
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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D. Schötzau∗, C. Schwab and T. P. Wihler†

Revised: January 2012

Research Report No. 2009-29
October 2009

Seminar für Angewandte Mathematik
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HP -DGFEM FOR SECOND ORDER ELLIPTIC PROBLEMS IN
POLYHEDRA II: EXPONENTIAL CONVERGENCE ∗

D. SCHÖTZAU† , C. SCHWAB‡ , AND T. P. WIHLER§

Abstract. The goal of this paper is to establish exponential convergence of hp-version interior
penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of
linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary condi-
tions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall
analyze the convergence of the hp-IP dG methods considered in [33] based on axiparallel σ-geometric
anisotropic meshes and anisotropic polynomial degree distributions of µ-bounded variation.

1. Introduction. Let Ω ⊂ R3 be an open bounded polyhedron with Lipschitz
boundary Γ = ∂Ω that consists of a finite union of plane faces. We consider the
Dirichlet problem for the diffusion-reaction equation

Lu ≡ −∇ · (A∇u) + cu = f in Ω, (1.1)

u = 0 on Γ = ∂Ω, (1.2)

where A ∈ R3×3
sym is a symmetric positive definite coefficient matrix which is indepen-

dent of the space coordinate x and c ≥ 0 is a given, constant reaction rate. Then, for
every f ∈ H−1(Ω), the boundary-value problem (1.1)–(1.2) admits a unique solution
u ∈ H1

0 (Ω). If f is analytic in Ω, then u is analytic in Ω away from the singular parts
of the boundary (i.e., away from edges and corners of Ω).

The hp-version of the finite element method (FEM) for the numerical solution
of elliptic problems was proposed in the mid 80ies by Babuška and his coworkers.
Exponential convergence rates exp(−b

√
N) with respect to the number of degrees of

freedom N for the hp-version of the FEM in one dimension were shown by Babuška
and Gui in [13] for the model singular solution u(x) = xα − x ∈ H1

0 (Ω) in Ω = (0, 1),
inspired by exponential convergence results in free-knot, variable order spline interpo-
lation, e.g. [10, 28] and the references there. This result required σ-geometric meshes
with a fixed subdivision ratio σ ∈ (0, 1) (in particular, for σ = 1/2 geometric element
sequences Ωi are obtained by successive element bisection towards x = 0) while the
constant b in the convergence estimate exp(−b

√
N) depends on the singularity expo-

nent α as well as on σ. Among all σ ∈ (0, 1), the optimal value was shown to be
σopt = (

√
2 − 1)2 ≈ 0.17, see [13, Theorem 3.2], provided that the geometric mesh

refinement is combined with nonuniform polynomial degrees pi ≥ 1 in Ωi which are
s-linear, i.e., pi ∼ si, with the optimal slope s being sopt = 2(α− 1/2). In this case,
the finite element error converges as exp(−b

√
N) where b = 1.76 . . . ×

√
(α− 1/2).

For the bisected geometric mesh where σ = 1/2 and for linear polynomial degree dis-
tributions with slope sopt = 0.39 . . .× (α− 1/2), one has b = 1.5632 . . .×

√
(α− 1/2),

∗This work was initiated during the workshop “Adaptive numerical methods and simulation of
PDEs”, held from January 21-25, 2008, at the Wolfgang Pauli Institute in Vienna, Austria. This
work was supported in part under the FP7 programme of the EU under grant No. ERC AdG 247277,
by the Swiss National Science foundation under grant No. 200021 126594 and by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

†Mathematics Department, University of British Columbia, Vancouver, BC V6T 1Z2, Canada,
(schoetzau@math.ubc.ca). This author was supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

‡Seminar for Applied Mathematics, ETH Zürich, 8092 Zürich, Switzerland
(schwab@math.ethz.ch).

§Mathematisches Institut, Universität Bern, 3012 Bern, Switzerland (wihler@math.unibe.ch).
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whereas for σ = 1/2 and uniform polynomial degree, b = 1.1054 . . . ×
√
(α− 1/2);

see [13, Table 1].

In two dimensions, exponential convergence (i.e., an upper bound of the form
C exp(−b 3

√
N) on the error) for the hp-version FEM in polygons was obtained by

Babuška and Guo in the mid 80ies in a series of landmark papers ([4, 16, 17] and
the references therein). Key ingredients in the proof were geometric mesh refinement
towards the singular support S (the set of vertices of Ω) of the solution and nonuniform
elemental polynomial degrees which increase linearly with the elements’ distance to S.

Starting in the 90ies, steps were undertaken to extend the analytic regularity
and the a-priori error analysis of hp-FEM in [4, 16, 17] to polyhedra in R3 in [5,
15, 18, 19]; see also [24] and the references therein for recent related results. While
these works were devoted to conforming hp-FEM with isotropic elemental polynomial
spaces for second-order elliptic problems, extensions to hp-version mixed methods and
conforming methods for higher-order problems in polygons were obtained in [14, 29].

Discontinuous Galerkin (dG) FEM emerged in the 70ies as stable discretizations
of first-order transport-dominated problems (see [22, 23, 27]), and as nonconforming
discretizations of second-order elliptic problems (cf. [1, 6, 11, 25, 35]). In the 90ies,
dG methods were studied within the hp-version setting for first-order transport and
for advection-reaction-diffusion problems in two- and three-dimensional domains (see,
e.g., [20, 21]). There, exponential convergence rates were established for piecewise an-
alytic solutions excluding, in particular, corner singularities as occurring in polygonal
domains. In that context, exponential convergence was proved in [36, 37] for diffusion
problems and in [34] for the Stokes equations; see also [12, 26, 38] for the analysis of
dG methods under low regularity conditions.

This paper is a continuation of our work on hp-dGFEM for elliptic problems in
polyhedral domains in [33], where we have shown the well-posedness and stability
of hp version interior penalty (IP) discontinuous Galerkin discretizations of (1.1)–
(1.2). Our analysis there covers solutions of (1.1)–(1.2) which exhibit typical corner
and edge singularities in polyhedra and belong to suitably weighted Sobolev spaces.
For such solutions, we have proved in [33] that hp-IP dG discretizations are well-
defined and consistent for appropriate combinations of σ-geometric meshes (obtained
from mapped hexahedral elements) and anisotropic elemental polynomial degrees (of
µ-bounded variation). In addition, the hp-dG approximations satisfy the Galerkin
orthogonality property and an abstract bound of the error measured in the dG energy
norm.

In this paper, we shall prove that exponential convergence rates exp(−b 5
√
N) in

terms of the number of degrees of freedom N can be obtained for hp-IP dGFEM
discretizations of (1.1)–(1.2) on axiparallel σ-geometric meshes with anisotropic ele-
mental polynomial degrees (of µ-bounded variation). Our hp-version error analysis
covers, in particular, three-dimensional generalizations of all mesh-degree combina-
tions found to be optimal in the univariate case in [13, Table 1], i.e., subdivision
ratios σ += 1/2 and nonuniform polynomial degree distributions which are possibly
anisotropic within each hexahedral element. Based on the one-dimensional analysis in
[13], we expect that this flexibility can be used to increase the value of the constant b
in the exponential convergence bound.

The outline of the article is as follows: In Section 2, we recapitulate regularity
results in countably normed Sobolev spaces for the solution of (1.1)–(1.2) from [8],
extending the pioneering work [3, 4] in two dimensions to the three-dimensional case.
In Section 3, we define hp-dG finite element spaces on σ-geometric axiparallel meshes

2



with possibly anisotropic polynomial degree distributions of µ-bounded variation. Sec-
tion 4 recalls the stability and quasi-optimality results of hp-version IP dG discretiza-
tions obtained in [33]. Furthermore, Section 5 is devoted to hp-interpolation estimates
in the interior domains as well as in the elements abutting the singular support of
the solution. Section 6 states and proves the exponential convergence of hp-dGFEM
in R3. Furthermore, we present some concluding remarks in Section 7.

Standard notation will be employed throughout the paper. The number of ele-
ments in a set A of finite cardinality is denoted by |A|. In Section 5 the function

Ψq,r =
Γ(q + 1− r)

Γ(q + 1 + r)
, 0 ≤ r ≤ q, (1.3)

shall be used frequently, where Γ is the Gamma function satisfying Γ(n+ 1) = n! for
any n ∈ N. Occasionally, we shall use the notations ”!” or ”-” to mean an inequality
or an equivalence containing generic positive multiplicative constants independent of
any local mesh sizes and polynomial degrees. In addition, we shall use in several
places notations and results from [33] which will only be briefly mentioned.

2. Regularity. Under our assumptions on the coefficients A, c and the source
term f in (1.1) are analytic in Ω, the weak solution u ∈ H1

0 (Ω) of (1.1)–(1.2) is
analytic away from any corners and edges of Ω. To establish exponential convergence
of hp-dGFEM, it is necessary to specify its precise regularity in countably normed
weighted Sobolev spaces. To that end, we essentially follow [8], based on the notation
already introduced in [33]. We also refer to the monograph [7]. In addition, we
mention the papers [15, 18, 19] where alternative definitions of countably normed
weighted Sobolev spaces in terms of local spherical coordinates have originally been
defined and studied.

2.1. Subdomains and Weights. We denote by C the set of corners c, and by E
the set of open1 edges e of Ω. The singular support is given by

S =

(
⋃

c∈C

c

)

∪
(
⋃

e∈E

e

)

⊂ Γ. (2.1)

For smooth data A, c and f in Ω, the set S coincides with the singular support of
the solution u of (1.1)–(1.2). For c ∈ C, e ∈ E and x ∈ Ω, we define the following
distance functions:

rc(x) = dist(x, c), re(x) = dist(x, e), ρce(x) = re(x)/rc(x). (2.2)

We assume that vertices are separated:

∃ ε(Ω) > 0 :
⋂

c∈C

Bε(c) = ∅, (2.3)

where Bε(c) denotes the open ball in R3 with center c and radius ε. For each cor-
ner c ∈ C, we define by Ec = {e ∈ E : c ∩ e += ∅ } the set of all edges of Ω which meet
at c. For any e ∈ E , the set of corners of e is given by Ce ≡ ∂e = { c ∈ C : c ∩ e += ∅ }.

1In this paper, all geometric objects (except points, but including, e.g., subdomains, faces, edges,
elements) are assumed to be open, unless explicitly stated otherwise.
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Then, for c ∈ C, e ∈ E and ec ∈ Ec, we define

ωc = {x ∈ Ω : rc(x) < ε ∧ ρce(x) > ε ∀ e ∈ Ec },
ωe = {x ∈ Ω : re(x) < ε ∧ rc(x) > ε ∀ c ∈ Ce },

ωcec = {x ∈ Ω : rc(x) < ε ∧ ρcec(x) < ε }.

When clear from the context, we write ωce instead of ωcec . Possibly by reducing ε
in (2.3), we may partition the domain Ω into four disjoint parts,

Ω = Ω0
.
∪ ΩC

.
∪ ΩE

.
∪ ΩCE , (2.4)

where

ΩC =
⋃

c∈C

ωc, ΩE =
⋃

e∈E

ωe, ΩCE =
⋃

c∈C

⋃

e∈Ec

ωce. (2.5)

We shall refer to the subdomains ΩC , ΩE and ΩCE as corner, edge and corner-edge
neighborhoods of Ω, respectively, and the remaining interior part of the domain Ω is
defined by Ω0 := Ω \ ΩC ∪ ΩE ∪ ΩCE .

2.2. Weighted Sobolev Spaces. To each c ∈ C and e ∈ E we associate a
corner and an edge exponent βc,βe ∈ R, respectively. We collect these quantities in
the multi-exponent

β = {βc : c ∈ C} ∪ {βe : e ∈ E} ∈ R|C|+|E|. (2.6)

Inequalities of the form β < 1 and expressions like β ± s, where s ∈ R, are to be
understood componentwise. For example, β+ s = {βc+ s : c ∈ C}∪{βe+ s : e ∈ E}.

At the heart of exponential convergence analysis of hp-approximations in three
dimensions is the analytic regularity of the solution u of (1.1)–(1.2) near the edges E
of Ω. In order to describe it, we recall from [33], for corners c ∈ C and edges e ∈ E , the
local coordinate systems in ωe and ωce which are chosen such that e corresponds to
the direction (0, 0, 1). Then, we denote quantities that are transversal to e by (·)⊥, and
quantities parallel to e by (·)‖. In particular, if α ∈ N3

0 is a multi-index corresponding
to the three local coordinate directions in a subdomain ωe or ωce, then we have α =
(α⊥,α‖), where α⊥ = (α1,α2) and α‖ = α3. Likewise notation shall be employed
below in anisotropic quantities related to a face. Following [8, Definition 6.3], we
introduce the anisotropically weighted semi-norm

|u|2Mm
β (Ω) = |u|2Hm(Ω0)

+
∑

e∈E

∑

α∈N30
|α|=m

∥∥rβe+|α⊥|
e D

αu
∥∥2
L2(ωe)

+
∑

c∈C

∑

α∈N30
|α|=m

(
∥∥rβc+|α|

c D
αu
∥∥2
L2(ωc)

+
∑

e∈Ec

∥∥rβc+|α|
c ρ

βe+|α⊥|
ce D

αu
∥∥2
L2(ωce)

)

,

(2.7)

for m ∈ N0, and define the norm ‖ ◦ ‖Mm
β (Ω) by ‖u‖2Mm

β (Ω) =
∑m

k=0 |u|
2
Mk

β(Ω). Here,

|u|2Hm(Ω0)
is the usual Sobolev semi-norm of order m on Ω0, and the operator Dα

denotes the derivative in the local coordinate directions corresponding to the multi-
index α. Finally, Mm

β (Ω) is the weighted Sobolev space obtained as the closure
of C∞

0 (Ω) with respect to the norm ‖·‖Mm
β (Ω). For subdomains K ⊂ Ω we shall

denote by | ◦ |Mm
β (K) the semi-norm (2.7) with all domains of integration replaced by

their intersections with K ⊂ Ω and likewise also for ‖ ◦ ‖Mm
β (K).
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2.3. Analytic Regularity. It is classical that the weak solution u of (1.1) is
analytic in Ω and admits analytic continuations to analytic parts of the boundary.
Additionally, it is also well known that analyticity may be lost near S. The anisotrop-
ically weighted Sobolev spaces defined above allow us to specify precisely this possible
loss. From [8, Theorem 6.8], we have the following shift theorem.

