section, we first derive an upper bound of the

principal curvature of parametric transformation manifoldsM
defined in (9). This upper bound can be used instead of the

condition number for characterizing the manifold. It further

indicates that the transformation manifold is well conditioned,

which means that the number of measurements required to

solve the Problem (1) is clearly bounded. Furthermore, based

on the obtained developments, we additionally provide an

efficient numerical algorithm for computing in practice the

principal curvature at a certain point on M.

For notational convenience, we will denote the trans-

formation parameters as follows: η = (η1, η2, η3, η4) =
(bx, by, α, ω). The metric tensor G ∈ R4×4 is then given by

[

G
]

ij
= 〈ti, tj〉, (16)

where ti, tj are the ith and jth tangent vectors, defined as

ti =
∂s(η)

∂ηi

and assumed to be linearly independent. The tangent space

TηM at point s(η) ∈ M is defined as

TηM = span{t1, t2, t3, t4}.

Note that d = dimTηM = 4 although the transformation

manifold M is a submanifold of Rn. The codimension of

TηM is therefore given by n − 4. Consider the direct sum

R
n = TηM⊕ TηM

⊥

and let {N1, N2, . . . , Nn−4} be an orthonormal basis of

TηM⊥. Then any (unit) normal vector can be written as

N =
n−4
∑

i=1

ζiNi, (17)
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with coefficients ζi = 〈Ni, N〉. Figure 7 provides a graphical
illustration of the scenario that we consider.

In what follows, we show how one can compute the linear

operator Lζ : TηM → TηM associated with the second

fundamental form. According to the standard definition [16,

Proposition 2.3],

Lζ(X) = −(∇XN)T , (18)

where X ∈ TηM, ∇X denotes the covariant derivative in Rn

and ( · )T denotes the projection on the tangent space. Take

a tangent vector X =
∑4

j=1 xjtj . Then it holds that

−∇XN = −∇P

4

j=1
xjtj

N =
4

∑

j=1

xj(−∇tj
N). (19)

Hence, it suffices to study the operator ∇tj
N . It holds that

−∇tj
N = −∇tj

(
n−4
∑

i=1

ζiNi

)

= −
n−4
∑

i=1

∇tj
ζiNi −

n−4
∑

i=1

ζi∇tj
Ni.

Now observe that

(−∇tj
N)T =

n−4
∑

i=1

ζi(−∇tj
Ni)

T . (20)

The covariant derivative ∇tj
Ni ∈ Rn can be decomposed as

−∇tj
Ni =

∂Ni

∂ηj
=

4
∑

k=1

Lk
ijtk +

n−4
∑

k=1

P k
ijNk (21)

for some coefficients Lk
ij with i = 1, . . . , n − 4 and j, k =

1, . . . , 4. This directly gives

(−∇tj
Ni)

T =
4

∑

k=1

Lk
ijtk. (22)

In what follows, we show how one can compute the

coefficients Lk
ij in (21), from which we obtain

−〈
∂Ni

∂ηj
, tl〉 =

4
∑

k=1

Lk
ijgkl.

Unfortunately, it is not easy to compute ∂Ni

∂ηj
in practice, as

the normal vectors Ni, i = 1, . . . , n−4 are typically obtained
by a Gram-Schmidt orthogonalization process. However, it is

known [17] (the proof is provided in the appendix for the sake

of completeness) that

〈
∂Ni

∂ηj
, tl〉 = −〈Ni, tlj〉,

where tlj is the mixed partial derivative, i.e.,

tlj =
∂2s(η)

∂ηl∂ηj
.

This has the advantage that tlj is much easier to compute in
practice than ∂Ni

∂ηj
. Therefore, for fixed i, j, the coefficients

Lk
ij , k = 1, . . . , 4, can be obtained by solving a 4 × 4 linear
system

G






L1
ij
...

L4
ij




 =






〈Ni, tj1〉
...

〈Ni, tj4〉




 ,

where G is the 4 × 4 metric tensor defined in (16). In more
compact form:

Lk
ij =

4
∑

l=1

gkl〈Ni, tjl〉, (23)

where gkl =
[

G−1
]

kl
denotes the (k, l) entry of the inverse

of the metric tensor.

