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POTENTIAL BASED CONSTRAINT PRESERVING GENUINELY
MULTI-DIMENSIONAL SCHEMES FOR SYSTEMS OF CONSERVATION LAWS.

SIDDHARTHA MISHRA AND EITAN TADMOR

Abstract. We survey the new framework developed in [33, 34, 35], for designing genuinely multi-dimensional
(GMD) finite volume schemes for systems of conservation laws in two space dimensions. This approach is
based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent
numerical flux can be used in defining the potentials. Suitable choice of the numerical potentials results schemes
that preserve discrete forms of interesting constraints like vorticity and divergence. The schemes are very simple
to code, flexible and have low computational costs. Numerical examples for the Euler equations of gas dynamics
and the ideal MHD equations are presented to illustrate the computational efficiency of the schemes.

1. Introduction

Many interesting phenomena in physics, engineering and biology are modeled by hyperbolic systems of
conservation laws. In two space dimensions, these equations take the form

(1.1) Ut + f(U)x + g(U)y = 0, (x, y, t) ∈ R× R× R+,

where U is the vector of unknowns and f ,g are the flux vectors in the x- and y- directions respectively.
A frequently cited example for the system (1.1) are the Euler equations of gas dynamics,

(1.2a)

ρt + (ρu1)x + (ρu2)y = 0,

(ρu1)t + (ρu2
1 + p)x + (ρu1u2)y = 0,

(ρu2)t + (ρu1u2)x + (ρu2
2 + p)y = 0,

Et + ((E + p)u1)x + ((E + p)u2)y = 0,

with ρ being the density of the gas, u1, u2 are the velocity components in the x- and y-direction respectively
and p and E are the pressure and the energy. The variables are related by an ideal gas equation of state in
terms of the gas constant γ:

(1.2b) E =
p

γ − 1
+

1
2
(ρu2

1 + ρu2
2).

Other interesting examples for hyperbolic systems are the shallow water equations of oceanography and the
equations of non-linear elasticity.

It is well known that solutions of (1.1) (even in one space dimension) develop discontinuities in the form
of shock waves, even for smooth initial data. Hence, the solutions of (1.1) are sought in a weak sense. Weak
solutions are not necessarily unique and (1.1) has to be supplemented with additional admissibility criteria, the
so-called entropy conditions [12]. The existence and uniqueness theory for multi-dimensional single conservation
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2 SIDDHARTHA MISHRA AND EITAN TADMOR

laws and for some special cases of one- and multi-dimensional systems is well developed. A corresponding theory
for multi-dimensional systems is still lacking.

1.1. Finite-volume schemes. Explicit formulas for the solution of (1.1) are not available, except in the
simplest cases. Consequently, numerical methods are heavily used for approximating (1.1). The most popular
numerical methods in this context are the finite volume schemes, see e.g., [28, 45] and references therein for a
detailed description. In a finite volume approximation, the computational domain is discretized into cells or
control volumes and an integral form of the conservation law (1.1) is approximated on each control volume.
This method relies on constructing suitable numerical fluxes in the normal direction, across each cell interface.
For simplicity, an uniform Cartesian discretization of the domain is considered, with mesh sizes ∆x and ∆y in
the x- and y- directions respectively. It consists of the discrete cells, Ci,j := [xi− 1

2
, xi+ 1

2
)× [yj− 1

2
, yj+ 1

2
), centered

at the mesh points (xi, yj) = (i∆x, j∆y), (i, j) ∈ Z2. The cell average of U over Ci,j (at time t), denoted as
Ui,j(t), is updated with the semi-discrete scheme [28, 45]:

(1.3)
d

dt
Ui,j = − 1

∆x
(Fi+ 1

2 ,j − Fi− 1
2 ,j)−

1
∆y

(Gi,j+ 1
2
−Gi,j− 1

2
).

The time dependence of all the quantities in the above expression is suppressed for notational convenience.
Classical schemes employ two-point numerical fluxes,

Fi+ 1
2 ,j = F(Ui,j ,Ui+1,j), Gi,j+ 1

2
= G(Ui,j ,Ui,j+1).

A canonical example is provided by the first-order Rusanov numerical flux:

(1.4)
Fi+ 1

2 ,j =
1
2
(
f(Ui,j) + f(Ui+1,j)

)
−max{|(α)i,j |, |(α)i+1,j |}

(
Ui+1,j −Ui,j

)
,

Gi,j+ 1
2

=
1
2
(
g(Ui,j) + g(Ui,j+1)

)
−max{|(β)i,j |, |(β)i,j+1|}

(
Ui,j+1 −Ui,j

)
.

Here, αi,j and βi,j are the maximal eigenvalues of the Jacobians A = ∂Uf and B = ∂Ug respectively, for a
given state Ui,j :

αi,j := argmaxλ{|λ| : λ = λ
(
A(Ui,j)

)
}, βi,j = argmaxλ{|λ| : λ = λ

(
B(Ui,j)

)
}.

Note that the only characteristic information in the Rusanov flux is a local estimate on the wave speeds. This
flux is almost Jacobian free, very simple to implement and has a very low computational cost. But its resolution
is limited by the first-order accuracy. But the first-order schemes (1.3),(??) can be extended to higher order
accuracy by employing numerical fluxes based on wider, 2p-point stencils, Ii+ 1

2
:= {i′

∣∣ |i′ − i − 1/2| < p} and
Jj+ 1

2
:= {j′

∣∣ |j′ − j − 1/2| < p} along the x- and y-axis, respectively,

(1.5) Fi+ 1
2 ,j = F

(
{Ui′,j}i′∈I

i+ 1
2

)
, Gi,j+ 1

2
= G

(
{Ui,j′}j′∈J

j+ 1
2

)
.

