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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Globally Optimal Volume Registration using DC programming

E. Kokiopoulou1, D. Kressner1, N. Paragios2 and P. Frossard3∗†‡

Abstract

This paper proposes a novel approach to optimally solve rigid registration problems among volumetric images.

The proposed framework exploits sparse geometric expansions for volumetric representations and DC (Difference of

Convex functions) programming. We apply the SAD (sum of absolute differences) criterion to the sparse representa-

tion of the reference volume and we derive a DC decomposition of this criterion with respect to the transformation

parameters. This permits to employ a cutting plane algorithm for determining the optimal relative transformation

parameters of the query volume. It further enjoys theoretical guarantees for the global optimality of the obtained

solution, which – to the best of our knowledge – is not offered by any other existing approach. A numerical validation

demonstrates the large potential of the proposed method.

1 Introduction

Registration [1] is a fundamental problem in computer vision and in particular in medical image analysis. It is an

elementary step towards bringing various volumetric data into the same reference space, which in turn permits to

gather statistics and exploit similarities across subjects.

Geometric and iconic methods are often used to address this problem. Geometric methods [2] extract characteristic

landmarks between two images, and then seek the optimal transformation that establishes geometric correspondences

between the images. Unfortunately, such an approach may be very sensitive to the landmark extraction process. Fur-

thermore, solving the correspondence problem between landmarks, which is a pre-step of the registration, is highly

nontrivial. Often, robust EM-like methods are used for this purpose. These methods iteratively determine the opti-

mal transformation for a set of correspondences and then improve the correspondences based on this transformation.

Naturally such a method may converge to a local minimum, mostly due to erroneous correspondences.

Iconic methods [1] employ a (dis)similarity criterion on the observation space that is a function of rigid trans-

formation parameters, which are optimized to minimize / maximize this criterion. The selection of the criterion and

the optimization method are the two critical components of iconic registration. SAD, SSD, NCC, CR [3], as well as

complex statistical metrics [4] in the case of multi-modal data have been considered. The optimization of the criterion

is often performed using descent-like methods that are sensitive to initial conditions and do not provide guarantees on

the optimality of the obtained solution. Recently the use of global optimization frameworks such as discrete MRFs

was suggested [5]. However, the dimensionality of the resulting continuous search space makes its quantization quite

problematic and even inefficient and therefore the results are far from being optimal.

Despite an enormous effort in the field [6], none of the existing methods can guarantee optimality of the obtained

solution even in the case of volumes coming from the same modality. In this paper we propose a novel approach that

estimates optimal transformation parameters. Global optimality is achieved through the expression of the objective

function as a DC (difference of convex functions) decomposition and with the use of the cutting plane algorithm to

estimate the optimal registration parameters.

Input volumes are sparsely represented over a redundant dictionary of geometric atoms. Using such a representa-

tion, the set of all transformations of a certain volume (which constitutes the so-called transformationmanifold) admits

a closed form expression with respect to the transformation parameters. This relation is used to derive a !1 criterion

∗1Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich, CH-8092 Zurich.
†2 Laboratoire MAS, Ecole Centrale de Paris, Chatenay-Malabry, France.
‡3Signal Processing Laboratory (LTS4), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne.

1



between the two volumes in terms of the registration parameters. Using basic theorems on DC functions [7, 8, 9],

we prove that the resulting objective function admits a DC decomposition with respect to the rigid transformation

parameters. Once a DC decomposition is established, a number of algorithms are available to solve the optimization

problem in an efficient and robust manner [7]. In this paper, we apply the cutting plane algorithm [7, Thm 5.3] to

recover the optimal registration parameters.

The rest of this paper is organized as follows. In Section 2, we briefly present the sparse geometric representations

of volumes as well as the corresponding transformation manifolds. Section 3 is devoted to the definition of the

registration problem, whose DC decomposition is derived in Section 4. Finally, in Section 5, we present numerical

validation of our approach and some conclusions.

2 Volume transformation manifolds

In the following, we define and characterize the transformation manifold of a certain volume. For this purpose,

we represent the volume by a parametric sparse model extracted from a dictionary of geometric functions. Such

a geometric representation leads to a closed form expression for the transformation manifold, which is used in the

computation of !1 similarity measures.

