
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule

Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

Swiss Federal Institute of Technology Zurich

A mixed-precision algorithm for the
solution of Lyapunov equations on

hybrid CPU-GPU platforms

P. Benner1, P. Ezzatti2, D. Kressner, E.S. Quintana-Ort́ı3 and A. Remón3

Research Report No. 2009-40
December 2009

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

1Fakultat fur Mathematik, TU Chemnitz, D-09107 Chemnitz, Germany
2Centro de Calculo-Instituto de la Computación, Universidad de la Republica, 11300

Montevideo, Uruguay
3Dpto. de Ingeniera y Ciencia de Computadores, Universidad Jaime I, 12071 Castellón,

Spain

A Mixed-Precision Algorithm

for the Solution of Lyapunov Equations

on Hybrid CPU-GPU Platforms

Peter Bennera, Pablo Ezzattib, Daniel Kressnerc,
Enrique S. Quintana-Ort́ıd, Alfredo Remónd

aFakultät für Mathematik, TU Chemnitz, D-09107 Chemnitz (Germany)
bCentro de Cálculo-Instituto de la Computación, Universidad de la República,

11.300–Montevideo (Uruguay)
cSeminar für Angewandte Mathematik, ETHZ, CH-8092 Zürich (Switzerland)

dDpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaime I, 12.071-Castellón
(Spain)

Abstract

We describe a hybrid Lyapunov solver based on the matrix sign function that
accelerates the intensive parts of the computation using a graphics processor
(GPU) while executing the remaining operations in a general-purpose multi-
core processor. The initial stage of the iterative solver operates in single-
precision arithmetic, to exploit the many-core parallelism of current GPUs,
returning a full-rank factor to the solution of the equation. To improve this
approximate solution, the second stage consists of an efficient iterative refine-
ment procedure that allows to cheaply recover full double-precision accuracy.
The combination of these two stages results in a mixed-precision algorithm,
that exploits the capabilities of both general-purpose multi-core processors
and many-core GPUs, overlapping critical computations.

Experiments using a platform equipped with two Intel Xeon QuadCore
processors and an Nvidia Tesla C1060 show the efficiency of this approach to
solve Lyapunov equations arising in practical model reduction applications:
compared with a classical implementation that exploits the parallelism of a
general-purpose processor using a multi-threaded implementation of BLAS
and operates in double-precision, our hybrid algorithm delivers 4.24–6.46
speed-ups while attaining the same accuracy in the solution.

Key words: Lyapunov equations, matrix sign function, graphics
processors, multi-core processors, control theory

1

1. Introduction

We consider the solution of a Lyapunov matrix equation with factored
right-hand side:

AX + XAT = − BBT , (1)

where A ∈ Rn×n, B ∈ Rn×m are the coefficient matrices, and X ∈ Rn×n is
the desired solution. Such matrix equations play a key role in several ap-
plications from control theory: SVD-based methods for balanced truncation
model reduction [1, 2], Newton methods for the algebraic Riccati equation
associated with linear-quadratic optimal control problems [3], stabilization
methods and stability tests for linear dynamical systems as well as the com-
putation of the H2-norm of stable linear control systems [4, 5] all require the
solution of one or more Lyapunov equations. Complex control systems or
discretizations of partial differential equations easily lead to coefficients of
order n = 104 – 105 or even larger. Note, however, that m, the number of
columns of B, is typically much smaller than n in these applications [6]. In
what follows, we will assume that A is a c-stable matrix, that is, all eigen-
values of A have negative real part. This implies that X is a symmetric
positive semi-definite matrix; it is also necessary for the viability of the sign
function-based methods discussed in this paper. This stability condition is
usually satisfied by the equations arising in model reduction and optimal
control problems.

There are several approaches to solve Lyapunov equations. Transform-
ing (1) into an equivalent n2 × n2 linear system via the Kronecker product
is only feasible for very small-scale equations [7]. An alternative is to first
reduce A to real Schur form via the QR algorithm, solve the associated re-
duced Lyapunov equation, and finally apply a back-transformation to obtain
the solution to the original equation [8, 9]. Although this can be implemented
in message-passing platforms to solve Lyapunov equations, it has two main
drawbacks: first, the main computational task in the procedure, the compu-
tation of the real Schur form, is difficult to implement efficiently in current

Email addresses: benner@mathematik.tu-chemnitz.de (Peter Benner),
pezzatti@fing.edu.uy (Pablo Ezzatti), daniel.kressner@sam.math.ethz.ch (Daniel
Kressner), quintana@icc.uji.es (Enrique S. Quintana-Ort́ı), remon@icc.uji.es
(Alfredo Remón)

Preprint submitted to Parallel Computing December 10, 2009

message-passing architectures and these difficulties are likely to carry over to
a data-parallel implementation (see [10] for some recent work and [11, 12] for
highly efficient triangular Lyapunov solvers); and second, there is currently
no variant of this method that can exploit the usual low-rank structure of
the Cholesky factor of the solution X. Thus, in the past, large Lyapunov
equations have been tackled using message-passing parallel solvers based on
the matrix sign function, which were then executed on clusters with a mod-
erate number of nodes/processors [13]. The result of this effort was the
message-passing library PLiC [14] and subsequent libraries for model reduc-
tion (PLiCMR, see [15]) and optimal control (PLiCOC, see [16]). Using these
libraries, a few years ago 16–32 processors showed to provide enough com-
putational power to solve Lyapunov equations with n up to 10, 000 and with
satisfactorily parallel efficiency.

Recent work on the implementation of BLAS and the major factorization
routines for the solution of linear systems [17, 18, 19, 20, 21] has demonstrated
the potential of graphics processors (GPUs) to yield high performance on
dense linear algebra operations that can be cast in terms of matrix-matrix
products. Following the evolution of GPUs and the increase in the number
of cores of current general-purpose processors, in this paper we evaluate the
impact of these new architectures on the matrix sign function-based solvers.
Specifically, this paper provides the following contributions:

• We implement and evaluate a hybrid CPU-GPU matrix sign function-
based solver that off-loads the computationally intensive parts to the
GPU. Our approach employs a “sequential” version of the message-
passing codes in the PLiC library, and extracts parallelism from calls
to tuned multi-threaded implementations of the BLAS (Basic Linear
Algebra Subprograms) for the general-purpose multi-core processor (In-

tel MKL) and the GPU (CUBLAS).

