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KINETIC FUNCTIONS IN MAGNETOHYDRODYNAMICS
WITH RESISTIVITY AND HALL EFFECTS

PHILIPPE G. LEFLOCH AND SIDDHARTHA MISHRA

ABSTRACT. We consider a nonlinear hyperbolic system of two conservation
laws which arises in ideal magnetohydrodynamics and includes second-order
terms accounting for magnetic resistivity and Hall effect. We show that the
initial value problem for this model may lead to solutions exhibiting complex
wave structures, including undercompressive nonclassical shock waves. We in-
vestigate numerically the subtle competition that takes place between the hy-
perbolic, diffusive, and dispersive parts of the system. Following Abeyratne,
Knowles, LeFloch, and Truskinovsky, who studied similar questions arising in
fluid and solid flows, we determine here the associated kinetic function which
characterizes the dynamics of undercompressive shocks driven by resistivity
and Hall effects. To this end, we design here a new class of schemes with con-
troled dissipation, following recent work by LeFloch and Mohammadian. The
equivalent equation associated with a scheme provides a guideline to able to
capture physically relevant shocks. We propose a class schemes based on high-
order entropy conservative, finite differences for the hyperbolic flux and on
high-order central differences for the resistivity and Hall terms. The schemes
are tested for several regimes of initial data (co-planar or not) and parameter
values, and allow us to analyze the properties of nonclassical shocks and es-
tablish the existence of monotone kinetic function in magnetohydrodynamics.

1. INTRODUCTION

Many problems in the physical, biological and engineering sciences are modeled
by nonlinear hyperbolic systems of conservation laws, augmented with second- or
higher-order regularization terms. In one space dimension, these partial differential
equations take the form

(1.1) ug + f(u)s =0,

where u is the vector-valued unknown and the flux f = f(u) is a prescribed, smooth
vector-valued map. The above equation has to be supplemented with suitable initial
data. The system (1.1) is said to be strictly hyperbolic provided the eigenvalues of
the flux Jacobian V, f are real and distinct.

It is well known that solutions to (1.1) develop propagating discontinuities (shock
waves, contact discontinuities) in finite time, even from smooth initial data; hence,
solutions of (1.1) are considered in the weak sense. On the other hand, weak
solutions are not uniquely determined by their initial data, in general, and suitable
admissibility criteria need be imposed in order to recover uniqueness for the initial
value problem. These admissibility criteria are termed as “entropy conditions”.

One natural requirement is based on a convex entropy function U = U(u) and
entropy flux F' = F(u) which, by definition, must satisfy the compatibility condition
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2 PHILIPPE G. LEFLOCH AND SIDDHARTHA MISHRA

V.UV, f =V,F. Such an entropy pair exists for most models of physical interest,
and one then imposes that physically-meaningful weak solutions to (1.1) also satisfy
the entropy inequality

(1.2) U(u)e + F(u), <0

in the distributional sense.

Another related strategy consists of imposing pointwise conditions at shocks.
For systems with genuinely non-linear characteristic fields, the natural conditions
are Lax entropy inequalities [21, 22] and, for more general systems, the Liu entropy
condition [32]. These conditions imply, in particular, a restriction on the number
of characteristics that impinge on a shock from both sides. Shocks with the correct
number of characteristics impinging on them are termed as classical or Lax shocks.

Following LeFloch [24, 25, 26], we are interested here in the case that weak
solutions are generated by adding high-order regularization terms in the right-hand
side of (1.1).

Recall first that for scalar conservation laws, any function U is associated with an
entropy flux F, and by imposing all such inequalities (1.2) one ensures the unique-
ness of entropy solutions to the Cauchy problem. Most system admits however a
single entropy pair and, hence, the weak solutions are solely constrained by one
entropy inequality. Moreover, a single entropy inequality is not sufficient to ensure
uniqueness, whenever the flux does not satisfy a convexity or genuine nonlinearity
condition.

Recall also that shocks with either greater or lesser number of characteristics
impinging on them are termed as nonclassical, and are referred to as being over-
compressive or undercompressive, respectively.

Then, motivated by physical applications, let us for instance consider the class
of entropy solutions to (1.1) generated by diffusive-dispersive regularizations in the
generic form:

(1.3) uf + f(u)e = € (B(u) ug)s + v (Clu) ug,),,

for some constants ¢ > 0 and x € R and some matrix-valued maps B,C. One
typical requirement on the dissipation matrix B is that is is non-negative with
respect to the scalar product induced by the entropy U, that is,

V2U B > 0.

Under some further restriction on C' (see [25]), one formally deduces that the en-
tropy inequality (1.2) does hold in the limit € — 0. It turns out however that (1.2)
does not provide sufficient information on the effect of diffusive-dispersive small-
scales, and does not lead to a well-posed problem for the system of conservation
laws (1.1).

