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HP -DGFEM FOR SECOND-ORDER ELLIPTIC PROBLEMS IN

POLYHEDRA I: STABILITY ON GEOMETRIC MESHES ∗

D. SCHÖTZAU† , C. SCHWAB‡ , AND T. P. WIHLER§

Abstract. We introduce and analyze hp-version discontinuous Galerkin (dG) finite element
methods for the numerical approximation of linear second-order elliptic boundary value problems
in three dimensional polyhedral domains. In order to resolve possible corner-, edge- and corner-
edge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined
towards the corresponding neighborhoods. Similarly, the local polynomial degrees are increased
s-linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG
methods and prove that they are well-defined for problems with singular solutions and stable under
the proposed hp-refinements, i.e., on σ-geometric anisotropic meshes of mapped hexahedra with
anisotropic polynomial degree distributions of µ-bounded variation. We establish (abstract) error
bounds that will allow us to prove exponential rates of convergence in the second part of this work.

1. Introduction. Let Ω ⊂ R3 be an open and bounded polyhedron, with Lips-
chitz boundary Γ = ∂Ω given by a finite union of plane faces1. In Ω, we consider the
Dirichlet problem for the diffusion-reaction equation

Lu ≡ −∇ · (A∇u) + cu = f in Ω, (1.1)

u = 0 on Γ, (1.2)

where A ∈ L∞(Ω;R3×3
sym), c ∈ L∞(Ω;R) are given functions. We assume that A is

symmetric and uniformly positive definite:

∃α0 > 0 : ∀ζ ∈ R3, a.e.x ∈ Ω : α−1
0 |ζ|2 ≥ ζ%A(x)ζ ≥ α0|ζ|2, (1.3)

and that the reaction coefficient c is nonnegative on Ω, i.e., c(x) ≥ 0 for all x ∈ Ω.
Then for every f ∈ H−1(Ω), the boundary-value problem (1.1)–(1.2) admits a unique
solution u ∈ H1

0 (Ω).
This paper is the first in a series of papers in which we study hp-version dis-

continuous Galerkin (dG) finite element methods for elliptic problems in polyhedral
domains. In this part, we shall establish the stability and prove abstract error bounds
for interior penalty methods for (1.1)–(1.2) on geometrically refined meshes of mapped
hexahedra with anisotropic polynomial degree distributions of bounded variation.

The hp-version of the finite element method (FEM) for elliptic problems was
proposed in the mid 80ies by Babuška and his coworkers. They unified the hitherto
largely separate developments of fixed-order “h-version FEM” in the sense of Ciarlet,
which achieve convergence through reduction of the mesh size h, and the so-called
“spectral (or p-version) FEM” achieving convergence through increasing the polyno-
mial order p on a fixed mesh. Apart from unifying these two approaches, a key new

∗This work was initiated during the workshop ”Adaptive numerical methods and simulation of
PDEs”, held in January 21-25, 2008, at the Wolfgang Pauli Institute in Vienna, Austria.

†Mathematics Department, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada,
(schoetzau@math.ubc.ca). This author was supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

‡Seminar for Applied Mathematics, ETH Zürich, 8092 Zürich, Switzerland
(schwab@math.ethz.ch).

§Mathematisches Institut, Universität Bern, 3012 Bern, Switzerland (wihler@math.unibe.ch).
This author was supported by the Swiss National Science Foundation under grant No. 200021 126594.

1All what follows will also hold if Ω is a finite union of such Lipschitz polyhedra; finite union is
a restriction—there are Lipschitz polyhedra with infinitely many plane faces.
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feature of hp-FEM was the possibility to achieve exponential convergence rates in
terms of the number N of degrees of freedom. Exponential convergence results for
the hp-version of the FEM were shown in one dimension by Babuška and Gui in [11]
for the model singular solution u(x) = xα − x ∈ H1

0 (Ω), with α > 1/2 and Ω = (0, 1).
Specifically, the energy error was shown to be bounded by exp(−b

√
N) for any fixed

subdivision ratio σ ∈ (0, 1) (in particular, for σ = 1/2 when geometric element se-
quences are obtained by successive element bisection) for a constant b depending on
the singularity exponent α as well as on σ.

