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Abstract

It has been claimed that the particular numerical flux used in Runge-Kutta
Discontinuous Galerkin (RKDG) methods does not have a significant effect on
the results of high-order simulations. We investigate this claim for the case of
compressible ideal magnetohydrodynamics (MHD). We also address the role of
limiting in RKDG methods.

For smooth nonlinear solutions, we find that the use of a more accurate
Riemann solver in third-order simulations results in lower errors and more rapid
convergence. However, in the corresponding fourth-order simulations we find
that varying the Riemann solver has a negligible effect on the solutions.

In the vicinity of discontinuities, we find that high-order RKDG methods
behave in a similar manner to the second-order method due to the use of a
piecewise linear limiter. Thus, for solutions dominated by discontinuities, the
choice of Riemann solver in a high-order method has similar significance to that
in a second-order method. Our analysis of second-order methods indicates that
the choice of Riemann solver is highly significant, with the more accurate Rie-
mann solvers having the lowest computational effort required to obtain a given
accuracy. This allows the error in fourth-order simulations of a discontinuous
solution to be mitigated through the use of a more accurate Riemann solver.

We demonstrate the the minmod limiter is unsuitable for use in a high-order
RKDG method. It tends to restrict the polynomial order of the trial space, and
hence the order of accuracy of the method, even when this is not needed to
maintain the TVD property of the scheme.

Key words: Riemann solvers, discontinuous Galerkin methods, limiters
PACS: 52.30.Cv, 52.65.-y, 47.11.-j, 47.40.-x

1. Introduction

To simulate compressible flows that contain shocks along with small-scale
features such as turbulence, we require numerical methods that are shock cap-
turing, but also exhibit high-order accuracy and low numerical dissipation away
from shocks [1]. Runge-Kutta Discontinuous Galerkin (RKDG) methods are
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shock capturing and high-order accurate away from discontinuities, thus they
are a candidate method for carrying out simulations.

Discontinuous Galerkin (DG) methods were first introduced by Hill and Reed
[2] for the neutron transport equations (linear hyperbolic equations). LeSaint
and Raviart [3] proved a rate of convergence of O(∆x)k for general triangulations
and of O(∆x)k+1 for Cartesian meshes, where ∆x is the element size and k is the
polynomial order of the approximate solution. In case of general triangulations,
this result was then improved by Johnson and Pitkaranta [4] to O(∆x)k+1/2,
which was confirmed to be optimal by Peterson [5].

These methods were then generalized for systems of hyperbolic conservation
laws by Cockburn et al. ([6], [7], [8], [9], [10]). In space the solution is approx-
imated using piecewise polynomials on each element. Exact or approximate
Riemann solvers from finite volume methods are used to compute the numerical
fluxes between elements. Limiters are used to achieve non-oscillatory approxi-
mate solutions, if they contain shocks [11]. For these reasons, DG methods can
be seen as generalization of finite volume methods to higher order. For time
integration, the total variation diminishing (TVD) explicit Runge-Kutta (RK)
methods proposed by Shu and Osher [12] are used.

RKDG methods have many important advantages. Like finite element meth-
ods, RKDG methods are well suited for simulating flows in complicated geome-
tries. These methods can easily handle adaptivity strategies, because of the
assumed discontinuity of the solution at element interfaces. This allows refining
or unrefining of the triangulation to be done without taking into account the
continuity restrictions typical of conforming finite element methods. Similarly,
the degree of the polynomial approximation within an element can be changed
without affecting the solution on other elements. Another important advantage
is that these methods are highly parallelizable because to update the solution
on a given element, only information from elements with which it shares a face
is needed.

At present, it is believed that the particular numerical flux or Riemann
solver used does not have a significant effect on the results of high-order RKDG
simulations [13]. Such a conclusion is supported by numerical evidence such
as that shown in Figure 1. This figure shows the results of simulations of the
MHD shock tube problem described in Section 4.2 with three different flux
calculators (see Section 4 for descriptions), along with the exact solution to
the problem. The results of first- and second-order simulations are shown in
Figures 1(a) and 1(b), respectively. Comparing these results, it appears that
the absolute error in the numerical solution is far less sensitive to the choice of
numerical flux when the second-order scheme is used. This seems to indicate
that as the order of a simulation increases, the choice of numerical flux becomes
less significant. This view has lead to the simple and highly dissipative Lax-
Friedrichs (LF) flux being used within many RKDG methods [13]. Our goal is
to rigorously examine the effect of more accurate numerical flux calculators in
high-order RKDG methods, with particular emphasis on high-order simulations
featuring discontinuities. The influence of accurate flux calculators in high-
order RKDG methods is intimately tied to the performance of the limiters in
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Figure 1: Density profiles at t = 0.4 from (a) first-order and (b) second-order accurate simu-
lations of the MHD shock tube problem described in Section 4.2. The exact solution to the
problem is shown along with numerical results using the LF, HLLE and Roe fluxes described
in Section 4.
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the method. For this reason, we also examine the performance of limiters in
high-order simulations.

For the Euler equations, the effect of Riemann solvers has been previously
evaluated by Qiu et al. [14]. One and two dimensional numerical simulations
were carried out to compare various Riemann solvers based on performance
measures such as numerical error, resolution of discontinuities and CPU times.
The LF flux was shown to require the least CPU time among all the fluxes
that were compared, but it also produced the largest numerical errors. Whereas
second order fluxes such as Lax-Wendroff (LW) and Warming-Beam (WB) were
found to be unstable. The Harten, Lax and van Leer (HLL) [15], HLLC [16]
and MUSTA [17] fluxes were proposed as good choices for RKDG simulations.
However, the data generated was not correlated to demonstrate which scheme
is the most computationally efficient, or if the benefits of using more accurate
Riemann solvers are dependent on the order of accuracy. In addition, error
norms were only computed for a smooth linear problem, while we anticipate that
the use of accurate Riemann solvers will be most significant in discontinuous
nonlinear problems.

This report is organized as follows: In the next section we present the gov-
erning equations for the simulations. In Section 3 a brief description of the
RKDG method is presented. In Section 4, a number of flux calculators for ideal
MHD are tested, leading to the selection of appropriate flux calculators for use
in the RKDG method in different circumstances. The limiters used within the
RKDG method are described and tested in Section 5. The results of numerical
test cases are presented and analyzed in Section 6. Finally, the conclusions that
have been drawn from this work are presented in Section 7.

2. Governing equations

The governing equations for the simulations presented here are the ideal
MHD equations. These govern the evolution of a quasi-neutral conducting fluid
and the magnetic field within it, neglecting the magnetization of individual
particles, the hall current, ion slip and the time rate of change of the electric
field in Maxwell’s equations. The complete details of their derivation may be
found, for example, in Sutton and Sherman [18]. In the absence of viscosity,
thermal conductivity, electrical resistivity and interspecies diffusion, the ideal
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MHD equations are,

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

ρ
Du
Dt

= −∇p +
1
µ0

(∇× B) × B, (2)

ρ
D

Dt

(
e +

1
2
u · u

)
= − 1

µ0
(∇× B) · (u× B) −∇ · (pu). (3)

∇ · B = 0, (4)
∂B
∂t

= ∇× (u × B) . (5)

Here, ρ is the density, p is the pressure, u is the velocity, B is the magnetic
field, e is the internal energy per unit mass and µ0 is the magnetic permeability
of vacuum. It is convenient to normalize B by √

µ0, thus eliminating µ0 from
the system of equations.

Eqs. 1-5 can be written in conservation form as follows:

∂U

∂t
+

∂Fj(U)
∂xj

= 0, (6)

where the vector of conserved variables U ≡ U(xi, t) is,

U = {ρ, ρui, Bi, ρeT}T ,

and the flux vectors Fj(U) are,

Fj(U) =
{

ρuj , ρuiuj + (p +
1
2
BkBk)δij − BiBj ,

ujBi − uiBj , (ρeT + p +
1
2
BkBk)uj − Bj(Bkuk)

}T

.

Here, ρeT is the total energy per unit volume of the plasma. The plasma is
assumed to be ideal with constant specific heats, allowing the following equation
of state to be used to close the set of equations:

ρeT =
p

γ − 1
+

1
2
ρukuk +

1
2
BkBk.