• To exploit the different speed between single-precision and double-
precision real arithmetic of current architectures (a factor 8:1 in GPUs
and 2:1 in general-purpose cores), we propose a new iterative refine-
ment procedure to recover full double-precision accuracy from an ap-
proximate solution to the Lyapunov equation. The iterative procedure
could also be of use in other situations, where a cheap but rather inac-
curate solver for Lyapunov equations is available.

• The experimental results on a current general-purpose multi-core pro-

3

cessor and a GPU provide strong evidence that this is a valid platform
to deal with Lyapunov equations which, only a few years ago, would
have required the use of a distributed-memory cluster. This result is
particularly important in control theory applications like, e.g., model
reduction and optimal control, as control engineers rarely make use of
distributed computing platforms to address their computational prob-
lems.

The rest of the paper is structured as follows. In Section 2 we describe
the matrix-sign function approach for the solution of Lyapunov equations;
this section also contains the two first major contributions in our paper: the
hybrid CPU-GPU implementation of the solver and the iterative refinement
procedure. This is followed by experimental results in Section 3, while con-
cluding remarks and open questions close the paper in Section 4.

2. Lyapunov Solvers

2.1. Solution of Lyapunov equations via the matrix sign function

Consider a matrix M ∈ Rn×n with no eigenvalues on the imaginary axis,
and let

M = T−1

(
J− 0
0 J+

)
T, (2)

be its Jordan decomposition, where J− ∈ Rj×j and −J+ ∈ R(n−j)×(n−j) are
both c-stable [22]. The matrix sign function of M is then defined as

sign (M) = T−1

(
−Ij 0

0 In−j

)
T, (3)

where I denotes the identity matrix of the order indicated by the subscript.
There are simple iterative schemes for the computation of the sign function.
Among these, the Newton iteration, given by

M0 ← M, (4)

Mk+1 ←
1

2
(Mk + M−1

k), k = 0, 1, 2, . . . , (5)

is specially appealing for its simplicity, efficiency, parallel performance, and
asymptotic quadratic convergence [23, 24].

4

Now consider the standard Lyapunov equation

AX + XAT = − Q, (6)

where A,Q ∈ Rn×n, Q = QT , and X = XT ∈ Rn×n is the desired solution.
Assuming A is c-stable, we can apply the Newton iteration in (4)–(5) to

M =

[
AT 0
Q −A

]
, (7)

and it can be shown that, in this case,

M∞ = lim
k→∞

Mk =

[
−In 0
X In

]
; (8)

see [25]. In practice, rather than performing one iteration with 2n × 2n
matrices Mk, it is cheaper to consider two iterations with n × n matrices,
leading to the following algorithm:

Algorithm GECLNW: Basic Newton iteration
A0 ← A, Q0 ← Q.
for k = 0, 1, 2, . . . until convergence

Ak+1 ← 1
2ck

(
Ak + c2

kA
−1
k

)

Qk+1 ← 1
2ck

(
Qk + c2

kA
−1
k QkA

−T
k

)

In this algorithm the scalar ck is chosen to accelerate the convergence of
the iteration: limk→∞ Ak = sign (A) = −In, limk→∞ Qk = X. Although
determinantal scaling [23] is frequently used to determine this value, following
a recent study in [26] we prefer the Euclidian (2-norm) scaling:

ck ←

√
‖A‖2

‖A−1‖2
. (9)

To avoid the expensive computation of the matrix 2-norm, we use instead the
(sometimes quite rough) approximations ‖M‖2 ≈

√
‖M‖1‖M‖∞ or ‖M‖2 ≈

‖M‖F , which are much cheaper to compute. The convergence of the iteration
is checked as

‖Ak + In‖F < τiter. (10)

5

Given the quadratic convergence of this iteration and to avoid stagnation of
the procedure, we set τiter = 10 ·

√
n · ε, where ε denotes the machine preci-

sion, and perform two additional iterations once this convergence criterion is
satisfied.

Lyapunov equations arising in control theory problems frequently exhibit
a factored right-hand side matrix, as in (1), implying a positive semidefinite
solution X. Hence, there exists a full-rank factorization X = LLT where
rank (L) = rank (X). Practical applications often require the factor L rather
than the explicit full solution X, so that the following factored iteration
becomes rather appealing:

Algorithm GECLNC: Newton iteration for the factored solution
A0 ← A, B0 ← B
for k = 0, 1, 2, . . . until convergence

Ak+1 ← 1
2ck

(
Ak + c2

kA
−1
k

)

Bk+1 ← 1√
2ck

[Bk, ckA
−1
k Bk]

Here, limk→∞ BkBT
k = limk→∞ Qk = X, so that B∞ is a full-rank factor of the

solution matrix X. The computational cost per iteration of this algorithm
is 2n3 + 2n2m̄k flops (floating-point arithmetic operations), where m̄k is the
number of columns of Bk. Note that m̄k and hence the work space required
to store Bk is doubled in each iteration step. Fortunately, the dimensions of
this workspace (as well as the computational cost of the iterative scheme) can
be significantly reduced by computing in each iteration step a rank-revealing
QR (RRQR) factorization [22] of BT

k+1 such that

BT
k+1Πk+1 = Uk+1

[
Rk+1

0

]
, (11)

where Πk+1 is a permutation matrix, Uk+1 is orthogonal, and Rk+1 is upper
triangular. By truncating negligible entries, the order of Rk+1 can often be
made much smaller than m̄k. Since

Bk+1BT
k+1 = Πk+1RT

k+1U
T
k+1Uk+1Rk+1ΠT

k+1 = (Πk+1RT
k+1)(Rk+1Πk+1)

= R̄T
k+1R̄k+1,

(12)

6

it is possible to replace Bk+1 with R̄T
k+1. The cost of this compression pro-

cedure using, e.g., the QR factorization with column pivoting to obtain an
RRQR factorization of BT

k+1) is (8nm̄k − 2m̄k+1(n + 2m̄k) + 4m̄2
k+1/3)m̄k+1

flops, noting that Uk+1 need not be accumulated.

2.2. Hybrid CPU-GPU implementation of the Newton iteration for the fac-
tored solution

Algorithm GECLNC is basically composed of the following computational
kernels:

– Matrix inversion A−1
k .

– Matrix product A−1
k B.

– QR factorization with column pivoting (RRQR factorization).