The nature of waves associated to a specific regularization such as (1.3) is con-
veniently exhibited by solving the Riemann problem associated with (1.1), corre-
sponding to the piecewise constant initial data

0
(14) u(x’o) _ {Uly x <\,
Uy x>0,

for given constant states w;,u,. For instance, recall that the Riemann problem
associated with a strictly hyperbolic system with genuinely non-linear (or linearly
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degenerate) characteristic fields can be uniquely solved by a combination of Lax
shocks, contact discontinuities, and centered rarefaction waves.

An illustrative example for the presence of non-classical shocks is provided by
the scalar conservation law, with a cubic flux function:

(1.5) ug + (u?), = 0.

The above flux is non-convex and thus is neither genuinely non-linear nor linearly
degenerate. Diffusive-dispersive regularizations [19, 16, 25] do lead to nonclas-
sical shocks for (1.5). These shocks do not satisfy the classical Oleinik entropy
inequalities for scalar conservation laws. Furthermore they arise as limits of the
diffusive-dispersive regularization:

(16) ’LL; + ((ue)?))z = Eu;x + K€2u;mz'

On the other hand, taking x = 0 in (1.6) results in a diffusive approximation, for
which all limiting solutions are classical and satisfy the Oleinik entropy conditions.

In fact, nonclassical shocks do exist for solutions of many interesting problems,
for instance in the dynamics of phase transitions in material science [1, 2, 23, 36,
37, 42, 43], in thin film flows [4, 5, 31, 30], and in flows in porous media [3, 20]
among other applications. These shocks are the limits of models including second-
or higher-order regularization terms and, hence, are physically relevant.

Nonclassical shocks satisfy a single entropy inequality of the form (1.2) but may
not be unique and additional conditions need to be imposed in order to select
a unique nonclassical shock solution. Such conditions are expressed in terms of
kinetic relations, which relate the entropy dissipation at a shock in terms of the
shock speed. These kinetic relations are often monotone functions and lead to
uniqueness results of solutions containing nonclassical shocks.

In the absence of explicit formulas, numerical methods are heavily used in the
study of conservation laws (1.1). Many standard methods [33] are based on the
finite volume methodology and rely on discretizing the domain into cells and up-
dating the cell averages of the unknown. The update is determined by constructing
suitable Godunov-type numerical fluxes. These schemes are very successful in ap-
proximating classical shocks.

It is much more difficult to approximate nonclassical shocks. As an example,
consider the cubic scalar conservation law (1.5). It is not difficult to check that a
standard Godunov-type monotone scheme always approaches classical shocks (sat-
isfying the Oleinik entropy conditions) to (1.5). Standard methods need to be
adapted in order to approximate nonclassical shocks.

The numerical approximation of nonclassical shocks has been investigated in
various works [16, 24, 29, 8, 9, 27, 28] where schemes with controled dissipation
are developed, as they are called in [26]. The recent paper by LeFloch and Mo-
hammadian [28] provides a detailed review of the state of the art and demonstrate
the key role played by the equivalent equation associated with the scheme under
consideration. The main requirement for a scheme with controled dissipation is
that the equivalent equation should be an approximate version of the diffusive-
dispersive regularization (1.3), after the diffusion and dispersion terms in (1.3) be
approximated directly by high-order finite differences (for instance). Note that this
is a key difference from standard shock-capturing schemes, in which the diffusion
and dispersion terms are implicit introduced and depend on the algebraic structure
of the discretization of the hyperbolic flux. The equivalent equation is essential in
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introducing the small scale information needed for capturing nonclassical shocks.
Another crucial role is played by the entropy conservative numerical flux developed
in [38, 29, 27, 39]. The resulting schemes satisfy discrete versions of the entropy
inequality (1.2) and were initially introduced by Tadmor [38], then extended to
third-order by LeFloch et al. [17, 29] and, finally, investigated under more general
circumstances [8, 9, 39, 27].

LeFloch and Mohammadian [28] demonstrated the significance of the equivalent
equation for schemes that approximate nonclassical shocks. A key point of the study
was to numerically determine kinetic functions associated with schemes. These
approximations of the kinetic relation serve to quantify the ability of a scheme
for computing nonclassical shocks. It is demonstrated in [28] that increasing the
order of accuracy of the discretization led to a better approximation of the kinetic
relation.

This general presentation leads us precisely to our main objective of the present
paper, i.e. extending the above technique to a model of magnetohydrodynamics.
We consider a non-strictly hyperbolic system of two conservation laws (discussed
extensively in Section 2) arising in ideal magnetohydrodynamics (MHD) when mag-
netic resistivity and Hall effect terms are included. First of all, we establish here
that certain solutions of this model do contain nonclassical shocks. Following [28],
we then design a class of high-order, entropy conservative, finite difference schemes
for this model, and we apply them to study the properties of the associated non-
classical shocks. Different regimes are studied and reveal the presence of a regime,
where nonclassical shocks are formed. Numerical kinetic functions are computed,
and we establish that they support the theory developed in [18], which however
assumed strict hyperbolicity. Our results further validate LeFloch and Mohamma-
dian’s strategy [28] and demonstrate that proper discretization of the equivalent
equation can be combined with entropy conservative flux discretizations, leading
to a robust and accurate dissipation-controled method for the approximation of
nonclassical shocks;

This paper is organized as follows. The MHD model of interest is described
in Section 2 and then, in Section 3, we introduce a class of high-order schemes,
including up to 10-th order of accuracy. Our numerical results are presented in
Section 4, and numerical kinetic relations are plotted. Finally, the conclusions of
this paper are summarized in Section 5.