3. Runge-Kutta Discontinuous-Galerkin Method

For hyperbolic problems, solutions may be piecewise continuous, meaning
that they are smooth in regions separated by discontinuities. This behavior is
mimicked by DG methods as they allow L2 jumps at the boundaries of subdo-
mains even for operators of higher than first order. This allows any complete
set of trial functions to be used to represent the solution on each subdomain.
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This is not the case in the standard Galerkin formulation where for second or-
der operators, C0 continuity is required across subdomains. RKDG methods
for systems of hyperbolic conservation laws were developed by Cockburn et al.
([6], [7], [8], [9], [10]). For completeness, we present the following brief account
of their derivation.

3.1. Variational Form
Consider a domain Ω ∈ Rn. Let us define a triangulation M of Ω as a finite

collection {Ei}m
i=1, m ∈ N, of non-degenerate polygons such that,

Ω̄ =
⋃

{Ēi, i = 1, ..., m}, (7)

Ei

⋂
Ej = Ø ⇔ i (= j, (8)

and for all i, j ∈ {1, ..., m}, i (= j, the intersection Ēi
⋂

Ēj is either Ø or a vertex,
edge or face of both Ei and Ej . For two-dimensional quadrilateral elements, we
introduce a reference element Σ ≡ [−1, 1]× [−1, 1] and the mapping,

Φ : E → Σ (9)

that maps quadrilateral elements to the reference element. The mapping Φ is a
bilinear mapping.

It is sufficient for us to consider the following generic scalar advection equa-
tion:

∂u

∂t
+ ∇ · F = 0, (10)

where u is a conserved variable and F is the inviscid flux vector. The variational
form used in the RKDG method is derived by multiplying by the test function
v and integrating over each element separately. After using integration by parts
on the divergence term, we obtain,

∫

E

∂u

∂t
v dx +

∫

∂E
vn · F (u) ds −

∫

E
∇v · F (u) dx = 0. (11)

The flux vector F (u) in the second term must be evaluated on the boundary of
the element where u may be discontinuous and thus has two possible values; ui

on the interior of the element under consideration and ue on the exterior. To
account for this, we replace F (u) with the numerical flux function F̂ (ui, ue),
which can be computed taking upwind considerations into account. The final
variational from is derived by using integration by parts once more on the third
term to eliminate the gradient of the test function,

∂

∂t

∫

E
uv dx +

∫

∂E
v

(
F̂ (ui, ue) − F (ui)

)
· n ds +

∫

E
∇ · F (u)v dx = 0. (12)
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3.2. Basis Functions
In the RKDG method, the unknowns and data within each element are

expanded in terms of a suitable set of basis functions φpq(x);

f(x, y) =
∑

p

∑

q

apqφpq(ξ1, ξ2).

Here, (ξ1, ξ2) is a local coordinate system associated with that element. The
RKDG method we use is based on the Nektar code by [19]. The original code
has been extended to include Runge-Kutta time stepping, slope limiters and
accurate Riemann solvers, amongst other features. We will refer to the modified
version of the code as Nektar-m. The set of polynomial basis functions used in
Nektar was proposed by [20] in two dimensions and extended to three dimensions
in [19]. The two-dimensional basis functions have the form,

φpq(ξ1, ξ2) = ψa
p(ξ1)ψb

q(ξ2),

for quadrilaterals and,

φpq(ξ1, ξ2) = ψa
p(η1)ψb

pq(η2),

for triangles. The Cartesian coordinates ξ1, ξ2 are defined on the reference
element as shown in Fig. 2, while η1, η2 are non-Cartesian and are given by,

η1 = 2
1 + ξ1

1 − ξ2
− 1, η2 = ξ2.

The functions ψa
p (z) and ψb

pq(z) are,

ψa
p(z) = P 0,0

p (z), ψb
pq(z) =

(
1 − z

2

)p

P 2p+1,0
q (z),

where Pα,β
n is the nth-order Jacobi polynomial with weights α and β. These

basis functions are orthogonal in the Legendre inner product over each element,
resulting in a diagonal mass matrix. The functions are polynomial in both the
Cartesian and non-Cartesian co-ordinates. It was proved by [21] that the coef-
ficients of the basis functions in a solution decay exponentially with polynomial
order, thus the numerical solution converges exponentially as the maximum
polynomial order of the approximation is increased.

3.3. Runge-Kutta Time Discretization
To advance solutions in time, the RKDG method uses a Runge-Kutta (RK)

time marching scheme. In this manuscript we present the results of second-
, third- and fourth-order accurate RKDG schemes, thus we limit ourselves to
presenting the RK schemes used in these cases. For second- and third-order
simulations, we use the TVD RK schemes of [22]. For fourth-order simulations
we use the classic scheme.

7
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Figure 2: Reference element local coordinate system.

order αil βil

2 1 1
1/2 1/2 0 1/2

3 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

Table 1: Parameters for TVD Runge-Kutta time marching schemes.

Consider the semi-discrete ODE,

duh

dt
= Lh(uh).

Let un
h be the discrete solution at time tn, and let ∆tn = tn+1 − tn. In order

to advance a numerical solution from time tn to tn+1, the RK algorithm is as
follows:

1. Set u(0)
h = un

h.
2. For i = 1, ...., k + 1, compute,

u(i)
h =

i−1∑

l=0

αilu
(l)
h + βil∆tnLh(u(l)

h ).

3. Set un+1
h = u(k+1)

h .

The values of the coefficients used in the TVD schemes are shown in Table 3.3.
For the linear advection equation, it was proved by [23] that the RKDG

method is L∞-stable for piecewise linear (k = 1) approximate solutions if a
second-order RK scheme is used with a time-step that satisfies,

c
∆t

∆x
≤ 1

3
,

where c is the constant advection speed. The numerical experiments of [24]
show that when approximate solutions of polynomial degree k are used, an

8



order k + 1 RK scheme must be used, which simply corresponds to matching
the temporal and spatial accuracy of the RKDG scheme. In this case the L∞-
stability condition is

c
∆t

∆x
≤ 1

2k + 1
.

For the nonlinear case, the same stability conditions are used but with c replaced
by the maximum wave speed of the system.

3.4. Algorithm
Here we describe the RKDG algorithm as it is implemented in Nektar-m.

The majority of the algorithm remains unchanged from that presented in [21].
It utilizes two sets of quadrature points on element boundaries: The set of
interface quadrature points QI , where a Riemann solver is used to compute the
numerical fluxes, and the set of edge quadrature points QE , where the fluxes
must be evaluated to advance the solution in time. QI corresponds to the Gauss
quadrature points along each edge, which do not include the vertices where there
are no clearly defined left and right states that could be input to the Riemann
solver. The set QE depends on the type of elements used and typically includes
the vertices. The basic steps in the RKDG algorithm implemented in Nektar-m
are as follows:

1. Read in the initial condition U(x, 0) and evaluate it at all quadrature
points, set n = 0.

2. Limit the solution to ensure that the method is total variation bounded
(TVB) (see Section 5).

3. Compute the numerical fluxes F̂ n at QI using a Riemann solver (see Sec-
tion 4). At the domain boundaries, use the prescribed boundary conditions
as the exterior state that is input to the Riemann solver. Interpolate the
resulting fluxes onto QE . Scale the fluxes with the ratio of the edge Jaco-
bian to the volume Jacobian. This increases the efficiency of the scheme
by allowing the fluxes to be added to the volume terms evaluated at the
quadrature points (see [21] for details).

4. Compute the exact fluxes F at the element quadrature points. Utilizing
the known gradients of the basis functions, ∇ ·F is readily computed via
a mapping.

5. Subtract F from F̂ n at the appropriate quadrature points and add this
to the result of step 4.

6. Determine the modal coefficients of the result of step 5 by evaluating its
inner product with each orthogonal basis function. Store the result in Uf .

7. Carry out the first substep of the RK time integration scheme:

U (1) = U(x, tn) + β10∆tUf(x, tn).