2.1 Sparse Atomic Volumetric Representations

We represent the volume of interest as a linear combination of geometric functions (usually called atoms), taken

from a parametric and (typically overcomplete) dictionary D = {φγ , γ ∈ Γ} spanning the input volume space.
This representation generally captures the most prominent geometric features of the volume. The atoms in D are

constructed by applying geometric transformations to a generating function denoted by φ. Representing the geometric
transformation γ ∈ Γ by an operator U(γ), the parametric dictionary takes the form

D = { φγ = U(γ)φ, γ ∈ Γ}. (1)

In this work, a transformation γ = (a, R, b) ∈ Γ, will denote a synthesis of translations$b ∈ R3×1, anisotropic scalings

$a ∈ R
3×1
+ and rotationsR ∈ SO(3). The dictionary is built from three-dimensional atoms that can efficiently capture

the salient geometrical features in volumetric images.

A sparse approximation of a given volume v ∈ Rn1×n2×n3 with atoms from the dictionary D can be obtained

in various ways. Even if finding the sparsest approximation of v is generally a hard problem, effective sub-optimal
solutions are usually sufficient to capture the salient geometric structures of a signal with only a few atoms. Such

solutions are obtained, for example, by Orthogonal Matching Pursuit (OMP) [10, Sec. 9.5.3] and Tree-based Pursuit

[11], to name just a few. In this work we use Tree-based Pursuit, which organizes the dictionary in a tree structure and

admits significantly faster searches over the dictionary compared to OMP. Hence, this provides an effective algorithm

for computing sparse volume approximations in practice. AfterK steps of the algorithm, the volume v is approximated
by a sparse linear combination of a few atoms i.e.,

v =
K

∑

k=1

ξkφγk
+ rK , (2)

where rK is the residual of the approximation. In what follows we will assume that rK is negligible and can be

dropped.

2.2 Characterization of transformation manifolds

The set of all geometric transformations γ applied to a certain volume v generates a manifold M in the high-

dimensional ambient observation volume space. Each point on this manifold corresponds to a transformed version

of v. In the following, we only consider transformations η = (s, G, t) consisting of a synthesis of translations

2



t = [tx, ty, tz], isotropic scaling s ∈ R+ and rotations G ∈ SO(3). Then the transformation manifoldM can be

expressed as follows:

M = {v(η) ≡ U(η)v, where η = (s, G, t)}. (3)

Note that although the manifold is embedded in a high-dimensional space, its intrinsic dimension is rather small and

equals the number of transformation parameters.

The transformations η form a group, namely the similitude group SIM(3) in R3. If (a, R, b) and (a′, R′, b′) are
two elements from SIM(3) then the group law is

(a, R, b) ◦ (a′, R′, b′) = (aa′, RR′, b + aRb′). (4)

Using (2) and dropping the residual term rK , it turns out that applying the transformation η to the volume v results in

v(η) = U(η)v =
K

∑

k=1

ξkU(η)φγk
=

K
∑

k=1

ξkφη◦γk
, (5)

where η ◦ γk is a product of transformations. In other words, the transformation is applied to each constituent atom

individually, resulting in a sparse representation of the transformed volume over atoms with updated parameters. The

group law (4) indeed applies [12] and can be further employed to work out the updated parameters of the transformed

atoms. Equation (5) is of great importance in the proposed approach, since it expresses the manifold (3) in closed form

with respect to the transformation parameters η. This is a key observation for the applicability of the DC programming
methodology that is proposed in this work.

3 Rigid Registration

After having introduced sparse geometric representations and transformation manifolds, we are now ready to provide

the problem formulation. We are interested in estimating the transformation between two volumes. Suppose that we

are given a query volume p, and we aim to estimate the optimal transformation parameters η∗ that best align v with p.
We formulate the transformation estimation problem as follows

η∗ = arg min
η=(s,G,t)

f(η), where f(η) = ‖v(η) − p‖1. (6)

Here, ‖p‖1 =
∑

ijk |pijk| denotes the !1 norm of a volume p ∈ Rn1×n2×n3 . The criterion (6) is also known as the

sum of absolute differences (SAD) criterion.

Recall that v(η) ∈ M denotes the transformed volume v subject to a transformation η = (s, G, t). We assume
that the reference volume v has been well approximated by a sparse expansion over D according to (2) where rK is

negligible. Note that in the above optimization problem, only the reference volume v is expanded in the redundant
basis and the query volume p is treated as is.