2. MAGNETOHYDRODYNAMICS MODEL WITH RESISTIVITY AND HALL TERMS

The equations of ideal magnetohydrodynamics (MHD) form a physically im-
portant example of a system of conservation laws that is not strictly hyperbolic
(coinciding eigenvalues of the flux Jacobian) and in addition, is not genuinely non-
linear nor linearly degenerate [35]. These equations model the evolution of plasmas
and occur in astrophysics, solar physics, electrical and aerospace engineering. In
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one space dimension, the equations read

Pt + (Pul) = Oa
B2+ B3

x

(pu1)e + (pui +p+

Bty 4

(pu2): + (PU1U2 — B1B3), =0
(2.1) (pus)t + (puruz — B1B3), = 0,
Jo = 0
) 0

(B2)¢ + (u1 B2 — uaB1)s

(B3)t + (u1Bs — usB1),
|BJ?
Et + ((E +p+ T)Ul — (u . B) Bl)x = 0,
where p is the density, v = (u1,u2,u3) and B = (B, Ba, B3) are the velocity and
magnetic fields, respectively, p is the thermal pressure, and FE is the total energy.
For simplicity, we assume here that F is determined by the equation of state of
ideal gases:

p 1 2 1o
(2.2) E—7_1+2p|u| +2B,
where v is the gas constant. Note that the divergence constraint for MHD equations
[6] in one space dimension implies that the normal magnetic field B is a constant
in both space and time and appears in (2.1) as a parameter.

Due to the lack of strict hyperbolicity and non-convex, the solutions of the
Riemann problem for the ideal MHD equation exhibit very complex wave structures,
including compound wave patterns and both undercompressive and overcompressive
intermediate shocks. In turn, there is no uniqueness for solutions to the Riemann
problem for ideal MHD equations. See [40] for further details.

So far, there has been no systematic study of the properties of nonclassical shocks
for the ideal MHD equations. In particular, the existence of associated kinetic
relations is yet to be investigated. The existence of kinetic relations might pave the
way for obtaining unique solutions for the Riemann problem associated with the
ideal MHD equations. The main reason for the lack of such results is the formidable
difficulty in dealing with a complicated 7 x 7 system. Consequently, simpler models
mimicking some of the difficulties present in the ideal MHD equations have been
proposed and studied.

One sub-model for ideal magnetohydrodynamics is provided by the following
2 x 2 system ([13, 14, 18, 15]):

v + (v + w?)v), =0,

(23) wi + ((v? 4+ w?)w), = 0.

A systematic derivation of this system from the ideal MHD equations (2.1) is de-
scribed in [34]. The vector (v, w) represents the transverse components of the mag-
netic field in the ideal MHD equations (2.1). The model also arises independently
in studying the solar wind [10, 44] and in non-linear elasticity [7].

The system (2.3) is rotationally invariant,and smooth solutions of (2.3) can be
parameterized in radial coordinates:

(2.4) v=rcos(f), w=rsin(@), r>0, 6¢cl0,2r),
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so that (2.3) takes the form

e+ 3r%r, =0,
(2.5) .
9t +r HI =0.
The two eigenvalues of (2.3) are A\; := r? and Xy := 3r?. Hence, the system

is strictly hyperbolic except at the umbilic point » = 0. The characteristic field
associated with Ao = 3r? is the fast mode of the system and fails to be genuinely
non-linear. On the other hand, the slow or rotational mode is given by A; = r2. It
is linearly degenerate as the mode is independent of 6.

The model (2.3) is neither strictly hyperbolic nor genuinely non-linear and mim-
ics the structure of ideal MHD equation (2.1). There are two main wave families
for (2.3) (cf. [13, 18]):

e Rotational discontinuities. These waves are associated with the slow (or
rotational) mode; the radius r is constant and the angle 6 varies across
these waves.

e Fast waves. These waves keep the angle 6 constant and are associated with
the fast mode; the radius r varies across these waves.

One aim is to construct solutions to the Riemann problem associated with (2.3) in
terms of the above wave families. However, this is not possible ([13, 18]) when the
data are coplanar, i.e. when w = cv, for some constant c. In this case, (2.3) reduces
formally to the following scalar conservation law with cubic flux:

(2.6) v + (14 ¢*)(v*), = 0.

As recalled in the introduction, solutions to (2.6) may contain nonclassical
shocks. In the present paper, we go beyond the standard diffusive-dispersive regu-
larization, and consider the following regularization of (2.3):

vi 4 (V) + (W) *)v)e = evg, + aews,,

2.7
27 w§ + ((v9)? 4+ (w)?)we), = ews, — aevs,

for some positive constants €,«. The diffusive term evg,, ews, models magnetic
resistivity while the dispersive ones aevt,, aews, models the Hall effect [44]. As
observed by Hayes and LeFloch [18], nonclassical shocks to (2.3) do arise as limits
of (2.7).