9



8. Repeat steps 2 to 6 for the remaining substeps in the RK scheme.

9. Increment n by one and tn by ∆t. Continue steps 2 to 9 until the desired
simulation time is reached.

4. MHD Riemann Solvers

Riemann solvers are essential components in finite volume (FV) or RKDG
methods. The function of a Riemann solver is to compute the flux across an
interface that initially separates two uniform states:

U(x, 0) =
{

Ul, x ≤ c
Ur, x > c

where c ∈ R. Such Riemann problems arise at the element boundaries of a
computational grid at every timestep. In this context Riemann solvers may
also be referred to as flux calculators. In recent years a wide variety of Riemann
solvers have been developed for ideal MHD (see e.g. [25, 26, 27, 28, 29, 30]). Due
to the number of solvers available, selection of the optimal solver for a given
simulation is difficult. This issue was addressed by Wesenberg (2002), who
assessed the computational time required to reach a fixed error bound for finite
volume simulations of a suite of test cases using six different Riemann solvers.
This was done for both first and second order accurate finite volume schemes.
Wesenberg concluded that his MHD-HLLEM was the cheapest for achieving
a fixed error bound. However, since the time of Wesenberg’s paper, several
attractive new Riemann solvers of the HLLC family have been developed for
MHD [26, 27, 28, 29, 30]. Our goal here is to assess the performance of a selection
these new schemes so that we may select the best for a more extensive testing
in high-order RKDG methods. In particular we will compare the performance
of the HLLC solvers of Li [28] (HLLC-L) and Gurski [29] (HLLC-G) with the
HLLD solver of Miyoshi and Kusano [30], the Lax-Friedrichs (LF) flux, an MHD
Roe solver [31], the HLLE solver [15, 32] and the MHD-HLLEM solver. We will
use a different test case to Wesenberg (see Section 6) that more completely
exercises the capabilities of the Riemann solvers. In addition to being accurate
and efficient, we must also consider the robustness of these Riemann solvers.
This issue has been addressed for a number of solvers by Gurski [33]. Physical
solutions of the MHD equations possess a positivity preserving property such
that positive densities and pressures are always retained. However, non-physical
negative densities and pressures can be generated in numerical solutions. Thus
it is important that the MHD Riemann solver selected leads to a positivity
preserving scheme. The HLLE and HLLC family of Riemann solvers have the
additional benefit that they can be simply extended to the case there the plasma
is not an ideal gas, which is not the case with the Roe and HLLE-M solvers.

In this section we will first give an overview of the Riemann solvers evaluated
here, then present the results of the test cases. We will then conclude the with
selection of the optimal Riemann solvers to use in certain situations.
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4.1. Description of Solvers
4.1.1. Lax-Friedrichs Flux

The Lax-Friedrichs flux is a simple numerical flux that is used in many
RKDG methods. Only the exact flux F must be know to compute this flux:

glf (Ul,Ur) =
1
2
(
F(Ul) + F(Ur)

)
− +x

2+t
(Ur − Ul). (13)

4.1.2. Roe Solver
The Roe flux is computed from a local linearization of the system about

what is known as the Roe average state Û. The Roe average state should be
selected such that the Roe matrix A(Ul,Ur) ≡ DF(Û(Ul,Ur)) satisfies:

F(Ul) − F(Ur) = A(Ul,Ur)(Ul − Ur).

The Roe flux is then given by:

groe(Ul,Ur) =
1
2
(
F(Ul) + F(Ur)

)
− 1

2
Σ7

j=1|λj(Û)|αjrj(Û), (14)

where αj = lj(Û)(Ur − Ul). Here lj and rj are the left and right eigenvectors
of the ideal MHD system, respectively, that correspond to the eigenvalue λj .
For γ = 2, the Roe average state for the ideal MHD equations is given by [34],

ρ̂ :=
√

ρlρr, ûi :=
√

ρluil + √
ρruir√

ρl + √
ρr

Ĥ :=
√

ρlHl + √
ρrHr√

ρl + √
ρr

, B̂i = B̂

Bil√
ρl

+ Bir√
ρr√

ρl + √
ρr

For general γ, construction of the Roe average state is much more compli-
cated and has been pursued, for example, by [35] and [36]. In practice the
arithmetic average state is used instead of the Roe average state for γ (= 2,
which has been shown to work well [31].

It must be noted that there are issues with the robustness of the Roe solver.
It has been shown that any linearization of certain Riemann problems for the
Euler equations results in negative densities and pressures, thus no linearized
Riemann solver is guaranteed to be positivity preserving for the Euler equations
[32]. For the MHD equations, linearized Riemann solvers become even more
problematic as negative pressure may be produced by numerical error in the
magnetic energy as well as the kinetic energy [30].

A further complication with the Roe solver arises if we choose to use the
method of [37] to control divergence errors in the magnetic field. In this ap-
proach the MHD system is augmented with a RHS proportional to ∇ · B in
order to minimize divergence errors:

∂U
∂t

+ ∇ · F = S → ∂U
∂t

+ A ·∇U = 0.

11



A Roe solver is then usually constructed based on the Eigensystem of A.
However, the usual expression for the Roe flux is no longer appropriate, as
A ·∇U (= ∇ ·F since A ·∇U includes the source term. One approach to make
the Roe solver consistent is to first decompose the jump in conserved variables
into eigenmodes,

αj = lj(UR − UL),

then compute the upwind solution to the linearized Riemann problem using,

U∗ =
1
2
[Ul + Ur −

8∑

j=1

sign(λj)αjrj ].

Finally, we obtain the numerical flux by substituting U∗ into the exact expres-
sion for the flux:

F̂ = F(U∗).

4.1.3. HLLE Solver
Across any wave propagating the velocity b and separating states U∗ and

U, the Rankine-Hugoniot relations hold,

F∗ − F = b(U∗ − U) (15)

The HLL Riemann solver [15] is constructed by assuming a solution that consists
of a single intermediate state U∗ between the fastest and slowest (most negative)
waves. An expression for the intermediate state can be easily be derived from
the RH relations,

Uhll = U∗ =
brUr − blUl − Fr + Fl

br − bl
, (16)

where bl and br are approximations of the minimum and maximum signal speeds,
respectively. Applying the RH relations across the entire Riemann fan gives an
expression for the intermediate flux, which is the HLL flux,

gHLLE(Ul,Ur) =
brF(Ul) − blfF(Ur)

br − bl
+

brbl

br − bl
(Ur − Ul). (17)

One highly effective choice of signal speed estimates is due to [32],

bl = min
i

(λi(Ul), λi(Um), 0) and br = max
i

(λi(Ur), λi(Um), 0)

where Um is the Roe mean value. Then this choice of signal speeds is used,
the solver is referred to as the HLLE solver. The HLLE solver is extremely
robust as it is both positivity preserving [32] and satisfies and entropy inequality
automatically [38]. However, due to the single intermediate state approximation,
the HLLE solver cannot resolve non-fast isolated discontinuities, making it quite
dissipative.

12



4.1.4. HLLEM Solver
The MHD HLLEM solver was developed by Wesenberg [25]. In this solver,

an anti-diffusion term is added to the usual HLLE flux:

gHLLEM := gHLLE(Ul,Ur) + a0(Ul,Ur), (18)

where,

a0(Ul,Ur) = −
b+
r b−l

b+
r − b−l

6∑

i=2

δiαiri.

Here,
δ2 := δ6 := δa, δ3 := δ5 := δs, δ4 := δe,

where,

δe := φ1
vf (vm)

vf (vm) + |ux(vm)| ,

δs := φ1
vf (vm)

vf (vm) + (1 − φ2)|ux(vm)| + vs(vm)
,

δe := φ1
vf (vm)

vf (vm) + (1 − φ2)|ux(vm)| + vax(vm)
,

φ1 := Φ(vf (vm) − vax(vm)),

φ2 := Φ(B2
x + B2

y(vm) + B2
z (vm)),

and,

Φ(x) =






0, for (x ∈ (−∞, ε)),
x−ε
δ−ε , for (x ∈ [ε, δ)),
1, for (x ∈ [δ,∞)).