– Other minor operations related with the computation of ck, like ‖Ak‖1/∞,
‖A−1

k ‖1/∞, and the convergence test.

We next discuss the efficient implementation of the major kernels on a
CPU-GPU platform and some other related implementation details.

2.2.1. Matrix inversion via Gauss-Jordan elimination
The traditional procedure to invert a matrix A (as implemented, e.g.,

in LAPACK [27]) first computes an LU factorization with partial pivoting:
PA = LU , where P is a permutation matrix, L is lower unit triangular and
U is upper triangular. This is followed by inverting the triangular factor U−1,
solving the triangular linear system Y L = U−1 for Y and, finally, obtaining
the inverse from the permutation A−1 = Y P .

The first three stages of the procedure described above can be cast in
terms of BLAS-3 kernels, which deliver high performance on current general-
purpose multi-core processors, while the final permutation stage presents a
negligible cost compared with the other three. However, our implementation
of matrix inversion on a CPU-GPU platform and the experimental evalu-
ation in [28] revealed that a procedure based on Gauss-Jordan elimination
(GJE) delivers higher performance on this type of platforms due to the reg-
ularity/larger dimensions of the GPU kernels involved in this method. We
next describe an improved variant of the inversion procedure in [28], which
incorporates look-ahead [29] to allow computations to proceed concurrently
in the CPU and in the GPU.

7

Consider, for simplicity, that no pivoting is required during the inversion
of A. The following (unblocked) algorithm overwrites A with its inverse:

Algorithm GEINGJ: Matrix inversion via GJE
for k = 1, 2, . . . , n

Partition A →

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 where A00 ∈ R(k−1)×(k−1), α11 ∈ R

p ← α11

[a01, α11, a12]
T ← − [a01, 0, a12]

T / p

A ← A + [a01, α11, a12]
T ·

[
aT

10, α11, aT
21

]
[
aT

10, α11, aT
21

]
←

[
aT

10, 1, aT
21

]
/ p

A blocked variant of this algorithm, with algorithmic block size b, is obtained
by aggregating parts of the computations in terms of BLAS-3 operations (for
simplicity, we assume n to be an integer multiple of b):

Algorithm GEINGJ BLK: Matrix inversion via GJE (blocked)
for k = 1, 2, . . . , n/b

Partition A →

A00 A01 A02

A10 A11 A12

A20 A21 A22

 where A00 ∈ R(k−1)b×(k−1)b, A11 ∈ Rb×b

[A01, A11, A21]
T ← GEINGJ([A01, A11, A21]

T)
A00 ← A00 + A01A10

A20 ← A20 + A21A10

A10 ← A11A10

A02 ← A02 + A01A12

A22 ← A22 + A21A12

A12 ← A11A12

The cost of these inversion procedures is 2n3 flops; i.e., the same as the cost
of inverting a matrix via Gaussian elimination (LU factorization).

8

Suppose that A initially resides in the GPU (memory space). The hybrid
CPU-GPU implementation of the blocked GJE inversion procedure in [28]
performs the computations corresponding to GEINGJ in the CPU while all
remaining operations (matrix-matrix products) are computed on the GPU.

At the beginning of each iteration,
[
AT

01, AT
11, AT

21

]T
is transferred from the

GPU to the CPU (memory space), factored there, and the results are sent
back to the GPU before the remaining computations proceed. We improve
this procedure with a look-ahead strategy (of dimension b) that enables over-
lapping of the computations performed by CPU and GPU. In particular,
consider the partitioning

A02

A12

A22

 → [AL, AR] ,

with AL ∈ Rn×b. The look-ahead variant updates first the columns of AL on
the GPU and immediately transfers the contents of this block to the CPU.
Acting in this manner, the CPU can factor AL (in advance for the next
iteration) concurrently with the rest of the computations in the GPU (for
the current iteration).

2.2.2. Matrix product
Due to the combined effects of m) n in practical control applications,

the rapid convergence of the Newton iteration, the early stop of this itera-
tion and transition to the iterative refinement procedure, and the benefits of
column compression, we expect the number of columns of the sequence Bk

to stay quite low. On the other hand, as will be described in Section 2.3,
the sequence of inverses A−1

k needs to be saved to be used later, during the
iterative refinement. As the amount of memory on the GPU is limited, we
transfer A−1

k at each iteration to the CPU and store it there. Therefore,
the matrix products A−1

k Bk can likely be computed as efficiently in the CPU
as in the GPU, and the execution time of this step is expected to be small
compared with that of computing the matrix inverse. In our implementation
we compute these matrix products on the CPU. Should the execution time
of the matrix product become significant, we could in principle overlap the
inversion of Ak+1 using one core of the CPU (for the factorization of AL; see
above) and the GPU with the computation of A−1

k Bk using the remaining
cores of the CPU. Our experimental results will demonstrate that this is not
necessary.

9

2.2.3. Compression via the QR factorization with column pivoting
Currently, there is no data-parallel implementation of an RRQR factor-

ization for GPUs available. Thus, the only option is to compute the com-
pressed factor on the CPU, using e.g. the LAPACK routine GEQP3 for the QR
factorization with column pivoting, and extract parallelism by calling multi-
threaded implementations of BLAS. We employ a cheap heuristic to estimate
the rank of the triangular factor resulting from this QR factorization, using
a rank tolerance τrank = 10 ·

√
n · ε.

On the other hand, the compression procedure is fairly expensive and,
therefore, from a computational viewpoint it is only recommended when m
is large or the number of steps of the Newton iterative scheme becomes
large. Whether the computation of the corresponding factorization reduces
the overall cost of the iteration depends on the problem at hand. We will
discuss this issue further during the experimentation.

2.3. Iterative refinement

The solution computed by the hybrid CPU-GPU implementation de-
scribed in Section 2.2 may be less accurate than desired. First, computa-
tions on the GPU are typically performed in single-precision arithmetic but
double-precision accuracy is the standard in scientific computing. Second,
as we will see in the numerical experiments, it pays off to stop the Newton
iteration GECLNC prematurely and attain high accuracy by other means.