The system (2.3) admits an entropy function associated with the total energy

(2.8) U(v,w) = %@2 Fu?), Flo,w) = %(@2 +u?)?),

which is compatible with the regularization (2.7). Weak solutions to (2.3) realized
as limits of (2.7) then satisfy the entropy inequality

(2.9) U(v,w); + F(v,w), <0

in the distributional sense. The properties of nonclassical shocks to (2.3) is sum-
marized in the following theorem established in [18].

Theorem 2.1. Consider the Riemann problem for (2.3) with Riemann data (v, w;)
and (v, w,.). For non co-planar data, there exists a unique solution of the Riemann
problem satisfying (2.9), which consists of a rotational discontinuity plus a fast shock
or a rarefaction wave.
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If the data are co-planar and the angles associated with initial data satisfy 0, =
0;(mod. ), then the Riemann problem for (2.3) has a unique solution consisting
of either a classical shock or a rarefaction wave.

If the data are co-planar and 0, = w+60;(mod. 7), then the Riemann problem for
(2.3) admits a one-parameter family of entropy solutions containing a nonclassical
shock connecting (v, w;) with an intermediate state (Vpm,wy,), followed by a fast
shock or a rarefaction. The nonclassical shocks are characterized uniquely via a
kinetic relation of the form:

(2.10) o(s) = —s%[[vz +w?] + Z[[(U2 +w?)?,

where [a] denotes the jump of a variable a and s denotes the shock speed, and ¢
satisfies the inequalities

9¢(s)
0s

©(s)

(2.11)

207 - S

<0.

> w

The kinetic function (2.10) expresses the entropy dissipation as a monotone
function of the shock speed. In [18], the authors also proved that the solutions of
the diffusive-dispersive regularatization (2.7) converge to weak solutions to (2.3),
by using the compensated compactness method. Thus, nonclassical shocks arise as
limits of the diffusive-dispersive regularization (2.7), and our aim in this paper is
to study numerically the property of nonclassical shocks, by using finite difference
schemes well-adapted to the approximation of the system (2.3).

3. A CLASS OF DIFFERENCE SCHEMES WITH CONTROLLED DISSIPATION

Preliminaries. For simplicity, we consider a uniform discretization of the compu-
tational domain, with mesh size Az and i-th mesh point x; := iAx. We discretize
(2.7) directly, and more precisely

(3.1) up + f(w)y = D gy,

where v := (v,w) and

= (oot 0= (L0 ).

The diffusion € and the Hall coefficient ae depend explicitly on the mesh parameter
Az,

By denoting by u;(t) an approximation of u(z;,t) at time ¢, a conservative semi-
discrete finite difference scheme for (3.1) takes the form (cf. for instance [33]):

d 1 d d 1 d
(3.2) i E( ivi2 = fitaye) = A2 Ry

where fid+1 /2 is a discretization consistent with the exact hyperbolic flux and with

spatial order of accuracy, and R¢ denotes the discretization of the diffusion-dispersion
terms. We have dropped the explicit ¢-dependence of all the quantities for nota-
tional convenience.
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Standard finite difference flux. The first numerical flux we use is the standard
centered finite difference flux:

P
(3.3) P2 =D BT (i i),
j=1
where d = 2p is the order of the discretization and the flux f is given by the average:
— 1
(3.4) Pl ur) o= 5 (fm) + f (),

The coefficients 3 in (3.3) are determined from the requirement that the discretiza-
tion is 2p-th order accurate. The coefficients for discretizations up to 10-th order
of accuracy are listed in Table 1. The resulting scheme may not satisfy a discrete

Order2p |31 B2 B3  fBa fs
2 1

4 1
4 3 7%

3 _3
6 2 10 30
8 8 _2 8 _ .1

5 5 105 140

5 10 5 5 1
10 3 T3 1 U307 630

TABLE 1. Coefficients 3 in (3.3)

version of the entropy inequality(2.9).

Entropy conservative flux discretization. Since the entropy inequality plays a
role in the structure of the nonclassical shocks (see Theorem 2.1), it is more natural
to rely on a scheme that satisfies a discrete entropy inequality. The starting point
for designing an entropy stable scheme is the construction of an entropy conservative
discretization of the flux f in (3.1). We use the terminology given by Tadmor [38]
and the high-order schemes proposed by LeFloch et al. [27].

Consider (3.1) with the entropy function E and entropy flux @ given in (2.8)
and define

S:=V,U, ¢:=(S, f)—-F

The vector S is called the entropy variable, while 1 is termed the entropy potential
[38]. For the system (2.3), these quantities are explicitly calculated as

(3.5) S=(v,w), ¢= —%(v2 +w?)2.