Combining equations (20) and (22) yields

(−∇tj
N)T =

n−4
∑

i=1

ζi

(
4

∑

k=1

Lk
ijtk

)

=
4∑

k=1

(
n−4∑

i=1

ζiLk
ij

)

︸ ︷︷ ︸

=:L̃k
j

tk =
4∑

k=1

L̃k
j tk. (24)

Using (24), Equation (19) becomes

−(∇XN)T =
4∑

j=1

xj(−∇tj
N)T =

4∑

j=1

xj
4∑

k=1

L̃k
j tk

=
4

∑

k=1





4
∑

j=1

L̃k
j xj



 tk. (25)

The above equation implies that Y = −(∇XN)T =:
∑4

k=1 yktk with components

yk =
4

∑

j=1

L̃k
j xj .

Therefore, the linear operator Lζ has the following matrix

representation

Lζ =







L̃1
1 L̃1

2 L̃1
3 L̃1

4

L̃2
1 L̃2

2 L̃2
3 L̃2

4

L̃3
1 L̃3

2 L̃3
3 L̃3

4

L̃4
1 L̃4

2 L̃4
3 L̃4

4







. (26)

It is important to mention at this point that the operator Lζ is

self-adjoint with respect to the induced metric in the tangent

space [16] and therefore its eigenvalues are real. The maximum

eigenvalue of Lζ is usually called the principal curvature.

In what follows, we provide an upper bound on the principal

curvature.

Proposition 3:

λmax(Lζ) ≤ 4
supl,j ‖tlj‖

σmin(G)
. (27)

Proof: It is well known that

λmax(Lζ) ≤ ‖Lζ‖2. (28)
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Algorithm 1 Numerical estimation of the principal curvature

1: Input: normal direction ζ1, . . . , ζn−4

2: Output: linear operator Lζ , estimate λζ of the principal

curvature.

3: Compute the tangent vectors ti = ∂s
∂ηi

, i = 1, . . . , 4.
4: Compute the mixed second order partial derivatives

tij =
∂2s

∂ηi∂ηj
, i, j = 1, . . . , 4.

5: Compute the metric tensor
[

G
]

ij
= 〈ti, tj〉 as well as its

inverse gij .

6: Build an orthonormal basis {N1, N2, . . . , Nn−4} of

TηM⊥ using Gram-Schmidt orthogonalization

7: Compute N =
∑n−4

i=1 ζiNi.

8: for j = 1, . . . , 4 do
9: for k = 1, . . . , 4 do
10: Compute L̃k

j =
∑4

l=1 gkl〈N, tjl〉.
11: end for

12: end for

13: Set Lζ = [L̃k
j ]j,k=1,...,4.

14: Compute the maximum eigenvalue λζ of Lζ .

In light of (23), the entries L̃k
j =

∑m
i=1 ζiLk

ij of Lζ satisfy

L̃k
j =

m
∑

i=1

ζi
4

∑

l=1

gkl〈Ni, tjl〉

=
4

∑

l=1

gkl
m
∑

i=1

ζi〈Ni, tjl〉

=
4∑

l=1

gkl〈N, tjl〉, (29)

where we have used (17). Hence, Lζ = G−1N with

N =






〈N, t11〉 · · · 〈N, t41〉
...

...

〈N, t14〉 · · · 〈N, t44〉




 .

This implies

‖Lζ‖2 ≤ ‖G−1‖2‖N‖F ≤
4

σmin(G)
sup
l,j

|〈N, tlj〉|

≤
4

σmin(G)
sup
l,j

‖tlj‖,

using the fact that N is a unit vector.

Observe that ‖tjl‖ is finite, since the mother function φ is
in C∞. Also, G is full rank, which implies that σmin(G) > 0.
Therefore, the upper bound (27) is finite. This bound on

the principal curvature can be used instead of the condition

number for analyzing dimensionality reduction of manifolds

with random measurements. This implies that the transforma-

tion manifolds (9), which we consider in this work, cannot

be too much curved and are generally expected to be well

behaved. This is also verified in practice as we will show in

the experiments section below.

Based on the developments above, Algorithm 1 provides

an efficient numerical procedure for computing the principal

curvature at a point s(η) on the manifold along a certain
normal direction ζ. The algorithm makes use of the compact

equation (29) for computing the entries of Lζ . It is important

to stress that the tangent vectors ti as well as the mixed partial
derivatives tij can be computed analytically (i.e., without any
approximation) thanks to the closed-form expression of the

manifold equation; see (11). Hence, one completely avoids

the drawbacks from a finite difference approximation, such as

noise sensitivity. The details of the computation are given in

the Appendix.