Proposition 2.1. There exist bounds βE ,βC > 0 (depending on Ω and the
coefficients in (1.1)) such that, for β satisfying

0 < βe < βE , 0 < βc <
1

2
+ βC , e ∈ E , c ∈ C, (2.8)

and for every m ∈ N0, the solution u ∈ H1
0 (Ω) of (1.1)–(1.2) with Lu ∈ Mm

1−β(Ω)
fulfills u ∈ Mm

−1−β(Ω). Furthermore, for every m ∈ N0 there exists a constant Cm > 0
(independent of f and u) such that there holds the a-priori estimate

‖u‖Mm
−1−β(Ω) ≤ Cm ‖Lu‖Mm

1−β(Ω) . (2.9)

Based on (2.9) and [8, Definition 6.4] (cf. also [7], as well as the recent work [24], in
which all the weights are expressed in terms of re), for γ ∈ R|C|+|E| we consider the
countably normed spaces of piecewise analytic functions:

Aγ(Ω) =

{
v ∈

⋂

m≥0

Mm
γ (Ω) : ∃Cv > 0 s.t. |v|Mm

γ (Ω) ≤ Cm+1
v m! ∀m ∈ N0

}
. (2.10)

Then, the following shift theorem can be found in [8, Corollary 7.9] (see also [7]):
Proposition 2.2. If f ∈ A1−β(Ω) in (1.1) for some β ∈ R|C|+|E| satisfying (2.8)

with βE ,βC < 1, then we have u ∈ A−1−β(Ω).

3. hp-Subspaces in Ω. In [33], we introduced a class of hp-dG spaces which

involve three basic ingredients: families Mσ = {M(&)
σ }&≥1 of σ-geometric meshes

with ( layers of refinement in Ω, polynomial degree distributions which are nonuniform
between elements and possibly anisotropic within each element but whose ratio across
interfaces of hexahedral elements is µ-bounded. We gave a specific construction of such
hp-space families in general Lipschitz polyhedra Ω ⊂ R3 with a boundary consisting of
a finite number of plane faces. Here, we restrict ourselves to axiparallel domains and
meshes. In the sequel, we briefly recapitulate the construction of the corresponding
hp-spaces in this special case, and refer to [33, Section 3] for details and proofs.

3.1. Geometric hp-Meshes in Ω. We start from any coarse regular quasiu-
niform partition M0 = {Qj}Jj=1 of Ω into J convex axiparallel hexahedra. Each of
these hexahedral elements Qj ∈ M0 is the image under an affine mapping Gj of the

reference patch Q̃ = (−1, 1)3, i.e.,

∀Qj ∈ M0 : Qj = Gj(Q̃), j = 1, . . . , J. (3.1)

In fact, since the hexahedra {Qj}j are assumed axiparallel, the mappings Gj are com-
positions of (isotropic) dilations and translations. The hexahedral mesh M0 obtained
in this fashion is shape-regular: there exists a constant CM0 ≥ 1 such that

C−1
M0 ≤ det(DGj) ≤ CM0 , j = 1, . . . , J. (3.2)

Due to our assumption that the faces of Ω are plane, it is geometrically exact.
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In [33], canonical geometric mesh patches on the reference patch Q̃ have been
constructed; see Figure 3.1. Geometric meshes in Ω can then be obtained by again
applying the patch mappings Gj to transform these canonical geometric mesh patches

on the reference patch Q̃ to the patches Qj ∈ M0. It is important to note that
the geometric refinements in the canonical patches have to be suitably selected and
oriented in order to achieve a proper geometric refinement towards corners and edges
of Ω. Moreover, the patches Qj with Qj∩S = ∅ away from the singular support S are

left unrefined, i.e., no refinement is considered on Q̃. In [33, Section 3.3], a specific
construction of geometric meshes has been introduced in terms of four different hp-
extensions (Ex1)–(Ex4).

Consider now the hexahedral patch Qj ∈ M0. We denote the elements in the

canonical geometric mesh patch associated with Qj by M̃j = {K̃}, where we allow

M̃j = {Q̃} in the case of unrefined patches. The elements in M̃j are then transported
to the physical domain Ω via the (finitely many) affine patch maps Gj in (3.1). More-

over, for each K̃ ∈ M̃j , we can write K̃ = Hj,K̃(Q̂), whereHj,K̃ : Q̂ → K̃ is a possibly

anisotropic dilation combined with a translation of the reference cube Q̂ = (−1, 1)3 (to
be distinguished from the reference patch Q̃). Thus, the elements in the patch Qj ⊂ Ω
will be given by

Mj =
{
K : K = (Gj ◦Hj,K̃)(Q̂), K̃ ∈ M̃j

}
, j = 1, . . . , J ;

A geometric mesh in Ω is now given by M =
⋃J

j=1 Mj. Each hexahedral element

K ∈ M is the image of the reference cube Q̂ = (−1, 1)3 under an element mapping
ΦK : K = ΦK(Q̂), which can be written as (cf. [33, Section 3])

ΦK = Gj(K) ◦HK : Q̂ → K ∈ M, K ∈ Mj(K), (3.3)

where HK : Q̂ → Q̃ is a possibly anisotropic dilation combined with a translation. In
turn, ΦK is also a possibly anisotropic dilation with a translation from Q̂ to K. We
collect all element mappings ΦK defined in (3.3) in the mapping vector

Φ(M) := {ΦK : K ∈ M}. (3.4)

With each hexahedral element K ∈ M, we associate a polynomial degree vec-
tor pK = (pK,1, pK,2, pK,3) ∈ N3

0. Its components correspond to the coordinate di-

rections in Q̂ = Φ−1
K (K). The polynomial degree is called isotropic if pK,1 = pK,2 =

pK,3 = pK . In the hp-error estimates, we shall be mainly concerned with the situation
where pK,1 = pK,2 =: p⊥K ; in this case we simply write

pK = (p⊥K , p‖K). (3.5)

Given a mesh M of hexahedral elements in Ω, we combine the elemental polynomial
degrees pK into the polynomial degree vector

p(M) := {pK : K ∈ M}. (3.6)

We remark that in addition to the mesh refinements, the extensions (Ex1)–(Ex4) in-
troduced in [33] also provide appropriate polynomial degree distributions that increase
linearly away from the singular set S.

6



Fig. 3.1. Examples of three basic geometric mesh subdivisions in the reference patch Q̃ with
subdivision ratio σ = 1

2
: isotropic towards the corner c (left), anisotropic towards the edge e (center),

and anisotropic towards the edge-corner pair ce (right). The sets c, e, ce are shown in boldface.

In the sequel, we shall be working with sequences of σ-geometrically refined meshes

denoted by M(0)
σ ,M(1)

σ ,M(2)
σ , . . . , where M(0)

σ := M0. Here, σ ∈ (0, 1) is a fixed
parameter defining the ratio of subdivision in the canonical geometric refinements in

Figure 3.1. For ( ≥ 1, there holds: if K ∈ M(&)
σ , then there exists K ′ ∈ M(&−1)

σ such
that K ⊂ K ′. We shall refer to the index ( as refinement level and to the sequence

Mσ = {M(&)
σ }&≥1 of σ-geometric meshes in Ω as σ-geometric mesh family; see [33,

Definition 3.4].

3.2. Mesh Layers. In the exponential convergence proof, we use the concept

of mesh layers: these are partitions of Mσ = {M(&)
σ }&≥1 into certain subsets of ele-

ments with identical scaling properties in terms of their relative distance to the sets C
and E . As each of the geometric reference patches shown in Figure 3.1 admits such a
partition into layers, the geometric mesh families Mσ defined by the construction in
[33, Section 3] also admit such a decomposition into layers. We have shown in [33]:

Proposition 3.1. Any σ-geometric mesh family Mσ obtained by iterating the
basic hp-extensions (Ex1)–(Ex4) in [33] can be partitioned into a countable sequence
of disjoint mesh layers {Lj

σ}&−1
j=0, and a corresponding nested sequence of terminal

layers T&
σ, such that each M(&)

σ ∈ Mσ, ( ≥ 1, can be written as

M(&)
σ = L

0
σ

.
∪ L

1
σ

.
∪ . . .

.
∪ L

&−1
σ

.
∪ T

&
σ. (3.7)

Elements in the submesh

O
&
σ := L

0
σ

.
∪ L

1
σ

.
∪ . . .

.
∪ L

&−1
σ ⊂ M(&)

σ ∈ Mσ, ( ≥ 1, (3.8)

are bounded away from C ∪ E, while all elements in the terminal layer T&
σ have a

nontrivial intersection with C ∪ E.
Evidently, M(&)

σ = O&
σ

.
∪ T&

σ for ( ≥ 1. We partition O&
σ into discrete corner, edge

and corner-edge neighborhoods as follows:

O
&
σ = O

&
C

.
∪ O

&
E

.
∪ O

&
CE

.
∪ O

&
int, (3.9)

where for ( ≥ 1,

O
&
int :=

{
K ∈ O

&
σ : K ∩ Ω0 += ∅

}
,

O
&
C :=

{
K ∈ O

&
σ : K ∩ ΩC += ∅

}
\O&

int,

O
&
E :=

{
K ∈ O

&
σ : K ∩ ΩE += ∅

}
\ (O&

int ∪O
&
C),

O
&
CE :=

{
K ∈ O

&
σ : K ∩ ΩCE += ∅

}
\
(
O

&
int ∪O

&
C ∪O

&
E

)
.

(3.10)
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Note that there exists (0 ≥ 1 (depending on ε from (2.3) and on σ) such that O&
int =

O
&0
int for ( ≥ (0. Without loss of generality, we shall assume that the initial mesh

is sufficiently fine so that we can choose (0 = 2. Consequently, in what follows we
shall simply write Oint instead of O&0

int. In addition, we may assume without loss of
generality that L0

σ ⊂ O&
int for ( ≥ (0 = 2.

For an element K, we set hK = diam(K). For anisotropic elements K ∈ O&
E

.
∪

O&
CE , we recall from [33] that we denote by h‖

K and h⊥
K the elemental diameters of K

parallel and transversal to the singular edge e ∈ E nearest toK. For isotropic elements

K ∈ O&
C , we have h‖

K - h⊥
K - hK . In a sequence Mσ = {M(&)

σ }&≥1 of σ-geometric

meshes, we define for any K ∈ M(&)
σ , c ∈ C and e ∈ E the quantities:

deK := dist(K, e) = inf
x∈K

re(x), dcK := dist(K, c) = inf
x∈K

rc(x). (3.11)

The geometric meshes M(&)
σ constructed above and in [33] have the following scaling

properties.
Proposition 3.2. There exists a constant 0 < κ1 < 1 (depending only on σ and

on CM0 in (3.2)) such that for all ( ≥ 1 we have

∀K ∈ O
&
C : κ1d

c
K ≤ rc|K ≤ κ−1

1 dcK , κ1hK ≤ dcK ≤ κ−1
1 hK , (3.12)

∀K ∈ O
&
E : κ1d

e
K ≤ re|K ≤ κ−1

1 deK , κ1h
⊥
K ≤ deK ≤ κ−1

1 h⊥
K , (3.13)

and

∀K ∈ O
&
CE :

κ1deK ≤ re|K ≤ κ−1
1 deK , κ1dcK ≤ rc|K ≤ κ−1

1 dcK ,

κ1h⊥
K ≤ deK ≤ κ−1

1 h⊥
K , κ1h

‖
K ≤ dcK ≤ κ−1

1 h‖
K .

(3.14)

Remark 3.3. It follows from Proposition 3.2 that, given 0 < σ < 1 and M0,
there exists κ1(σ, CM0 ) > 0 such that for all ( ∈ N there holds

∀K ∈ O
&
C ∩ L

&−1
σ : κ2

1σ
& ≤ hK ≤ κ−2

1 σ&, (3.15)

∀K ∈ O
&
E ∩ L

&−1
σ : κ2

1σ
& ≤ h⊥

K ≤ κ−2
1 σ&, (3.16)

and, for some index i = i(K), 1 ≤ i ≤ (,

∀K ∈ O
&
CE\O&−1

CE : κ1σ
& ≤ h⊥

K ≤ κ−1
1 σ&, κ1σ

i ≤ h‖
K ≤ κ−1

1 σi. (3.17)

Similarly, we partition the terminal layer T&
σ into

T
&
σ = V&

C

.
∪ V&

E , (3.18)

where

V&
C =

{
K ∈ T

&
σ : ∃c ∈ C with c ∈ K

}
,

V&
E =

{
K ∈ T

&
σ : ∃e ∈ E s. t. (K ∩ S)◦ ∩ e is an entire edge of K

}
\ V&

C .
(3.19)

We notice that elements in V&
C are isotropic with hK - h⊥

K - h‖
K , while elements in V&

E
may be anisotropic. Analogous to Proposition 3.2, we have the following result.