A 2p-th order accurate entropy conservative numerical flux for (2.3) was proposed
in [27):

(3.6) P22 =D Bif (ws i),
j=1
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with coefficients 3 listed in Table 1. The numerical flux fis any two point numerical
flux function [38]:

(37) <(S7"_Sl)af(ulau7“)> :1/)1«—7/)1,

where u;, u,. are any two states. For further results in the consistency and accuracy
of the numerical fluxes (3.6), we refer to [39]. Finally, following [12], we deduce the
following explicit formula for the entropy conservative flux:

Flug,ur) =(fi(u, ur), folur, ur)),

2 2 2 2
~ vy v wptwg vty
. Flu ) o= (U 4 ML) M2
~ v2+vf wz—&—wf wy + Wy
Falun ) o= (M 4 M)

which is clearly consistent with f in (3.1). Note that the entropy conservative flux
is different from the centered flux (3.4).

Discretization of the diffusive-dispersive term. We use standard central finite
differences of the appropriate order to discretize the diffusive-dispersive term in
(3.2). Discretization of up to tenth-order of accuracy take the form:

e Second-order:
2
Ri = Uit1 — 2U; + Ui—1.

e Fourth-order:

I 1 N 4 5 N 4 1
;= ———Uij— —U;—1 — ZU; —U; — —U; .
i 12 2T gl Ty 3 T g it
e Sixth-order:
1 3 3 49
R) = —wj_g— —u;_ 5 Wi o Wi
i T ot T ggtim T gt g
3 3 1

+ i1 = 5 Uit2 + gg Lit+3:
e Eighth-order:
s 1 8 1 8 205

R} = ———uj—qa+ U3 — fUi—2+ SUi—1 — U
i T Tpgotimt T gptes T g2 T gt T g
p UL T g2 T gy i T g it
e Tenth-order:
wo_ L 5 S S5, 5269
T 3150 01008 Tt 126 P 21 2T 3T T 1800
—|—§u- —iu' —|—iu _ 0 Uitrq + = Uj
3 T o1 2 016 3 T 1008t T 3150 Y

Combining the entropy conservative fluxes (3.6), (3.8) with central discretiza-
tions of the diffusive-dispersive term is expected to ensure that the scheme (3.2)
satisfies a discrete version of the entropy inequality (2.9); for details see [8, 9, 29, 27].
The time integration for the semi-discrete scheme (3.2) is performed by using a
standard Runge-Kutta time stepping routine of the appropriate order.



10 PHILIPPE G. LEFLOCH AND SIDDHARTHA MISHRA

4. EXISTENCE OF NONCLASSICAL SHOCKS AND KINETIC FUNCTIONS

Preliminaries. For the sake of reference, we denote the schemes introduced the
previous section as follows:

e FDd. The scheme (3.2) with the average flux (3.4), the finite differences
(3.3) and a finite difference discretization of the diffusive-dispersive term.
All the differences are of order d.

e ECd. The same scheme as above but with the entropy conservative fluxes
(3.8) replacing the averages (3.4).

In the following numerical experiments, we use d = 2, 4,6, 8,10 and all the schemes
are integrated in time with a standard fourth-order Runge Kutta method. The
time step is determined by a CFL condition and we use a CFL number of 0.45
for all simulations. Moreover, the three free parameters in (3.2) are the mesh size
Az, the diffusion coefficient €, and the Hall coefficient a. We are going to test for
various values of these parameters in the sequel.

Theorem 2.1 and various numerical experiments revealed the existence of the
following three regimes.

Classical regime. Theorem 2.1 states that solutions of Riemann problems for
(2.3) with non co-planar data contains only classical shock waves and rotational
discontinuities. We test this proposition with the following numerical experiment.

Numerical Test 1. The MHD system (3.1) is considered with the initial data:

2.0 0.25 z 0.25
@1)  r(wo)y={  TEUE O(z,0) =43 T
1.2, otherwise, 51 otherwise.

The computational domain is taken to be the interval [0, 2], and the exact solution
(see [18]) consists of a rotational discontinuity and a fast shock. All the schemes led
to very similar results in this case, and we present results obtained with the EC6
scheme in Figure 1. The state v, the radius and angle are plotted, the mesh size is
Az = 0.005, and we treat two different values of the coefficients € and «. In all the
cases, the EC6 scheme approximates the solution quite well. The radius remains
constant across the rotational discontinuity and the angle is constant across the
shock, as expected.

Reducing the value of € from ¢ = 2 to € = 0.5 results in some oscillations.
However, the waves are resolved more sharply in this case. Changing the value of
the Hall coefficient from o = 0 to a = 2 did not alter the qualitative features of
the solution. There were some dispersive oscillations around the shock wave in the
regime of high dispersion.

Other numerical experiments in the classical regime of non co-planar data demon-
strated very similar results.

Pseudo nonclassical regime. Theorem 2.1 indicates that the classical regime
should consist of all states that are non co-planar. However, numerical experiments
revealed an interesting “pseudo nonclassical” regime of initial states. By definition,
in this regime, the difference in initial angle between the states is close to m. The
resulting anomaly is illustrated in the following numerical experiment.
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(a) e=2Az, =0 (b) e=2Az, a =2.0

0 0.5 1 15 2 0 0.5 1 1.5 2

(c) e=05Az, =0 (d) e =2Az, a=2.0

FIGURE 1. Test 1 with 400 mesh points at time ¢t = 1. The plot
shows the computed radius, angle, and variable v. Note that there
are two waves in v but only one in the radius and the angle.