VI. EXPERIMENTAL RESULTS

A. Alignment with random measurements

a) Face manifold: The pattern s is the facial image

shown in Fig. 4. We build a pattern model of s using OMP
with K = 40 Gaussian atoms. Observe that already a few
atoms are sufficient to capture the main geometric structure of

the pattern. In our experiments we consider η to be a synthesis
of an isotropic scaling α ∈ [0.5, 1.5] and rotation ω ∈ [0, 2π).
We run 40 random experiments with random transforma-

tions η and different random realizations of the measurement

matrix Z . Each query image p is built using (11) by applying
the exact geometric transformation η∗ to s. Then, for each
random experiment, 150 iterations of the cutting plane method

are employed to align s with p. We compute the alignment
error of the estimated transformation η̂ as follows

e = min{2π − |ω̂ − ω∗|, |ω̂ − ω∗|} + |α̂ − α∗|. (30)

The entries of the measurement matrices Z follow a standard

Gaussian distribution N (0, 1).

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

a
li
g

n
m

e
n

t 
e
rr

o
r

m

Fig. 8. Median of the alignment error (30) for the face manifold as a function
of the number of measurements.

Figure 8 shows the statistics of the alignment error e defined
in (30) with respect to the number of random projections m
used for image alignment. For each distinct value of m we

run 40 random experiments and report the median value of the

alignment error. Observe that the alignment error drops quickly

when the number of random measurements increases and then

it saturates. Furthermore, the experimental results show that for
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Fig. 9. Progressive approximation of an MRI brain image (leftmost) with the number of atoms ranging from 20 to 140 with step 20.
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Fig. 10. Median of the alignment error (30) for the MRI brain image manifold
as a function of the number of measurements.

this manifold about 50 measurements are sufficient to enable

the cutting plane method to reach the vicinity of the exact

transformation in the vast majority of cases.

b) MRI Brain image manifold: We consider now a typ-

ical MRI brain image, which is shown in Fig. (9) (leftmost

panel). The figure also shows the progressive OMP approxima-

tion of the image with increasing number of Gaussian atoms.

Notice once more that a few atoms are sufficient to capture

the main geometric features of the brain image, although brain

images have in general quite different characteristics than

facial images.

The pattern s is now the brain image. We repeat the align-
ment experiment that was conducted on the facial image above.

Similarly, we use K = 40 Gaussian atoms and perform 40

random experiments with random transformations and random

realizations of the measurement matrix Z . Fig. (10) shows the
statistics of the alignment error e with respect to the number
of random projections m. Observe that the alignment error
drops quickly and saturates after 40 random measurements.

To summarize, for both manifolds a few random measure-

ments are in general sufficient to reach the vicinity of the

global minimizer with the cutting plane method.

B. Numerical estimation of the principal curvature

The purpose of this section is to estimate numerically the

principal curvature of the two manifolds used in the above

experiments, using the numerical algorithm presented in Sec-

tion V. We uniformly discretize the transformation parameter

space [0, 2π) × [0.5, 1.5] using 10 rotation angles and 11
scaling levels respectively. Then, for each grid point (ω, α)

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0

0.628319

1.25664

1.88496

2.51327

3.14159

3.76991

4.39823

5.02655

5.65487
0.5

0.6

0.7

0.8

0.9

1

α

ω

Fig. 11. Principal curvature of the face manifold.
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Fig. 12. Principal curvature of the MRI brain image manifold.

we estimate the principal curve using 40 random realizations

of the normal direction ζ.
Figures 11 and 12 show the obtained values for each grid

point of the face and brain image manifolds respectively. The

maximum over all these values is 1.08 for the facial manifold

and 0.046 for the brain image manifold (see also the difference

in the numerical values of the colorbar on the right of each

figure). This implies that the brain image manifold is less

curved and therefore better conditioned than the face manifold.

Our numerical experience also indicates that the bound (2)

does not in general allow for an accurate prediction of the re-

quired measurements in practice, mostly due to its asymptotic
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nature. Hence, in principle, this does not permit to reliably

draw the conclusion that the difference in the numerical

values of the principal curvatures implies the difference in the

behavior of the alignment experiments for the two manifolds.

Note that empirical algorithms are typically used to determine

m directly (see, e.g., [3]).