Proposition 3.4. There exists a constant κ2(σ, CM0 ) > 0 such that for all ( ≥ 1
we have

∀K ∈ V&
C : κ2σ

& ≤ hK ≤ κ−1
2 σ&, (3.20)
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and (cf. (3.17)) for all K ∈ V&
E there holds

κ2σ
& ≤ h⊥

K ≤ κ−1
2 σ&, κ2σ

&−j ≤ h‖
K ≤ κ−1

2 σ&−j , (3.21)

for an exponent j = j(K) with 0 ≤ j ≤ (.

3.3. Finite Element Spaces. Let M be a geometric mesh of a σ-geometric
mesh family Mσ in Ω. Furthermore, let Φ(M) and p(M) be the associated element
mapping and elemental polynomial degree vectors, as introduced in (3.4) and (3.6),
respectively. We then introduce the discontinuous hp finite element space

V (M,Φ,p) =
{
u ∈ L2(Ω) : u|K ∈ QpK (K), K ∈ M

}
. (3.22)

Here, we define the local polynomial approximation space QpK (K) as follows: first,
on the reference element Q̂ and for a polynomial degree vector p = (p1, p2, p3) ∈ N3

0,
we introduce the anisotropic polynomial space:

Qp(Q̂) = Pp1(Î)⊗ Pp2(Î)⊗ Pp3(Î) = span { x̂α : αi ≤ pi, 1 ≤ i ≤ 3 } . (3.23)

Here, for p ∈ N0, we denote by Pp(Î) the space of all polynomials of degree at most p
on the reference interval Î = (−1, 1). Then, if K is a hexahedral element of M with
associated elemental mapping ΦK : Q̂ → K and polynomial degree vector pK =
(pK,1, pK,2, pK,3), we define

QpK (K) =
{
u ∈ L2(K) : (u|K ◦ ΦK) ∈ QpK (Q̂)

}
. (3.24)

In the case where the polynomial degree vector pK associated with K is isotropic,
i.e., pK,1 = pK,2 = pK,3 = pK , we simply write QpK (K) = QpK (K).

We now introduce two families of hp-finite element spaces for the discontinuous
Galerkin methods; both yield exponentially convergent approximations and are based

on the σ-geometric mesh families Mσ = {M(&)
σ }&≥1. The first family has uniform

polynomial degree distributions, while the second (smaller) family will have linearly
increasing and anisotropically distributed polynomial degrees. The first family of
hp-dG subspaces is defined by

V &
σ := V (M(&)

σ ,Φ(M(&)
σ ),p1(M(&)

σ )), ( ≥ 1, (3.25)

where the elemental polynomial degree vectors pK in p1(M(&)
σ ) are isotropic and

uniform, given on each element K as

pK = ( ∀K ∈ M(&)
σ . (3.26)

The second family of hp-dG subspaces is chosen as

V &
σ,s := V (M(&)

σ ,Φ(M(&)
σ ),p2(M(&)

σ )), ( ≥ 1, (3.27)

for an increment parameter s > 0. Here the polynomial degree vectors p2(M(&)
σ ) are

linearly increasing with slope s away from S, i.e., specifically, the polynomial degrees
within each element increase linearly with the number of mesh layers between that
element and the component of the singular set S nearest to it, with the factor of
proportionality (“slope” in the terminology of [13]) being s > 0; see [33, Section 3].
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Remark 3.5. By construction, increasing the index j in the mesh layers Lj
σ

corresponds to moving from inside the domain towards the singular set S, with L0
σ

being the most inner layer, and the terminal layer T&
σ being the most outer layer

abutting at S; see (3.7). While this numbering takes into account the scaling properties
of Lj

σ, it is in contrast to the notion of linearly increasing polynomial degrees where
the polynomial degree increases from the singular set to the interior of the domain;
see also [33].

3.4. Polynomial Degree Vectors of µ-Bounded Variation. In our error
analysis, we shall employ the concept of polynomial degree vectors p(M) of µ-bounded
variation on meshes M ∈ Mσ. To define it, for any M ∈ Mσ, we denote the set of
all interior faces in M by FI(M) and the set of all boundary faces by FB(M). In
addition, let F(M) = FI(M)∪FB(M) denote the set of all (smallest) faces of M. If
the mesh M ∈ Mσ is clear from the context, we shall omit the dependence of these
sets on M. Furthermore, for an element K ∈ M, we denote the set of its faces by
FK = { f ∈ F : f ⊂ ∂K }. For any element K ∈ M and any face f ∈ FK , we from

now on denote by p‖,(1)K,f , p‖,(2)K,f the two components of pK parallel to f , and by p⊥K,f
the polynomial degree of pK transversal to f . A degree vector p(M) is of µ-bounded
variation if there is a constant µ ∈ (0, 1) such that

µ ≤ p⊥K",f /p
⊥
K#,f ≤ µ−1, (3.28)

uniformly for all interior faces f = FI . A family of degree vectors is of µ-bounded
variation if each vector in the family is of µ-bounded variation (uniformly for the
entire family). By construction, the families based on the spaces V &

σ in (3.25) and V &
σ,s

in (3.27) have polynomial degree vectors of µ-bounded variation.

4. Discontinuous Galerkin Discretization. In this section we present the
hp-dG discretizations of (1.1)–(1.2) for which we shall prove exponential convergence.
In addition, we shall briefly recall the stability and quasi-optimality results from [33,
Section 4]. Throughout, M ∈ Mσ denotes a generic, σ-geometric mesh.

4.1. Face Operators. In order to define a dG formulation on a given mesh M
for the model problem (1.1)–(1.2), we shall first recall some element face operators.
For this purpose, consider an interior face f =

(
∂K' ∩ ∂K(

)◦ ∈ FI(M) shared by two

elements K', K( ∈ M. Furthermore, let v,w be a scalar- respectively a vector-valued
function that is sufficiently smooth inside the elements K', K(. Then we define the
following jumps and averages of v and w along f :

[[v]] = v|K"nK" + v|K#nK# 〈〈v〉〉 = 1/2 (v|K" + v|K#)

[[w]] = w|K" · nK" +w|K# · nK# 〈〈w〉〉 = 1/2 (w|K" +w|K#) .

Here, for an element K ∈ M, we denote by nK the outward unit normal vector
on ∂K. For a boundary face f = (∂K ∩ ∂Ω)◦ ∈ FB(M) for K ∈ M, and sufficiently
smooth functions v,w on K, we let [[v]] = v|KnΩ, [[w]] = w|K · nΩ, and 〈〈v〉〉 = v|K ,
〈〈w〉〉 = w|K , where nΩ is the outward unit normal vector on ∂Ω.

4.2. hp-IP dG Discretizations. The problem (1.1)–(1.2) will be discretized
using an interior penalty (IP) discontinuous Galerkin method. Let V (M,Φ,p) be
an hp-dG finite element space on a σ-geometric mesh M ∈ Mσ with a µ-bounded
degree vector p. For a fixed parameter θ ∈ R, we define the hp-discontinuous Galerkin
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solution uDG by

uDG ∈ V (M,Φ,p) : aDG(uDG, v) =

∫

Ω
fv dx ∀ v ∈ V (M,Φ,p), (4.1)

where aDG(u, v) is given by

aDG(w, v) =

∫

Ω
((A∇hw) ·∇hv + cwv) dx−

∫

F(M)
〈〈A∇hw〉〉 · [[v]] ds

+ θ

∫

F(M)
〈〈A∇hv〉〉 · [[w]] ds+ γ

∫

F(M)
α[[v]] · [[w]] ds.

Here, ∇h is the elementwise gradient, and γ > 0 is a stabilization parameter that will
be chosen sufficiently large. Furthermore, α ∈ L∞(F) is the discontinuity stabilization
function

xα(x) =






max
(
p⊥K",f

, p⊥K#,f

)2

min
(
h⊥
K",f

, h⊥
K#,f

) if x ∈ f = (∂K' ∩ ∂K()
◦ ∈ FI

for K', K( ∈ M,

(p⊥K,f )
2

h⊥
K,f

if x ∈ f = (∂K ∩ ∂Ω)◦ ∈ FB for K ∈ M.

(4.2)

Here, we denote by h⊥
K,f the height of K over face f , i.e., the diameter of K in the

direction perpendicular to f . The parameter θ allows us to describe a whole range
of interior penalty methods: for θ = −1 we obtain the standard symmetric interior
penalty (SIP) method while for θ = 1 the non-symmetric (NIP) version is obtained;
cf. [2] and the references therein. Let us further remark that, by our assumption
that A is symmetric positive definite and constant, we omit the explicit dependence
of the penalty jump terms on the diffusivity.

4.3. Anisotropic Trace Inequality. In order to analyze the numerical fluxes
in the dG formulation, we next recall the anisotropic trace inequality proved in [33]:
let M ∈ Mσ for 0 < σ < 1, K ∈ M axiparallel, f ∈ FK and s ≥ 1. Then, for
any v ∈ W 1,s(K), there holds

‖v‖sLs(f) ≤ Cs

(
h⊥
K,f

)−1
(
‖v‖sLs(K) +

(
h⊥
K,f

)s ‖∂K,f,⊥v‖sLs(K)

)
. (4.3)

The constant Cs > 0 depends only on σ and on the mapping vector Φ through the
patch maps Gj , but is independent of the element size and element aspect ratio.
Here, ∂K,f,⊥ signifies the partial derivative in direction transversal to f ∈ FK .

4.4. Stability and Galerkin Orthogonality. To formulate the well-posedness
of the hp-dGFEM, we use the standard dG norm defined by

|||v|||2DG =

∫

Ω

(
|∇hv|2 + cv2

)
dx+ γ

∫

F
α |[[v]]|2 ds, (4.4)

for any v ∈ V (M,Φ,p) +H1(Ω). In [33], we have shown the the following result.
Theorem 4.1. For any σ-geometric mesh M with 0 < σ < 1 and any degree

vector p of µ-bounded variation, the dG bilinear form aDG(·, ·) is continuous and
coercive on V (M,Φ,p): there exist constants 0 < C1 ≤ C2 < ∞ independent of

11



the refinement level (, the element aspect ratios, the local mesh sizes, and the local
polynomial degree vectors such that

|aDG(v, w)| ≤ C1|||v|||DG|||w|||DG ∀ v, w ∈ V (M,Φ,p),

and, for γ > 0 sufficiently large independent of the refinement level (, the element
aspect ratios, the local mesh sizes, and the local polynomial degree vectors,

aDG(v, v) ≥ C2|||v|||2DG ∀ v ∈ V (M,Φ,p).

In particular, there exists a unique solution uDG of (4.1).
Moreover, the following Galerkin orthogonality property holds: suppose that the

solution u of (1.1)–(1.2) belongs to M2
−1−β(Ω), where β is the weight vector from (2.6)

and (2.8). Then, the dG approximation uDG ∈ V (M,Φ,p) satisfies

aDG(u− uDG, v) = 0 ∀ v ∈ V (M,Φ,p). (4.5)

We point out that for the non-symmetric interior penalty method corresponding to
θ = 1, any value of γ > 0 is sufficient for the method to be coercive.

4.5. Error Estimates. Although the error of the dG method (4.1) is not qua-
sioptimal with respect to the energy norm, the Galerkin orthogonality (4.5) of the
error implies that the error can be bounded by a certain interpolation error of the
exact solution in the dG subspace. We proceed in a standard way and split the
error eDG = u− uDG into two parts η and ξ, eDG = η + ξ, with

η = u−Πu ∈ H1
0 (Ω) + V (M,Φ,p), ξ = Πu− uDG ∈ V (M,Φ,p). (4.6)

Here, Π : M2
−1−β(Ω) → V (M,Φ(M),p) is a hp-(quasi)interpolant which is stable in

H2(K) for each K ∈ O&
σ and bounded for u ∈ M2

−1−β(Ω). In [33], we have proved
the following error estimate.

Theorem 4.2. On any σ-geometric and axiparallel mesh M(&)
σ and any degree

vector of µ-bounded variation, there holds

|||u− uDG|||2DG ≤ Cp4
max

(
ΥO$

σ
[η] +ΥT$

σ
[η]
)
, (4.7)

where

ΥO$
σ
[η] =

∑

K∈O$
σ

(
max
f∈FK

(
h⊥
K,f

)−2 ‖η‖2L2(K) + ‖∇η‖2L2(K)

)

+
∑

K∈O$
σ

∑

f∈FK

(
h⊥
K,f

)2 ‖∂K,f,⊥∇η‖2L2(K) ,
(4.8)

and

ΥT$
σ
[η] =

∑

K∈T$
σ

(
max
f∈FK

(
h⊥
K,f

)−2 ‖η‖2L2(K) + ‖∇η‖2L2(K)

)

+
∑

K∈T$
σ

∑

f∈FK

|f |−1 h⊥
K,f ‖∇η‖2L1(f) .

(4.9)

Here, C = C(σ, µ,M0, θ, γ,α0) > 0 is a constant independent of the refinement level (,
the element aspect ratios, the local mesh sizes, and the local polynomial degree vectors.
Furthermore, |f | is the surface measure of a face f , and pmax = max

K∈M($)
σ

maxpK .
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5. hp-Approximations. To prove exponential convergence of the hp-version
dGFEM (4.1) for problem (1.1)–(1.2), it is now sufficient to construct an exponentially
convergent interpolant Π for the bounds in (4.8) and (4.9) in Theorem 4.2. Since Πu ∈
V (M,Φ,p) may be discontinuous across element interfaces, we can construct Πu
separately for each element K of the discrete neighborhoods in (3.10), and of the

terminal layer, i.e., on Oint, O&
C ,O

&
E ,O

&
CE , and T&

σ of M(&)
σ . We then estimate η|K =

u|K − Πu|K for every element K under the regularity property u ∈ A−1−β(Ω) stated
in Proposition 2.2, that is, the solution u satisfies

|u|Mm
−1−β(Ω) ≤ Cm+1

u m! ∀m ∈ N0, (5.1)

for some constant Cu > 0, with β satisfying (2.8) and | ◦ |Mm
−1−β(Ω) as in (2.7).