The building blocks for such extensions are still the 2-point numerical fluxes, F(·, ·) and G(·, ·). As a prototype
example, we recall the class of second-order schemes based on piecewise bilinear MUSCL reconstruction [27]

(1.6a) pi,j(x, y) := Ui,j +
U′

i,j

∆x
(x− xi) +

U!
i,j

∆y
(y − yj);

Here, U′ and U! denote the numerical derivatives

(1.6b)
U′

i,j = minmod(Ui+1,j −Ui,j ,
1
2
(Ui+1,j −Ui−1,j),Ui,j −Ui−1,j),

U!
i,j = minmod(Ui,j+1 −Ui,j ,

1
2
(Ui,j+1 −Ui,j−1),Ui,j −Ui,j−1),

which utilize the minmod limiter

(1.6c) minmod(a, b, c) =

{
sgn(a) min{|a|, |b|, |c|}, if sgn(a) = sgn(b) = sgn(c),
0, otherwise.
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In this manner, one can reconstruct in each cell Ci,j , the point values

(1.7a) UE
i,j := pi,j(xi+ 1

2
, yj), UW

i,j := pi,j(xi− 1
2
, yj), UN

i,j := pi,j(xi, yj+ 1
2
), US

i,j := pi,j(xi, yj− 1
2
),

from the given neighboring cell averages Ui,j ,Ui±1,j and Ui,j ,Ui,j±1. The resulting second-order fluxes are
then given by

(1.7b) Fi+ 1
2 ,j = F(UE

i,j ,U
W
i+1,j), Gi,j+ 1

2
= G(UN

i,j ,U
S
i,j+1).

The use of minmod limiter ensures the non-oscillatory behavior of the second-order schemes (1.3),(1.6). Observe
that the second-order MUSCL fluxes (1.7b) are based on 4-point stencils

Fi+ 1
2 ,j = F(Ui−1,j ,Ui,j ,Ui+1,j ,Ui+2,j), Gi,j+ 1

2
= F(Ui,j−1,Ui,j ,Ui,j+1,Ui,j+2)

Similar reconstructions together with upwind or central averaging yield a large class of high-resolution finite-
volume semi-discrete schemes, e.g., [23],[44],[25], which could then be integrated in time using standard stable
high order Runge-Kutta methods [22].

1.2. Genuinely multi-dimensional (GMD) schemes. Despite their tremendous success, finite volume
schemes (1.3) are known to be deficient [28] in resolving genuinely multi-dimensional waves in the solution
of (1.1). A possible explanation lies in the structure of the scheme (1.3). The numerical fluxes Fi+ 1

2 ,j ,Gi,j+ 1
2

are defined in each normal direction and lack explicit transverse information. Considerable effort has been
devoted to devising genuinely multi-dimensional (GMD) finite volume schemes for approximating (1.1). We
provide a very brief summary of some of the available methods:

(i) Dimensional splitting. This procedure is based on sequentially updating the cell average with flux Fi+ 1
2 ,j

(in the x-direction) and then updating with the numerical flux Gi,j+ 1
2

(in the y- direction). Second
order accuracy results from Strang splitting [28]. Despite the splitting, the resulting method may still
fail to resolve genuinely multi-dimensional waves (examples are provided in [29]).

(ii) Multi-dimensional wave propagation. This method is based on the Corner Transport Upwind (CTU)
method [11] for linear equations. Contributions from waves in the transverse direction are explicitly
calculated. It was extended to non-linear systems in [29] by solving transverse Riemann problems. The
method is implemented in the CLAWPACK software package [28]. A related scheme was proposed in
[8].

(iii) Method of Transport. In [17, 18, 38], the non-linear conservation law (1.1) is reformulated locally as a
system of transport equations. Explicit solutions of the transport equations define a genuinely multi-
dimensional scheme. Complicated formulas for specific wave models may be a major disadvantage of
this method.

(iv) Finite volume Evolution Galerkin (FVEG) methods. In [30, 31] (and other references therein), the con-
servation law (1.1) is linearized locally and the linearized system is solved in terms of bi-characteristics.
The resulting evolution operator defines genuinely multi-dimensional finite volume fluxes by a Galerkin
type approximation. The task of deriving explicit solutions in terms of bi-characteristics for specific
models may be quite complicated.

(v) Residual distribution/Fluctuation-splitting schemes. Genuinely multi-dimensional methods for unstruc-
tured meshes were proposed in [14, 2, 37]. They involve computing a cell residual at each time step
and distributing it to the cell nodes by using some suitable upwinding procedure, based on local flow
directions.

The absence of an optimal strategy for genuinely multi-dimensional schemes leaves room for designing stable
GMD schemes that are easy to formulate and code, have a low computational cost and preserve other desirable
properties rendered by the multi-dimensional structure of the system (1.1). Their numerical fluxes take a general
form

(1.8a) Fi+ 1
2 ,j = F({U(i′,j′)∈S

i+ 1
2 ,j

}), Gi,j+ 1
2

= G({U(i′,j′)∈S
i,j+ 1

2
}).
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Here, Si+ 1
2 ,j and Si,j+ 1

2
are two-dimensional stencils which, in contrast to (1.5), allow us to incorporate infor-

mation from both the normal and transverse directions,

(1.8b) Si+ 1
2 ,j :=

{
(i′, j′)

∣∣ |i′ − i− 1/2| + |j′ − j| < q
}
, Si,j+ 1

2
:=

{
(i′, j′)

∣∣ |i′ − i| + |j′ − j − 1/2| < q
}

We present such a family of GMD schemes in section 2.