VII. RELATED WORK

In what follows, we review the most relevant work from the

literature and put it in perspective with the work proposed in

this paper.

We first mention the approaches in [18] and [19] for

image alignment based on random projections. In particular,

the approach in [19] is used in the context of compressive

classification, where the images are considered to be geomet-

rically transformed and the problem is to perform invariant

classification based on their random projections. Although the

two approaches in [18] and [19] may look different at a first

glance, they are both based on exhaustive search, by discretiz-

ing the transformation parameter space and estimating the

transformation by nearest neighbor search among the images

after random projection. This not only leads to high memory

requirements, but it also provides no theoretical guarantee for

the optimality of the attained solution. In contrast, our DC

approach enjoys global optimality guarantees.

An upper bound somewhat similar to (27) has been derived

by L. Jacques and C. De Vleeschouwer in [20], where it is

used towards alleviating the dictionary discretization effects in

Matching Pursuit algorithms. Note, however, that the bound

in [20] assumes a different definition of curvature and only

holds for the case when the manifold is simply a parametric

dictionary of the form (4).

The authors in [3] propose a linear dimensionality reduction

methodology based on random projections. They show that a

few random projections are sufficient to estimate the intrinsic

dimension of the manifold. They also provide an empirical

procedure for estimating the number of necessary random pro-

jections in the context of ISOMAP. However, their procedure

is particularly designed for the ISOMAP algorithm and does

not easily extend to other manifold learning algorithms, or

more generally, to other image analysis problems.

Finally, the authors in [21] study the non-differentiability

of manifolds spanned by natural images. They show that non-

differentiability arises due to the movement of sharp edges

(causing global non-differentiability) and due to the occlusion

(causing local non-differentiability). The manifolds considered

in this work are differentiable, thanks to their parametric nature

and the smoothness of the mother function.

VIII. CONCLUSIONS

We have proposed a globally optimal method for image

alignment with random projections. We build on previous work

and use sparse geometric expansions to represent the transfor-

mation manifold, which describes the transformed versions of

a pattern. We formulate the image alignment problem with

random projections as a DC program, by proving that the

objective function is DC. In addition, we provide theoretical

as well as numerical insights on the geometric properties

of transformation manifolds, by deriving an upper bound on

the principal curvature as well as establishing an efficient

numerical algorithm for computing it in practice. We show

that the transformation manifolds are well conditioned, so that

the image alignment problem can be solved with a bounded

number of measurements. This is confirmed by experimental

results where the proposed method is shown to be successful

in finding the global minimizer in practice, even with a small

number of random projections.
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X. APPENDIX

A. Proof of 〈∂Ni

∂ηj
, tl〉 = −〈Ni, tlj〉

Proof: Observe first that 〈Ni,
∂s
∂ηl

〉 = 0, by definition of
the normal vector. Therefore,

0 =
∂

∂ηj
〈Ni,

∂s

∂ηl
〉 = 〈

∂Ni

∂ηj
,

∂s

∂ηl
〉 + 〈Ni,

∂2s

∂ηl∂ηj
〉

= 〈
∂Ni

∂ηj
, tl〉 + 〈Ni, tlj〉,

which implies the result.

B. Computation of tj

By definition s =
∑K

k=1 ξkφγk
, and therefore

∂s

∂ηi
=

K
∑

k=1

ξk
∂φη◦γk

∂ηi
.

Recall that φη◦γk
= φ(x̃, ỹ), where x̃, ỹ are the transformed

coordinates, and therefore

∂φ

∂ηi
=

∂φ

∂x̃

∂x̃

∂ηi
+

∂φ

∂ỹ

∂ỹ

∂ηi
.

In the case that φ is Gaussian,

∂φ

∂x̃
= −2x̃ exp(−(x̃2 + ỹ2)),

∂φ

∂ỹ
= −2ỹ exp(−(x̃2 + ỹ2)).

C. Computation of tij

We have

∂2φ

∂ηi∂ηj
=

[
∂2φ

∂2x̃

∂x̃

∂ηj
+

∂2φ

∂x̃∂ỹ

∂ỹ

∂ηj

]
∂x̃

∂ηi
+

∂φ

∂x̃

∂2x̃

∂ηi∂ηj
+

[
∂2φ

∂ỹ∂x̃

∂x̃

∂ηj
+

∂2φ

∂ỹ2

∂ỹ

∂ηj

]
∂ỹ

∂ηi
+

∂φ

∂ỹ

∂2ỹ

∂ηi∂ηj
.