5.1. Anisotropic Polynomial Approximation. We begin by developing a
polynomial approximation analysis based on tensor-product interpolation operators.

5.1.1. Univariate hp-Projectors and Error Bounds. Let I = (−1, 1) be the
unit interval. For any k ≥ 1 we define Hk(I) as the usual Sobolev space, with the
norm

‖u‖2Hk(I) =
k∑

j=0

‖u(j)‖2L2(I) . (5.2)

For q ≥ 0 we denote by πq : L2(I) → Pq(I) the L2(I)-projection. The following
Ck−1-conforming and univariate projector has been constructed in [9, Section 8].

Lemma 5.1. For any p, k ∈ N with p ≥ 2k−1, there is a projector π̂p,k : Hk(I) →
Pp(I) that satisfies

(π̂p,k)
(k)u = πp−k(u

(k)) (5.3)

and

(π̂p,k)
(j)u(±1) := u(j)(±1), j = 0, 1, 2, . . . , k − 1 . (5.4)

Note that although conditions (5.3) and (5.4) formally overspecify the interpolating
polynomial, the projector is, in fact, well defined. Moreover, we have the following
stability and approximation properties, which have been proved in [9, Proposition 8.4]
and [9, Theorem 8.3], respectively.

Proposition 5.2.

1. For every k ∈ N, there exists a constant Ck > 0 such that

∀u ∈ Hk(I) , ∀p ≥ 2k − 1 : ‖π̂p,ku‖Hk(I) ≤ Ck‖u‖Hk(I) . (5.5)

2. For integers p, k ∈ N with p ≥ 2k − 1, κ = p − k + 1 and for u ∈ Hk+s(I)
with any k ≤ s ≤ κ there holds the error bound

‖(u− π̂p,ku)
(j)‖2L2(I) ≤

(κ− s)!

(κ+ s)!
‖u(k+s)‖2L2(I), (5.6)

for any j = 0, 1, . . . , k.
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5.1.2. Tensor-interpolation and Error Bounds. Let now Id = I× · · ·×I be
the unit cube in Rd, d ≥ 1. Points x in Id have coordinates xi, i.e., x = (x1, . . . , xd).
On Id we define the space

Hk
mix(I

d) = Hk(I)⊗ · · ·⊗Hk(I) , (5.7)

where ⊗ denotes the tensor-product of separable Hilbert spaces. The tensor-product
spaces are isomorphic to standard Bochner spaces. For example,

Hk
mix(I

d) - Hk(I;Hk
mix(I

d−1)) - Hk
mix(I

d−1;Hk(I)) . (5.8)

We also require anisotropic spaces. For k = (k1, . . . , kd) ∈ Nd, we define

Hk
mix(I

d) = Hk1(I)⊗ · · ·⊗Hkd(I) . (5.9)

Analogously, for p = (p1, . . . , pd) ∈ Nd we set

Qp(Id) := Pp1(I)⊗ · · ·⊗ Ppd(I) . (5.10)

In Id of dimension d > 1 and for pi ≥ 2ki−1, we now define the interpolation operator

Π̂d
p,k =

d⊗

i=1

π̂(i)
pi,ki

, (5.11)

where π̂(i)
pi,ki

is the univariate operator from Lemma 5.1, acting in the variable xi. If

pi = p and ki = k for all i, we also write Π̂d
p,k in place of Π̂d

p,k.

In what follows, we denote by ki ∈ Nd−1 the multiindex k with component ki
deleted from it.

Proposition 5.3. For d ≥ 1 there holds:

‖Π̂d
p,ku‖Hk

mix(I
d) ≤ Ck,d‖u‖Hk

mix(I
d) (5.12)

and

∥∥∥u− Π̂d
p,ku

∥∥∥
Hk

mix(I
d)

≤ Ck,d

d∑

i=1

‖u− π̂(i)
pi,ki

u‖
Hki (I;H

ki
mix(I

d−1))
. (5.13)

Proof. We first prove both assertions simultaneously by induction over the di-
mension d. For d = 1, property (5.12) is just (5.5), while (5.13) is trivial. Assume
next that the assertions have been proved already for d′ ≥ 1. We then verify them
for d = d′ + 1. By using the tensor-product structure, the stability property for d′,
and once more (5.5), we obtain

‖Π̂d
p,ku‖Hk

mix(I
d) = ‖Π̂d′

pd,kd
⊗ π̂(d)

pd,kd
u‖

H
kd
mix(I

d′ ;Hkd (I))

≤ Ck′
d,d

′‖π̂(d)
pd,kd

u‖Hk
mix(I

d′ ;Hkd (I)) ≤ Ck′
d,d

′Ckd‖u‖Hk
mix(I

d′ ;Hkd (I)) .
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This implies the stability property (5.12) for dimension d. Similarly, using the stabil-
ity (5.12) property for d′, we find that

‖u− Π̂d
p,ku‖Hk

mix(I
d)

≤ ‖u− Π̂d′

pd,kd
u‖Hk

mix(I
d) + ‖Π̂d′

pd,kd
(u− π̂(d)

pd,kd
u)‖Hk

mix(I
d)

≤ Ckd′ ,d
′

d′∑

i=1

‖u− π̂(i)
pi,ki

u‖
Hki (I;H

ki
mix(I

d′))
+ ‖Π̂d′

pd,kd
(u− π̂(d)

pd,kd
u)‖

H
kd
mix(I

d′ ;Hkd (I))

≤ Ck′
d,d

′

d′∑

i=1

‖u− π̂(i)
pi,ki

u‖
Hki (I;H

ki
mix(I

d′))
+ C′

kd′ ,d
′‖(u− π̂(d)

pd,kd
u)‖

H
kd
mix(I

d′ ;Hkd (I))

= Ckd,d

d∑

i=1

‖u− π̂(i)
pi,ki

u‖
Hki (I;H

ki
mix(I

d′))
.

This completes the proof.

5.1.3. Application to the reference cube. We now consider the unit cube
K̂ = (−1, 1)3 = K̂⊥ × K̂‖, with K̂⊥ = (−1, 1)2, K̂‖ = (−1, 1). The superscripts
·⊥ and ·‖ denote, respectively, the coordinates x⊥ = (x1, x2) and x‖ = x3. We
wish to consider anisotropic polynomial degrees on K̂: for a polynomial degree vector
p = (p⊥, p‖), we write

Qp(K̂) = Qp(K̂⊥ × K̂‖) = Qp⊥

(K̂⊥)⊗ Pp‖

(K̂‖) = Pp⊥

(I)⊗ Pp⊥

(I)⊗ Pp‖

(I),

where again I = (−1, 1). We set

H(k⊥,k‖)
mix (K̂) = Hk⊥

(K̂⊥)⊗Hk‖

(K̂‖) = Hk⊥

(I)⊗Hk⊥

(I)⊗Hk⊥

(I),

for regularity parameters (k⊥, k‖) ∈ N2.
Following the definitions and the analysis above, choosing k = k‖ = k⊥ = 2,

and p⊥, p‖ ≥ 3, there is a tensor-product projector

Π̂3
(p⊥,p‖),2 : H

2
mix(K̂) → Q(p⊥,p‖)(K̂), (5.14)

which is well-defined and bounded in H2
mix(K̂). By combining (5.13) and (5.6), we

now obtain the following error estimate.
Proposition 5.4. For any integers 3 ≤ s⊥ ≤ p⊥, 3 ≤ s‖ ≤ p‖, there holds

‖u− Π̂3
(p⊥,p‖),2u‖

2
H2

mix(K̂)
! Ψp‖−1,s‖−1

∑

α⊥
1 ≤2,α⊥

2 ≤2

‖Dα⊥

⊥ D
s‖+1
‖ u‖2

L2(K̂)

+Ψp⊥−1,s⊥−1

∑

α⊥
1 ≤2,α‖≤2

‖D(α⊥
1 ,s⊥+1)

⊥ D
α‖

‖ u‖2
L2(K̂)

+Ψp⊥−1,s⊥−1

∑

α⊥
2 ≤2,α‖≤2

‖D(s⊥+1,α⊥
2 )

⊥ D
α‖

‖ u‖2
L2(K̂)

.

Remark 5.5. We note that in the isotropic case, we have p = p⊥ = p‖ and
s = s⊥ = s‖, so that the error bound in Lemma 5.4 becomes

‖u− Π̂3
p,2u‖2H2

mix(K̂)
! Ψp−1,s−1‖u‖2Hs+5(K̂)

(5.15)
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for any 3 ≤ s ≤ p.
Proof. We first note that

Π̂3
(p⊥,p‖),2 = π̂(1)

p⊥,2 ⊗ π̂(2)
p⊥,2 ⊗ π̂(2)

p‖,2
.

To indicate the dependence on the coordinate direction, we write K̂ = I(1)×I(2)×I(3).
Hence, the result in (5.13) yields

‖u− Π̂3
(p⊥,p‖),2u‖

2
H2

mix(K̂)
! ‖u− π̂(1)

p⊥,2u‖H2(I(1);H2
mix(I

(2)⊗I(3)))

+ ‖u− π̂(2)
p⊥,2u‖H2(I(2);H2

mix(I
(1)⊗I(3))) + ‖u− π̂(3)

p‖,2
u‖H2(I(3);H2

mix(I
(1)⊗I(2))).

Referring to the approximation properties in (5.6) gives

‖u− Π̂3
(p⊥,p‖),2u‖

2
H2

mix(K̂)
! Ψp⊥−1,s⊥

∑

α⊥
2 ≤2,α‖≤2

‖D(s⊥+2,α⊥
2 )

⊥ D
α‖

u‖2
L2(K̂)

+Ψp⊥−1,s⊥

∑

α⊥
1 ≤2,α‖≤2

‖D(α⊥
1 ,s⊥+2)

⊥ D
α‖

‖ u‖2
L2(K̂)

+Ψp‖−1,s‖

∑

α⊥
1 ≤2,α⊥

2 ≤2

‖Dα⊥

⊥ D
s‖+2
‖ u‖2

L2(K̂)
,

for any 2 ≤ s⊥ ≤ p⊥ − 1 and 2 ≤ s‖ ≤ p‖ − 1. Thus, the substitution s⊥ = s⊥ + 1,
s‖ = s‖ + 1 completes the proof.

5.1.4. Anisotropic interpolation on axiparallel hexahedra. We construct
the hp-interpolant Πu on an axiparallel element K ∈ O&

σ as follows. Let the elemental

polynomial degree vector be given by pK = (p⊥K , p‖K). On the reference element K̂,
we then define

Π̂û = Π̂3
(p⊥

K ,p‖
K)

û,

with Π̂3
(p⊥

K ,p
‖
K)

the projector defined in (5.14). Here, for an element K ∈ O&
σ we set

û = u ◦ ΦK , (5.16)

and define the elemental interpolation operator (Πu)|K by

(Πu) |K ◦ ΦK := Π̂û. (5.17)

Upon possibly translating the element K, we may assume without loss of general-

ity that K = (0, h⊥
K) × (0, h⊥

K) × (0, h‖
K) be an axiparallel element that is possi-

bly anisotropic in the third coordinate direction. We denote by x =
(
x⊥, x‖

)
and

x̂ =
(
x̂⊥, x̂‖

)
the coordinates on K and K̂, respectively. Similarly, for a multi-index

α =
(
α⊥,α‖

)
, we write Dα⊥

⊥ respectively Dα‖

‖ for partial derivatives perpendicular
respectively parallel to the third coordinate direction. On the reference element, we

use D̂α⊥

⊥ and D̂α‖

‖ . Then,

dx⊥ = (h⊥
K)2 dx̂⊥, dx‖ = h‖

K dx̂‖,
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and

D
α⊥

⊥ = (h⊥
K)−|α⊥|

D̂
α⊥

⊥ , D
α‖

‖ = (h‖
K)−α‖

D̂
α‖

‖ .

Consequently, we obtain

‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K) = (h⊥
K)2−2|α⊥|(h‖

K)1−2α‖

‖D̂α⊥

⊥ D̂
α‖

‖ û‖2
L2(K̂)

. (5.18)

for any α⊥ ∈ N2
0 and α‖ ∈ N0. Lemma 5.4 then scales as follows:

Lemma 5.6. For an axiparallel element K as above, and η = u−Πu, there holds

‖η̂‖2
H2

mix(K̂)
! E‖

p‖,s‖
(K) + E⊥

p⊥,s⊥(K), (5.19)

for any 3 ≤ s⊥ ≤ p⊥ and 3 ≤ s‖ ≤ p‖, with

E‖
p‖,s‖

(K) ! Ψp‖−1,s‖−1

∑

α⊥
1 ≤2,α⊥

2 ≤2

(h⊥
K)2|α

⊥|−2(h‖
K)2s

‖+1‖Dα⊥

⊥ D
s‖+1
‖ u‖2L2(K),

E⊥
p⊥,s⊥(K) ! Ψp⊥−1,s⊥−1

∑

s⊥+1≤|α⊥|≤s⊥+3,α‖≤2

(h⊥
K)2|α

⊥|−2(h‖
K)2α

‖−1‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K) .