1.3. Conservation laws with constraints. Many interesting multi-dimensional systems of conservation laws
also involve intrinsic constraints. A representative example for such a system are the magnetohydrodynamic
(MHD) equations of plasma physics:

(1.9)

ρt + (ρu1)x + (ρu2)y = 0,

(ρu1)t + (ρ(u1)2 + p̃− 1
2
(B1)2)x + (ρu1u2 −B1B2)y = 0,

(ρu2)t + (ρu1u2 −B1B2)x + (ρ(u2)2 + p̃− 1
2
(B2)2)y = 0,

(ρu3)t + (ρu1u3 −B1B3)x + (ρu2u3 −B2B3)y = 0,

(B1)t + (u2B1 − u1B2)y = 0,

(B2)t + (u1B2 − u2B1)x = 0,

(B3)t + (u1B3 − u3B1)x + (u2B3 − u3B2)y = 0,

Et + ((E + p̃)u1 − (u · B)B1)x + ((E + p̃)u2 − (u · B)B2)y = 0,

where the density of the plasma is denoted as ρ and u = (u1, u2, u3)$,B = (B1, B2, B3)$ are the velocity and
magnetic fields, respectively. E is the total energy and p̃ := p + 1

2 |B|2 is the total pressure, with p being the
thermal pressure. The unknowns are related by an ideal gas equation of state similar to (1.2b). The ideal MHD
equations (1.9) form a (non-strictly) hyperbolic system pf conservation laws, which combine the conservation
laws for mass, momentum and energy with the magnetic induction equations (a special form of the Maxwell’s
equations):

(1.10) Bt + curl(B× u) = 0, (x, y, t) ∈ R× R× R+,

which implies the divergence constraint,

(1.11a) div(B)t ≡ 0.

In the particular two-dimensional setup of (1.9), the divergent constraint is reduced to the two-component
statement

(1.11b) div
(
(B1, B2)$

)
t
≡ 0.

Since magnetic monopoles have not been observed in nature, the initial magnetic field is assumed to be divergence
free. The divergence constraint (1.11) implies that the divergence of the magnetic field remains zero. Hence,
the ideal MHD equations are an example for multi-dimensional systems of conservation laws with an intrinsic
constraint.

Other interesting examples for systems with constraints are the system wave equation [36] (with vorticity as
the constraint) and the Einstein equations of general relativity.

A major issue for the numerical approximation of multi-dimensional ideal MHD equations (1.9) is the diver-
gence constraint (1.11). Standard finite volume schemes may not preserve discrete versions of the constraint,
leading to numerical instabilities [48, 19]. Different approaches have been suggested to handle the divergence
constraint in MHD codes. We describe some of them briefly.

(i) Projection method. This method [10, 7, 6] is based on the Hodge decomposition of the magnetic field B.
The update Bn, at each time step, may not be divergence free and is corrected by the decomposition:
Bn = ∇Ψ+curlΦ. Applying the divergence operator to the decomposition leads to the elliptic equation:

−∆Ψ = div(Bn).

The corrected field B∗ = Bn − ∇Ψ is divergence free. This method can be very expensive computa-
tionally as an elliptic equation has to be solved at every time step.
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(ii) Source terms. Adding a source term, proportional to the divergence, in (1.10) results in

Bt + curl(B× u) = −u(div(B)).

Applying the divergence operator to both sides:

div(B)t + div(u(divB)) = 0.

Hence any potential divergence errors are transported away from the computational domain by the flow.
This procedure for “cleaning the divergence” was introduced in [39, 40] and it needs to be discretized
in a very careful manner in order to avoid two main difficulties: to keep numerical stability [19, 20] and
to avoid a wrong shock speed due to the non-conservative form of the source term [48]. A variant of
this approach is the Generalized Lagrange multiplier method [15].

(iii) Design of special divergence operators/staggering. This popular method consists of staggering the dis-
cretizations of the velocity and magnetic fields in (1.10). A wide variety of strategies for staggering
the meshes has been proposed, [16, 5, 13, 43, 48, 4] and references therein. The presence of different
sets of meshes leads to problems when parallelizing this method and using adaptive mesh refinement.
Unstaggered variants of this approach have also been proposed in [47, 46, 1].

The above discussion suggests there is ample scope for a simple, computationally cheap finite volume scheme
for the MHD equations that resolves genuinely multi-dimensional waves and preserves a discrete version of the
divergence constraint. Our aim in this paper is to summarize the results of recent papers [33, 34, 35] and
present a new framework for approximating the two-dimensional conservation law (1.1) in a genuinely multi-
dimensional manner. The GMD scheme is designed by rewriting the standard finite volume scheme (1.3) in
terms of vertex centered numerical potentials. Standard edge centered numerical fluxes serve as building blocks
of the GMD scheme as the numerical potential is defined in terms of them. The choice of potentials is very
general and a specific choice of potential results in an entropy stable GMD scheme. In particular, in section 3 we
discuss potential-based GMD schemes that preserve a discrete version of the divergence in the MHD equations.
Numerical experiments illustrating the robustness of the schemes in approximating the Euler equations (1.2a)
and the ideal MHD equations (1.9) are presented.

2. Genuinely multi-dimensional (GMD) schemes

Following the presentation of [34], we introduce the numerical potentials φi+ 1
2 ,j+ 1

2
and ψi+ 1

2 ,j+ 1
2

at each
vertex (xi+ 1

2
, yj+ 1

2
), with the sole requirement that these potentials are consistent with the differential fluxes,

i.e,
φi+ 1

2 ,j+ 1
2
(U, · · · ,U) = f(U), ψi+ 1

2 ,j+ 1
2
(U, · · · ,U) = g(U).