The optimization problem (6) is generally a non-convex nonlinear optimization problem [13] and hard to solve

using traditional methods. For example, steepest descent or Newton-type methods converge only locally and may get

trapped in local minima. To avoid these issues, we will show that the above objective function is a DC function with

respect to the transformation parameters, i.e., it can be expressed as the difference of two convex functions.

Proposition 1 The objective function

f(η) = ‖v(η) − p‖1 =
∥

∥

∥

K
∑

k=1

ξkφηk
− p

∥

∥

∥

1
, (7)

where ηk = η ◦ γk, is DC.

The proof of this proposition is given in the next section. Using Proposition 1, the optimization problem (6) can

be formulated as a DC program [7, 8, 9], which can be optimally solved by exploiting the special structure of the

objective function. In this paper, we employ the cutting plane method [7, Thm 5.3] to solve the DC formulation of (6).

The cutting plane method is guaranteed to converge to the global minimizer. To the best of our knowledge, this is the

first globally optimal algorithm that is proposed for the problem of rigid volume registration.
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4 DC decomposition

In this section, we show in several steps that Proposition 1 is true. We first provide some backgroundmaterial on basic

properties of DC functions. Using the fact that the geometric transformation of an atom φηk
is equivalent to a change

in the coordinate system before applying φ(·), we show that the transformed coordinate system (x̃, ỹ, z̃) explicitly
depends on the transformation parameters η. This is then used to show that x̃(ηk)2 + ỹ(ηk)2 + z̃(ηk)2 is a DC function
of η, which in turn allows us to express the voxels of each atom φηk

in DC form. Based on the above developments,

we finally obtain the DC decomposition of the objective function ‖v(η) − p‖1.

4.1 Properties of DC functions

We start with some definitions and background material about DC functions [7, 8, 9] and their properties. First, let

X be a convex subset of Rn. A function f : X ⊆ Rn → R is called DC on X , if there exist two convex functions
g, h : X → R such that f is expressed as

f(x) = g(x) − h(x). (8)

A representation of the above form is called a DC decomposition of f . We present now a few properties of DC

functions.

Proposition 2 ([8, Sec 4.2]) Let f = g − h and fi = gi − hi, i = 1 . . . , m be DC functions. Then the following

functions are also DC:

(a)

m
∑

i=1

λifi =
[

∑

{i:λi≥0}

λigi −
∑

{i:λi<0}

λihi

]

−
[

∑

{i:λi≥0}

λihi −
∑

{i:λi<0}

λigi

]

.

(b) |f | = 2 max{g, h}− (g + h).

(c) If f1 and f2 are DC functions, then the product f1 · f2 is DC. Moreover, if f1 and f2 have nonnegative convex

parts, the following DC decomposition holds:

f1 · f2 =
1

2
[(g1 + g2)

2 + (h1 + h2)
2] −

1

2
[(g1 + h2)

2 + (g2 + h1)
2]. (9)

In addition, it can be shown that the synthesis of a convex function and a DC function is again DC, which is

particularly important for our further developments.

Proposition 3 Let f(x) : Rn → R be DC and q : R → R be convex. Then,

(a) the composition q(f(x)) is DC [8, Sec 4.2].

(b) q(f(x)) has the following DC decomposition:

q(f(x)) = p(x) − K[g(x) + h(x)], (10)

where p(x) = q(f(x)) + K[g(x) + h(x)] is a convex function and K is a constant satisfying K ≥ |q′(f(x))|
[14, 15].

4.2 DC decomposition of transformed atoms

In what follows, we show that the transformed atom φηk
can be expressed in DC form. For notational convenience,

we will drop the subscript k.
We first note that an atom in a parametric dictionary (1) is constructed by applying geometric transformations

on the generating function φ. Applying a transformation γ = (a, R, b) to the generating function is equivalent to
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transforming the coordinate system from {x, y, z} to {x̃, ỹ, z̃} before applying φ(·). More specifically, this means that
an atom φγ = U(γ)φ(x, y, z) coincides with φ(x̃, ỹ, z̃), where





x̃
ỹ
z̃



 = AR&





x − bx

y − by

z − bz



 , (11)

and A = diag(1/ax, 1/ay, 1/az).
As we have already mentioned in Sec. 2.2, a transformation η applied to φγ results in a synthesis of the two

transformations η and γ. Therefore, the transformed atom φη◦γ can be readily constructed by applying the resulting

transformation η ◦ γ directly to the mother function as shown in the paragraph above. One should make a clear
distinction between γ, which denotes the (fixed) individual transformation for each atom and η, which is the global
transformation applied to the entire volume (and hence to all atoms according to (5)). The transformed coordinate

system of φη◦γ therefore depends only on η (as γ is considered fixed).
In what follows, we derive the explicit dependence between the transformed coordinate system and the transfor-

mation parameters. For this purpose, we parametrize η = (s, G, t) using quaternions for the rotation matrixG and let