Proof. From Lemma 5.4 on K̂, we see that ‖η̂‖2
H2

mix(K̂)
can be bounded by three

terms. Using (5.18) the first of these terms scales as follows:

Ψp‖−1,s‖−1

∑

α⊥
1 ≤2,α⊥

2 ≤2

‖D̂α⊥

⊥ D̂
s‖+1
‖ û‖2

L2(K̂)

- Ψp‖−1,s‖−1

∑

α⊥
1 ≤2,α⊥

2 ≤2

(h⊥
K)2|α

⊥|−2(h‖
K)2s

‖+1‖Dα⊥

⊥ D
s‖+1
‖ u‖2L2(K).

Similarly, we have for the second term:

Ψp⊥−1,s⊥−1

∑

α⊥
1 ≤2,α‖≤2

‖D̂(α⊥
1 ,s⊥+1)

⊥ D̂
α‖

‖ û‖2
L2(K̂)

- Ψp⊥−1,s⊥−1

∑

α⊥
1 ≤2,α‖≤2

(h⊥
K)2(s

⊥+α⊥
1 )(h‖

K)2α
‖−1‖D(α⊥

1 ,s⊥+1)
⊥ D

α‖

‖ u‖2L2(K)

! Ψp⊥−1,s⊥−1

∑

s⊥+1≤|α⊥|≤s⊥+3,α‖≤2

(h⊥
K)2|α

⊥|−2(h‖
K)2α

‖−1‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K) .

The third term scales as the second term.

5.2. Error Bounds on O&
σ. We are now ready to estimate ΥO$

σ
[η] in (4.8) for

η = u− Πu and Π in (5.17). Due to the various element scalings, we give a separate
error analysis on each of the submeshes in (3.10). To that end, we write

ΥO$
σ
[η] ≤ ΥOint [η] +ΥO$

C
[η] +ΥO$

E
[η] +ΥO$

CE
[η], (5.20)

where the consistency errors on the respective submeshes are defined as in [33], but
with sums that are taken only over the elements in the submeshes.

We remark that we first analyze the interpolant Πu ∈ V &
σ with variable and

anisotropic polynomial degree vector that defines the space V &
σ,s in (3.27). The space
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V &
σ in (3.25) with uniform, isotropic polynomial degree distributions will be addressed

after that in Corollary 5.19 below.
In what follows, it will be further convenient to introduce the notation TK [η] :=

TK
1 [η] + TK

2 [η] + TK
3 [η] where

TK
1 [η] := max

f∈FK

(h⊥
K,f )

−2‖η‖2L2(K),

TK
2 [η] := ‖∇η‖2L2(K),

TK
3 [η] :=

∑

f∈FK

(h⊥
K,f )

2‖∂K,f,⊥∇η‖2L2(K).

(5.21)

Hence, in light of Theorem 4.2, for any of the neighborhoods D in (5.20) there holds

ΥD[η] =
∑

K∈D

TK [η]. (5.22)

In our analysis, we shall use the following result.
Lemma 5.7. Let K ∈ O&

σ be an axi-parallel element, f ∈ FK, and e ∈ E the
nearest singular edge to K. Then we have

TK
1 [η] !

(
(h⊥

K)2(h‖
K)−1 + h‖

K

)
‖η̂‖2

L2(K̂)
,

TK
2 [η] !

(
(h⊥

K)2(h‖
K)−1 + h‖

K

)
‖∇̂η̂‖2

L2(K̂)
,

TK
3 [η] !

(
(h⊥

K)2(h‖
K)−1 + h‖

K

)
|η̂|2

H2(K̂)
.

Consequently, there holds

TK [η] !
(
(h⊥

K)2(h‖
K)−1 + h‖

K

)
)‖η̂‖2

H2
mix(K̂)

.

Proof. The scaling in (5.18) shows that

(h⊥
K,f )

−2‖η‖2L2(K) - h−2
K,f (h

⊥
K)2h‖

K‖η̂‖2
L2(K̂)

.

By noting that h⊥
K,f - h‖

K for f ⊥ e and h⊥
K,f - h⊥

K for f ‖ e, the desired bound

for TK
1 [η] follows. A similar scaling argument shows that

TK
2 [η] =

∑

|α⊥|=1

‖Dα⊥

⊥ η‖2L2(K) + ‖D‖η‖2L2(K)

- h‖
K

∑

|α⊥|=1

‖D̂α⊥

⊥ η̂‖2
L2(K̂)

+ (h⊥
K)2(h‖

K)−1‖D̂‖η̂‖2L2(K̂)
,

which yields the assertion for TK
2 [η].

To bound TK
3 [η] we distinguish the two cases f ⊥ e and f ‖ e. In the former case,

f ⊥ e, we have h⊥
K,f - h‖

K , and ∂K,f,⊥ is the derivative parallel to the edge. Thus,
applying the scaling in (5.18) results in

(h⊥
K,f )

2‖∂K,f,⊥∇η‖2L2(K) - (h‖
K)2




∑

|α⊥|=1

‖Dα⊥

⊥ D‖η‖2L2(K) + ‖D2
‖η‖

2
L2(K)





- (h‖
K)

∑

|α⊥|=1

‖D̂α⊥

⊥ D̂‖η̂‖2L2(K̂)
+ (h⊥

K)2(h‖
K)−1‖D̂2

‖η̂‖
2
L2(K̂)

.
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In the latter case, f ‖ e, we h⊥
K,f - h⊥

K , and ∂K,f,⊥ is the derivative perpendicular to
the edge. Therefore,

(h⊥
K,f )

2‖∂K,f,⊥∇η‖2L2(K) ! (h⊥
K)2




∑

|α⊥|=2

‖Dα⊥

⊥ η‖2L2(K) +
∑

|α⊥|=1

‖Dα⊥

⊥ D‖η‖2L2(K)





- h‖
K

∑

|α⊥|=2

‖D̂α⊥

⊥ η̂‖2
L2(K̂)

+ (h⊥
K)2(h‖

K)−1
∑

|α⊥|=1

‖D̂α⊥

⊥ D̂‖η̂‖2L2(K̂)
.

The two bounds above imply the estimate for TK
3 [η].

5.2.1. Submesh Oint. The submesh Oint is independent of ( for ( ≥ (0 = 2.
It consists only of a finite number of shape-regular elements, whose distance to the

singular support S of u is at least ε(Ω)/2. Define Ωint := int
(⋃

K∈O$
int

K
)
. Then, on

Ωint the distance functions re, rc and ρce in (2.2) appearing in the definition of the
norm (2.7) of |u|2Mm

β (Ω) are bounded away from zero, and (5.1) implies that

‖u‖Hm(Ωint) ≤ Cm+1m! ∀m ∈ N. (5.23)

for a constant C > 1 (possibly different from Cu in (5.1)). Estimate (5.23) implies
that there exists another constant C > 1 such that

‖û‖Hm(K̂) ≤ Cm+1m! ∀m ∈ N. (5.24)

We now note that the hp-extensions (Ex1)–(Ex4) which were introduced in [33]
produce a uniform and isotropic polynomial degree distribution in Oint, which is
denoted by p and satisfies p - (.

Lemma 5.8. There is a constant C > 1 such that

ΥOint [η] ≤ C2sΨp−1,s−1Γ(s+ 6)2

for any s ∈ [3, p].
Proof. Since there are only a finite number of shape-regular elements in Oint,

Lemma 5.7, the approximation property in (5.15), and the regularity (5.24) yield

ΥOint [η] =
∑

K∈Oint

TK [η] !
∑

K∈Oint

‖η̂‖2
H2

mix(K̂)

!
∑

K∈Oint

Ψp−1,s−1‖û‖2Hs+5(K̂)
≤ C2sΨp−1,s−1 ((s+ 5)!)2 .

(5.25)

This is the desired bound for integer exponents 3 ≤ s ≤ p.
Next, we interpolate the bound (5.25) to fractional regularity order s. To do so,

let s = k + θ ∈ [3, p] with k = <s= and θ = s − k ∈ (0, 1). We note that there exist
constants 0 < C1 < C2 < ∞ such that

0 < C1 ≤ n!(n+ 1)θ

Γ(n+ 1 + θ)
≤ C2 < ∞ ∀n ∈ N, 0 ≤ θ ≤ 1. (5.26)

Using the real method of interpolation with indices 0 < θ < 1 and 2 on (5.25) for the
integers k = <s= and k + 1 = <s=+ 1, we readily obtain the bound

ΥOint [η] ≤ C2(k+θ)
(
Γ(k + q)2Ψp−1,k−1

)1−θ (
Γ(k + 1 + q)2Ψp−1,k

)θ
,
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where we have replaced 6 by q ≥ 0 for future reference. Elementary manipulations
using (5.26) reveal that as p → ∞, we have

ΥOint [η] ! C2(k+θ)Γ(k + θ + q)2Ψp−1,k+θ−1 - C2sΓ(s+ q)2Ψp−1,s−1,

where the additional constants introduced depend only on C1, C2 in (5.26).
To prove exponential convergence, we let p → ∞, and for each given p, minimize

the bound in Lemma 5.8.
Lemma 5.9. For any c > 0 and any q ∈ N, there exist constants b > 0 and C > 0

(depending only on c and q) such that

∀ p ≥ 3 : min
s∈[3,p]

{
c2sΓ(s+ q)2Ψp−1,s−1

}
≤ C2 exp(−2bp). (5.27)

Proof. We begin by claiming that there are constants b > 0 and C > 0 such that

∀ p ≥ 3 : min
s∈[3,p]

{
c2sΓ(s+ q)2Ψp,s

}
≤ C2 exp(−2bp) . (5.28)

To prove (5.28), we first consider the case q = 1. By Stirling’s inequalities we have√
2πss+1/2e−s ≤ Γ(s+ 1) ≤ ess+1/2e−s for any s ≥ 1. Hence, we estimate

c2sΓ(s+ 1)2Ψp,s ≤
e3√
2π

c2ss2s+1 (p− s)p−s

(p+ s)p+s

(
p− s

p+ s

) 1
2

≤ Cs

(
cs

p+ s

)2s (p− s

p+ s

)p−s

.

(5.29)

Upon increasing the value of the constant c, we may absorb the linear factor in s
in (5.29) into c2s. In addition, we may assume that p ≥ >3(c + 1)? (otherwise, we
would simply increase the constant C in (5.29)). Then we choose s = p/(c+1) ∈ [3, p].
Inserting this into the previous bound gives

c2sΓ(s+ 1)2Ψp,s ≤ C

(
c

c+1

1 + s
p

) 2p
c+1
(
1− s

p

1 + s
p

)p(1− s
p )

≤ C

(
c

c+ 2

)p(1+ 1
c+1 )

.

The bound (5.28) for q = 1 thus follows with b(c) := − 1
2 (1 +

1
c+1) log

c
c+2 > 0.

The case q > 1 is obtained analogously upon noting that by Stirling’s formula,
Γ(s+ q) ≤ C(q)sq−1Γ(s+ 1), and the polynomial factor in s may again be absorbed
into c2s by suitably increasing the value of c, which proves (5.28).

Now, to prove the assertion (5.27), we recall that Γ(x+ 1) = xΓ(x) for all x ≥ 1.
Hence,

Ψp−1,s−1 = (p− 1 + s)(p+ s)Ψp,s ≤ 4p2Ψp,s, (5.30)

for any p ≥ 3 and s ∈ [3, p]. Combining this estimate with (5.28), and absorbing the
quadratic factor in p into the exponential term (by modifying the constants b and C)
yield the desired result.

Lemma 5.8 and Lemma 5.9 immediately yield the following estimate.
Proposition 5.10. Under the regularity assumption (5.1), the hp-dG interpola-

tion operator Πu defined in (5.17) satisfies the error bound

ΥOint [η] ! exp(−2b()

for some constant b > 0 independent of ( ≥ 2.
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5.2.2. Submesh O&
C. Next, we consider the corner neighborhood O&

C in (3.10)
and establish the analog of Proposition 5.10 for ΥO$

C
[η]. We may assume without

loss of generality that C = {c} (the general case of an arbitrary, but finite number of
corners follows readily by superposition).

Elements K ∈ O&
C are shape-regular with

hK - h⊥
K - h‖

K and rc|K - dcK - hK , (5.31)

according to (3.12) (see also Figure 3.1, left). We shall also use that

∀ 2 ≤ j ≤ (, ∀K ∈ L
&−j+1
σ ∩O

&
C : dcK - σ&−j . (5.32)

Let us further recall that the hp-extensions (Ex1)–(Ex4) introduced in [33] for
the subspace V &

σ,s in (3.27) produce isotropic polynomial degrees that are uniform in
each mesh layer. In the following, we simply denote these degrees by pj, i.e.,

∀ 2 ≤ j ≤ (, ∀K ∈ O
&
C ∩ L

&−j+1
σ : pK = pj ≥ 3 . (5.33)

By construction and for ( → ∞, the elemental polynomial degrees {pj}j≥2 form a
sequence of s-linear growth:

∃χ ∈ (0, 1) : ∀ j ≥ 2 : χ ≤ pj/js ≤ χ−1. (5.34)

We can now bound the consistency term ΥO$
C
[η].

Lemma 5.11. Under the regularity assumption (5.1), we have

ΥO$
C
[η] !

&∑

j=2

σ2(&−j) minβΨpj−1,sj−1C
2sj
u Γ(sj + 6)2

for any sj ∈ [3, pj] and the constant Cu in (5.1).