We need the following notation for standard averaging and (undivided) difference operators,

(2.1)
µxaI,J :=

aI+ 1
2 ,J + aI− 1

2 ,J

2
, µyaI,J :=

aI,J+ 1
2

+ aI,J− 1
2

2
,

δxaI,J := aI+ 1
2 ,J − aI− 1

2 ,J , δyaI,J := aI,J+ 1
2
− aI,J− 1

2
.

A word about our notations: we note that the above discrete operators could be used with indexes I, J which
are placed at the center or at the edge of the computational cells, e.g., I = i or I = i + 1

2 . In either case, we
tag the resulting discrete operators according to the center of their stencil; thus, for example, µxwi+ 1

2
employs

grid values placed on the integer-indexed edges, wi and wi+1, whereas δywj employs the half-integer indexed
centers, wj± 1

2
.

We now set the numerical fluxes:

(2.2)
Fi+ 1

2 ,j = µyφi+ 1
2 ,j ,

Gi,j+ 1
2

= µxφi,j+ 1
2
.
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The resulting finite volume scheme written in terms of the numerical potentials reads

(2.3)

d

dt
Ui,j = − 1

∆x
δxµyφi,j −

1
∆y

δyµxψi,j ,

= − 1
∆x

(1
2
(φi+ 1

2 ,j+ 1
2

+ φi+ 1
2 ,j− 1

2
)− 1

2
(φi− 1

2 ,j+ 1
2

+ φi− 1
2 ,j− 1

2
)
)

− 1
∆y

(1
2
(ψi+ 1

2 ,j+ 1
2

+ ψi− 1
2 ,j+ 1

2
)− 1

2
(ψi+ 1

2 ,j− 1
2

+ ψi− 1
2 ,j− 1

2
)
)
.

The potential based scheme (2.3) is clearly conservative as well as consistent as the potentials φ, ψ are consistent.
The genuinely multi-dimensional nature of the scheme is evident from (2.3): the potentials are differenced in the
normal direction but averaged in the transverse direction. We claim that the family of potential-based schemes
(2.3) is rich: any standard finite volume flux can be used as a building block for constructing the numerical
potentials in (2.2), and the resulting potential-based scheme inherits the accuracy of the underlying numerical
flux. There are several ways to pursue the construction of numerical potentials and we outlined four of them
below.

2.1. Symmetric potentials. In this approach, the potentials are defined by averaging the finite volume fluxes
neighboring a vertex:

(2.4)
φi+ 1

2 ,j+ 1
2

= µyFi+ 1
2 ,j+ 1

2
,

ψi+ 1
2 ,j+ 1

2
= µxGi+ 1

2 ,j+ 1
2
,

where F,G are any numerical fluxes consistent with f and g respectively. An explicit computation of (2.3) with
potentials (2.4) leads to the revealing form,

(2.5)

d

dt
Ui,j = − 1

2∆x
(µyFi+ 1

2 ,j+ 1
2

+ µyFi+ 1
2 ,j− 1

2
− µyFi− 1

2 ,j+ 1
2
− µyFi− 1

2 ,j− 1
2
)

− 1
2∆y

(µxGi+ 1
2 ,j+ 1

2
+ µxGi− 1

2 ,j+ 1
2
− µxGi+ 1

2 ,j− 1
2
− µxGi− 1

2 ,j− 1
2
).

Comparing the potential based scheme (2.5) with the standard finite volume scheme (1.3), we observe that the
potential based scheme modifies (1.3) by averaging the fluxes in the transverse direction. Hence, it incorporates
explicit transverse information in each direction. When employing two-point fluxes, the local stencil for the
GMD scheme (2.5) consists of nine points instead of the standard five point stencil for the finite volume scheme
(1.3). One can use wider stencils to achieve higher-order of accuracy; for example, the symmetric potential-
based scheme based on second-order four-point MUSCL flux (1.6) yields a second-order GMD scheme based on
a stencil of twenty-three points.

2.2. Weighted symmetric potentials. Weighted averages of the neighboring fluxes can be considered in
place of the simple averaging used in (2.4). For prescribed θi+ 1

2 ,j+ 1
2
, κi+ 1

2 ,j+ 1
2
∈ (0, 1), the weighted potential

is defined as

(2.6)
φi+ 1

2 ,j+ 1
2

= θi+ 1
2 ,j+ 1

2
Fi+ 1

2 ,j+1 + (1− θi+ 1
2 ,j+ 1

2
)Fi+ 1

2 ,j ,

ψi+ 1
2 ,j+ 1

2
= κi+ 1

2 ,j+ 1
2
Gi+1,j+ 1

2
+ (1− κi+ 1

2 ,j+ 1
2
)Gi,j+1/2.

The weights can be chosen based on the local characteristic speeds,

(2.7)

θi+ 1
2 ,j+ 1

2
=

max{−(β1)i+ 1
2 ,j+ 1

2
, 0}

max{−(β1)i+ 1
2 ,j+ 1

2
, 0} + max{(βN )i+ 1

2 ,j+ 1
2
, 0} ,

κi+ 1
2 ,j+ 1

2
=

max{−(α1)i+ 1
2 ,j+ 1

2
, 0}

max{−(α1)i+ 1
2 ,j+ 1

2
, 0} + max{(αN )i+ 1

2 ,j+ 1
2
, 0} .

Here, αl and , βl, l = 1, 2, · · · , N are the real eigenvalues of A = ∂Uf(µyµxUi+ 1
2 ,j+ 1

2
) and B = ∂Ug(µxµyUi+ 1

2 ,j+ 1
2
),

sorted in an increasing order. This choice of weights implies that the potential (2.6) is “upwinded”.
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2.3. Staggered potentials. We define the numerical potential as

(2.8) φi+ 1
2 ,j+ 1

2
= F(µyUi,j+ 1

2
, µyUi+1,j+ 1

2
), ψi+ 1

2 ,j+ 1
2

= G(µxUi+ 1
2 ,j , µxUi+ 1

2 ,j+1)

for any consistent numerical fluxes F,G.