4.1.5. HLLC Solvers
The HLLC family of solvers are derived by assuming an approximate solu-

tion to the Riemann problem in which the Riemann fan is separated into two
intermediate states, U∗

l and U∗
r , by a contact discontinuity. The normal velocity

is assumed constant within the Riemann fan and is given by the HLL average
(see Eq. 16),

u∗
xl

= u∗
xr

=
(ρux)hll

ρhll
≡ u∗ (19)

The standard procedure in a HLLC solver is to then solve for the remainder of
the intermediate states using the RH relations across each wave. For interme-
diate total pressure and densities, this yields,

p∗Tl
= p∗Tr

= pTl + ρl(bl − uxl)(u
∗ − uxl) ≡ p∗T , (20)

ρ∗α = ρα
bα − uxα

bα − u∗ , (21)

where α can be l or r. [29] observed that when Bx (= 0, the transverse magnetic
field and velocity must be continuous across the contact (and therefore the entire

13



Riemann fan), in addition to the total pressure and normal velocity. These are
then set to the HLL average,

u∗
yl

= u∗
yr

=
(ρuy)hll

ρhll
≡ u∗

y, (22)

u∗
zl

= u∗
zr

=
(ρuz)hll

ρhll
≡ u∗

z, (23)

B∗
yl

= B∗
yr

= Byhll ≡ B∗
y , (24)

B∗
zl

= B∗
zr

= Bzhll ≡ B∗
z (25)

The following expression for the total energies of the intermediate states can
then be derived from the RH relations:

e∗α =
(bα − uxα)eα − pTαuxα + p∗T u∗ + Bx(uα · Bα − u∗ · B∗)

bα − u∗ . (26)

With the intermediate states completely determined, the intermediate fluxes
F∗

α are computed from the RH relations across the left and right waves. The
numerical flux is then given by,

ghllc =






Fl if bl > 0,
F∗

l if bl ≤ 0 ≤ us,
F∗

r if us ≤ 0 ≤ br,
Fr if br < 0.

(27)

This is referred to as the HLLC-G flux. Note that this flux does not tend to the
Euler HLLC flux in the limit of vanishing magnetic field. An alternative MHD
HLLC solver was developed independently by [28], which is referred to as the
HLLC-L solver. In this solver the following forms are used for the intermediate
tangential velocities:

u∗
yα

= uyα +
Bx(Byα − B∗

y)
ρα(u∗ − uxα)

(28)

u∗
zα

= uzα +
Bx(Bzα − B∗

z )
ρα(u∗ − uxα)

. (29)

These satisfy the RH relations over the entire Riemann fan, but not necessarily
over the contact alone. This scheme does, however, have the property that it
tends to the Euler HLLC flux in the limit of zero magnetic field [30].

4.1.6. HLLD Solver
In order to resolve more discontinuities exactly, [30] formulated a more com-

plicated HLL type MHD Riemann solver in which the Riemann fan is assumed
to consist of four intermediate states, U∗

l , U∗∗
l , U∗∗

r , and U∗
r , from left to right.

These states are separated by an Alfvén wave, followed by the contact discon-
tinuity, then another Alfvén wave, which have velocities b∗l , u∗, and b∗r, respec-
tively. Similarly to the HLLC solver, the normal velocity is assumed constant
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throughout the Riemann fan and is given by the HLL average, which explicitly
is,

u∗ =
(br − uxr)ρruxr − (bl − uxl)ρluxl − pTr + pTl

(br − uxr)ρr − (bl − uxl)ρl
. (30)

The constant total pressure within the Riemann fan and ρ∗α are given by Eq.
21, while the following expressions for the remaining variables in U∗

α can be
derived from the RH relations across the outermost waves:

u∗
yα

= uyα − BxByα

bα−uxα
ρα(bα−uxα )(bα−u∗)−B2

x
(31)

B∗
yα

= Byα

ρα(bα−uxα )2−B2
x

ρα(bα−uxα )(bα−u∗)−B2
x

(32)

u∗
zα

= uzα − BxBzα

bα−uxα
ρα(bα−uxα )(bα−u∗)−B2

x
(33)

B∗
zα

= Bzα

ρα(bα−uxα )2−B2
x

ρα(bα−uxα )(bα−u∗)−B2
x

(34)

e∗α = (bα−uxα )eα−pTαuxα +p∗
T u∗+Bx(uα·Bα−u∗·B∗)

bα−u∗ . (35)

The inner states, U∗∗
α , are then computed from the RH relations for the Alfvén

waves, which have propagation velocities,

b∗l = u∗ − |Bx|√
ρ∗l

, b∗r = u∗ +
|Bx|√

ρ∗r
. (36)

Note that the density and total pressure are continuous across the Alfvén waves,
while the magnetic field, velocity and total pressure are continuous across the
contact, hence,

ρ∗∗α = ρ∗α, (37)
p∗∗Tα

= p∗Tα
, (38)

u∗∗
yl

= u∗∗
yr

≡ u∗∗
y , (39)

u∗∗
zl

= u∗∗
zr

≡ u∗∗
z , (40)

B∗∗
yl

= B∗∗
yr

≡ B∗∗
y , (41)

B∗∗
zl

= B∗∗
zr

≡ B∗∗
z . (42)

[30] obtained the following expressions for the remaining variables:

u∗∗
y =

√
ρ∗

l u∗
yl

+
√

ρ∗
ru∗

yr
+(B∗

yr
−B∗

yl
)sign(Bx)√

ρ∗
l +

√
ρ∗

r

, (43)

u∗∗
z =

√
ρ∗

l u∗
zl

+
√

ρ∗
ru∗

zr
+(B∗

zr
−B∗

zl
)sign(Bx)√

ρ∗
l +

√
ρ∗

r

, (44)

B∗∗
y =

√
ρ∗

l B∗
yl

+
√

ρ∗
rB∗

yr
+
√

ρ∗
l ρ∗

r(u∗
yr

−u∗
yl

)sign(Bx)√
ρ∗

l +
√

ρ∗
r

, (45)

B∗∗
z =

√
ρ∗

l B∗
zl

+
√

ρ∗
rB∗

zr
+
√

ρ∗
l ρ∗

r(u∗
zr

−u∗
zl

)sign(Bx)√
ρ∗

l +
√

ρ∗
r

, (46)

e∗∗α = e∗∗α ±√
ρ∗α(uα

∗∗ ·Bα
∗∗ − uα

∗ · Bα
∗)sign(Bx). (47)

(48)
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The intermediate fluxes can then be obtained from the RH relations summed
over multiple waves, for example,

F∗
l = Fl + bl(U∗

l − Ul), (49)
F∗∗

l = Fl + b∗l U
∗∗
l − (b∗l − bl)U∗

l − blUl. (50)

In general the HLLD flux is given by,

ghlld =






Fl if bl > 0,
F∗

l if bl ≤ 0 ≤ b∗l ,
F∗∗

l if b∗l ≤ 0 ≤ u∗,
F∗∗

r if u∗ ≤ 0 ≤ b∗r,
F∗

r if b∗r ≤ 0 ≤ br,
Fr if br < 0.

(51)

This solver resolves isolated rotational discontinuities exactly, along with contact
discontinuities, and reduces to the Euler HLLC solver when Bx = 0 [30]. Miyoshi
and Kusano [30] also proved that the HLLD solver is positivity preserving (as
are the HLLC solvers) if

bl < uxl −
√

γ − 1
2γ

cfl , br > uxr +
√

γ − 1
2γ

cfr , (52)

which are clearly satisfied by the choice of signal speeds from the HLLE method.

4.2. Numerical Tests
The primary test case we have selected to evaluate the Riemann solvers

described in the previous subsection is a shock tube problem from Torrilhon [39].
This shock tube problem was selected as it includes all types of admissible MHD
waves (according to Falle and Komissarov [40]) within one solution: fast- and
slow-mode rarefactions, rotational discontinuities, fast shocks and slow shocks.
Thus it will thoroughly exercise the wave resolving capabilities of the Riemann
solvers. Torrihon’s shock tube problem is computed on the domain −1 < x < 1,
0 ≤ t ≤ 0.4 with the following initial conditions:

(ρ, p, u, v, w, Bx, By, Bz) =
{

(3, 3, 0, 0, 0, 1.5, 1, 0), x < 0
(1, 1, 0, 0, 0, 1.5, cos(1.5), sin(1.5)), x > 0

The boundary conditions for the problem are extrapolated outflow at x = ±1,
and periodicity in y. This test case is computed for an ideal plasma with γ =
5/3.