2.3.1. General idea
In the following, we describe a procedure for refining factored approxi-

mations to solutions of Lyapunov equations. For this purpose, we assume
the availability of an inexact solver ApproxLyap that produces approxima-
tions of low rank to the solution of AX + XAT = −BBT for any right-hand
side factor B: X ≈ LLT with L = ApproxLyap(B). In the scope of this
paper, ApproxLyap stands for routine GECLNC performed in single-precision
arithmetic and/or stopped prematurely. However, it is worth noting that our
procedure is applicable to other settings, e.g., for refining the result of a sign
function iteration performed in hierarchical matrix arithmetic [30, 31].

Let L0 = ApproxLyap(B). To improve the approximation quality of the
corresponding approximate solution X0 = L0LT

0 , we construct a correction
based on the residual

R(L0) = AL0L
T
0 + L0L

T
0 AT + BBT .

10

Note that the residual is symmetric but generally indefinite. In a standard
iterative refinement scheme [32], one would simply solve a Lyapunov equation
with right hand side −R(L0) to obtain the correction term. However, this is
not possible in our framework as the solver behind ApproxLyap assumes the
right-hand side to be negative semi-definite. To overcome this limitation, we
decompose

R(L0) = B+BT
+ − B−BT

−. (13)

The computational aspects of this decomposition will be discussed in Sec-
tion 2.3.2 below.

The decomposition (13) results in two Lyapunov equations

AX+ + X+AT = −B+BT
+, A(−X−) + (−X−)AT = −B−BT

−,

with Xc = X+ +X− solving the correction equation AXc +XcAT = −R(L0).
Approximating L+ = ApproxLyap(B+) and L− = ApproxLyap(B−), the cor-
rected solution therefore takes the form X1 = L0LT

0 +L+LT
+−L−LT

−. Similar
to (13), we decompose X1 into positive/negative semi-definite parts:

X1 = L1L
T
1 − L̃−L̃T

−, L̃T
−L1 = 0. (14)

The orthogonality constraint L̃T
−L1 = 0 ensures that L1LT

1 is the best sym-
metric positive semi-definite approximation to X1. We can therefore neglect
the term L̃− and continue the iteration with L1 as new iterate. This leads to
the following algorithm.

Algorithm LYAPREF: Iterative refinement for the factored solution
for k = 0, 1, 2, . . . until convergence

R(Lk) ← ALkLT
k + LkLT

k AT + BBT

Decompose R(Lk) → B+BT
+ − B−BT

−

L+ ← ApproxLyap(B+), L− ← ApproxLyap(B−)
Xk+1 ← LkLT

k + L+LT
+ − L−LT

−

Decompose Xk+1 → Lk+1LT
k+1 − L̃−L̃T

−

Note that, as explained in the next section, the matrices R(Lk) and Xk+1 are
never explicitly formed. The iteration is stopped as soon as the relative resid-
ual ‖R(Lk)‖F /‖LkLT

k ‖F is below a user-defined tolerance. As explained in
Chapter 12 of [32], LYAPREF attains double-precision accuracy even with low

11

accuracy in ApproxLyap provided that R(Lk) is formed in double-precision
and the Lyapunov equation is not extremely ill-conditioned. There is no need
to determine the decomposition of R(Lk) to high relative accuracy.

2.3.2. Decomposition into positive/negative semi-definite parts
In principle, the decomposition (13) can be directly obtained from a spec-

tral decomposition of R(Lk) = ALkLT
k + LkLT

k AT + BBT . However, from a
computational point of view, neither the explicit computation nor the spec-
tral decomposition of R(Lk) is desirable. To develop a more efficient ap-
proach, we rewrite

R(Lk) = [Lk, ALk, B]

0 I 0
I 0 0
0 0 I

 [Lk, ALk, B]T =: F

0 I 0
I 0 0
0 0 I

F T

and compute the (economic) QR factorization F = UT , where the columns
of U are orthonormal and T is upper triangular. Then we compute a spectral
decomposition of the (significantly smaller) matrix

T

0 I 0
I 0 0
0 0 I

T T = [Q+, Q−, Q0]

Λ+ 0 0
0 Λ− 0
0 0 Λ0

 [Q+, Q−, Q0]
T ,

where Λ+ contains the positive eigenvalues, Λ− the negative eigenvalues, and
Λ0 the zero/negligible eigenvalues of R(Lk). As explained above, we can be
generous in neglecting eigenvalues that are relatively small. In our experi-
ments, eigenvalues of magnitude below τeig = 10−4·max(‖Λ+‖1, ‖Λ−‖1, ‖Λ0‖1)
were neglected.

The desired decomposition (13) is obtained by setting

L+ = UQ+

√
Λ+, L− = UQ−

√
−Λ−.

Note that LT
+L− = 0 and hence the decomposition (14) can be obtained in

an analogous way.

2.3.3. Combination with GECLNC

Every iteration of Algorithm LYAPREF requires two applications of the ap-
proximate Lyapunov solver ApproxLyap, which in our setting corresponds to
running Algorithm GECLNC twice. However, the computational cost of GECLNC

12

Processors #cores Freq. L2 Memory Single/double-
precision peak
performance

(GHz) (MB) (GB) (GFLOPS)

Intel Xeon 8 2.3 12 8 149.1/74.6
Nvidia Tesla 240 1.3 – 4 933.0/78.0

Table 1: Hardware employed in the experiments.

can be significantly reduced if the iterates A−1
1 , A−1

2 , . . . are already available.
We therefore propose to precompute and store A−1

1 , . . . , A−1
k̄

for a fixed num-
ber k̄ of Newton iterations. In the numerical experiments, we will see that
k̄ can be chosen quite small and hence the additional storage requirements
remain limited.

3. Experimental Results

In this section we evaluate the numerical accuracy and parallel perfor-
mance of the Lyapunov solvers as well as the performance of the basic matrix
inversion kernels. The target platform consists of two Intel Xeon QuadCore
processors connected to an Nvidia Tesla C1060 via a PCI-e bus; see Table 1
for details. We measured the performance using two different implemen-
tations of the BLAS, GotoBLAS [33] (version 1.26) and Intel MKL [34]
(version 10.1), for the general-purpose processor, and Nvidia CUBLAS [35]
(version 2.1) for the GPU. As the differences encountered between Goto-
BLAS and MKL were minor, we only report results for the second. We set
OMP NUM THREADS=8 so that one thread is employed per core in the parallel
execution of the MKL routines in the two Intel Xeon QuadCore processors.