(q0, q1, q2, q3) denote the quaternion parameters. This results in eight optimization variables (s, q0, q1, q2, q3, tx, ty, tz)
for representing the transformation η.

Lemma 1 The transformed coordinates of an atom in (7) have the form

x̃(η) = µ0
q2
0

σ
+ µ1

q2
1

σ
+ µ2

q2
2

σ
+ µ3

q2
3

σ
+ µ4

q1q2

σ

+µ5
q0q3

σ
+ µ6

q0q2

σ
+ µ7

q1q3

σ
+ µ8

q2q3

σ

+µ9
q0q1

σ
+ µ10

τx

σ
+ µ11

τy

σ
+ µ12

τz

σ
+µ13, (12)

and similarly for ỹ and z̃ by replacing µi by νi and ζi, respectively. All µi, νi and ζi are constants depending only on

the fixed atom parameters. In addition, σ as well as τ are related to s and t, respectively, by the following relations

σ = N(q)s,

τ = G̃&t.

Here, N(q) = q2
0 + q2

1 + q2
2 + q2

3 denotes the quaternion norm and G̃ denotes the (unnormalized) rotation matrix

2

4

q
2
0 + q

2
1 − q

2
2 − q

2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q
2
0 − q

2
1 + q

2
2 − q

2
3 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) q
2
0 − q

2
1 − q

2
2 + q

2
3

3

5 .

Proof. The proof is given in the appendix. !

With the change of variables suggested by the lemma above, the new optimization variables become (σ, q0, q1, q2,

q3, τx, τy , τz). Note that we can always recover the original parameters t, s from τ, σ, and vice versa, using Lemma
1 (since the quaternion parameters are known). For notational convenience, we will assume in the following that this

change of variables has been performed and continue to use η for denoting the (new) transformation parameters.
The next step in order to show that φη is DC, is to show that every constituent function in (12) is DC as well. In

what follows, we provide a few lemmas towards this direction. In particular, we show that the following functions are

DC: f(qi, σ) = q2
i

σ
, i = 0, 1, 2, 3, f(qi, qj , σ) = qiqj

σ
, i, j = 0, 1, 2, 3 and i )= j, f(τx, σ) = τx

σ
, f(τy, σ) = τy

σ
and

f(τz, σ) = τz

σ .

Lemma 2 The function f(x, α) = x
α

: R × R∗
+ → R is DC with the following DC decomposition

f(x, α) =
x

α
=

1

2

(x + 1)2

α
−

1

2

(x2 + 1)

α
. (13)
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Proof. The proof can be found in [15, Lemma 3]. !

The above lemma implies that the constituent functions τx

σ ,
τy

σ and τz

σ in (12) are DC.

Lemma 3 The function f(x, α) = x2

α : R × R∗
+ → R is convex.

Proof. The Hessian matrix of f is

∇2f(x, α) =
1

α3

[

2α2 −2xα
−2xα 2x2

]

.

Observe that the term 1
α3 is positive, so we only need to prove that the remaining matrix is positive semi-definite. Call

λ1 and λ2 its eigenvalues. Then observe that its determinant is λ1λ2 = 4α2x2 − 4x2α2 = 0. Thus either λ1 or λ2 are

zero. Now, observe that the trace is λ1 + λ2 = 2α2 + 2x2 > 0. Therefore, the Hessian matrix is positive semi-definite
and f is convex.!

According to the above lemma, the constituent functions
q2

i

σ
, i = 0, 1, 2, 3 in (12) are DC.

Lemma 4 The function f(x, y, α) = xy
α : R × R × R∗

+ → R is DC, with the following decomposition

xy

α
=

1

2

(x + y)2

α
−

1

2

x2 + y2

α
. (14)

Proof. The proof is given in the appendix. !