To facilitate comparison to published results (e.g. [25]), the Riemann solvers
are tested within a standard finite volume method. First-order simulations
use piecewise constant reconstruction in space and forward Euler time-stepping
with a CFL number of 0.45. Second-order simulations use a MINMOD limited
piecewise linear reconstruction in space and predictor-corrector time-stepping.
For this test case we assess the performance of the schemes via the L2-norm of
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Figure 3: Density profiles at t = 0.4 from first-order solutions of Torrilhon’s MHD shock tube
problem on a grid of 200 cells using various Riemann solvers.
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Figure 4: L2-error in element average densities versus normalized CPU time for first-order
simulations of Torrilhon’s MHD shock tube problem on grids of 50, 100, 200, and 400 elements
using various Riemann solvers.

the error in the cell averages, which in this case gives a measure of the scheme’s
overall ability to resolve discontinuities, and the CPU-time required to simulate
the problem up until the final time, T = 0.4.

Figure 3 shows an example of the results of this test case. It shows the final
density profiles produced by first-order finite volume simulations on a grid of 200
cells, along with the exact solution. Examining the density allows us to observe
the performance of the schemes in the vicinity of the contact discontinuity,
where the velocity and magnetic field do not vary. It does not, however, show
the rotational discontinuities as these do not alter the density. In terms of
resolution of discontinuities on a fixed grid, the Riemann solvers can be divided
into three groups; the LF flux which is highly dissipative, the Roe, HLLC,
HLLD, and HLLE-M solvers which capture all the discontinuities reasonably
well even on this coarse grid, and the HLLE solver, which lies in between. In
the first frame of Fig. 3, there appears to be little difference between the most
accurate group of solvers. The second frame shows the solutions around the
slow shock in greater detail. This allows us to see that the HLLD solution lies
closest to the Roe solution, while the HLLE-M solution is even sharper (the
shock is smeared over fewer cells) than Roe solution around the slow shock, due
to the action of the anti-diffusion terms in the HLLE-M solver.

To assess the performance of the schemes more rigorously, we plot the L2-
norms of the error in element average density versus the computational effort
(normalized CPU time) in Fig. 4. Curves that lie lower on this plot require
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Figure 5: L2-error in element average Bz versus normalized CPU time for first-order simu-
lations of Torrilhon’s MHD shock tube problem on grids of 50, 100, 200, and 400 elements
using various Riemann solvers.

less computation effort to reach a fixed error bound, and are therefore said to
perform better. From Fig. 4 we see that the LF-flux has the worst performance,
followed by the HLLE solver. The performance of the HLLC-L, HLLC-G, HLLD,
HLLE-M and Roe solvers is very similar, with HLLC-L and HLLE-M being the
best for this performance measure at different resolutions, followed by HLLD,
Roe, then HLLC-G. These rankings appear to be reasonably independent of
resolution. Note, however, that the error in density does not assess the perfor-
mance of the schemes around the rotational discontinuities, where we expect
the HLLD and Roe solvers to be superior. To address this problem, in Fig. 5
we present the L2-norms of the error in cell average Bz versus the CPU-time for
the first-order simulations. From this figure, we see that for this performance
measure the Roe, HLLE-M and HLLD solvers are superior to the HLLC solvers,
with the HLLE-M solver requiring the minimum computational effort to achieve
a given error bound.

In Fig. 6, we plot error norms versus the computational effort for second-
order accurate simulations. The ordering of the schemes in terms of compu-
tational efficiency is mostly unchanged from the first-order results. The main
exception is that the performance of the Roe, HLLD, HLLE-M, and HLLC-L
solvers is practically identical.

So far we have assessed the accuracy and efficiency of our set of Riemann
solvers. The robustness of the Riemann solvers is another important considera-
tion. There are no known issues with the robustness of HLLE and HLLC-type
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Figure 6: L2-error in element average ρ (top) and Bz (bottom) versus normalized CPU time
for second-order simulations of Torrilhon’s MHD shock tube problem on grids of 50, 100, 200,
and 400 cells using various Riemann solvers.
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Figure 7: Partial density profile at t = 0.4 from second-order solutions of Torrilhon’s MHD
shock tube problem on a grid of 400 cells using the HLLE-M Riemann solver.

Riemann solvers, provided appropriate estimates for the signal speeds are used.
There are however, multiple issues with the robustness of the Roe solver. In
addition to the fact that the solver is not guaranteed to be positivity preserving
[32], in multiple dimensions it has also been shown to produce what is known
as the carbuncle phenomenon [41] when used to simulate shocks that are nearly
stationary on the grid.

From the results presented so far, the HLLE-M solver appears to be the
optimal choice of solver as it is gives the lowest error for a given computational
cost. The source of the low error is the anti-diffusion terms in the solver. These
cause the numerical representation of the discontinuities in the solution to be
more sharply resolved than when the other solvers are used. This increased
sharpness comes at a cost, however, as it results in the scheme being ”over-
compressive” which can lead to oscillations in the vicinity of discontinuities.
Such oscillations are seen in the results of second-order accurate finite volume
simulations, an example of which is shown in Fig. 7.

4.3. Selection of Solvers
From the results presented in this section, the optimal choices of Riemann

solver appears to be the MHD HLLD solver of Miyoshi and Kusano [30] or the
HLLC-L solver of Li [28]. These solvers exhibit high computational efficiency
and have similarly low numerical dissipation to the Roe solver, but do not suffer
from the same robustness issues. They are not as computationally efficient as
the MHD HLLE-M solver, in terms of the error in the magnetic field, but we
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observe that they do not generate numerical oscillations around discontinuities
that we see when the HLLE-M solver is used. Additionally, both solvers have
the property that they reduce to the Euler HLLC solver when the magnetic field
vanishes, unlike the HLLC-G solver.

The HLLD solver requires slightly less computational effort than HLLC-L to
produce the same error in the magnetic field, but the latter has the advantage
that it is easier to implement. For this reason, we use the HLLC-L solver in our
high-order RKDG simulations. In Section 6 we examine the impact of using
this accurate Riemann solver in such simulations, compared to the LF flux.

5. Limiters

In order for the RKDG method to be stable in the nonlinear case, we require
an entropy inequality and the uniform boundedness of the total variation of the
discrete solution uh [24]. In general, a limiter function is required for the second
condition to hold. We present the limiter functions used in the RKDG method
in the context of a one-dimensional nonlinear scalar equation. In order for the
total variation of the means to be non-increasing for a forward Euler timestep,
the discrete solution must satisfy (see [24] for details):

sign(ūj+1 − ūj) = sign(pj+1/2(uh|Ej+1) − pj+1/2(uh|Ej)), (53)

sign(ūj − ūj−1) = sign(u−
j+1/2 − u−

j−1/2), (54)

sign(ūj+1 − ūj) = sign(u+
j+1/2 − u+

j−1/2), (55)

where ūj is the average solution on element Ej , u−
j+1/2 denotes the limit of the

solution at edge j + 1/2 taken from the left, u+
j+1/2 denotes the limit of the

solution at edge j + 1/2 taken from the right and,

pj+1/2(uh|Ej+1) = ūj −
∆t

∆j+1
f+(u−

j+1/2) +
∆t

∆j
f−(u+

j−1/2).

Here, ∆t is the forward Euler timestep, ∆j is the size of Ej and we assume that
the flux can be written in the form,

F (a, b) = f+(a) + f−(b),

which can be done for the Enquist-Osher flux, for example. There is no guar-
antee that the numerical solution will satisfy Eq. 53-Eq. 55, thus it is necessary
to enforce them by means of what [24] refers to as a generalized slope limiter.
These alter the numerical solution on an element in such a way that Eq. 53-
Eq. 55 are satisfied, while preserving the element average of the solution and,
as far as possible, the accuracy of the method.

Following the presentation of Cockburn [24], we will first review TVDM
generalized slope limiters for the one-dimensional case, then show how these
were modified to obtain schemes which are total variation bounded in the
means (TVBM). We will then present the extension of these limiters to the
two-dimensional case.
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5.1. One-dimensional TVDM generalized slope limiters
A simple set for sufficient conditions on uh that imply Eq. 53-Eq. 55 are

satisfied can be stated in terms of the minmod function m,

m(a1, ..., an) =
{

s min1≤n≤N |an|, if s = sign(a1) = ... = sign(aN )
0, otherwise.