2.4. Diagonal potentials. We define the diagonal potentials [33] ,

(2.9a)
φi+ 1

2 ,j+ 1
2

=
1
2
(
F+

i+ 1
2 ,j+ 1

2
+ F−

i+ 1
2 ,j+ 1

2

)
,

ψi+ 1
2 ,j+ 1

2
=

1
2
(G+

i+ 1
2 ,j+ 1

2
+ G−

i+ 1
2 ,j+ 1

2
).

Here, F±,G± are the diagonal fluxes

(2.9b)
F+

i+ 1
2 ,j+ 1

2
:= F(Ui,j ,Ui+1,j+1), F−

i+ 1
2 ,j− 1

2
= F(Ui,j ,Ui+1,j−1)

G+
i+ 1

2 ,j+ 1
2

:= G(Ui,j ,Ui+1,j+1), G−
i− 1

2 ,j+ 1
2

:= G(Ui,j ,Ui−1,j+1).

which amount to rotating the x- and y-axis by angles of π
4 and −π

4 and F(·, ·) and G(·, ·) are any two-point
numerical fluxes consistent with f and g.

2.5. Isotropic GMD scheme. We conclude our list for recipes of GMD schemes with an example which is
not rendered by a numerical potential, but nevertheless, highlights the use of a GMD stencil. Let F(·, ·) and
G(·, ·) are any two-point consistent numerical fluxes and let F±,G± be the corresponding diagonal numerical
fluxes in (2.9a). We define the isotropic fluxes,

(2.10a)
F̃i+ 1

2 ,j =
1
4
(
F+

i+ 1
2 ,j+ 1

2
+ 2Fi+ 1

2 ,j + F−
i+ 1

2 ,j− 1
2

)
,

G̃i,j+ 1
2

=
1
4
(
G+

i+ 1
2 ,j+ 1

2
+ 2Gi,j+ 1

2
+ G−

i− 1
2 ,j+ 1

2

)
.

The resulting finite volume scheme reads as

(2.10b)

d

dt
Ui,j = − 1

∆x
δxF̃i,j −

1
Dy

δyG̃i,j ,

= − 1
4∆x

(
δ/F+

i,j + 2δxFi,j + δ\F
−
i,j

)
− 1

4∆y

(
δ/G+

i,j + 2δyGi,j − δ\G
−
i,j

)
;

here, δ/ and δ\ denote the diagonal difference operators,

(2.11) δ/aI,J := aI+ 1
2 ,J+ 1

2
− aI− 1

2 ,J− 1
2
, δ\aI,J := aI+ 1

2 ,J− 1
2
− aI− 1

2 ,J+ 1
2
.

The GMD structure of the scheme is clear from (2.10b): the scheme averages the fluxes along transverse
directions. In contrast to the symmetric scheme (2.5), however, the explicit transverse information in (2.10b)
is obtained by “rotating” the fluxes. Since the scheme (2.10b) takes into account all the directions in a cell, we
term it as the isotropic GMD scheme.

The stencil of the isotropic scheme consists of nine points. Second-order accuracy can be obtained by the
piecewise bilinear reconstruction (1.6). In addition to (1.7), we also need the corner point values,
(2.12a)
UNE

i,j := pi,j(xi+ 1
2
, yj+ 1

2
), UNW

i,j := pi,j(xi− 1
2
, yj+ 1

2
), USE

i,j := pi,j(xi+ 1
2
, yj− 1

2
), USW

i,j := pi,j(xi− 1
2
, yj− 1

2
),

and the corresponding diagonal fluxes,

(2.12b)
F+

i+ 1
2 ,j+ 1

2
:= F(UNE

i,j ,USW
i+1,j+1), F−

i+ 1
2 ,j− 1

2
:= F(USE

i,j ,UNW
i+1,j+1),

G+
i+ 1

2 ,j+ 1
2

:= G(UNE
i,j ,USW

i+1,j+1), G−
i− 1

2 ,j+ 1
2

:= F(UNW
i,j ,USE

i−1,j+1),

to define the second order accurate version of the isotropic GMD scheme.

Remark 2.1. The isotropic GMD scheme (2.10b) is a desirable form of the GMD scheme as we can prove
that it is entropy stable provided that the building block numerical fluxes F,G in (2.10b) are entropy stable. A
precise statement of the stability theorem and details of the proof are presented in [34].
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2.6. Numerical Experiments. The semi-discrete first (second) order GMD schemes (2.5), (2.10b) are inte-
grated in time with the standard forward Euler (strong stability preserving Runge-Kutta [22]) method. The
time step is determined by a standard CFL condition. All simulations reported here, are performed with a CFL
number of 0.45. We test the following schemes:

SYM (SYM2) First (second)-order version of the symmetric GMD scheme (2.5).
ISO (ISO2) First (second)-order version of the isotropic GMD scheme (2.10b).

2.7. Numerical experiment #1. We begin with a test case for the Euler equations, reported in [34]. The
two-dimensional radially symmetric version of the standard Sod shock tube [28] considers (1.2a) with initial
data:

(2.13)
ρ(x, y, 0) = p(x, y, 0) =

{
1.0 if

√
x2 + y2 < 0.4,

0.125 otherwise,

u(x, y, 0) = v(x, y, 0) ≡ 0.

in the computational domain [−2, 2]×[−2, 2]. The initial radial discontinuity breaks into an outward propagating
shock wave, a contact discontinuity and a rarefaction wave. The waves are radially symmetric and the standard
finite volume scheme is known to be deficient, [28]. We plot the approximate density at time t = 0.2, on a
200 × 200 mesh in figure 1. The first-order SYM and ISO schemes are diffusive, particularly at the contact
discontinuity. The radially symmetric structure is retained and no grid aligned effects or spurious waves are
observed. The second-order SYM2 and ISO2 schemes are much more accurate with good resolution at the
shock and the contact. The SYM2 scheme leads to small oscillations at the outer shock, indicating that the
scheme doesn’t contain enough diffusion (similar examples were presented in [33]). The second-order ISO2
scheme results in non-oscillatory and resolves the circular waves quite well. The results are comparable to those
presented in [31] and references therein.