Proof. Recalling that the elements in O&
C are shape-regular with hK - h⊥

K - h‖
K ,

we conclude from Lemma 5.7, Lemma 5.19 and (5.31) that, for any K ∈ L&−j+1
σ ∩O&

C
for 2 ≤ j ≤ (,

TK [η] ! dcK‖η̂‖2
H2

mix(K̂)
! Ψpj−1,sj−1

∑

sj+1≤|α|≤sj+5

(dcK)2|α|−2‖Dαu‖2L2(K). (5.35)

Since possibly K ∩ ωce += ∅ we write

‖Dαu‖2L2(K) = ‖Dαu‖2L2(K∩ωc)
+
∑

e∈Ec

(
‖Dαu‖2L2(K∩ωe)

+ ‖Dαu‖2L2(K∩wce)

)
. (5.36)

By inserting the weight rc, we first obtain

‖Dαu‖2L2(K∩ωc) ! (dcK)2+2βc−2|α|‖r−1−βc+|α|
c D

αu‖2L2(K∩ωc)

! (dcK)2+2minβ−2|α|‖r−1−βc+|α|
c D

αu‖2L2(K∩ωc).
(5.37)

Let now e be an edge in Ec. By noticing that re|K - deK - dcK - hK , we then have

‖Dαu‖2L2(K∩ωe)
! (dcK)2+2βe−2|α⊥|‖r−1−βe+|α⊥|

e D
αu‖2L2(K∩ωe)

! (dcK)2+2minβ−2|α|‖r−1−βe+|α⊥|
e D

αu‖2L2(K∩ωe)
.

(5.38)
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Similarly, since ρce - 1 on K,

‖Dαu‖2L2(K∩ωce)
! (dcK)2+2βc−2|α|‖r−1−βc+|α|

c ρ−1−βe+|α⊥|
ce D

αu‖2L2(K∩ωce)

! (dcK)2+2minβc−2|α|‖r−1−βc+|α|
c ρ−1−βe+|α⊥|

ce D
αu‖2L2(K∩ωce).

(5.39)

Combining (5.35)–(5.39) and using (5.1) yields

TK [η] ! Ψpj−1,sj−1(d
c
K)2minβΨpj−1,sj−1‖u‖2

M
sj+5

−1−β(K)

≤ C2sj
u Γ(sj + 6)2(dcK)2minβΨpj−1,sj−1

(5.40)

for any K ∈ L&−j+1
σ ∩O&

C with 2 ≤ j ≤ (.
Next, we sum the estimate (5.40) over all mesh layers. Referring to (5.32), we

arrive at

ΥO$
C
[η] !

&∑

j=2

∑

K∈L
$−j+1
σ ∩O$

C

TK [η]

!
&∑

j=2

∑

K∈L
$+j−1
σ ∩O$

C

Ψpj−1,sj−1σ
2(&−j) minβC2sj

u Γ(sj + 6)2,

(5.41)

for any integers 3 ≤ sj ≤ pj . The conclusion now follows by noting that the cardinality
of the set L&+j−1

σ ∩ O&
C is uniformly bounded in j and by using an interpolation

argument as in Lemma 5.8.
Finally, to show that the bound in Lemma 5.11 is exponentially convergent, we

shall make use of the following refinement of Lemma 5.9.
Lemma 5.12. For every 0 < σ < 1, constants β > 0, c > 0, q ≥ 0 and sequences

{pj}∞j=2, pj ≥ 3, of s-linear growth as in (5.34), there exist constants b > 0 and C > 0

(depending only on q, σ, s, χ and β) such that






&∑

j=2

σ2(&−j)β min
sj∈[3,pj ]

c2sjΓ(sj + q)2Ψpj−1,sj−1




 ≤ C2 exp(−2b() (5.42)

for every ( ≥ 2.
Proof. By Lemma 5.9,

min
sj∈[3,pj]

c2sjΓ(sj + q)2Ψpj−1,sj−1 ≤ C exp(−2bpj),

with constants b > 0 and C > 0 only depending on the values of q and c in that
Lemma. Hence, since pj - sj, the sum (5.42) can be bounded by

&∑

j=2

σ2(&−j)β min
sj∈[3,pj]

c2sjΓ(sj + q)2Ψpj−1,sj−1 ≤ C
&∑

j=2

e−2β| log σ|(&−j)−2bsj . (5.43)

We split the sum into two partial sums as follows: first, a sum over 2 ≤ j ≤ θ(
(corresponding to mesh layers with ‘small’ elements) and second, a sum over θ( ≤ j ≤
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( with a parameter 0 < θ < 1 which is independent of (. Then we estimate the sum
in (5.43),

&∑

j=2

e−2β| log σ|(&−j)−2bsj ≤
.θ&/∑

j=2

e−2β| log σ|(&−j)−2bsj +
&∑

j=0θ&1

e−2β| log σ|(&−j)−2bsj

! >θ(?e−2β| log σ|(1−θ)& + >(1− θ)(?e−2bsθ&,

from where the assertion (5.42) follows.
Lemma 5.11 and Lemma 5.12 give the following result.
Proposition 5.13. Under the regularity assumption (5.1), the hp-dG interpola-

tion operator Πu defined in (5.17) satisfies the error bound

ΥO$
C
[η] ! exp(−2b()

for some constant b > 0 independent of ( ≥ 2.

5.2.3. Submesh O&
E . In this section, we consider the edge neighborhood ΩE

in (2.5) and shall bound ΥO$
E
[η]. Again, we may assume without loss of generality

that E = {e}, i.e., that we are dealing with a single edge e (the general case follows
by superposition).

We recall that for elements K ∈ O&
E , the diameters h‖

K parallel to e are of order
one, while the diameters h⊥

K perpendicular to edge e satisfy

re|K - deK - h⊥
K , (5.44)

according to (3.13) (see also Figure 3.1, middle). We also observe that

∀2 ≤ j ≤ (, ∀K ∈ L
&−j+1
σ ∩O

&
E : deK - σ&−j . (5.45)

The hp-extensions (Ex1)–(Ex4) of [33] for the space V &
σ,s in (3.27) yield anisotropic

elemental polynomial degrees p⊥K and p‖K that are identical over all elements K in

L&−j+1
σ ∩O&

E ; we thus simply denote them by p⊥j and p‖j , respectively. The variation

of the polynomial degrees p⊥j across mesh layers is s-linear as in (5.34), while the

polynomial degrees p‖j ≥ 3 parallel to the edge e are constant and proportional to (,

i.e., p‖j = p‖ ≥ 3, with p‖ - (. Next, we bound TK [η] for K ∈ L&−j+1
σ ∩O&

E .

Lemma 5.14. Let K ∈ L&−j+1
σ ∩ O&

E for 2 ≤ j ≤ (. Then, under the regularity
assumption (5.1), there holds

TK [η] ! σ2(&−j)βe

(
Ψp⊥

j −1,s⊥j −1C
2s⊥j Γ(s⊥j + 6)2 +Ψp‖−1,s‖−1C

2s‖pΓ(s‖ + 6)2
)

for any s⊥j ∈ [3, p⊥j ] and s‖ ∈ [3, p‖].

Proof. Using that h‖
K is of order one, Lemma 5.7 and Lemma 5.6 yield

TK [η] ! ‖η̂‖2
H2

mix(K̂)
! E‖

p‖,s‖
(K) + E⊥

p⊥
j ,s⊥j

(K),

with E‖
p‖,s‖

(K) and E⊥
p⊥
j ,s⊥j

(K) defined in Lemma 5.6. Taking into account (5.44) and

that h‖
K is of order one, we can bound E‖

p‖,s‖
(K) as follows:

E‖
p‖,s‖

(K) - Ψp‖−1,s‖−1

∑

α⊥
1 ≤2,α⊥

2 ≤2

(deK)2|α
⊥|−2‖Dα⊥

⊥ D
s‖+1
‖ u‖2L2(K).
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Since K ∩Ω0 = ∅ and K ∩ ωc = ∅ for all c ∈ C, we may write

‖Dαu‖2L2(K) = ‖Dαu‖2L2(K∩ωe)
+
∑

c∈Ce

‖Dαu‖2L2(K∩ωce)

We then proceed by inserting the weight function re and employing (5.44):

‖Dαu‖2L2(K∩ωe)
! (deK)2+2βe−2|α⊥|‖r−1−βe+|α⊥|

e D
αu‖2L2(K∩ωe)

.

If K ∩ ωce += ∅ for a corner c ∈ Ce, then rc|K - h‖
K is bounded away from zero, and

ρce - re. Hence, we readily obtain

‖Dαu‖2L2(K∩ωce) ! (deK)2+2βe−2|α⊥|‖r−1−βc+|α|
c ρ−1−βe+|α⊥|

ce D
αu‖2L2(K∩ωce) .

Combining these estimates with (5.45) and (5.1), we find that

E‖
p‖,s‖

(K) ! Ψp‖−1,s‖−1(d
e
K)2βe‖u‖2

Ms‖+5
−1−βe

(K)

! Ψp‖−1,s‖−1σ
2(&−j)βeC2s‖Γ(s‖ + 6)2.

(5.46)

Similarly, we bound E⊥
p⊥
j ,s⊥j

(K):

E⊥
p⊥
j ,s⊥j

(K) ! Ψp⊥
j −1,s⊥j −1

∑

s⊥j +1≤|α⊥|≤s⊥j +3,α‖≤2

(deK)2|α
⊥|−2‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K).

Proceeding as before, we see that

E⊥
p⊥
j ,s⊥j

(K) ! Ψp⊥
j −1,s⊥j −1(d

e
K)2βe‖u‖2

M
s⊥j +5

−1−βe
(K)

≤ Ψp⊥
j −1,s⊥j −1σ

2(&−j)βeC2s⊥j Γ(s⊥j + 6)2.
(5.47)

The bounds (5.2.3), (5.46) and (5.47) imply the desired estimate for integer regularity
exponents. An interpolation argument as in (5.26) proves the assertion.

Proposition 5.15. Under the regularity assumption (5.1), the hp-dG interpola-
tion operator Πu defined in (5.17) satisfies the error bound

ΥO$
E
[η] ! exp(−2b()

for some constant b > 0 independent of ( ≥ 2.
Proof. Summing the bound in Lemma 5.14 over all mesh layers and noting that

the cardinality of the sets L&−j+1
σ ∩O&

E are uniformly bounded in j result in

ΥO$
C
[η] ! S‖ + S⊥, (5.48)

where

S⊥ =
&∑

j=2

Ψp⊥
j −1,s⊥j −1σ

2(&−j)βeC
2s⊥j
u Γ(s⊥j + 6)2,

S‖ =
&∑

j=2

Ψp‖−1,s‖−1σ
2(&−j)βeC2s‖

u Γ(s‖ + 6)2 .
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! = 1

! = 3

! = 4
i = 1, . . . , !

eee

ccc

j = 2, . . . , !

e′e′e′
! = 2

O"
C

O"
CE ⊃ O"

cecece

O"
CE ⊃ O"

ce′ce′ce′

Fig. 5.1. Elements in O!
CE .

Due to the s-linearity of the degrees p⊥j and the fact that βe > 0, Lemma 5.12 allows

us to find parameters s⊥j ∈ [3, p⊥j ] such that S⊥ ! e−2b&.

In the sum S‖, the polynomial degree p‖ parallel to the edge e is constant and
proportional to (. Applying Lemma 5.9, we can find s‖ ∈ [3, p‖] such that

S‖ ! e−2b&
&∑

j=2

σ2(&−j)βe ! e−2b&,

which completes the proof.

5.2.4. Submesh O&
CE . Finally, we consider the corner-edge neighborhood ΩCE

defined in (3.10) and prove the exponential convergence of ΥO$
CE
[η]. Again, it is

sufficient to consider a single corner c with a single edge e = ec originating from
it, i.e., C = {c} and E = {e}. In view of (3.10), an element K ∈ OCE has empty
intersection with Ω0, ΩC , and ΩE . Hence, if the edges and vertices are sufficiently
separated by the initial mesh, we may assume K ⊆ ωce.

It will be convenient in the error analysis to group elementsK ∈ O&
CE into sets Lij

CE
of elements whose aspect ratios are equivalent uniformly with respect to (. To this
end, we observe that there exists κ(σ) > 0 such that for all ( ≥ 2 and elements
K ∈ O&

CE there are indices 2 ≤ i ≤ j ≤ ( such that

κ−1σj ≤ h⊥
K ≤ κσj , κ−1σi ≤ h‖

K ≤ κσi. (5.49)

We say that K ∈ O&
CE belongs to L

ij
CE if it satisfies (5.49) with indices (i, j) (refer to

(3.17) for notation). Then we have (with a possibly nondisjoint union)

O
&
CE =

&⋃

j=2

j⋃

i=2

L
ij
CE . (5.50)

We refer to Figure 5.1 for the notation and illustration and observe that the
cardinality of all Lij

CE is uniformly bounded, independently of i, j.
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From the hp-extensions (Ex1)–(Ex4) in [33] we obtain polynomial degree distri-
butions for the dG subspace V &

σ,s that satisfy

∀K ∈ L
ij
CE : pK = (p⊥i , p

‖
j) - (si, sj), 2 ≤ i ≤ j ≤ (. (5.51)

Moreover,

∀K ∈ L
ij
CE : re|K - deK - h⊥

K - σ&−i, rc|K - dcK - h‖
K - σ&−j . (5.52)

Lemma 5.16. Let K ∈ L
ij
CE with pK = (p⊥i , p

‖
j ) and with p⊥i , p

‖
j ≥ 3. Then, under

the regularity assumption (5.1), for any s⊥i ∈ [3, p⊥i ], s
‖
j ∈ [3, p‖j ], there holds

TK [η] ≤ σ2(&−j)(βc−βe)σ2(&−i)βe(1 + σ2(j−i))N [u]ij , (5.53)

where

N [u]ij = Ψp⊥
i −1,s⊥i −1C

2s⊥i Γ(s⊥i + 6)2 + C2s‖j Ψ
p‖
j−1,s‖j−1

Γ(s‖j + 6)2. (5.54)

Proof. By combining Lemma 5.7, (5.52), and Lemma 5.6, we obtain

TK [η] !
(
(deK)2(dcK)−1 + dcK

)
‖η̂‖2

H2
mix(K̂)

! dcK
(
1 + (deK)2(dcK)−2

)(
E‖

p‖
j ,s

‖
j

(K) + E⊥
p⊥
j ,s⊥j

(K)

)
,

(5.55)

with E‖

p
‖
j ,s

‖
j

(K) and E⊥
p⊥
j ,s⊥j

(K) defined in Lemma 5.6. Using (5.52), we estimate

E‖

p‖
j ,s

‖
j

(K) as follows:

E‖

p
‖
j ,s

‖
j

(K) - Ψ
p‖
j−1,s‖j−1

∑

α⊥
1 ≤2,α⊥

2 ≤2

(deK)2|α
⊥|−2(dcK)2s

‖
j+1‖Dα⊥

D
s
‖
j+1

‖ u‖2L2(K).