The above lemma implies that the functions
qiqj

σ
, where i, j = 0, 1, 2, 3 and i )= j in (12) are DC.

To summarize, we have shown the DC property of all constituent functions in (12). We can therefore write (12) in

the more abstract form

x̃(η) =
13
∑

i=0

µifi =
13
∑

i=0

µi(gi − hi), (15)

where gi−hi is the DC decomposition of each function fi. Moreover, note that each convex part gi, hi is nonnegative.

This allows us to conclude that the transformed coordinates are DC.

Lemma 5 The functions x̃2(η) (and similarly ỹ2(η) and z̃2(η)) introduced in Lemma 1 are DC functions of η.

Proof. From (15) we have that x̃2(η) =
∑13

i,j=0
i!=j

2µiµjfifj +
∑13

i=0 µ2
i f

2
i . Proposition 2 (c) states that the product of

two DC functions (with nonnegative convex parts) is also DC. Using the results developed above, this implies that all

summands in x̃2(η) are DC. Since the linear combination of DC functions is again DC by Proposition 2 (a) we have
finally obtained that x̃2(η) is DC. !

Lemma 5 implies that w(η) = x̃(η)2 + ỹ(η)2 + z̃(η)2 is DC and we denote its DC decomposition by w(η) =
gw(η) − hw(η).

4.3 DC form of the objective function

Finally we are ready to prove the main result of our paper, namely Proposition 1, which states that the objective

function of the optimization problem (6) is DC. Recall that the construction of geometric atoms by transforming the

generating function is equivalent to considering the generating function on the transformed coordinates x̃, ỹ and z̃
computed above. Given these developments, it remains to show that the transformed generating functions are DC,

and that the !1 distance between the transformed volume v(η) and the query volume p is DC. We prove this for the
Gaussian generating function i.e., φ(x, y, z) = exp(−(x2 + y2 + z2)). Note that the atoms φγ are not normalized; the

L2 norm of φγ will be denoted by ‖φγ‖.
Proof of Proposition 1.

φη " φ(x̃(η), ỹ(η), z̃(η)) =
e−(x̃(η)2+ỹ(η)2+z̃(η)2)

s‖φγ‖

=
e−w(η)

s‖φγ‖
= e−w(η)−ln s−ln ‖φγ‖

= e−[w(η)+ln s+ln ‖φγ‖] = e−δ(η),

6



where we have introduced the function

δ(η) = w(η) + ln s + ln ‖φγ‖

= gw(η) − hw(η) + ln s + ln ‖φγ‖. (16)

Recall from Lemma 1 that s = σ
N(q) , where N(q) = q2

0 + q2
1 + q2

2 + q2
3 , which is rewritten as

ln s = lnσ − lnN(q). (17)

Note that lnσ is concave. Unfortunately, lnN(q) is not a convex function in the quaternion parameters, and we
therefore need a DC decomposition for lnN(q). We show in the appendix that

lnN(q) =

[

ln(N(q)) +
3

∑

i=0

ln(q2
i )

]

−

[

3
∑

i=0

ln(q2
i )

]

= gNq(η) − hNq(η)

is a decomposition of lnN(q), where both components are concave. Inserting this decomposition into (17) yields
ln s = lnσ − gNq(η) + hNq(η). Putting all facts together, we can rewrite (16) as

δ(η) = [gw(η) − gNq(η) + ln ‖φγ‖]

− [hw(η) − lnσ − hNq(η)] , (18)

which readily provides a DC decomposition for δ(η).
Next, we make use of Proposition 3 (b), which states that the synthesis of a convex function with a DC function is

again DC. This shows that every voxel of φη is DC with the following decomposition: e−δ(η) = [e−δ(η) + K(gδ(η) +
hδ(η))] − [K(gδ(η) + hδ(η))]. This holds for each atom in the sparse approximation of the volume v.

Consider now the kth atom and let φηk
= gk(η) − hk(η) denote the DC decomposition of its voxels. Next,

we use once again Proposition 2 (a) to come up with the DC decomposition of v(η) =
∑K

k=1 ξkφηk
, which reads

v(η) =
[

∑

{k:ξk≥0} ξkgk −
∑

{k:ξk<0} ξkhk

]

−
[

∑

{k:ξk≥0} ξkhk −
∑

{k:ξk<0} ξkgk

]

≡ gv(η) − hv(η).