3.1. Matrix inversion

We first evaluate three parallel multi-threaded variants to compute the
inverse of a matrix:

• LAPACK+CPU: LAPACK-based inversion procedure, with all computa-
tions carried out by the CPU and parallelism extracted by using a
multi-threaded implementation of BLAS.

13

 0

 50

 100

 150

 200

 250

 1000 2000 3000 4000 5000 6000 7000 8000

G
F

L
O

P
S

Matrix size

Performance of matrix inversion (single precision)

LAPACK+CPU
GJE+CPU

GJE+Hybrid

 0

 50

 100

 150

 200

 250

 1000 2000 3000 4000 5000 6000 7000 8000

G
F

L
O

P
s

Matrix size

Performance of matrix inversion (double precision)

LAPACK+CPU
GJE+CPU

GJE+Hybrid

Figure 1: Performance of the matrix inversion variants using single and double-precision
arithmetic (left and right, respectively).

• GJE+CPU: Matrix inversion via GJE (see Algorithm GEING BLK), also
with all computations performed by the CPU and parallelism extracted
from a multi-threaded of BLAS.

• GJE+Hybrid: Matrix inversion via GJE with look-ahead, with most of
the computations performed in the GPU, as described in Section 2.2.1.

Figure 1 reports the GFLOPS (109 flops per second) rate attained by the
different implementations of the inversion codes operating on matrices with
sizes 1,000, 2,000,. . . , 8,000. For the two matrix inversion variants based on
GJE (GJE+CPU and GJE+Hybrid), several algorithmic block sizes were tested
(parameter b in Algorithm GEINGJ BLK); for simplicity, the results correspond
to those obtained with the optimal block size. The timings reported for
GJE+Hybrid include the cost of initially transferring the matrix to the GPU
and retrieving the results to the CPU memory space once the matrix inverse
is computed. For this particular variant, we augmented the matrix with a
few more rows/columns so that its dimension was an integer multiple of 32.
For large matrices, this only increases the number of operations performed
during the matrix inversion slightly, but allows a much faster execution on
the GPU; see, e.g., [17]. Nevertheless, the GFLOPS rate was always based
on the dimension of the non-augmented matrix.

14

The results in the figure show a highest performance of 61, 67 and 227
GFLOPS for variants LAPACK+CPU, GJE+CPU and GJE+Hybrid, respectively,
in single-precision arithmetic; i.e., the GPU variant is roughly 3.5 times faster
than the CPU codes for the largest problem sizes. These performances de-
crease by a factor of 2 in the CPU and a factor of 4 in the GPU when
double-precision arithmetic is employed. It is also important to notice that,
while the performance of the CPU codes is a flat line already for problems
of dimension 2,000, the GPU can potentially deliver higher performance in
single-precision for problem dimensions larger than those reported in the
figure.

3.2. Solution of Lyapunov equations

In the following experiments, we evaluate the performance of the Lya-
punov solvers and iterative refinement applying the previous variants of the
matrix inversion kernel during the solution of two Lyapunov equations. These
problems are associated with two of the examples of the Oberwolfach model
reduction benchmark collection at the University of Freiburg1:

• STEEL I: This model arises in a manufacturing method for steel pro-
files [36]. The goal is to design a control that yields moderate tem-
perature gradients when the rail is cooled down. The mathematical
model corresponds to the boundary control for a 2-D heat equation.
A finite element discretization, followed by adaptive refinement of the
mesh results in the examples in this benchmark.

• FLOW METER: This a 2-D model of an anemometer-like structure mainly
consisting of a tube and a small heat source [37]. The Dirichlet bound-
ary conditions are applied to the original system. The reference tem-
perature is set to 300 K, and Dirichlet boundary conditions as well as
initial conditions are set to 0 with respect to the reference.

The dynamical system in these examples is given by a tuple (Ẽ, Ã, B̃, C̃),
where the pair Ẽ, Ã ∈ Rn×n defines the state matrix pencil, B̃ ∈ Rn×m the
input matrix, and C̃ ∈ Rp×n the output matrix. We transform the system
into a standard one by considering instead (In, Ẽ−1Ã, Ẽ−1B̃, C̃), so that we

1http://www.imtek.de/simulation/benchmark/.

15

Example n m p

STEEL I 5,177 7 6
FLOW METER 9,669 1 5

Table 2: Dimensions of the dynamical systems employed in the evaluation of the Lyapunov
solvers.

solve the Lyapunov equation

(Ẽ−1Ã)X + X(Ẽ−1Ã)T = −(Ẽ−1B̃)(Ẽ−1B̃)T ≡
AX + XAT = −BBT .

(15)

(Note that for numerical stability reasons, E should not be inverted into Ã
and the generalized Lyapunov equation

ÃXẼT + ẼXÃT = −B̃B̃T

should be solved using the sign function variant discussed in [24]. Here, we
are interested in the performance and, therefore, just use (15) in order to test
the algorithms; the method in [24] can be implemented analogously as the
one considered here, this will be the topic of future work.) Table 2 specifies
the dimensions of matrices that appear in the two systems.

We first evaluate the performance of our hybrid CPU-GPU implementa-
tion of the Newton iteration for the factored solution (Algorithm GECLNC in
Section 2.1 combined with the hybrid matrix inversion procedure via GJE).
Note that in order to exploit the high performance of the GPU matrix inver-
sion procedure, all computations are performed in single-precision arithmetic.

Table 3 reports the execution times (in seconds) of the different com-
putations and data transfers during the first stages of the Newton itera-
tion: inversion of the matrix A−1

k (via the hybrid variant of GEINV BLK),
matrix product A−1

k Bk, transfer of the matrix A−1
k from the GPU to the

CPU (Time transfer), total cost of the iteration (Time iter.), and accumu-
lated time (Accum. time). Also, the last column in the table shows the
convergence of the iteration, according to the stopping criterion displayed
in (10). No compression is applied in this first experiment. These results
show that much of the iteration time is spent in the matrix inversion. The
matrix product A−1

k Bk, on the other hand, represents between 2% and 5%
of the time, and increases with the iteration count as the number of columns

16

#iter. Time Time Time Time Accum. Conv. criterion
k A−1

k A−1
k Bk transfer iter. time ‖Ak + In‖F /

√
n

STEEL I

1 1.108 0.035 0.129 1.6000 1.600 1.443e+00
2 1.091 0.027 0.127 1.5720 3.172 3.570e−01
3 1.090 0.032 0.127 1.5740 4.746 1.837e−02
4 1.090 0.045 0.127 1.5870 6.333 6.756e−05
5 1.090 0.071 0.127 1.6140 7.947 3.358e−08