Numerical Test 2. We consider (2.3) with the initial data

2.0, < 0.25, z, < 0.25,
(42)  r(z,0) = ve e 0,0)=33, =
1.2, otherwise, a1 otherwise.
Note that now 0, — 0, = %r and the data is still non co-planar. However 6, —0; ~ 7.

By Theorem 2.1, the exact solution consists of a rotational discontinuity and a fast
shock. We tested with all the schemes and different sets of parameters, and again all
the schemes led to very similar, but somewhat unexpected, results. For definiteness,
in Figure 2. we present the plot for the scheme FC6.

We chose different sets of parameters. First, the mesh size is Az = 0.005 (400
mesh points), the diffusion coefficient € = 2Ax and the Hall coefficient « is set to
zero. The results show that the radius is not constant across the rotational dis-
continuity. In fact, a middle wave is formed and the radius decreases across this
wave. Characteristic analysis shows that this wave is an overcompressive nonclas-
sical shock. This behavior apparently the conclusions of Theorem 2.1, but actually
is a spurious numerical artifact.

The dispersive case (o = 2.0) shows similar behavior. The middle wave is trailed
by a overshoot, and reducing the diffusion coefficient to ¢ = 0.5Ax results in a much
smaller middle wave. Increasing the mesh resolution by an order of magnitude (4000
mesh points) also results in reducing the amplitude of the middle wave. These two
observations imply that the middle wave will disappear in the limit either by taking
the mesh size to zero or by letting € to go to zero. Hence, the middle wave is a
entirely numerical.

The appearance of the middle wave leads to very slow convergence for the
schemes. This is demonstrated in Figure 3 where we plot the results with the
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Y ‘ 2

~

0 0.5 1 15 2 0 0.5 1 15 2

(a) e = 2Az, a = 0, 400 points (b) e = 2Az, a = 2.0, 400 points

0 0.5 1 15 2 0 0.5 1 15 2

(c) e =0.5Az, a = 0, 400 points (d) e =2Az, a = 0, 4000 points

FIGURE 2. Test 2 at time t = 1. The plots show the radius, angle
and the unknown v. Note the spurious middle wave characterized
by a jump in the radius and the angle.

scheme EC6 for a mesh of 20000 points. The middle wave is still evident and
there is a overshoot in the angle at the rotational discontinuity. Thus, the spurious
nonclassical shock slows the convergence considerably. This phenomenon was also
observed in [15] in a different context that did not take into account the Hall effect
and relies on a particular finite volume scheme.

Our results show that this behavior is independent of the approximation scheme.
Furthermore, it persists even in the presence of dispersion generated by the Hall
terms. Interestingly enough, a similar pseudo-convergence was also pointed out by
Torilhon in computations with the full MHD equations [?, 41]. We note that the
simplified model studied in the present paper allows us to more clearly identify this
phenomena.

Nonclassical regime. The most interesting behavior is observed with coplanar
initial data. Indeed, Theorem 2.1 suggests that the solutions to (2.3) contain non-
classical shock waves when the data are co-planar and the difference in the initial
angles is m. We have investigated this regime extensively and aimed at plotting nu-
merical kinetic relations, for the schemes introduced in this paper. Let us consider
the Riemann data

2 2
43) r(x,()):{”’ x < 0.25, 0@:,0):{0’ z < 0.25,

0.67, otherwise, m, otherwise,

where r; is regarded as a free parameter and, by construction, the difference between
the two initial angles is .



KINETIC FUNCTIONS IN MAGNETOHYDRODYNAMICS 13

2 ]
1.5¢ ]
1 —
0.5¢ T
o
-05
-1
-1.5}
2 05 1 5 2

FiGURE 3. Test 2 with 20000 points. The radius, angle and v are plotted.

Numerical Test 3. Consider (3.1) with the initial data (4.3) and the parameter
value 1, = 4. We compute with all the entropy conservative schemes (3.6) and
show the computed radius in figure 4.

,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 0.2 0.4 0.6 0.8 1

(a) e= Az, a=0 (b) e=Az, a=2.0
FIGURE 4. Radius r for Test 3 at time ¢ = 0.1 and 800 mesh points.

The parameters are taken to be € = Az and two different Hall coefficients are
tested,i.e. @« = 0.0 and o = 2.0. Since the initial jump is large, one expects os-
cillations behind the shocks. Figure 4 shows that the second-order EC?2 scheme
computes a classical solution consisting of a classical shock followed by a rarefac-
tion wave. However, the higher-order schemes approximate a solution consisting of
a nonclassical shock and a fast shock. Note that the approximation improves if we
increase the order of the scheme. This is quantified by observing the intermediate
state and the shock speed. Furthermore, there is little qualitative difference be-
tween the purely diffusive case (o = 0) and the large dispersion case (a = 2). The
large dispersion leads to even smaller values of the intermediate state and hence
larger speeds for the nonclassical shock. There is a marked difference between the
classical and the nonclassical regimes, and comparing Figures 1 and 4 illustrates
that difference quite clearly.