Then, inserting the weight ρce,

‖Dα⊥

D
s
‖
j+1

‖ u‖2L2(K) ! (dcK)2+2βc−2(|α⊥|+s‖j+1)−2−2βe+2|α⊥|

× (deK)2+2βe−2|α⊥|‖r−1−βc+(|α⊥|+s‖j+1)
c ρ−1−βe+|α⊥|

ce D
α⊥

D
s‖j+1

‖ u‖2L2(K).

Hence,

E‖

p‖
j ,s

‖
j

(K) ! Ψ
p‖
j−1,s‖j−1

(dcK)2(βc−βe)−1(deK)2βe‖u‖2
M

s
‖
j+5

−1−β(K)

. (5.56)

Similarly,

E⊥
p⊥
j ,s⊥j

(K) - Ψp⊥
i −1,s⊥i −1

∑

s⊥i +1≤|α⊥|≤s⊥i +3,α‖≤2

(deK)2|α
⊥|−2(dcK)2α

‖−1‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K),

where

‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K) ! (dcK)2α
‖−1+2+2βc−2(|α⊥|+α‖)−2−2βe+2|α⊥|

× (deK)2+2βe−2|α⊥|‖r−1−βc+(|α⊥|+α‖)
c ρ−1−βe+|α⊥|

ce D
α⊥

D
α‖

‖ u‖2L2(K).
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Thus,

E⊥
p⊥
j ,s⊥j

(K) ! Ψ
p
‖
i−1,s

‖
i −1

(dcK)2(βc−βe)−1(deK)2βe‖u‖2
M

s⊥i +5

−1−β(K)
. (5.57)

Referring to (5.55), (5.56), (5.57), and to the regularity property (5.1) shows that

TK [η] ! (dcK)2(βc−βe)(deK)2βe
(
1 + (deK)2(dcK)−2

)
N [u]ij , (5.58)

which is the assertion for integer regularity exponents. An interpolation argument as
in Lemma 5.8 and using the relations in (5.52) once more finish the proof.

We are now ready to prove exponential convergence of ΥO$
CE
[η].

Proposition 5.17. Under the regularity assumption (5.1), the hp-dG interpola-
tion operator Πu defined in (5.17) satisfies the error bound

ΥO$
CE
[η] ! exp(−2b()

for some constant b > 0 independent of ( ≥ 2.
Proof. Summing up the estimate in Lemma 5.16 over all the mesh layers (using

the fact that the cardinalities of the sets Lij
CE are uniformly bounded) results in

ΥO$
CE
[η] !

&∑

j=2

j∑

i=2

σ2(&−j)(βc−βe)σ2(&−i)βe(1 + σ2(j−i))N [u]ij

!
&∑

j=2

j∑

i=2

σ2(&−j)(βc−βe)σ2(&−i)βeN [u]ij ! S⊥ + S‖,

where

S⊥ =
&∑

j=2

σ2(&−j)(βc−βe)
j∑

i=2

σ2(&−i)βeΨp⊥
i −1,s⊥i −1C

2s⊥i Γ(s⊥i + 6)2,

S‖ =
&∑

j=2

σ2(&−j)(βc−βe)
j∑

i=2

σ2(&−i)βeΨ
p‖
j−1,s‖j−1

C2s
‖
j Γ(s‖j + 6)2.

Let us first bound S⊥. To do so, we write

S⊥ =
&∑

j=2

σ2(&−j)(βc−βe+βe)

(
j∑

i=2

σ2(&−i)βeσ2(j−&)βeΨp⊥
i −1,s⊥i −1C

2s⊥i Γ(s⊥i + 6)2
)

=
&∑

j=2

σ2(&−j)βc

(
j∑

i=2

σ2(j−i)βeΨp⊥
i −1,s⊥i −1C

2s⊥i Γ(s⊥i + 6)2
)

.

Then, we use the fact that βe > 0, Lemma 5.12 with ( replaced by j, and the s-
linearity of p⊥i to obtain parameters s⊥i ∈ [3, p⊥i ] and a constant b1 > 0 such that

j∑

i=2

σ2(j−i)βeΨp⊥
i −1,s⊥i −1C

2s⊥i Γ(s⊥i + 6)2 ! e−2b1j , j ≥ 2.
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Therefore, we conclude that there is second constant b2 > 0 such that

S⊥ !
&∑

j=2

σ2(&−j)(βc−βe)e−2b1j !
&∑

j=2

σ2(&−j)(βc−βe+βe)e−2b1j =
&∑

j=2

e−2b2(&−j)−2b1j .

With b = min{b1, b2}, we thus obtain

S⊥ !
&∑

j=2

e−2b(&+j−j) ! (e−2b& ! e−2b&. (5.59)

To prove exponential convergence of S‖, we first note that

j∑

i=2

σ2(&−i)βe = σ2(&−j)βe
1− σ2βe(j−1)

1− σ2βe
≤ C(σ,βe)σ

2(&−j)βe , j ≥ 2 . (5.60)

To see (5.60), we sum the geometric series as follows:

j∑

i=2

σ2(&−i)βe = σ2(&−j)βe
1− σ2βe(j−1)

1− σ2βe
≤

1

1− σ2βe
σ2(&−j)βe .

Hence, by (5.60) and Lemma 5.12,

S‖ !
&∑

j=2

σ2(&−j)βcΨ
p
‖
j−1,s

‖
j−1

C2s
‖
j Γ(s‖j + 6)2 ! e−2b&

This completes the proof.

5.3. Approximation in O&
σ. By combining the bound in (5.20) with the results

in Propositions 5.10, 5.13, 5.15 and 5.17, we now immediately obtain the following
approximation property in O&

σ.

Theorem 5.18. Consider a family Mσ = {M(&)
σ }∞&=1 of axi-parallel σ-geometric

meshes with an anisotropic s-linear polynomial degree vector p2(M(&)
σ ) as in (3.27)

with degrees greater or equal to 3. Then for u ∈ A−1−β(Ω) and ( ≥ 2, there is a
projection Π& : A−1−β(Ω) → V (O&

σ,Φ(O&
σ),p2(O&

σ)) that satisfies the error bound

ΥO$
σ
[u−Π&u] ≤ C exp(−2b(), ( ≥ 2. (5.61)

Here, the constants b > 0 and C > 0 are independent of ( (but depend on the weight
vector β, the µ-variation of the degree vectors, the geometric grading factor σ, the
slope s, the regularity constant Cu in (5.1), and on the initial mesh M0).

Moreover, in general there holds

N&(s) := dim(V &
σ,s) - b (5 +O((4), ( → ∞, (5.62)

and the approximation bound (5.61) can be written as

ΥO$
σ
[u−Π&u] ≤ C exp(−2b

5
√
N), N = dim(V &

σ,s) → ∞. (5.63)
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By repeating verbatim the proofs of Propositions 5.13, 5.15 and 5.17 with uniform
polynomial degrees, and by replacing in these proofs each reference to Lemma 5.12
by a reference to Lemma 5.9, we obtain the following corollary.

Corollary 5.19. Under the assumptions of Theorem 5.18, but for uniform
polynomial degrees pK = p - ( (with p ≥ 3) in all elements K ∈ O&

σ, ( ≥ 2, the error
bounds (5.61), (5.63) remain valid, however, in (5.62) and (5.63), the constant b is
replaced by a smaller value b.

5.4. Error Bounds on T&
σ. We now address the error in elements in the ter-

minal layers T&
σ ⊂ M(&)

σ . Again, we proceed separately for elements near edges and
vertices and recall, to this end, the partition (3.19): T&

σ = V&
C ∪V&

E . Based on this, we
write

ΥT$
σ
[η] ≤ ΥV$

C
[η] +ΥV$

E
[η], (5.64)

where ΥT$
σ
[η] is from (4.9) in Theorem 4.2 and the consistency errors ΥV$

C
[η],ΥV$

E
[η]

are taken on the respective submeshes of T&
σ.

The construction of the hp-interpolant Πu from (4.6) in T&
σ will exploit the homo-

geneous essential boundary conditions: for functions in M1
−1−β(Ω), the corresponding

L2- and H1-terms in the norm (2.7) on M1
−1−β(Ω) carry weights with negative expo-

nents. Consequently, it will be sufficient to approximate the solution of (1.1)–(1.2)
on the exponentially small elements in T&

σ by the zero function: we set Πu|K ≡ 0 for
all K ∈ T&

σ and, hence, η = u in (4.6), and (4.9).
In the sequel, the interpolation errors on the subsets V&

C, V&
E will be analyzed

separately. We first prove the following auxiliary result:
Lemma 5.20. Let K ∈ T&

σ, u ∈ M2
−1−β(K), and 0 ≤ j ! ( be chosen such

that h⊥
K - σ& and h‖

K - σ&−j (cf. Proposition 3.4). Then

‖∇u‖L1(K) ≤ Cσ&( 3
2+minβ)− j

2 ‖u‖M1
−1−β(K) ,

and

σ−&
∥∥D‖∇u

∥∥
L1(K)

+ ‖D⊥∇u‖L1(K) ≤ Cσ&( 1
2+minβ)− j

2 ‖u‖M2
−1−β(K) ,

where the constant C > 0 does not depend on u,σ, (,p and β.
Proof. We may assume that there is at most one corner c ∈ C such thatK∩ωc += ∅

or K ∩ (ωce ∪ ωe) += ∅ for some edge e ∈ Ec. Then we write

‖∇u‖L1(K) = ‖∇u‖L1(K∩ωc)
+
∑

e∈Ec

(
‖∇u‖L1(K∩ωe)

+ ‖∇u‖L1(K∩ωce)

)
.

First, note that if K ∩ ωc += ∅, then K must be isotropic with h⊥
K - h‖

K - hK - σ&

(i.e., j = 0). Thus, Hölder’s inequality and the fact that rc ! σ&, |K| - σ3& yield

‖∇u‖L1(K∩ωc)
≤
∥∥rβc

c

∥∥
L2(K∩ωc)

∥∥r−1−βc+1
c ∇u

∥∥
L2(K∩ωc)

! σ&( 3
2+βc) ‖u‖M1

−1−β
(K∩ωc)

.

Then, if K ∩ ωe += ∅ for e ∈ Ec, we have similarly re ! σ& and |K| - σ2&σ&−j so that

‖∇u‖L1(K∩ωe)
≤
∑

|α|=1

∥∥∥r1+βe−|α⊥|
e

∥∥∥
L2(K∩ωe)

∥∥∥r−1−βe+|α⊥|
e D

α⊥

⊥ D
α‖

‖ u
∥∥∥
L2(K∩ωe)

!
∥∥rβe

e

∥∥
L2(K∩ωe)

‖u‖M1
−1−β(K∩ωe)

! σ&( 3
2+βe)−

j
2 ‖u‖M1

−1−β(K∩ωe)
.
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Furthermore, if K ∩ ωce += ∅ for e ∈ Ec, we have

‖∇u‖L1(K∩ωce)
≤
∑

|α|=1

∥∥∥rβc
c ρ1+βe−|α⊥|

ce

∥∥∥
L2(K∩ωce)

×
∥∥∥r−1−βc+1

c ρ−1−βe+|α⊥|
ce D

α⊥

⊥ D
α‖

‖ u
∥∥∥
L2(K∩ωce)

.

With rc - σ&−j on K ∩ ωce and re ! σ&, we find that
∥∥∥rβc

c ρ1+βe−|α⊥|
ce

∥∥∥
L2(K∩ωce)

!
∥∥rβc

c ρβe
ce

∥∥
L2(K∩ωce)

=
∥∥rβc−βe

c rβe
e

∥∥
L2(K∩ωce)

! σ(&−j)(βc−βe)
∥∥rβe

e

∥∥
L2(K∩ωce)

! σ(&−j)(βc−βe)+&βeσ&σ
1
2 (&−j)

= σ
3
2 &−

j
2 σ(&−j)βc+jβe ! σ

3
2 &−

j
2 σ&minβ.

Hence,

‖∇u‖L1(K∩ωce)
! σ&( 3

2+minβ)− j
2 ‖u‖M1

−1−β
(K∩ωce)

,

and thus the first bound follows. The proof of the second inequality is similar.