FLOW METER

1 7.645 0.105 0.436 9.340 9.340 8.246e+01
2 8.077 0.105 0.437 9.772 19.112 2.119e+00
3 8.063 0.106 0.437 9.757 28.869 4.116e−01
4 8.058 0.106 0.438 9.751 38.620 2.637e−02
5 8.056 0.107 0.437 9.751 48.371 4.503e−03
6 8.056 0.127 0.437 9.770 58.141 5.490e−05
7 8.101 0.174 0.437 9.863 68.004 1.473e−09

Table 3: Performance of the hybrid CPU+GPU implementation of the Newton iteration
for the solution of the Lyapunov equation with factored right-hand side.

in Bk doubles with each iteration. Finally, the transfer time is slightly over
10% of the total time for the small problem (STEEL I) but below 5% for
the large problem size (FLOW MODEL), which could be expected as the ratio
computation/communication is (2n3 + O(n2))/n2. The last column in the
table illustrates the quadratic convergence of the Newton iteration: 5 and
7 iterations respectively are enough to attain convergence in single-precision
arithmetic for examples STEEL I and FLOW METER. Overall, approximately 8
and 68 seconds were required to obtain full-rank factors to the solution of
two Lyapunov equations of dimensions, 5,177 and 9,669, in single-precision
arithmetic.

Table 4 illustrates the impact of the compression technique in the New-
ton iteration. (Note that the inversion and transfer times as well as the
convergence criterion all depend solely on Ak and, therefore, are not affected
by the compression.) For each iteration, the table presents the time re-
quired to compute the matrix product A−1

k Bk and compress the resulting
matrix Bk+1 ← 1√

2ck

[
Bk, A−1

k Bk

]
via the QR factorization with column piv-

17

#iter. Time Time mk → Time Accum.
k A−1

k Bk R̄k+1 m̄k+1 iter. time

STEEL I

1 0.028 0.007 14 → 14 1.594 1.594
2 0.028 0.006 28 → 28 1.577 3.171
3 0.032 0.020 56 → 49 1.594 4.765
4 0.040 0.045 98 → 62 1.628 6.393
5 0.044 0.060 124 → 62 1.647 8.040

FLOW METER

1 0.105 0.005 2 → 2 9.349 9.349
2 0.106 0.002 4 → 4 9.776 19.125
3 0.106 0.005 8 → 8 9.764 28.889
4 0.106 0.011 16 → 14 9.763 38.652
5 0.108 0.020 28 → 20 9.774 48.426
6 0.113 0.031 40 → 20 9.789 58.215
7 0.112 0.031 40 → 20 9.790 68.005

Table 4: Performance of the compression technique hybrid CPU+GPU implementation of
the Newton iteration for the solution of the Lyapunov equation with factored right-hand
side.

oting (Time R̄k+1); the last two columns of the table contain the number
of columns of the original and compressed factors (mk+1 → m̄k+1), and the
iteration and accumulated times.

The conclusion from this particular experiment is that the compression
technique yields an important reduction in the number of columns of the
factor Bk for the last iterations. However, this reduction does not show up
in the iteration time. For instance, in Example FLOW METER, the compression
at step 6 requires 0.031 seconds, yields a reduction of the number of columns
of Bk from 40 to 20, and results in an execution time of 0.112 seconds for the
matrix product at step 7. Therefore, the net effect of the use of compression
is 0.031+0.112 = 0.143 seconds. On the other hand, looking up Table 3 we
find that computing the matrix product in step 7 requires 0.174 seconds.
Thus, even for the last iteration steps, where compression can potentially
deliver larger gains, the difference in the execution time is minor. Therefore,
in the following experiments we only perform one compression, at the last
step of the Newton iteration.

18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0 2 4 6 8 10 12 14 16

2 Newton Iterations

3 Newton Iterations

4 Newton Iterations

5 Newton Iterations

STEEL I

r(
L

k
)

Iterations of refinement (k)

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 0 2 4 6 8 10 12

4 Newton Iterations

5 Newton Iterations

6 Newton Iterations

7 Newton Iterations

r(
L

k
)

Iterations of refinement (k)

FLOW METER

Figure 2: Convergence rate of the iterative refinement procedure.

Figure 2 illustrates the convergence rate of the iterative refinement pro-
cedure for these two examples. In particular, the plots report the relative
residual r(Lk) = ‖R(Lk)‖F /‖LkLT

k ‖F , where Lk is the factor computed after
k steps of iterative refinement are applied to the initial approximate factor
L0 computed after k̄ =2–7 steps of the Newton iteration. These results show
that a rough approximation to the solution (r(L̄0) ≈ 0.01) is enough to at-
tain convergence in the iterative refinement. The convergence rate depends
on the quality of the approximation and the problem but can be classified
as super-linear. Thus, we can expect that a small number of refinement
iterations will suffice to attain double-precision accuracy.

Overall, the best global execution time for Example STEEL I is obtained
with 4 steps of the Newton iteration followed by 3 iterations of refinement.
This delivers an execution time of 13.089 seconds and a relative residual
r(L8) = 1.573e-14. In Example FLOW METER, the best combination is obtained
with 6/4 steps of Newton iteration/iterative refinement, which require an
execution time of 71.667 seconds and yield a relative residual r(L8) = 3.484e-
10.