Comparison between centered finite differences (3.3) and entropy conservative fluzes
(3.6). There are minor differences between the standard F'D and the entropy con-
servative EC' schemes in either the classical regime or the pseudo nonclassical
regime. However, there are some noticeable differences between these two schemes
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in the nonclassical regime. This difference is apparent when initial data with large
jumps are considered and strong nonclassical shocks are generated, as we now show.

Numerical Test 4. Now, we take r; = 8 in (4.3), and the coefficients are ¢ = Az
and a = 0. We compute with the schemes FD6 and EC6, on a mesh with 4000
mesh points, until the time ¢ = 0.05, and we plot the computed radius in Figure 5.

12

FIGURE 5. Radius with the EC6 and F'D6 schemes for Test 4 with
€ = Az, a = 0 and 4000 mesh points.

Hence, both schemes approximate a nonclassical shock and a fast shock. The
main differences lie in the fact that the results with the EC'6 scheme exhibit a larger
intermediate state. High frequency oscillations are clearly observed with the scheme
F D6, around the intermediate state. This makes it very difficult to ascertain the
exact value of the intermediate state computed by the F D6 scheme.

Numerical kinetic functions. We arrive at the main contribution of the present
paper and compute numerical kinetic relations that characterize the dynamics of
nonclassical shocks in (2.3). As observed in [16, 28], the task of computing numerical
kinetic relations is quite delicate. A large number of numerical experiments need
to be performed and a large set of parameter values have to be considered.

We consider different initial data in the nonclassical regime and compute the
intermediate state numerically. This allows us to compute the shock speed and the
entropy dissipation (2.10) across the nonclassical shock. For very weak nonclassical
shocks, the intermediate state lies close to the initial states and it is difficult to
determine it exactly. When the nonclassical shock is strong, there are high fre-
quency and large amplitude oscillations around the shocks. These oscillations (see
Figure 5) obscure the intermediate state. Hence, it is almost impossible to obtain
kinetic relations with the F'D schemes, at least for strong nonclassical shocks. We
will compute numerical kinetic relations with the EC' schemes.

The diffusion coefficient is fixed as ¢ = Az for all simulations. There were
very minor differences in results when other values of the diffusion coefficient were
considered. The parameter r; in (4.3) takes all positive integers up to 20 as values.
For a fixed r;, we experimented with different mesh sizes and selected a mesh
size with sufficient resolution. The intermediate state was calculated and used to
compute the shock speed and the entropy dissipation across the nonclassical shock.
We plot the intermediate state as a function of the initial r; in the left-hand column
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of Figure 6. This is an indicator for the nonclassical behavior of the solutions ([28]).
The right-hand column of Figure 6 shows the kinetic relation, more precisely, the
scaled entropy dissipation (2.10) (or driving force) as a function of the shock speed.

Three different values of the Hall coefficient o were used. For the pure diffusion
case (o = 0), the results are shown in the top row of Figure 6. They demonstrate
that the second-order EC2 scheme approximates a classical solution for all values of
r;. The classical solution is a compound shock (see Figure 4) and the corresponding
kinetic relation is trivial. On the other hand, the high-order schemes approximate
the nonclassical shock. The quality of approximation improves with the order of
the scheme. The kinetic relation is approzimately monotone, even for very strong
shocks and very high shock speeds. In contrast to the results of [28], we are able to
obtain monotonicity of the numerical kinetic relations even for very strong shocks.
A possible reason might lie in the use of entropy conservative schemes.

A moderate amount of dispersion, corresponding to o = 1.0 leads to some dif-
ferences from the pure diffusion case. Even the low-order EC2 approximates a
nonclassical shock in this case. However, the nonclassical shock approximated by
the EC2 scheme exhibit very high-frequency oscillations. These oscillations increase
considerably when stronger shocks are considered. The EC2 scheme can no longer
be used to compute the kinetic relation when this happens. This breakdown is rep-
resented with a broken curve, and similar behavior is noticed for the EC4 scheme.
On the other hand, the even higher order EC6, EC8 and FC10 schemes approxi-
mate the nonclassical shock quite well. The numerical kinetic relation continues to
be monotone, even for very large shock speeds.

Increasing the dispersion and considering now o = 2, we are led to an equally
interesting outcome. The low-order EC?2 and EC4 schemes approximate the non-
classical shock initially, but break down due to large oscillations when the shock
strength is increased. Also, an “initial” layer appears in the numerical kinetic func-
tions for the high-order EC schemes. The kinetic function is initially oscillatory but
recovers monotonicity when the shock speed is increased. The oscillations in the
kinetic relation for small shocks might just have to do with the failure to obtain the
correct values of the intermediate state for very weak shocks. Dispersion influences
the quality of numerical kinetic relations considerably.

In the absence of explicit formulas for calculating the intermediate state or the
entropy dissipation, it is difficult to establish the convergence of the numerical
kinetic functions shown in Figure 6 as the order of the schemes is increased. The
evidence presented in the figure does not appear to be conclusive. Consequently,
we would like to investigate the experimental convergence of the numerical kinetic
functions.