It can be easily shown (see e.g. [24]) that Eq. 53-Eq. 55 are satisfied if, for all
j = 1, ..., N , we have,

u−
j+1/2 − ūj = m(u−

j+1/2 − ūj , ūj − ūj−1, ūj+1 − ūj), (56)

ūj − u+
j−1/2 = m(ūj − u+

j−1/2, ūj − ūj−1, ūj+1 − ūj). (57)

In the following, let vh denote the numerical solution prior to limiting, and let Πh

denote the limiter. Thus the limited numerical solution is given by uh = Πh(vh).
For the case of piecewise linear approximate solutions,

vh|Ej = v̄j + (x − xj)v′j , j = 1, ..., N,

we can apply slightly modified versions of the limiter functions from finite vol-
ume schemes. The generalized slope limiter based on the minmod limiter, Πm

h ,
is,

uh|Ej = v̄j + (x − xj)m(v′j ,
v̄j+1 − v̄j

∆j
,
v̄j − v̄j−1

∆j
). (58)

This satisfies Eq. 56 and Eq. 57. The modification to the standard minmod
limiter is the additional input of v′j into the minmod function. The minmod
generalized slope limiter is equivalent to,

u−
j+1/2 = v̄j + m(v−j+1/2 − v̄j ,

v̄j − v̄j−1

2
,
v̄j+1 − v̄j

2
), (59)

u+
j−1/2 = v̄j − m(v̄j − v+

j−1/2,
v̄j − v̄j−1

2
,
v̄j+1 − v̄j

2
). (60)

Cockburn proposed the following less restrictive (LR) slope limiter, Πlr
h , that

also satisfies Eq. 56 and Eq. 57:

uh|Ej = v̄j + (x − xj)m(v′j ,
v̄j+1 − v̄j

∆j/2
,
v̄j − v̄j−1

∆j/2
). (61)

Compared to the minmod limiter, the LR limiter permits larger values of the
internal gradient on an element before limiting occurs. As limiting decreases the
accuracy of the solution on an element, this implies that use of the LR limiter
will produce more accurate results. The LR slope limiter is equivalent to,

u−
j+1/2 = v̄j + m(v−j+1/2 − v̄j , v̄j − v̄j−1, v̄j+1 − v̄j), (62)

u+
j−1/2 = v̄j − m(v̄j − v+

j−1/2, v̄j − v̄j−1, v̄j+1 − v̄j). (63)
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Both the minmod and the LR limiter are defined for piecewise linear solutions.
They cannot be directly applied to solutions of higher polynomial order as v′h|Ej

is in general non-constant. Instead, the limiting procedure is broken into two
stages: detection and truncation. To detect if an element requires limiting the
following procedure is used [24]:

1. Compute u+
j−1/2 and u−

j+1/2 using either Eq. 59 and Eq. 60 (minmod lim-
iter) or Eq. 62 and Eq. 63 (LR limiter).

2. If u+
j−1/2 = v+

j−1/2 and u−
j+1/2 = v−j+1/2, no limiting is required so set

uh|Ej = vh|Ej , otherwise carry out the truncation stage.

In the truncation stage, we set uh|Ej equal to a limited lower order polynomial
that satisfies Eq. 56 and Eq. 57. The simplest procedure is limiting to a piecewise
constant by setting uh|Ej = v̄j . We refer to this as the first-order limiter. The
second-order limiter results from truncating uh|Ej to a piecewise linear function
that satisfies Eq. 56 and Eq. 57. Following [24], this is done by applying Eq. 58
or Eq. 61 to the P 1 part of the solution,

v1
h =

1∑

l=0

v̂lφl(x).

Thus uh|Ej = Πm
h (v1

h) or uh|Ej = Πlr
h (v1

h). It is important to note that this is

more accurate than, for example, direct use Eq. 61 with m(
v−

j+1/2−v̄j

∆j/2 ,
v̄j−v+

j−1/2
∆j/2 )

as the first argument to the minmod function, which uses quantities already
computed in the detection phase. The reason for this is that if limiting is needed
due to the high-order modes only, then limiting v1

h will allow the original P 1

part of the solution to be preserved, while using the differences computed in the
detection step will not.

5.2. One-dimensional TVBM generalized slope limiters
At local extrema, the solution is non-monotone thus any limiter based on

the minmod function will limit the solution to a piecewise constant no matter
how smooth the solution is. This results in a loss in accuracy at local extrema.
Following [42], this can be avoided by replacing the minmod function in the
limiters with the TVB corrected minmod function m̄ which is defined as,

m̄(a1, ..., an) =
{

a1, if |a1| ≤ M∆x2

m(a1, ..., an), otherwise,

where M is a constant that is an upper bound for the absolute value of the
curvature of the solution at local extrema. In this work, we take M = 50.

Provided that the value of M is appropriate, the scheme will not suffer from
loss of accuracy at local extrema. The penalty for this is that the scheme is no
longer TVD. It can, however, be shown to be total variation bounded in the
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means (TVBM) [42]. Moreover, provided the CFL condition is satisfied and
coefficients αil from the Runge-Kutta scheme are nonnegative and satisfy,

i−1∑

l=0

αil = 1,

then it can be shown to solutions produced by the RKDG scheme converge in
the nonlinear case [24].

5.3. Two-dimensional TVBM generalized slope limiters
To extend the generalized slope limiters presented in the previous subsec-

tions to the multi-dimensional case, [10] relies on the assumption that spurious
oscillations are present in uh only if they are present in its P 1 part, u1

h. Thus
if,

u1
h = Πhu1

h, (64)

indicating that limiting is not required for u1
h, then it is assumed that that no

limiting is required for the full solution uh, hence,

Πhuh = uh

Conversely, if limiting is required for u1
h, the solution is truncated to the limited

P 1 part,
Πhuh = Πhu1

h.

This approach has the drawback that it does not reduce to the one-dimensional
scheme if the multi-dimensional scheme is applied to simulate a one-dimensional
problem. In fact Eq. 56 and Eq. 57 are not guaranteed to be satisfied if only
the P 1 part of the solution is used to detect where limiting is required. To
demonstrate the implication of this (that the scheme is not TVD), in Fig. 8 we
compare simulations of Torrilhon’s MHD shock tube problem using the proposed
multidimensional limiter and a scheme that does reduce to the one-dimensional
LR limiter described above. We clearly see the appearance of spurious oscillation
when only the P 1 part of the solution is used to detect where limiting is required.

The multi-dimensional limiter that we have utilized for rectangular dis-
cretizations uses Eq. 62 and Eq. 63 in each direction to detect whether limiting is
required, with the exception that the point values at edges are replaced by edge
average values. This has the advantage that it reduces to the one-dimensional
scheme if it is used to simulate a one-dimensional problem. In detail, we com-
pute,

ū−
i,j+1/2 = v̄i,j + m̄(v̄−i,j+1/2 − v̄i,j , v̄i,j − v̄i,j−1, v̄i,j+1 − v̄i,j), (65)

ū+
i,j−1/2 = v̄i,j − m̄(v̄i,j − v̄+

i,j−1/2, v̄i,j − v̄i,j−1, v̄i,j+1 − v̄i,j). (66)

ū−
i+1/2,j = v̄i,j + m̄(v̄−i+1/2,j − v̄i,j , v̄i,j − v̄i−1,j , v̄i+1,j − v̄i,j), (67)

ū+
i−1/2,j = v̄i,j − m̄(v̄i,j − v̄+

i−1/2,j , v̄i,j − v̄i−1,j , v̄i+1,j − v̄i,j). (68)
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Figure 8: Density profiles from Torrihon’s MHD shock tube problem at t = 0.4 from RKDG
schemes using the HLLC-L flux solver and the LR limiter. Results are compared for the
following cases: the necessity of limiting is detected using the P1 projection of the solution;
the necessity of limiting is detected using the difference between the element mean and edge
mean values.

if ū−
i,j+1/2 = ū−

i,j+1/2, ū+
i,j−1/2 = ū+

i,j−1/2, ū−
i+1/2,j = ū−

i+1/2,j and ū+
i−1/2,j =

ū+
i−1/2,j , we assume that no limiting is required so,

uh|Ei,j = vh|Ei,j .

Otherwise uh|Ei,j is set to the limited P 1 part of vh|Ei,j . This is computed by
setting,

ūi,j = v̄i,j , (69)
ux = m̄(v1

x, v̄i,j − v̄i,j−1, v̄i,j+1 − v̄i,j), (70)
uy = m̄(v1

y , v̄i,j − v̄i−1,j , v̄i+1,j − v̄i,j), (71)

for Ei,j .