So far, we have shown that the transformed reference volume v(η) is a DC decomposition of η. Since, the query
volume p is fixed, the same holds for the difference volume v(η) − p. Proposition 2 (b) permits to compute the DC
decomposition of the ith voxel of |v(η)−p|, which is given by |v(η)−p|i = 2 max{gi, hi}− (gi +hi), where gi −hi

is the DC decomposition of the ith voxel of v(η) − p. Finally, the objective function in (7) is DC, as it is a sum over
the voxels of |v(η) − p|, which have been shown to be DC functions. !

Finally, we note that the proof above can be extended from the Gaussian generating function to other generating

functions. We conclude that the objective function is a DC function, which permits the application of DC programming

methods for computing the global minimizer of the optimization problem (6).

5 Numerical validation & Conclusions

Computational complexity analysis. The computational cost of the proposed method is dominated by the need

for evaluating the DC decomposition of the objective function f . This scales as O(K · n1 · n2 · n3), since the DC
decomposition needs to be evaluated for each voxel of theK atoms of size n1 × n2 × n3 whenever an evaluation of f
is needed.

Numerical example. In the following, we present a numerical example to demonstrate the validity of the proposed

approach. Consider a relatively simple volume v of size 16 × 16 × 16, decomposed into K = 3 atoms. We choose a
transformation η∗ consisting of scaling and rotation and use it to transform v into the query volume p. Then, we use
the cutting plane method [7, Thm 5.3] in order to compute an estimate η̂ of η∗ that aligns v with p. After a total number
of 8712 iterations of the cutting plane method (with one restart at about 5000 iterations), we obtain an iterate close to

the global minimizer η∗. Table 1 shows the numerical values of both the exact and the estimated transformation.
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q0 q1 q2 q3 s
η∗ -0.7303 -0.3651 0.5477 0.1826 0.8

η̂ -0.7407 -0.4038 0.5166 0.1462 0.7833

Table 1: Registration results; top row shows the exact transformation parameters and the bottom row the estimated

ones.

This small numerical example is intended to be a preliminary proof-of-concept, confirming the global optimality

properties of the proposed approach in practice. Of course, more experimental validation is needed, especially with

volumes of larger sizes, in order to explore the full potential of the proposed approach. This is exactly the focus of our

current activity. We are working on a fast implementation of the methodology facilitating data-parallel processors, in

particular GPUs. The obtained results will be reported in a subsequent paper.

Conclusions and Outlook We have proposed a globally optimal method for rigid registration between volumetric

images by transformation parameter estimation. The proposed methodology is based on sparse volumetric representa-

tions. We have shown that under such a representation, the !1 similarity is a DC function of the transformation. This

permits to solve the optimization problem using DC programming solvers that have theoretical guarantees of converg-

ing to the globally optimal solution. Finally, we have presented preliminary numerical evidence that demonstrates the

large potential of the method.

The practicability of our approach crucially depends on the computational complexity, in particular the number of

function evaluations needed until convergence. Future work aims at significantly reducing the complexity by adap-

tively interpolating the objective function and using sparse grid techniques.
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A Proof of Lemma 1

Suppose that the atom under consideration has parameters γ = (a, R, b), where a = [ax, ay, az] and b = [bx, by, bz]. If
we denote by η = (s, G, t) the transformation, then according to the SIM(3) group law (4), the transformed parameters
of the atom will be

η ◦ γ = (sa, GR, t + sGb).

If we denote A = diag(1/ax, 1/ay, 1/az), then the transformed axes [x̃, ỹ, z̃]& according to (11) will be




x̃
ỹ
z̃



 = 1
s
AR&G&









x
y
z



 − t − sGb





= AR&





G"

s





x
y
z



 − G"

s
t − b



 . (19)

In the above equation we have used the fact thatG is a rotation matrix i.e.,G&G = I .
We use quaternions to parameterize the unknown rotation matrixG. Consider a quaternion q = q0+iq1+jq2+kq3

with normN(q) = q2
0 + q2

1 + q2
2 + q2

3 . Then the corresponding rotation matrix takes the form

G =
1

N(q)
G̃,

where

G̃ =

[

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

]

(20)

denotes the unnormalized rotation matrix. Inserting this representaion into (19) gives




x̃
ỹ
z̃



 = AR&





G̃"