2.8. Numerical experiment #2. As a second example for the Euler equations, we consider a benchmark test
described in [8, 17, 29, 31] and references therein. The two dimensional initial Riemann data is

(2.14)

ρ = 0.5313, u = 0, v = 0, p = 0.4, if x > 0, y > 0,

ρ = 1.0, u = 0, v = 0.7276, p = 1.0, if x > 0, y < 0,

ρ = 1.0, u = 0.7276, v = 0, p = 1.0, if x < 0, y > 0,

ρ = 0.8, u = 0, v = 0, p = 1.0, if x < 0, y < 0,

in the computational domain, [−1, 1]× [−1, 1]. The exact solution consists of two forward moving shocks, two
slip lines and a Mach reflection. The standard finite volume scheme may replace the Mach reflection with a
regular reflection [17]. The approximate density at time t = 0.5, on a 200×200 mesh, is plotted in figure 2. The
results are very similar to the previous numerical experiment. The first-order SYM and ISO schemes resolve the
multi-dimensional features with some diffusion. The second-order ISO2 and SYM2 schemes attain considerably
better resolution, particularly at the slip lines and at the reflection. The SYM2 scheme has a slight overshoot at
the top right corner, indicating the absence of sufficient diffusion. The ISO2 scheme is very stable and accurate.
The results are comparable to the ones obtained in [17, 29, 31]. The above numerical experiments demonstrate
that the GMD schemes presented in this paper are robust. The first order schemes can be diffusive. A possible
reason is the use of the Rusanov flux (1.4). Experiments with more accurate fluxes like the Roe flux led to a
reduction in the amount of numerical diffusion. We prefer the Rusanov flux as it is very simple to code and is
computationally cheap. Furthermore, accuracy is recovered at second-order.

3. Divergence preserving schemes

The divergence of the magnetic field in the MHD equations (1.9) is preserved (1.11a). Despite incorporating
explicit transverse information, the GMD schemes (2.5) and (2.10b) may not necessarily preserve a discrete
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(a) SYM (b) ISO

(c) SYM2 (d) ISO2

Figure 1. Approximate solutions of density for numerical experiment #3 at t = 0.2 on a
200× 200 mesh computed with the GMD schemes.

version of the divergence constraint. A possible explanation lies in the special structure of the 8-vectors fluxes
f and g in (1.9). Note that

f5 = g6 ≡ 0, −f6 = g5 = u2B1 − u1B2.

This interaction between the fluxes f ,g is responsible for the divergence constraint (1.11a). We must incorporate
this information in the structure of the numerical potentials.

Let φ, ψ be the potentials. Following [35], we require that potential components φ5, φ6, ψ5 and ψ6 satisfy:

(3.1)
(
φ5

)
i+ 1

2 ,j+ 1
2

=
(
ψ6

)
i+ 1

2 ,j+ 1
2
≡ 0,

(
φ6

)
i+ 1

2 ,j+ 1
2

=
(
ψ5

)
i+ 1

2 ,j+ 1
2

= χi+ 1
2 ,j+ 1

2

for some consistent scalar potential χ, i.e,

χ(U, · · · ,U) = u1B2 − u2B1.

Introducing

V = {ρ, u1, u2, u3, B3, E}, Φ = {φ1, · · · , φ4, φ7, φ8}, Ψ = {ψ1, · · · , ψ4, ψ7, ψ8}
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(a) SYM (b) ISO

(c) SYM2 (d) ISO2

Figure 2. Approximate density for numerical experiment #4 at t = 0.5 on a 200× 200 mesh
computed with the GMD schemes.

for any consistent potentials φ, ψ. The potential based scheme (2.3) with the choice of potential (3.1) reads as

(3.2)

d

dt
Vi,j = − 1

∆x
δxµyΦi,j −

1
∆y

δyµxΨi,j ,

d

dt

(
B1

)
i,j

= − 1
∆y

δyµxχi,j ,

d

dt

(
B2

)
i,j

=
1

∆x
δxµyχi,j .

The constraint preserving property of the scheme is described in following lemma.

Lemma 3.1. Define the discrete divergence operator:

(3.3) div∗
(
(B1, B2)$

)
i,j

:=
1

∆x
µyδx

(
B1

)
i,j

+
1

∆y
µxδy

(
B2

)
i,j

.

Then, the potential based GMD scheme (3.2) satisfies the discrete divergence constraint, analogous to (1.11b)
d

dt
div∗

(
(B1, B2)$

)
i,j
≡ 0, ∀i, j.
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Proof. The difference operators δx, δy and the averaging operators µx, µy commute with each other. Applying
the discrete divergence operator div∗ to the numerical scheme (3.2),

∆x∆y
d

dt
div∗

(
(B1, B2)$

)
i,j

= (µxδyδxµy − µyδxδxµx)χi,j ≡ 0.

!

A similar scheme preserves a discrete version of vorticity for the system wave equation [34]. The scalar
potential χ can be chosen in the following ways.