6. Numerical Results

6.1. Simple Wave Problem
Landau and Lifshitz [43] present an exact, non-linear smooth solution to the

one-dimensional Euler equations (no magnetic field). The solution only exists
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Figure 9: Solutions from second-order simulations of the Euler simple wave problem. The
HLLC-L flux solver was used in all simulations shown. Twenty times the absolute error in
each numerical solution is also plotted.

if the initial conditions satisfy the following relations:

ρ(x, 0) = ρ0

(
1 +

(γ − 1)ux

2a0

) 2
γ−1

,

p(x, 0) = p0

(
1 +

(γ − 1)ux

2a0

) 2γ
γ−1

,

uy = uz = Bx = By = Bz = 0.

The particular case we utilize has the initial velocity,

ux(x, 0) = u0 sin πx,

on the domain −1 < x < 1 with the boundary condition u(1, t) = u(−1, t). The
exact solution is initially smooth, but the sinusoidal waves steepen nonlinearly
until a shock develops at tshock, and the exact solution breaks down. The fact
that the solution is smooth prior to tshock implies that the numerical methods
we are interested in testing should reproduce the solution to their theoretical
order of accuracy, even though this is a nonlinear problem. This is not the case
with any solution that involves discontinuities, such as a shock tube problem,
because around discontinuities these methods revert to first-order accuracy. The
existence of an exact solution to the Euler simple wave problem allows us to
study the convergence of RKDG schemes for a nonlinear problem. We will
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examine the results at t = 0.9, somewhat prior to the formation of a shock at
t ≈ 0.95.

In Fig. 9, the solution from limited second-order simulations are compared
to the exact solution. The HLLC-L Riemann solver was used for both simu-
lations. During the simulation, the less restrictive (LR) limiter did not detect
that any limiting was required, thus it is unnecessary to show a separate curve
for an unlimited simulation. On the other hand the minmod limiter detected
that limiting was required on the majority of elements. This indicates a major
short-coming of the minmod limiter for high-order simulations: The minmod
limiter selects the input gradient with the minimum modulus. If this is not the
gradient of the polynomial representation of the field internal to the element,
then limiting is carried out and the coefficients of the higher order modes are
set to zero. In the RKDG method, the input gradients are the internal gradi-
ent, and slope estimates based on the difference between the element average
fields and the average fields on the adjacent elements. In general, if the solution
has a finite curvature, the internal gradient will not have the minimum modu-
lus, thus the solution will be limited and will revert to (at most) second order
accuracy. This will occur even if limiting is unnecessary, as is the case with
the solution we are currently examining. From this we must conclude that the
minmod limiter is unsuited for use in a high-order RKDG method. Examining
the numerical solutions shown in Fig. 9, we see that the LR limited solution
approximates the exact solution very well, while the minmod limited solution
slightly under-predicts the peak value.

In Fig. 10, we show how the L2 error in element average density converges
with N for various RKDG schemes. The least squares fitted order of convergence
for each scheme is indicated in the figure legend. Note that in these simulations,
the LR limiter does not detect that any limiting is required, so there is no need
to present separate LR limited and unlimited results. The solutions from the LR
limited third- and fourth-order RKDG schemes converge at the expected rate.
On the other hand, the results from the minmod limited fourth-order RKDG
scheme show an order of convergence of between one and two. This is due to the
solution being limited to piecewise linear or piecewise constant on the majority
of elements, once again highlighting the short-comings of this limiter.

To further investigate the importance of using accurate Riemann solvers in
high-order schemes, in Fig. 10 we compare the convergence of solutions from LR
limited third- and fourth-order RKDG schemes using LF and HLLC-L Riemann
solvers. For the third-order scheme, the solutions produced using the HLLC-L
solver have lower errors and converge more rapidly, as might have been antic-
ipated from our low-order results. However, for the fourth-order scheme the
errors in the LF and HLLC-L results are indistinguishable on the scale of the
plot for all discretizations used. This shows that high-order accurate solutions
to the simple wave problem are insensitive to the choice of Riemann solver over
a broad range of resolutions, supporting the view of Cockburn and Shu [13], at
least for smooth solutions.
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6.2. Behavior of Limited Solutions for Problems Dominated by Discontinuities
To investigate the effect of low-order limiting and accurate Riemann solvers

in problems dominated by discontinuities, we compare numerical solutions to
Torrilhon’s MHD Riemann problem from second-, third- and fourth-order RKDG
schemes. These are shown in Fig. 11. Let us first examine the impact of the
Riemann solver on solutions from the LR limited fourth order scheme. When
the LF flux is used the L2-error in the element average density is 0.0220. Using
the more accurate HLLC-L solver, this error is reduced to 0.0172, which is sig-
nificant. This is in contrast to our earlier results for smooth solutions indicates
that when discontinuities are present, the choice of Riemann solver is still sig-
nificant for high-order methods. The reasons for this will become clear by the
end of this discussion.

We now turn our attention to the results of differing order produced using
the HLLC-L solver. From Fig. 11, we observe that the solution from the third-
order scheme is the least accurate overall, with an L2 error in the element
average density of 0.0272. The behavior of the second- and fourth-order LR
limited schemes is similar, other than in the vicinity of the contact discontinuity
where the second-order scheme is more accurate. This results in the error in the
solution from the fourth-order scheme (0.0172) being greater than that from the
second-order scheme (0.0138). Both of these two solutions are more accurate
than that from the minmod limited second-order scheme, which has a error of
0.0188.

The reason why we do not observe an increase in accuracy as the order of
the scheme is increased, and why the LR limiting procedure results in more
accurate solutions, can be explained by examining where the limiter functions
alter the polynomial order of the solution. For t = 0.4, this is shown in Fig. 12
for LR and minmod limited second-order RKDG schemes, and in Fig. 13 for
LR limited third- and fourth-order RKDG schemes. From Fig. 12, we see that
in the second-order solution, the minmod limiter carries out limiting on almost
all elements where the solution is non-constant, resulting in 117 of 200 elements
being limited. The LR limiter limits far fewer elements, 32 of 200 in this ex-
ample, mostly those on the edge of discontinuities. This results in the minmod
limited solution being more diffuse than the LR limited solution, as can be
seen in Fig. 11, and therefore less accurate, as the L2 errors revealed. From
Fig. 13, we see that 43 and 56 elements are limited to lower order polynomials
in the solutions from the LR limited third- and fourth-order schemes, respec-
tively. Also, the unlimited elements are in general located where the solution is
close to linear, so that a higher-order representation of the data has little im-
pact on the overall accuracy of the solution. The cumulative result is that the
error caused by additional limiting outweighs any gain in accuracy due to the
increased order of the scheme, resulting in the third- and fourth-order schemes
producing less accurate solutions than the LR limited second-order scheme. For
this discontinuity dominated problem, these results indicate that if elements
are limited to a maximum polynomial order of one, and the overall scheme is
at least second-order accurate, then the L2 error in the solution is influenced
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Figure 12: Distribution of limited elements in solutions to Torrilhon’s MHD Riemann problem
at t = 0.4 from second-order RKDG schemes. The HLLC-L flux solver was used along with
the minmod (top) and LR (bottom) limiters.
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Figure 13: Distribution of limited elements in solutions to Torrilhon’s MHD Riemann problem
at t = 0.4 from third-order (top) and fourth-order (bottom) RKDG schemes. The HLLC-L
flux solver was used along with the LR limiter.
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more by the extent to which the solution must be limited than by the order of
accuracy of the scheme.

The remaining issue to be addressed from the results shown in Fig. 12 and
Fig. 13 is why the third-order scheme produces the solution with the largest L2

error in element average densities. The reason appears to be that the limiter
function interacts poorly with the piecewise quadratic representation of the
data, in that it limits the data to be piecewise constant on a far greater number
of elements than for the other schemes, which locally reduces the order of the
scheme to one. It is important to note that the distributions of limited elements
shown in Fig. 13 are instantaneous. These distributions change significantly with
time. In particular, the third-order scheme was observed to require limiting on
a far greater number of elements after the first and second sub-steps of the
RK scheme than after the third and final sub-step, which is what we see in
Fig. 13. For example after the second sub-step at t = 0.4, the solution is
limited to piecewise constants on 27 elements and piecewise linear functions on
29 elements. The fact that the scheme is reduced to first-order on this number
of elements results in the solution it produces being less accurate than even the
second-order minmod limited solution.