N(q)s





x
y
z



 − G̃"

N(q)s t − b



 . (21)

Defining

σ = N(q)s, (22)

τ = G̃&t, (23)

the original set of optimization variables (s, q0, q1, q2, q3, tx, ty, tz) becomes (σ, q0, q1, q2, q3, τx, τy, τz). Note that
these two variable representations are equivalent and one may switch from the first one to the second and vice versa

via the use of equations (22) and (23). In what follows we use the second representation and rewrite (21) as




x̃
ỹ
z̃



 = AR&





1
σ
G̃&





x
y
z



 − 1
σ
τ − b



 . (24)

Recall that in the above,A, R, b, x, y and z are constant. In particular, the matrix AR& is constant and its entries are

denoted as follows:

AR& =





ρ1 ρ2 ρ3

ρ4 ρ5 ρ6

ρ7 ρ8 ρ9



 .
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The right hand side of (24) thus takes the form





ρ1 ρ2 ρ3

ρ4 ρ5 ρ6

ρ7 ρ8 ρ9





1

σ



G̃&





x
y
z



 − τ



 −





cx

cy

cz



 , (25)

where [cx, cy, cz]& = AR&b.
Next, we will use (20) to compute the explicit dependence of x̃ on the optimization variables. Note that

G̃
"

0

@

x
y
z

1

A =

2

6

4

x(q2
0 + q2

1 − q2
2 − q2

3) + 2y(q1q2 − q0q3) + 2z(q0q2 + q1q3)

2x(q1q2 + q0q3) + y(q2
0 − q2

1 + q2
2 − q2

3) + 2z(q2q3 − q0q1)

2x(q1q3 − q0q2) + 2y(q0q1 + q2q3) + z(q2
0 − q2

1 − q2
2 + q2

3)

3

7

5
.

Putting all the above facts together one finally obtains, after some straightforward algebraic manipulation,

x̃ = µ0
q2
0

σ
+ µ1

q2
1

σ
+ µ2

q2
2

σ
+ µ3

q2
3

σ
+ µ4

q1q2

σ
+ µ5

q0q3

σ

+µ6
q0q2

σ
+ µ7

q1q3

σ
+ µ8

q2q3

σ
+ µ9

q0q1

σ
+ µ10

τx

σ

+µ11
τy

σ
+ µ12

τz

σ
+ µ13, (26)

where

µ0 = ρ1x + ρ2y + ρ3z

µ1 = ρ1x − ρ2y − ρ3z

µ2 = −ρ1x + ρ2y − ρ3z

µ3 = −ρ1x − ρ2y + ρ3z

µ4 = 2ρ1y + 2ρ2x

µ5 = −2ρ1y + 2ρ2x

µ6 = 2ρ1z − 2ρ3x

µ7 = 2ρ1z + 2ρ3x

µ8 = 2ρ2z + 2ρ3y

µ9 = −2ρ2z + 2ρ3y

µ10 = −ρ1

µ11 = −ρ2

µ12 = −ρ3

µ13 = −cx.

Observe that all µi are constant. This concludes the proof for x̃. The derivation for ỹ and z̃ is similar and therefore
omitted. !

B Proof of Lemma 4

We need to show that the two components in (14) are convex. We start with the function f(x, y, a) = (x+y)2

a
, a > 0.

The Hessian matrix∇2f(x, y, a) is

a3





2a2 2a2 −2a(x + y)
2a2 2a2 −2a(x + y)

−2a(x + y) −2a(x + y) (x + y)2



 .
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Now consider a vector v = [v1, v2, v3]& and observe that

v&∇2f(x, y, a)v = 2a2v2
1 + 2a2v2

2 + 2(x + y)2v2
3

+4a2v1v2 − 4a(x + y)v1v3

−4a(x + y)v2v3

= 2(av1 + av2 − (x + y)v3)
2 ≥ 0.

Hence the first component is convex.

Considering now the second component f(x, y, a) = x2+y2

a
, a > 0, the Hessian matrix is

∇2f(x, y, a) = a3





2a2 0 −2xa
0 2a2 −2ya

−2xa −2ya 2(x2 + y2)



 .