3.1. Divergence preserving symmetric GMD scheme. The potentials Φ,Ψ are defined by (2.4). A natural
choice [35] of the potential χ is the symmetric potential:

(3.4) χi+ 1
2 ,j+ 1

2
=

1
4

((
F6

)
i+ 1

2 ,j
+

(
F6

)
i+ 1

2 ,j+1
+

(
G5

)
i,j+ 1

2
+

(
G5

)
i+1,j+ 1

2

)

with F5,6,G5,6 being components of any consistent numerical fluxes F,G. Let

H = {F1, · · · ,F4,F7,F8}, K = {G1, · · · ,G4,G7,G8}

for any consistent fluxes F,G. The divergence preserving symmetric GMD scheme has the explicit form:

(3.5)

d

dt
Vi,j = − 1

2∆x
(µyHi+ 1

2 ,j+ 1
2

+ µyHi+ 1
2 ,j− 1

2
− µyHi− 1

2 ,j+ 1
2
− µyHi− 1

2 ,j− 1
2
)

− 1
2∆y

(µxKi+ 1
2 ,j+ 1

2
+ µxKi− 1

2 ,j+ 1
2
− µxKi+ 1

2 ,j− 1
2
− µxKi− 1

2 ,j− 1
2
),

d

dt
(B1)i,j = − 1

4∆y

(
µx

(
F6

)
i,j+1

− µx

(
F6

)
i,j−1

)
− 1

4∆y

(
δy(µx

(
G5

)
i+ 1

2 ,j+ 1
2

+ µx

(
G5

)
i− 1

2 ,j+ 1
2
)
)
,

d

dt
(B2)i,j =

1
4∆x

(
µy

(
G5

)
i+1,j

− µy

(
G5

)
i−1,j

) +
1

4∆x
(δx(µy

(
F6

)
i+ 1

2 ,j+ 1
2

+ µy

(
F6

)
i+ 1

2 ,j− 1
2

))
.

3.2. Divergence preserving isotropic GMD scheme. Following [33], we define a diagonal form of the
potential χ:

(3.6) χi+ 1
2 ,j+ 1

2
=

1
4

((
F+

6

)
i+ 1

2 ,j+ 1
2

+
(
G+

5

)
i+ 1

2 ,j+ 1
2

+
(
F−

6

)
i+ 1

2 ,j+ 1
2

+
(
G−

5

)
i+ 1

2 ,j+ 1
2

)

for diagonal fluxes F±,G± defined in (2.9b). Denote

H± = {F±1 , · · · ,F±4 ,F±7 ,F±8 }, K± = {G±
1 , · · · ,G±

4 ,G±
7 ,G±

8 }

The divergence preserving modification of the isotropic GMD scheme (2.10b) based on the potential (3.6) is

(3.7)

d

dt
Vi,j = − 1

4∆x

(
δ/H+

i,j + 2δxHi,j + δ\H−
i,j

)
− 1

4∆y

(
δ/K+

i,j + 2δyKi,j − δ\K−
i,j

)
,

d

dt
(B1)i,j = − 1

4∆y

(
µxδy

((
F+

6

)
i,j

+
(
F−

6

)
i,j

+
(
G+

5

)
i,j

+
(
G−

5

)
i,j

))
,

d

dt
(B2)i,j =

1
4∆x

(
µyδx

((
F+

6

)
i,j

+
(
F−

6

)
i,j

+
(
G+

5

)
i,j

+
(
G−

5

)
i,j

))
.

3.3. Numerical Experiments. In addition to the SYM (SYM2) and ISO (ISO2) schemes of the last section,
we also test the divergence preserving GMD schemes,

SCP (SCP2) First (second)-order version of the divergence preserving symmetric GMD scheme (3.5).
ICP (ICP2) First (second)-order version of the divergence preserving isotropic GMD scheme (3.7).
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(a) SYM (b) SCP

(c) ISO (d) ICP

Figure 3. The pressure p for the Orszag-Tang vortex computed at t = π on a 200× 200 mesh
with first-order GMD schemes.

3.4. Orszag-Tang vortex. The Orszag-Tang vortex is a widely reported benchmark for multi-dimensional
MHD equations [48]. The initial data is

(ρ, u1, u2, u3, B1, B2, B3, p) =
(
γ2,− sin(y), sin(x), 0,− sin(y), sin(2x), 0, γ

)
,

in the computational domain, (x, y, t) ∈ [0, 2π]2 × [0, π] with periodic boundary conditions.
Although the exact solution is not known, some qualitative features have been reported [48]. The solution

consists of shocks along the diagonals and interesting smooth features including a vortex near the center of the
domain. The approximate pressures, computed on a 200× 200 mesh, are shown in figures 3 and 4.

Figure 3 shows the approximate pressure computed with the first-order GMD schemes. The solution is
smeared at this resolution, but the qualitative features are captured quite well. The shocks and the central
vortex are approximated, without any spurious waves or oscillations. The divergence preserving SCP and ICP
schemes are clearly more accurate than the SYM and ISO schemes. The results for the second-order schemes
are plotted in figure 4. There is a considerable improvement in the resolution with second-order schemes. The
gain in accuracy is evident, both at the shocks and at the central vortex. The divergence preserving SCP2 and
ICP2 are slightly more accurate than the SYM2 and ISO2 schemes.
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(a) SYM2 (b) SCP2

(c) ISO2 (d) ICP2

Figure 4. The pressure p for the Orszag-Tang vortex computed at t = π on a 200× 200 mesh
with second-order GMD schemes.