Let 7; denote the left-hand value of the radius in the Riemann problem (4.3)
and 77" (d) denote the intermediate radius computed with the ECd scheme. In the
absence of formulas for computing the exact intermediate state, we assume that
r7"(10) is a good approximation for the exact intermediate state and employ it as
a reference solution. We denote

" (d) — " (10)]
(1))

(4.4) REd<7‘l) =100

as the relative error in the intermediate state for any given r;. The aim is to
examine whether RE, decreases as d is increased and at what rate. The relative
errors for each r; are computed for a = 1.0 (moderate diffusion) and plotted against
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100 150 200 250 300 350

(b) e=Az,a=0

(c)e=Az,a=1 (d) e=Az,a=1

2 4 6 8 10 12 14 16 18 20 50 100 150 200 250 300 350

(e) e=Az,a=2 f) e=Az,a=2

FIGURE 6. Numerical kinetic relations for the EC' schemes. Left
column: Intermediate radius (vertical axis) versus left-hand ra-
dius r; (horizontal axis), Right column: Scaled entropy dissipation
((‘Os(f ), (2.10)) (vertical axis) versus shock speed s (horizontal axis).
Top row: a = 0, Middle row: a = 1, Bottom Row: o = 2.

r; in Figure 7. Note the experimental convergence as the order is increased. The
results show that the EC8 scheme provides the best approximation to the reference
solution with the FC6 scheme leading to consistently greater errors than the EC8
scheme. The EC2 and EC4 schemes are shown with broken curves as these schemes
cannot be used for very strong shocks on account of heavy oscillations. When these
schemes are stable, the EC4 scheme leads to greater errors than the EC'6 scheme
whereas the EC?2 scheme leads to very large relative errors. The figure clearly
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indicates that the schemes are converging to the reference intermediate state as the
order is increased. Furthermore, the convergence depends on the shock strength
although there is a large region of the phase space where the rate of convergence
appears to be independent of the shock strength. Similar convergence holds for the
kinetic function as well as for different values of the dispersion parameter a.

T T
25¢ -+-EC8 ||
—=—EC6
20 —«—EC4 ||
E15¢ EC2 ||
——EC10
§107 B

FIGURE 7. Relative error (4.4) (vertical axis) versus r; (horizontal
axis) with the EC schemes for a = 1.

5. CONCLUDING REMARKS

The ideal MHD equations (2.1) are non strictly hyperbolic, and admit charac-
teristic fields that are neither genuinely non-linear nor linearly degenerate. Solu-
tions to the MHD equations may contain undercompressive nonclassical shocks,
which depend upon regularization and are obtained here as limits of a second-order
diffusive-dispersive regularizations (2.7). The simplified system (2.3) analyzed in
the present paper is rotational invariant and models the effect of the solar wind (as
well as problems from non-linear elasticity). More precisely, solutions to this system
exhibit nonclassical shocks for co-planar initial data, and uniqueness of these solu-
tions is ensured only by imposing an additional admissibility criteria, i.e. a kinetic
relation.

In this paper, we have investigated the wave structure of solutions to (2.3) numer-
ically. The equation (3.1) including small scale effects (resistivity, Hall effect) was
discretized by a class of high-order finite difference schemes. In particular, we have
designed a novel class of schemes based on entropy conservative flux discretizations
and an analysis of the equivalent equation. The second-order diffusive-dispersive
terms were discretized by high-order central finite differences.

The resulting schemes were tested on a wide variety of numerical experiments,
and our results allow us to distinguish between three distinct regimes. In the
classical regime, only classical shocks are observed. In a pseudo nonclassical regime,
the initial data are very close to co-planar data, and we observe that spurious
nonclassical shocks are formed. Interestingly enough, these shocks are eliminated by
reducing the mesh size (or the magnitude of the regularization coefficient) and the
solution converges to the classical solution in the limit. However, this convergence
is very slow. These observations are consistent with the results of [15, 41] which
did not include the (dispersive) Hall effect.
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Last but not least, the most interesting regime is when the data are precisely
co-planar, and the solutions do include nonclassical shocks. We have determined
numerically kinetic relations for different choices of dispersion coefficients. We ob-
served that standard finite difference schemes led to unacceptably large oscillations
for strong shocks. High-order accurate, entropy conservative schemes [38, 29, 27, 39]
were found to provide good accuracy for the kinetic relations. On the other hand,
lower order schemes are found to lead to non-monotone kinetic relations and break
down at strong shocks. The role of the dispersion associated with the Hall effect
was also discussed in detail.

Our results provide further support to the use of schemes with controled dis-
sipation advocated in the series of papers [16, 24, 29, 8, 9, 27, 28, 26] and based
on combining an analysis of the equivalent equations and entropy conservative flux
discretizations. Indeed, our results suggest that the proposed toolkit of equivalent
equations, entropy conservative schemes, and numerical kinetic relations should
extend to the study of the full ideal MHD system (2.1).
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