Similarly as above, consider a vector v = [v1, v2, v3]& and observe that

v&∇2f(x, y, a)v = 2[a2v2
1 + a2v2

2

+(x2 + y2)v2
3 − 2xav1v3

−2yav2v3]

= 2(av1 − xv3)
2 + 2(av2 − yv3)

2 ≥ 0,

which shows that the second part is also convex. !

C Decomposition of ln(x2 + y
2 + z

2 + w
2)

LetN = x2 + y2 + z2 + w2. We will show that the following decomposition

lnN =
[

ln(N) + ln(x2) + ln(y2) + ln(z2) + ln(w2)
]

−
[

ln(x2) + ln(y2) + ln(z2) + ln(w2)
]

, (27)

has concave components.

Proof. The second component is concave as it consists of a sum of concave scalar functions. We now focus on the

first part, whose Hessian matrix is

H =
1

N2









ζ(x) −4xy −4xz −4xw
−4xy ζ(y) −4yz −4yw
−4xz −4yz ζ(z) −4zw
−4xw −4yw −4zw ζ(w)









,

where we have introduced the function ζ(x) = 2x2N−2N2−4x4

x2 for notational convenience. Consider a vector v =
[v1, v2, v3, v4]&. After factoring out the term

1
x2y2z2w2 and some algebraic manipulation, it holds that
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v&Hv = −2v2
1w

6y2z2 − 2v2
1w

4x2y2z2 − 4v2
1w

4y4z2

−4v2
1w

4y2z4 − 4v2
1w

2x4y2z2 − 2v2
1w

2x2y4z2

−2v2
1w

2x2y2z4 − 2v2
1w

2y6z2 − 4v2
1w

2y4z4

−2v2
1w

2y2z6 − 8v1v2w
2x3y3z2 − 8v1v3w

2x3y2z3

−8v1v4w
3x3y2z2 − 2v2

2w
6x2z2 − 4v2

2w
4x4z2

−2v2
2w

4x2y2z2 − 4v2
2w

4x2z4 − 2v2
2w

2x6z2

−2v2
2w

2x4y2z2 − 4v2
2w

2x4z4 − 4v2
2w

2x2y4z2

−2v2
2w

2x2y2z4 − 2v2
2w

2x2z6 − 8v2v3w
2x2y3z3

−8v2v4w
3x2y3z2 − 2v2

3w
6x2y2 − 4v2

3w
4x4y2

−4v2
3w

4x2y4 − 2v2
3w

4x2y2z2 − 2v2
3w

2x6y2

−4v2
3w

2x4y4 − 2v2
3w

2x4y2z2 − 2v2
3w

2x2y6

−2v2
3w

2x2y4z2 − 4v2
3w

2x2y2z4 − 8v3v4w
3x2y2z3

−4v2
4w

4x2y2z2 − 2v2
4w

2x4y2z2 − 2v2
4w

2x2y4z2

−2v2
4w

2x2y2z4 − 2v2
4x

6y2z2 − 4v2
4x

4y4z2

−4v2
4x

4y2z4 − 2v2
4x

2y6z2 − 4v2
4x

2y4z4

−2v2
4x

2y2z6

= −2w2z2(v1y
3 + v2x

3)2 − 2x2y2z2w2(v1y + v2x)2

−2w2y2(v1z
3 + v3x

3)2 − 2x2y2z2w2(v1z + v3x)2

−2y2z2(v1w
3 + v4x

3)2 − 2x2y2z2w2(v1w + v4x)2

−2w2x2(v2z
3 + v3y

3)2 − 2x2y2z2w2(v2z + v3y)2

−2x2z2(v2w
3 + v4y

3)2 − 2x2y2z2w2(v2w + v4y)2

−2x2y2(v3w
3 + v4z

3)2 − 2x2y2z2w2(v3w + v4z)2

−4v2
1w

4y4z2 − 4v2
1w

4y2z4 − 4v2
1w

2x4y2z2

−4v2
1w

2y4z4 − 4v2
2w

4x4z2 − 4v2
2w

4x2z4

−4v2
2w

2x4z4 − 4v2
2w

2x2y4z2 − 4v2
3w

4x4y2

−4v2
3w

4x2y4 − 4v2
3w

2x4y4 − 4v2
3w

2x2y2z4

−4v2
4w

4x2y2z2 − 4v2
4x

4y4z2 − 4v2
4x

4y2z4

−4v2
4x

2y4z4 ≤ 0. (28)

Hence, the first part of the decomposition is concave. !
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