In two dimensions, exponential convergence (i.e., an upper bound of the form
C exp(−b 3

√
N) for the error of the hp-version FEM in polygons) was obtained by

Babuška and Guo in the mid 80ies in a series of landmark papers ([3, 14, 15] and
the references therein). Key ingredients in the proof were geometric mesh refinement
towards the singular support S (being the set of vertices of the polygon Ω) of the
solution and nonuniform elemental polynomial degrees which increase s-linearly with
the elements’ distance from S. We mention that the proof of elliptic regularity in
countably normed spaces of the solutions, which constitutes an essential prerequisite
for the exponential convergence proof, has been a major technical achievement.

In the 90ies, steps to extend the analytic regularity and the hp-convergence anal-
ysis in [3, 14, 15] to three dimensions were undertaken in [4, 13, 16, 17] and the
references therein. While all these works were devoted to conforming finite element
methods for second-order elliptic problems, extensions to hp-version mixed meth-
ods and conforming methods for higher-order problems in polygons were obtained
in [12, 27].

Discontinuous Galerkin methods emerged in the 70ies as stable discretizations
of first-order transport-dominated problems (see [20, 21, 26]), and as nonconforming
discretizations of second-order elliptic problems (cf. [1, 5, 9, 24, 32]). Later, in the
90ies, dG methods were studied within the hp-version setting for first-order transport
and for advection-reaction-diffusion problems in two- and three-dimensional domains
(see [18, 19]). Exponential convergence rates were established for piecewise ana-
lytic solutions excluding, in particular, corner singularities as occurring in polygonal
domains. In that context, exponential convergence was established in [33, 34] for
diffusion problems and in [31] for the Stokes equations.

In the present paper, we shall consider the hp-dGFEM for the boundary-value
problem (1.1)–(1.2) in polyhedra in R3. Particularly, for solutions with possible cor-
ner and edge singularities (measured in appropriate weighted Sobolev spaces), we
shall prove that the hp-dG discretizations are stable and consistent for suitable com-
binations of σ-geometric meshes (obtained from mapped hexahedral elements) and
anisotropic elemental polynomial degrees (that are s-linearly increasing and of µ-
bounded variation). The hp-dG approximations are shown to be well-defined and
to satisfy the Galerkin orthogonality property. Finally, we derive abstract error es-
timates for the dG energy error with respect to a suitable discontinuous elemental
polynomial interpolation operator.

The class of hp-dGFEM investigated here contains, in particular, three-dimensio-
nal generalizations of all mesh-degree combinations which were found to be optimal in
the univariate case in [11]. We mention that the stability of mixed hp-dGFEM (based
on uniform isotropic, but variable polynomial degrees) for viscous incompressible flow
on meshes of this type has been investigated in [28, 29]. In addition, we refer to [35] for
hp-dGFEM discretizations of the linear elasticity and Stokes equations in polyhedra,
which are related to the results in the present work.
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We emphasize that the hp-dG subspaces to be introduced in this paper, together
with the associated stability and error analysis for solutions in weighted Sobolev spaces
(featuring corner and edge singularities), constitute a key ingredient for the proof of
exponential convergence. In the second part, [30], we show that the dG energy error
converges as C exp(−b 5

√
N) when the hp-dG discretizations discussed in this article

are used for the numerical approximation of (1.1)–(1.2) in polyhedral domains.
The outline of the article is as follows: In Section 2, we recapitulate regular-

ity results in weighted Sobolev spaces for the solution of (1.1)–(1.2) from [7]; see
also [23, 22]. In Section 3, we define hp-dG finite element spaces on σ-geometric
meshes of mapped hexahedral elements with possibly anisotropic and s-linearly in-
creasing polynomial degree distributions of µ-bounded variation. In particular, we give
a constructive algorithmic definition of such subspaces in any bounded Lipschitz poly-
hedron Ω ⊂ R3 with a finite number of faces. Furthermore, in Section 4, we establish
the stability and prove error estimates for hp-interior penalty discontinuous Galerkin
discretizations for these hp-dG spaces.