For comparison, Table 5 reports the execution time and convergence of
a implementation of Algorithm GECLNC, with the matrix inversion computed
via GJE in the CPU (Algorithm GEING BLK), and all operations performed
in double-precision arithmetic (thus, no refinement is necessary). In Exam-
ple STEEL I, the Newton iteration converged in 6 steps, with an execution

19

#iter. Time Time Time Accum. Conv. criterion
k A−1

k A−1
k Bk iter. time ‖Ak + In‖F /

√
n

STEEL I

1 8.612 0.127 9.299 9.299 1.443e+00
2 8.569 0.051 9.171 18.470 3.570e−01
3 8.587 0.064 9.202 27.672 1.837e−02
4 8.593 0.085 9.229 36.901 6.755e−05
5 8.582 0.136 9.269 46.170 1.382e−09
6 8.585 0.252 9.388 55.558 5.220e−19

FLOW METER

1 55.325 0.255 57.541 57.541 8.251e+01
2 55.799 0.512 58.236 115.787 2.124e+00
3 55.693 0.356 57.977 173.753 4.122e−01
4 55.592 0.167 57.686 231.443 2.644e−02
5 55.721 0.187 57.834 289.270 4.511e−03
6 55.689 0.215 57.831 347.115 5.510e−05
7 55.691 0.295 57.913 405.024 4.932e−09
8 55.688 0.485 58.099 463.122 1.091e−17

Table 5: Performance of the double-precision CPU implementation of the Newton iteration
for the solution of the Lyapunov equation with factored right-hand side.

time of 55.558 seconds, and r(L6) = 4.455e-15. Example FLOW METER re-
quired 8 Newton iterations and 463.122 seconds to converge, and attained
r(L8) = 3.422e-09. In summary, compared with this code, the hybrid al-
gorithm attains speed-ups of 4.24/6.46 for Examples STEEL I/FLOW METER
while attaining similar numerical accuracy in the relative residual.

4. Conclusions and open questions

We have presented a mixed-precision algorithm, based on the matrix sign
function, that allows the efficient solution of Lyapunov equations exploit-
ing the features of current multi-core processors and many-core GPUs. In
particular, the huge hardware parallelism of the GPU (in single-precision)
is exploited by developing a tailored hybrid implementation of a matrix in-
version routine based on GJE, with look-ahead, that overlaps the compu-
tations in the CPU and the GPU. This routine is used to off-load to the

20

GPU the matrix inverses that appear in the Newton iteration for the matrix
sign function, by far the most expensive operation in the factored version of
this iterative scheme. The Newton iteration produces a full-rank factor with
user-prescribed accuracy as it can be stopped with a prescribed tolerance.
A second major contribution of this paper is a refinement procedure, which
can then be used to cheaply evolve the approximation of the full-rank factor
to double-precision accuracy. Overall, we obtain a mixed-precision solver
which, compared with an equivalent code that operates only in the CPU and
using double-precision arithmetic, attains a speed-up of 4.24 and 6.46 for two
Lyapunov equations of order 5,177 and 9,669.

A general conclusion that can be extracted from our work is that cur-
rent GPUs are an extremely promising approach to solve scientific and engi-
neering applications where dense linear algebra (and specially, dense linear
systems) is the key. This paper demonstrates that for a particular appli-
cation in control theory like model reduction, the use of a standard hard-
ware accelerator can potentially replace a much harder-to-program/operate
distributed-memory cluster. Mixed-precision algorithms are expected to play
a significant role in future high-performance software and, therefore, itera-
tive refinement procedures like the one introduced in this paper will become
important.

A likely concern is that future GPUs may reduce the ratio 8:1 between
single and double-precision arithmetic performance (Fermi, Nvidia next gen-
eration GPU already promises a reduction of this factor to 2:1). However,
even with a ratio 2:1, it may be preferable to perform a few steps of the
Newton iterative scheme, to obtain an initial solution with a few accurate
digits (1–2), and then evolve this solution to full, double-precision accuracy
with the less expensive refinement procedure.

Acknowledgements

We thank Francisco D. Igual for his technical support and advice in
this work. Enrique S. Quintana-Ort́ı and Alfredo Remón were supported
by projects PROMETEO/2009/013 and CICYT TIN2008-06570-C04. This
work was partially done while Pablo Ezzatti was visiting the Universidad
Jaime I with the support from project PROMETEO/2009/013.

21

References

[1] A. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM
Publications, Philadelphia, PA, 2005.

[2] P. Benner, V. Mehrmann, D. Sorensen (Eds.), Dimension Reduction of
Large-Scale Systems, Lecture Notes in Computational Science and Engi-
neering, Springer-Verlag, Berlin/Heidelberg, Germany, 2005, to appear.

[3] P. Benner, Contributions to the Numerical Solution of Algebraic Ric-
cati Equations and Related Eigenvalue Problems, Logos–Verlag, Berlin,
Germany, 1997, Also: Dissertation, Fakultät für Mathematik, TU
Chemnitz–Zwickau, 1997.

[4] B. Datta, Numerical Methods for Linear Control Systems, Elsevier Aca-
demic Press, 2004.

[5] M. Green, D. Limebeer, Linear Robust Control, Prentice-Hall, Engle-
wood Cliffs, NJ, 1995.

[6] IMTEK, http://www.imtek.de/simulation/benchmark/, Oberwol-
fach model reduction benchmark collection.

[7] G. Golub, C. Van Loan, Matrix Computations, 3rd Edition, Johns Hop-
kins University Press, Baltimore, 1996.

[8] R. Bartels, G. Stewart, Solution of the matrix equation AX +XB = C:
Algorithm 432, Comm. ACM 15 (1972) 820–826.

[9] S. Hammarling, Numerical solution of the stable, non-negative definite
Lyapunov equation, IMA J. Numer. Anal. 2 (1982) 303–323.

[10] R. Granat, B. K̊agström, D. Kressner, A novel parallel QR algorithm
for hybrid distributed memory HPC systems, Technical report 2009-15,
Seminar for applied mathematics, ETH Zurich (April 2009).

[11] R. Granat, B. K̊agström, Parallel solvers for Sylvester-type matrix equa-
tions with applications in condition estimation, Part I: Theory and algo-
rithms, ACM Transactions on Mathematical Software (revised January
2009) (July 2007).

22

[12] R. Granat, B. K̊agström, Algorithm XXX: The SCASY software library
– parallel solvers for Sylvester-type matrix equations with applications
in condition estimation, Part II, ACM Transactions on Mathematical
Software (revised January 2009) (July 2007).

[13] P. Benner, J. Claver, E. S. Quintana-Ort́ı, Parallel distributed solvers for
large stable generalized Lyapunov equations, Parallel Processing Letters
9 (1) (1999) 147–158.

[14] P. Benner, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, A portable subrou-
tine library for solving linear control problems on distributed memory
computers, in: G. Cooperman, E. Jessen, G. Michler (Eds.), Work-
shop on Wide Area Networks and High Performance Computing, Essen
(Germany), September 1998, Lecture Notes in Control and Information,
Springer-Verlag, Berlin/Heidelberg, Germany, 1999, pp. 61–88.