5.4.1. Interpolation on V&
C. We first consider elements K ∈ V&

C which abut at

exactly one corner c ∈ C. Such elements are isotropic with hK - h⊥
K - h‖

K - σ&. For
convenience, let us suppose that the mesh is fine enough, so that V&

C ⊂ ΩC ∪ ΩCE .
Proposition 5.21. Let K ∈ V&

C and u ∈ M2
−1−β(K). Then there holds

ΥV$
C
[η] ≤ Cσ2&minβ ‖u‖2M2

−1−β
(Ω) ! exp(−2b() ‖u‖2M2

−1−β
(K) . (5.65)

Proof. Let K ∈ V&
C abut at corner c ∈ C with K ∩ ωc += ∅. We shall use

that supK rc - hK - σ&. Then,

h−2
K ‖η‖2L2(K∩ωc)

! h−2
K sup

K
r2+2βc
c

∥∥r−1−βc
c u

∥∥2
L2(K∩ωc)

! σ2&βc ‖u‖2M1
−1−β(K∩ωc)

,

and

‖∇η‖2L2(K∩ωc)
! sup

K
r2βc
c

∥∥r−1−βc+1
c ∇u

∥∥2
L2(K∩ωc)

! σ2&βc ‖u‖2M1
−1−β(K∩ωc)

.

Furthermore, if K ∩ ωce += ∅ for e ∈ Ec, we use that ρce is bounded on K ∩ ωce to
conclude that

h−2
K ‖η‖2L2(K∩ωce)

! h−2
K sup

K∩ωce

r2+2βc
c ρ2+2βe

ce

∥∥r−1−βc
c ρ−1−βe

ce u
∥∥2
L2(K∩ωce)

! σ2&βc ‖u‖2M1
−1−β(K∩ωce)

,

and

‖∇η‖2L2(K∩ωce)

! sup
K

r2βc
c

∑

|α|=1

sup
K∩ωce

ρ2+2βe−2|α⊥|
ce

∥∥∥r−1−βc+|α|
c ρ−1−βe+|α⊥|

ce D
αu
∥∥∥
2

L2(K∩ωce)

! σ2&βc ‖u‖2M1
−1−β(K∩ωce)

.
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Moreover, for f ∈ FK , we have that

|f |−1 h⊥
K,f ‖∇η‖2L1(f) ! h−1

K ‖∇u‖2L1(f) ,

and employing the trace inequality (4.3) with s = 1, we obtain

|f |−1 h⊥
K,f ‖∇η‖2L1(f) ! h−3

K ‖∇u‖2L1(K) + h−1
K

∥∥∇2u
∥∥2
L1(K)

.

Next, using Lemma 5.20 with j = 0 results in

|f |−1 h⊥
K,f ‖∇η‖2L1(f) ! σ2&minβ ‖u‖2M2

−1−β(K) .

Summing up the above bounds completes the proof.

5.4.2. Interpolation on V&
E . Elements K along Dirichlet edges may be aniso-

tropic. They are parallel to some edge e ∈ E , with maximal length h‖
K - σ&−j ,

for some 0 ≤ j ! (, in the direction parallel to e; their diameter in the direction
orthogonal to e is h⊥

K - σ&; see Proposition 3.4.
Proposition 5.22. Let K ∈ V&

E and u ∈ M2
−1−β(K). Then there holds

ΥV$
E
[η] ≤ Cσ2&minβ ‖u‖2M2

−1−β(Ω) ! exp(−2b() ‖u‖2M2
−1−β(K) ,

where σ ∈ (0, 1) is the geometric refinement parameter and where ( denotes the re-
finement level. The constant C > 0 is independent of u, σ, (, the polynomial degree
vector p, and minβ > 0 (cf. (2.8)), and the constant b > 0 depends on σ,β.

Proof. We distinguish three cases.
Case 1. If K ∩ ωc += ∅, for some c ∈ C, then K is isotropic, and we may proceed

as in the previous section. This leads to an estimate very similar to (5.65) (with the
left-hand side restricted to V&

E ∩ ΩC).
Case 2. If K ∩ ωe += ∅, for some e ∈ Ec, then the weighted Sobolev norm

from (2.7) close to an edge e ∈ E behaves locally like

‖u‖2M2
−1−β(K∩ωe)

-
∑

|α|≤2

∥∥∥r−1−βe+|α⊥|
e D

αu
∥∥∥
2

L2(K∩ωe)
.

Noting that supf∈FK

(
h⊥
K,f

)−1
!
(
h⊥
K

)−1
, there holds:

max
f∈FK

(
h⊥
K,f

)−2 ‖η‖2L2(K∩ωe)
+ ‖∇η‖2L2(K∩ωe)

+ |f |−1h⊥
K,f ‖∇η‖2L1(f∩ωe)

!
(
h⊥
K

)−2 ‖u‖2L2(K∩ωe)
+ ‖∇u‖2L2(K∩ωe)

+ |f |−1h⊥
K,f ‖∇u‖2L1(f∩ωe)

,

for any f ∈ FK . Here, using that supK∩ωe
re - h⊥

K - σ&, we have

(
h⊥
K

)−1 ‖u‖L2(K∩ωe)
!
(
h⊥
K

)βe
∥∥r−1−βe

e u
∥∥
L2(K∩ωe)

! σ&βe ‖u‖M1
−1−β(K∩ωe)

,

and

‖∇u‖L2(K∩ωe)
!
∑

|α|=1

(
h⊥
K

)1+βe−|α⊥|
∥∥∥r−1−βe+|α⊥|

e D
αu
∥∥∥
L2(K∩ωe)

! σ&βe ‖u‖M1
−1−β(K∩ωe)

.
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Next, by means of (4.3) with s = 1, we see that

|f |−1h⊥
K,f ‖∇u‖2L1(f∩ωe)

! |f |−1
(
h⊥
K,f

)−1
(
‖∇u‖2L1(K) +

(
h⊥
K,f

)2 ‖D⊥∇u‖2L1(K)

)
.

Therefore, if f is parallel to e it holds that h⊥
K,f - σ& and so |f |−1

(
h⊥
K,f

)−1
-

(
σ&σ&−j

)−1
σ−& = σj−3&. In this case,

|f |−1h⊥
K,f ‖∇u‖2L1(f∩ωe)

! σj−3&
(
‖∇u‖2L1(K) + σ2& ‖D⊥∇u‖2L1(K)

)
.

Invoking Lemma 5.20, leads to

|f |−1h⊥
K,f ‖∇u‖2L1(f∩ωe)

! σ2&minβ‖u‖2M2
−1−β(K).

If f is orthogonal to e it holds that h⊥
K,f - σ&−j and therefore |f |−1

(
h⊥
K,f

)−1
-

σ−2&σ−(&−j) = σj−3&. In this case,

|f |−1h⊥
K,f ‖∇u‖2L1(f∩ωe)

! σj−3&
(
‖∇u‖2L1(K) + σ2(&−j)

∥∥D‖∇u
∥∥2
L1(K)

)
.

Thence, with the aid of Lemma 5.20, we obtain

|f |−1h⊥
K,f ‖∇u‖2L1(f∩ωe)

! σ2&minβσ2(&−j)‖u‖2M2
−1−β

(K) ! σ2&minβ‖u‖2M2
−1−β

(K).

Case 3. Finally, if K ∩ ωce += ∅, then the norm from (2.7) behaves locally as
follows:

‖u‖2M2
−1−β(K∩ωce)

-
∑

|α|≤2

∥∥∥r−1−βc+|α|
c ρ−1−βe+|α⊥|

ce D
αu
∥∥∥
2

L2(K∩ωce)
.

Here, for the volume terms, we may proceed similarly as in Case 2 by carefully tak-
ing into account the weight ρce. More precisely, using that supK∩ωce

rc - σ&−j

and supK∩ωce
re - h⊥

K - σ&, we have

(
h⊥
K

)−1 ‖u‖L2(K∩ωce)
!
(
h⊥
K

)−1
sup

K∩ωce

r1+βc
c ρ1+βe

ce

∥∥r−1−βc
c ρ−1−βe

ce u
∥∥
L2(K∩ωce)

! σ(&−j)(βc−βe)σ&βe ‖u‖M1
−1−β(K∩ωce)

! σ&minβ ‖u‖M1
−1−β(K∩ωce)

,

and

‖∇u‖L2(K∩ωce)
! sup

K∩ωce

rβc
c ρβe

ce

∑

|α|=1

∥∥∥r−1−βc+1
c ρ−1−βe+|α⊥|

ce D
αu
∥∥∥
L2(K∩ωce)

! σ(&−j)(βc−βe)+&βe ‖u‖M2
−1−β(K∩ωce)

! σ&minβ ‖u‖M2
−1−β(K∩ωce)

.

Furthermore, the face expressions are again estimated by employing Lemma 5.20.
This leads to

max
f∈FK

(
h⊥
K,f

)−2 ‖η‖2L2(K∩ωce)
+ ‖∇η‖2L2(K∩ωce)

+ |f |−1h⊥
K,f ‖∇η‖2L1(f∩ωce)

! σ2&minβ‖u‖2M2
−1−β(K).

This completes the proof.
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5.4.3. Exponential Convergence in Terminal Layers. Summing up the
above estimates for all terminal layer elements, we have proved the following result:

Proposition 5.23. Let u ∈ M2
−1−β(Ω). Then there holds

ΥV$
C
[η] +ΥV$

E
[η] ≤ Cσ2&minβ ‖u‖2M2

−1−β(Ω) - exp(−2b() ‖u‖2M2
−1−β(Ω) ,

where σ is the geometric refinement parameter and ( the refinement level. The con-
stant C > 0 is independent of u, σ, (, the polynomial degree vector p, and minβ > 0
(cf. (2.8)), and the constant b > 0 depends on σ,β.

6. Exponential Convergence. The hp-interpolation error estimates from the
previous section together with Theorem 4.2 allow us to deduce exponential conver-
gence rates of the hp-dG discretizations in (4.1), provided the solution u of (1.1)–(1.2)
admits analytic regularity.

Theorem 6.1. Assume that the right hand side f of the reaction-diffusion equa-
tion (1.1)–(1.2) in the axiparallel polyhedron Ω ⊂ R3 belongs to the analytic space
A1−β(Ω) with a weight vector β satisfying (2.8).

Let Mσ = {M(&)
σ }&≥0 be family of axiparallel σ-geometric meshes generated by the

hp-extensions (Ex1)–(Ex4) in [33, Section 3], and consider the hp-dG discretizations
in (4.1) based on the sequences of approximating subspaces

V &
σ = V (M(&)

σ ,Φ(M(&)
σ ),p1(M(&)

σ )) respectively V &
σ,s = V (M(&)

σ ,Φ(M(&)
σ ),p2(M(&)

σ ))

defined in (3.25) respectively (3.27), with the mapping vectors Φ(M(&)
σ ) as in (3.3),

and with the vector p1(M(&)
σ ) in (3.26) of constant, isotropic and uniform polyno-

mial degrees proportional to ( for the space V &
σ , respectively the linear, anisotropic

degree distribution p2(M(&)
σ ) generated by sequence of (σ, s)-extensions (Ex1)–(Ex4)

from [33, Section 3] for V &
σ,s.

Then for each ( ≥ 0, the hp-dG approximation uDG is well-defined, and as ( → ∞,
the approximate solutions uDG satisfy the error estimate

|||u − uDG|||DG ≤ C exp(−b
5
√
N) (6.1)

where N = dim(V (M(&)
σ ,Φ(M(&)

σ ),p(M(&)
σ ))) denotes the number of degrees of free-

dom of the discretization for any of the two spaces V &
σ or V &

σ,s.
The constants b > 0 and C > 0 are independent of N , but depend on σ, µ,

CM0 , θ, γ, α0, minβ > 0, and on which of the polynomial degree vectors p1(M(&)
σ )

or p2(M(&)
σ ) are used.

Proof. This follows readily from Theorem 4.2, Theorem 5.18, and Proposi-
tion 5.23. Note that the constants b > 0 and C > 0 have to be suitably modified to
absorb the algebraic factor p4

max in (4.7).

7. Concluding Remarks. In the present paper, we have proved exponential
convergence of a class of IP hp-dGFEM for linear scalar diffusion problems with
homogeneous Dirichlet boundary conditions in axiparallel polyhedral domains Ω ⊂ R3

under the provision of analytic regularity of the solution u in a family of countably
normed Sobolev spaces.

While this setting appears fairly particular, we emphasize that most components
of our error analysis directly apply also to more general situations. Let us mention
some of them: a) analogous regularity results are also available for boundary-value
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problems of linear second-order strongly elliptic systems in polyhedral domains, such
as three-dimensional elasticity in [7, 24]. Our convergence analysis generalizes, with
obvious modifications, to the Dirichlet problem for the second-order elliptic systems
considered in [7, 24]; b) mixed and Neumann boundary conditions: here the regularity
of the solutions in weighted spaces is available in [8, 7, 24]. For such boundary
conditions, analogous results hold, but the error bounds and the design of the hp-
dGFEM in the terminal layers T&

σ will require modifications which will be addressed
elsewhere.

So far, we considered polyhedra with plane, axiparallel faces and built element
mapping vectors out of dilation-translation mappings of hexahedra. Most of our
analysis, however, remains valid if these mappings are combined with a finite number
of patch-mappings as in the stability analysis of [33]. These generalizations will also
be presented elsewhere.

For mixed hp-dGFEM in R3 on σ-geometric meshes of (affinely mapped) hexahe-
dral elements for the Stokes problem, divergence stability was shown in [30, 31, 32].
Based on analytic regularity estimates for these mixed problems, the consistency
analysis of the present paper will allow to establish exponential convergence rates of
hp-dGFEM also for these problems; cf. [39].
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