Standard notation will be employed throughout the paper. The number of ele-
ments in a set A of finite cardinality is denoted by |A|. Occasionally, we shall use
the notations ”!” or ”*” to mean an inequality or an equivalence containing generic
positive multiplicative constants independent of any local mesh sizes and polynomial
degrees.

2. Regularity. Under the assumption that the coefficient functions A, c and
the source term f in (1.1) are sufficiently smooth in Ω, the solution of (1.1)–(1.2)
belongs to H2 away from any corners and edges of Ω. In order to specify the precise
regularity in scales of weighted Sobolev spaces, we recall some recent results from [7]
(see also [23, 22]).

2.1. Subdomains and Weights. In the bounded Lipschitz polyhedron Ω ⊂ R3

with plane faces, we denote by C the set of corners c, and by E the set of open2 edges
e of Ω. Then, the singular support is given by

S =

(
⋃

c∈C

c

)

∪
(
⋃

e∈E

e

)

⊂ Γ. (2.1)

For smooth data A, c and f in Ω, the set S coincides with the singular support of
the solution u of (1.1)–(1.2).

In order to define suitably weighted Sobolev spaces, we split Ω into vicinities of
edges e ∈ E , corners c ∈ C, or both. To this end, we define, for c ∈ C, e ∈ E and
x ∈ Ω, the following distance functions:

rc(x) = dist(x, c), re(x) = dist(x, e), ρce(x) =
re(x)

rc(x)
. (2.2)

We furthermore assume that Ω is such that

∃ε(Ω) > 0 :
⋂

c∈C

Bε(c) = ∅, (2.3)

where Bε(c) denotes the open ball in R3 with center c and radius ε. Note that
assumption (2.3) is a separation condition of the vertices of Ω; it is indeed a geometric

2In this paper, all geometric objects (except points, but including, e.g., subdomains, faces, edges,
elements) are assumed to be open, unless explicitly stated otherwise.
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restriction, since it is not satisfied by all Lipschitz polyhedra with straight faces. In
addition, for each corner c ∈ C, we define by

Ec = { e ∈ E : c ∩ e .= ∅ }

the set of all edges of Ω which meet at c. Moreover, for any e ∈ E , the set of corners
of e is given by

Ce ≡ ∂e = { c ∈ C : c ∩ e .= ∅ } .

Then, for c ∈ C, e ∈ E and ec ∈ Ec and for a sufficiently small ε > 0 to be specified
below, we define

ωc = {x ∈ Ω : rc(x) < ε ∧ ρce(x) > ε ∀ e ∈ Ec },
ωe = {x ∈ Ω : re(x) < ε ∧ rc(x) > ε ∀ c ∈ Ce},

ωcec
= {x ∈ Ω : rc(x) < ε ∧ ρcec

(x) < ε }.

When clear from the context, we simply write ωce in place of ωcec
. Possibly by

reducing ε in (2.3), we may partition the domain Ω into four disjoint parts,

Ω = Ω0
.
∪ ΩC

.
∪ ΩE

.
∪ ΩCE , (2.4)

where

ΩC =
⋃

c∈C

ωc, ΩE =
⋃

e∈E

ωe, ΩCE =
⋃

c∈C

⋃

e∈Ec

ωce. (2.5)

We shall refer to the subdomains ΩC , ΩE and ΩCE as corner, edge and corner-edge
neighborhoods of Ω, respectively. The remaining, “interior” part of Ω is defined by

Ω0 := Ω \ ΩC ∪ ΩE ∪ ΩCE . (2.6)

Note that

dist(Ω0,S) > ε/2 > 0. (2.7)

2.2. Weighted Sobolev Spaces. To each c ∈ C and e ∈ E we associate a
corner and an edge exponent βc,βe ∈ R, respectively. We collect these quantities in
the multi-exponent

β = {βc : c ∈ C} ∪ {βe : e ∈ E} ∈ R|C|+|E|. (2.8)

Inequalities of the form β < 1 and expressions like β ± s, where s ∈ R, are to be
understood componentwise. For example,

β + s = {βc + s : c ∈ C} ∪ {βe + s : e ∈ E}.