The initial data is divergence free and the divergence constraint (1.11a) implies that it remains zero during
the evolution. We show the errors in the discrete divergence operator div∗ (3.3) in Table 1. The standard

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 0.53 0.42 4.7e-12 4.4e-12 1.49 1.32 5.8e-13 3.4e-13
100 0.89 0.70 2.1e-12 1.7e-12 3.39 3.07 5.1e-13 3.8e-13
200 1.23 1.11 1.0e-12 6.9e-13 5.57 5.12 5.7e-13 3.0e-13
400 1.61 1.52 1.3e-12 6.0e-13 8.08 11.3 6.0e-13 3.1e-13

Table 1. Discrete divergence div∗ (3.3) in L1 for the Orszag-Tang vortex with all the GMD
schemes on a M ×M mesh at time t = π.

GMD schemes lead to O(1) divergence errors, with large amounts of discrete divergence being generated near
the shocks. The divergence error is even larger for the second-order SYM2 and ISO2 schemes. This behavior is
to be expected as the second-order schemes resolve the shocks more sharply. The SCP, SCP2, ICP and ICP2
schemes preserve the discrete divergence to machine precision.
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Numerical stability (particularly on fine meshes) for the MHD equations is delicate [19]. Standard schemes
(even those with divergence cleaning) may crash due to instabilities and negative pressures on fine resolutions
[19]. In spite of the large divergence errors, the SYM (SYM2) and ISO (ISO2 schemes are stable. The genuinely
multi-dimensional structure of the schemes imparts numerical stability.

3.5. Cloud-Shock Interaction. Another benchmark test case for the MHD equations involves the interaction
of a high density cloud with a shock. The initial data for this cloud-shock interaction problem [42] consists of
a shock located at x = 0.05 with

(3.8) (ρ, u1, u2, u3, B1, B2, B3, p)

=

{
(3.86859, 11.2536, 0, 0, 0, 2.1826182,−2.1826182, 167.345), if x < 0.05
(1.0, 0, 0, 0, 0, 0.56418958, 0.56418958, 1.0), if x < 0.05.

and a circular cloud of density ρ = 10 with radius 0.15, centered at (x, y) = (0.25, 0.5) in the computational
domain [0, 1] × [0, 1]. The test is configured in such a way that a right moving shock violently interacts with
a high density cloud. The solution has a extremely complex structure, consisting of bow shock at the left,
trailing shocks at the right and a complicated smooth region with turbulent features in the center. We plot the
approximate density, on a 200× 200 mesh , at time t = 0.06 in figures 5 and 6.

The first-order results in figure 5 show that although diffusive, the first-order GMD schemes are stable and
resolve the complex shock and turbulence structure in the correct qualitative manner. The divergence preserving
SCP and ICP schemes are more accurate than the SYM and ISO schemes. The second-order results are plotted
in figure 6 and show a dramatic increase in resolution. Both the bow shock and the trailing shock are captured
accurately. The smooth region with turbulent features is also resolved quite well. The divergence errors for
discrete divergence div∗ are shown in Table 2 and demonstrate quite large divergence errors for the SYM (SYM2)
and ISO (ISO2) schemes. The divergence errors increase with reduction in mesh size, indicating production of
divergence at the shocks. The SCP (SCP2) and ICP (ICP2) schemes preserve discrete divergence to machine
precision.

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 4.56 2.59 2.8e-12 2.1e-12 5.79 5.38 3.4e-13 2.27e-13
100 4.47 3.3 1.2e-12 8.7e-13 12.58 11.75 2.1e-13 1.14e-13
200 5.19 4.05 5.0e-13 3.7e-13 27.1 26.48 1.4e-13 1.34e-13
400 7.5 6.4 2.3e-13 1.5e-13 38.0 41.3 1.8e-13 2.2e-13

Table 2. Discrete divergence div∗ (3.3) in L1 for cloud shock interaction with all the eight
schemes on a M ×M mesh at time t = 0.06.

4. Conclusion

The structure of solutions of conservation laws in several space dimensions is very rich and consists of
complex multi-dimensional waves. Standard finite volume methods are based on edge centered fluxes and do not
incorporate any explicit transverse information. Consequently, they are deficient in resolving genuinely multi-
dimensional waves. These deficiencies are particularly evident for conservation laws with intrinsic constraints
like vorticity and divergence. Finite volume schemes may not preserve discrete versions of the constraint and
may lead to spurious numerical waves and oscillations.

We summarize the results of a recent series of papers [33, 34, 35] where a new framework for genuinely multi-
dimensional (GMD) schemes was presented. These schemes are based on vertex centered numerical potentials.
Standard edge centered fluxes are used to define the potentials. A particular version of the GMD schemes, he
isotropic GMD scheme (2.10b) is entropy stable if its building block numerical fluxes are entropy stable.

A suitable choice of potentials leads to a GMD scheme that preserves discrete version of the divergence
constraint for the ideal MHD equations (1.9). Higher order of spatial accuracy is obtained by employing the
non-oscillatory reconstruction procedure of [25]. A choice of the Rusanov flux as the building block for the



CONSTRAINT PRESERVING GENUINELY MULTI-DIMENSIONAL SCHEMES 15

(a) SYM (b) ISO

(c) SCP (d) ICP

Figure 5. The density ρ for the cloud-shock interaction computed at t = 0.06 on a 200× 200
mesh with first-order schemes.

GMD schemes leads to genuinely multi-dimensional and constraint preserving versions of the popular central
schemes of Kurganov and Tadmor [25].

Numerical experiments for the Euler and the MHD equations are presented. They show that the GMD
schemes are robust and resolve the multi-dimensional waves with high accuracy. Preserving the divergence
constraint leads to higher resolution, particularly at first-order. The computational cost of the schemes are very
low and they are very simple to implement in a code. Hence, the GMD framework constitutes an unified and
highly effective strategy for approximating multi-dimensional conservation laws. Future papers consider higher
than second-order versions of the GMD schemes on unstructured grids.
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