In the case that φ is Gaussian,

∂2φ

∂x̃2
= (4x̃2 − 2) exp(−(x̃2 + ỹ2)),

∂2φ

∂ỹ2
= (4ỹ2 − 2) exp(−(x̃2 + ỹ2)),

∂2φ

∂x̃∂ỹ
=

∂2φ

∂ỹ∂x̃
= (4x̃ỹ) exp(−(x̃2 + ỹ2)).
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D. Computation of ∂x̃
∂ηi

and ∂y
∂ηi

Recall that η = (b, α, ω) denotes transformation parameters
while γi = (bi, ai, ωi) denotes atom parameters. The group

law is given by

η ◦ γ = (b + αR(−ω)bi, αai, ω + ωi). (31)

Denoting

A =

[

1/aix 0
0 1/aiy

]

, R(ωi) =

[

cos(ωi) sin(ωi)
− sin(ωi) cos(ωi)

]

,

we define the matrix C := AR(ωi), which does not depend
on the transformation parameters. Then the transformed coor-
dinates of the ith atom are given by

»

x̃
ỹ

–

= C
1
α

R(ω)

»„

x
y

«

−

„

bx

by

«

− αR(−ω)

„

bix

biy

«–

= C

»

1
α

R(ω)

„

x − bx

y − by

«

−

„

bix

biy

«–

= C

»

1

a
(cos(ω)(x − bx) + sin(ω)(y − by)) − bix

1

a
(− sin(ω)(x− bx) + cos(ω)(y − by)) − biy

–

.

Differentiation gives

»

∂x̃/∂ω
∂ỹ/∂ω

–

= C

»

1

a
(− sin(ω)(x − bx) + cos(ω)(y − by))

1

a
(− cos(ω)(x − bx) − sin(ω)(y − by))

–

,

»

∂x̃/∂bx

∂ỹ/∂bx

–

= C

»

− 1

a
cos(ω)

1

a
sin(ω)

–

,

»

∂x̃/∂by

∂ỹ/∂by

–

= C

»

− 1

a
sin(ω)

− 1

a
cos(ω)

–

,

»

∂x̃/∂α
∂ỹ/∂α

–

= C

»

− 1

a2 (− cos(ω)(x − bx) + sin(ω)(y − by))
− 1

a2 (− sin(ω)(x − bx) + cos(ω)(y − by))

–

.

E. Computation of ∂2x
∂ηi∂ηj

»

∂2x̃/∂ω2

∂2ỹ/∂ω2

–

= C

»

1

a
(− cos(ω)(x − bx) − sin(ω)(y − by))
1

a
(sin(ω)(x − bx) − cos(ω)(y − by))

–

,

»

∂2x̃/∂ω∂bx

∂2ỹ/∂ω∂bx

–

= C

»

1

a
sin(ω)

1

a
cos(ω)

–

,

»

∂2x̃/∂ω∂by

∂2ỹ/∂ω∂by

–

= C

»

− 1

a
cos(ω)

1

a
sin(ω)

–

,

»

∂2x̃/∂ω∂α
∂2ỹ/∂ω∂α

–

= C

"

− 1

a2
(− sin(ω)(x − bx) + cos(ω)(y − by))

− 1

a2
(− cos(ω)(x − bx) − sin(ω)(y − by))

#

,

»

∂2x̃/∂b2x
∂2ỹ/∂b2x

–

= 0,

»

∂2x̃/∂bx∂by

∂2ỹ/∂bx∂by

–

= 0,

»

∂2x̃/∂bx∂α
∂2ỹ/∂bx∂α

–

= C

»

1

a2
cos(ω)

− 1

a
sin(ω)

–

,

»

∂2x̃/∂b2y
∂2ỹ/∂b2y

–

= 0,

»

∂2x̃/∂by∂α
∂2ỹ/∂by∂α

–

= C

"

1

a2
sin(ω)

1

a2
cos(ω)

#

,

»

∂2x̃/∂α2

∂2ỹ/∂α2

–

= C

"

2

a3
(cos(ω)(x − bx) + sin(ω)(y − by))

2

a3
(− sin(ω)(x − bx) + cos(ω)(y − by))

#

.
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