In conclusion, for high-order RKDG simulations of Torrilhon’s MHD Rie-
mann problem, the polynomial representation of the data is limited to be at most
piecewise linear around the discontinuities. The remaining elements where the
representation is piecewise quadratic (for third-order) or cubic (for fourth-order)
lie in regions where the exact solution is linear and would thus be represented
equally well by a lower-order function. This implies that, at best, a high-order
RKDG scheme will behave in the same manner as a second-order scheme for the
problem studied here. The only remedy for this would be to develop a limiter
function that produces higher-order limited polynomials. Our results imply that
for any problem featuring by discontinuities, the error in a solution produced by
a high-order RKDG method is likely to be dominated by the low-order errors in
the vicinity of the discontinuities. Such errors have been show to be significantly
reduced by the use of accurate Riemann solvers in Section 4.2. This explains
the improved performance of the fourth-order scheme when the HLLC-L solver
was used instead of the LF flux.

6.3. Orzag-Tang Vortex
To verify that our findings hold in multiple dimensions, we examine simu-

lations of the Orzag-Tang vortex [44], a commonly used multi-dimensional test
case for ideal MHD solvers (see e.g. [45], [30]). The problem is very cleanly
defined with periodic boundary conditions in both directions. The domain for
this test case is 0 < x, y < 2π, 0 ≤ t ≤ π, and the initial conditions are,

(ρ, p, u, v, w, Bx, By, Bz) = (γ2, γ, − sin y, sin x, 0, − sin y, sin 2x, 0).

The problem is solved for an ideal plasma with γ = 5/3.
We present solutions from fourth-order RKDG simulations using the LF and

HLLC-L fluxes, along with a high resolution reference solution. The RKDG
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Figure 14: Density distribution at t = 0.8 from a second-order finite volume scheme on a
256 by 256 cell regular mesh (top) and a fourth-order RKDG scheme on a 64 by 64 element
regular mesh (bottom). The HLLC-L flux solver was used along with the LR limiter in the
RKDG scheme. The same contour levels are used in both plots.
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Figure 15: Density profiles at t = 0.8, y = π from a second-order finite volume scheme on a
256 by 256 cell regular mesh and a fourth-order RKDG scheme on a 64 by 64 element regular
mesh. The HLLC-L flux solver was used along with the LR limiter in the RKDG scheme.

simulations were run on a relatively coarse regular grid of 64 by 64 elements.
The method of Powell et al. [37] is used to control divergence errors in the
magnetic field. The high resolution reference solution is required because an
exact solution to this test case does not exist. It was produced using a second-
order accurate finite volume scheme on a 256 by 256 cell regular grid. The finite
volume scheme was developed by Samtaney [46] and uses the 8-wave upwinding
formulation of Powell et al. [37] within an unsplit upwinding method [47]. The
solenoidal property of the magnetic field is enforced at each time step using a
projection method. A constrained transport step is then used remove divergence
modes with a centered finite difference representation. This uses the formulation
prescribed by Toth [48].

During the early development of the vortex, the flow is smooth and limiting
is not required. Fig. 14 shows density fields from the RKDG and reference
solutions at t = 0.8, when the solution is still smooth. Only one RKDG solution
is shown as the difference between them is negligible. From Fig. 14 we see
that there is excellent agreement between the RKDG and reference solutions,
indicating that the method performs well when limiting is not required. To show
the differences between the solutions more clearly, we show the density profiles
along the line y = π in Fig. 15. The only visible deviation of the lower resolution
RKDG simulations from the reference solution is a slight under-prediction of the
peak density. The RKDG results using the LF and HLLC-L fluxes cannot be
distinguished on the scale of this plot. This indicates that as in one-dimension,
the results or high-order RKDG simulations of smooth solutions are insensitive
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to the choice of Riemann solver.
Fig. 16 shows density fields at t = π from the RKDG simulation that used the

HLLC-L flux and the reference solution. By this time, the flow has evolved into
a complex state featuring numerous discontinuities. At this stage there is a need
for extensive limiting, with approximately 37% and 33% of the elements being
limited in the RKDG simulations using the HLLC-L and LF fluxes, respectively.
Comparing the reference solution and the RKDG solution shown in Fig. 16, it
can be seen that the while the overall shock structure is the similar in both
simulations, the RKDG result is far more diffuse. In fact many of the fine scale
features are not adequately resolved. To show this more clearly, we show the
density profiles from all simulations along the line y = π in Fig. 17. From
the figure we see that the RKDG solutions fail to capture the sharp peaks in
density, along with the sharp trough in the center of the domain. This is due
to the extensive limiting causing the scheme to revert to at most second-order
accuracy in these regions around the discontinuities. As for the one-dimensional
discontinuous flows studied in the previous subsection, the choice of Riemann
solvers now significantly affects the RKDG solutions. From Fig. 17 it can be
seen that the more accurate HLLC-L solver allows the scheme to better resolve
the features in the center of the domain.

7. Conclusions

To investigate the importance of accurate Riemann solvers in RKDG sim-
ulations, we examined the results of first-, second-, third-, and fourth-order
simulations of both smooth and non-smooth problems. In the presence of dis-
continuities, the influence of Riemann solver selection is directly tied to the
performance of limiters. Thus we also examined the performance of common
limiters in these simulations. It was noted that a particular extension of one-
dimensional limiters to multiple dimensions can result in the TVD condition
being violated.

We first examined the computational efficiency of several recently developed
MHD Riemann solvers, in terms of the computing time required to achieve a
fixed error bound for a given problem. The performance of these solvers was
compared to that of the Roe solver, the LF flux and the MHD HLLE-M solver,
which had previously been identified as the most efficient by Wesenberg [25].
This was done for first- and second-order schemes. We find that all of the
accurate Riemann solvers are more computationally efficient than the LF flux,
with the HLLE-M, HLLC-L, HLLD and Roe solvers exhibiting similar efficiency.
The HLLD and HLLC-L solvers were identified as good candidates for use in
high-order simulations as of the most efficient group of solvers, these have the
most desirable robustness properties.

From our third- and fourth-order results for smooth solutions, we conclude
that the minmod limiter is unsuited for use in high-order RKDG methods. The
reason for this is that in regions of finite curvature, this limiter tends to restrict
the polynomial order of the trial space, reducing the scheme to at most second-
order accuracy, even when limiting is not strictly required to keep the scheme
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Figure 16: Density distribution at t = π from a second-order finite volume scheme on a 256 by
256 cell regular mesh (top) and a fourth-order RKDG scheme on a 64 by 64 element regular
mesh (bottom). The HLLC-L flux solver was used along with the LR limiter in the RKDG
scheme. The same contour levels are used in both plots.
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Figure 17: Density profiles at t = π, y = π from a second-order finite volume scheme on a
256 by 256 cell regular mesh and a fourth-order RKDG scheme on a 64 by 64 element regular
mesh. The HLLC-L flux solver was used along with the LR limiter in the RKDG scheme.

TVD. The less-restrictive limiter does not exhibit this behavior. For third-order
simulations of smooth problems, we find that using the HLLC-L solver results in
lower errors and faster convergence than when the LF flux is used. However, for
fourth-order simulations of the same problem, we observe negligible differences
in the solutions when the Riemann solver is varied. This supports the view of
Cockburn and Shu [13] that the results of high-order RKDG simulations are
insensitive to the choice of Riemann solver, at least for smooth solutions.

From our simulations of problems dominated by discontinuities, we find that
in the vicinity of discontinuities, high-order RKDG methods behave in a similar
manner to the second-order method due to the use of a piecewise linear limiter.
The error in numerical solutions to such problems is dominated by the error in
these regions. Thus, for such solutions, the choice of Riemann solver used in a
high-order method has a similar significance as for a second-order method. Our
analysis of second-order methods indicates that the choice of Riemann solvers
is very significant, with the more accurate Riemann solvers having the best
performance. This results in fourth-order simulations of discontinuous solutions
using the HLLC-L solver having considerably lower error than those using the
LF flux, in contrast to the result for smooth solutions.
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