[15] P. Benner, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, State-space trunca-
tion methods for parallel model reduction of large-scale systems, Parallel
Comput. 29 (2003) 1701–1722.

[16] P. Benner, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, Solving linear-
quadratic optimal control problems on parallel computers, Optimization
Methods & Software 23 (6) (2008) 879–909.

[17] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ort́ı,
Evaluation and tuning of the level 3 CUBLAS for graphics processors,
in: Proceedings of the 10th IEEE Workshop on Parallel and Distributed
Scientific and Engineering Computing, PDSEC 2008, 2008, pp. CD–
ROM.

[18] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ort́ı,
Solving dense linear systems on graphics processors, in: E. Luque,
T. Margalef, D. Beńıtez (Eds.), Proceedings of the 14th international
Euro-Par conference on Parallel Processing, Lecture Notes in Computer
Science, 5168, Springer, 2008, pp. 739–748.

[19] V. Volkov, J. Demmel, LU, QR and Cholesky factorizations using
vector capabilities of GPUs, Tech. Rep. UCB/EECS-2008-49, EECS
Department, University of California, Berkeley (May 2008).

23

URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-20%08-49.html

[20] P. Bientinesi, F. D. Igual, D. Kressner, E. S. Quintana-Ort́ı, Reduction
to condensed forms for symmetric eigenvalue problems on multi-core ar-
chitectures, in: Proceedings of the 8th International Conference on Par-
allel Processing and Applied Mathematics – PPAM’09, Lecture Notes
in Computer Science, Springer, to appear.

[21] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ort́ı,
G. Quintana-Ort́ı, Exploiting the capabilities of modern GPUs for dense
matrix computations, Concurrency and Computation: Practice and Ex-
perience 21 (2009) 2457–2477.

[22] G. Golub, C. V. Loan, Matrix Computations, 3rd Edition, The Johns
Hopkins University Press, Baltimore, 1996.

[23] R. Byers, Solving the algebraic Riccati equation with the matrix sign
function, Linear Algebra Appl. 85 (1987) 267–279.

[24] P. Benner, E. S. Quintana-Ort́ı, Solving stable generalized Lyapunov
equations with the matrix sign function, Numer. Algorithms 20 (1)
(1999) 75–100.

[25] J. Roberts, Linear model reduction and solution of the algebraic Riccati
equation by use of the sign function, Internat. J. Control 32 (1980)
677–687, (Reprint of Technical Report No. TR-13, CUED/B-Control,
Cambridge University, Engineering Department, 1971).

[26] V. Sima, P. Benner, Experimental evaluation of the new SLICOT solvers
for linear matrix equations based on the matrix sign function, in: Proc.
of 2008 IEEE Multi-conference on Systems and Control, 9th IEEE Int.
Symp. on Computer-Aided Systems Design (CACSD), 2008, pp. 601–
606.

[27] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. E. McKenney, S. Ostrouchov, D. Sorensen,
LAPACK Users’ Guide, SIAM, Philadelphia, 1992.

[28] P. Benner, P. Ezzatti, E. S. Quintana-Ort́ı, A. Remón, Using hybrid
CPU-GPU platforms to accelerate the computation of the matrix sign

24

function, in: Proc. 7th Int. Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Networks – HeteroPar’09, Lec-
ture Notes in Computer Science, 2009, to appear.

[29] P. Strazdins, A comparison of lookahead and algorithmic blocking tech-
niques for parallel matrix factorization, Tech. Rep. TR-CS-98-07, De-
partment of Computer Science, The Australian National University,
Canberra 0200 ACT, Australia (1998).

[30] U. Baur, P. Benner, Factorized solution of the Lyapunov equation by
using the hierarchical matrix arithmetic, Proc. Appl. Math. Mech. 4 (1)
(2004) 658–659.

[31] L. Grasedyck, W. Hackbusch, B. Khoromskij, Solution of large scale al-
gebraic matrix Riccati equations by use of hierarchical matrices, Com-
puting 70 (2003) 121–165.

[32] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd
Edition, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2002.

[33] Texas Advanced Computing Center, http://www.tacc.utexas.edu/~kgoto/.

[34] Intel Corporation., http://www.intel.com/.

[35] Nvidia Corporation, http://www.nvidia.com/cuda/.

[36] F. Tröltzsch, A. Unger, Fast solution of optimal control problems in the
selective cooling of steel, Z. Angew. Math. Mech. 81 (2001) 447–456.

[37] H. Ernst, High-resolution thermal measurements in fluids, Ph.D. thesis,
University of Freiburg, Germany (2001).

25

Research Reports

No. Authors/Title

09-40 P. Benner, P. Ezzatti, D. Kressner, E.S. Quintana-Ort́ı, A. Remón
A mixed-precision algorithm for the solution of Lyapunov equations on
hybrid CPU-GPU platforms

09-39 V. Wheatley, P. Huguenot, H. Kumar
On the role of Riemann solvers in discontinuous Galerkin methods for
magnetohydrodynamics

09-38 E. Kokiopoulou, D. Kressner, N. Paragios, P. Frossard
Globally optimal volume registration using DC programming

09-37 F.G. Fuchs, A.D. McMurray, S. Mishra, N.H. Risebrom, K. Waagan
Approximate Riemann solvers and stable high-order finite volume
schemes for multi-dimensional ideal MHD

09-36 Ph. LeFloch, S. Mishra
Kinetic functions in magnetohydrodynamics with resistivity and hall
effects

09-35 U.S. Fjordholm, S. Mishra
Vorticity preserving finite volume schemes for the shallow water equations

09-34 S. Mishra, E. Tadmor
Potential based constraint preserving genuinely multi-dimensional
schemes for systems of conservation laws

09-33 S. Mishra, E. Tadmor
Constraint preserving schemes using potential-based fluxes.
III. Genuinely multi-dimensional central schemes for for MHD equations

09-32 S. Mishra, E. Tadmor
Constraint preserving schemes using potential-based fluxes.
II. Genuinely multi-dimensional central schemes for systems of conserva-
tion laws

09-31 S. Mishra, E. Tadmor
Constraint preserving schemes using potential-based fluxes.
I. Multidimensional transport equations

09-30 D. Braess, S. Sauter, C. Schwab
On the justification of plate models

09-29 D. Schötzau, C. Schwab, T. Wihler
hp-dGFEM for second-order elliptic problems in polyhedra.
II: Exponential convergence