A key issue in the stability and error analysis of hp-approximations in three dimensions
is the anisotropic regularity of the solution u of (1.1)–(1.2) near the edges E of Ω.
In order to describe it, we introduce, for corners c ∈ C and edges e ∈ E , local
coordinate systems in ωe and ωce such that e corresponds to the direction (0, 0, 1).
Then, we denote quantities that are transversal to e by (·)⊥, and quantities parallel
to e by (·)‖. In particular, if α ∈ N3

0 is a multi-index corresponding to the three local
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coordinate directions in a subdomain ωe or ωce, then we have α = (α⊥,α‖), where
α⊥ = (α1,α2) and α‖ = α3. Likewise notation shall be employed below in anisotropic
quantities related to a face. For m ∈ N0, we define the semi-norm | ◦ |Mm

β
(Ω) by

|u|2Mm
β

(Ω) = |u|2Hm(Ω0)
+

∑

e∈E

∑

α∈N30
|α|=m

∥∥∥∥r
βe+|α⊥|
e D

αu

∥∥∥∥
2

L2(ωe)

+
∑

c∈C

∑

α∈N30
|α|=m

(∥∥∥rβc+|α|
c D

αu
∥∥∥
2

L2(ωc)
+

∑

e∈Ec

∥∥∥∥r
βc+|α|
c ρ

βe+|α⊥|
ce D

αu

∥∥∥∥
2

L2(ωce)

)

,

(2.9)

and the norm ‖ ◦ ‖Mm
β (Ω) by

‖u‖2Mm
β

(Ω) =
m∑

k=0

|u|2Mk
β
(Ω) . (2.10)

Here, |u|2Hm(Ω0)
is the usual Sobolev semi-norm of orderm on Ω0, and the operator Dα

denotes the derivative in the local coordinate directions corresponding to the multi-
index α. Finally, Mm

β (Ω) is the weighted Sobolev space obtained as the closure
of C∞

0 (Ω) with respect to the norm ‖·‖Mm
β

(Ω).

Remark 2.1. It will be necessary to consider the Mm
β -norms also for subdomains

K ⊂ Ω: we shall denote by | ◦ |Mm
β

(K) the semi-norm (2.9) with all domains of inte-

gration replaced by their intersections with K ⊂ Ω and likewise also for ‖ ◦ ‖Mm
β

(K).

2.3. Mm
β -Regularity. The significance of the weighted Sobolev spaces defined

above lies in the fact that (1.1) satisfies a shift theorem in Mm
β (Ω) for any m ∈ N.

Proposition 2.2. There exist bounds βE ,βC > 0 (depending on Ω, the coef-
ficients in (1.1), and on the types of boundary conditions on ∂Ω) such that, for β
satisfying

0 < βe < βE , 0 < βc <
1

2
+ βC , e ∈ E , c ∈ C, (2.11)

and every m ∈ N, a solution u ∈ H1(Ω) of (1.1)–(1.2) with Lu ∈ Mm
1−β(Ω) fulfills u ∈

Mm
−1−β(Ω). Furthermore, there holds the regularity estimate

‖u‖Mm
−1−β

(Ω) ≤ Cm ‖Lu‖Mm
1−β

(Ω) (2.12)

for all m ∈ N0, where Cm > 0 is a constant independent of u.
We refer, for example, to [7] for a proof of this result. We emphasize that in

the present paper, we only require (2.12) for m = 2, that is, we only require that
the solution u of (1.1)–(1.2) belongs to M2

−1−β(Ω). Shift theorems such as (2.12)
are well-known to hold for rather general second-order elliptic systems in polyhedral
domains; see [23, 22] and the references there for precise statements and proofs. In
addition, we mention that there are equivalences and relations between the above
defined M -spaces and other classes of Sobolev spaces used in the context of elliptic
regularity theory in polyhedra; see, e.g., [7, Remark 6.12].
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3. hp-Extensions in Ω. The purpose of this section is to introduce a class of
hp-finite element spaces for the numerical approximation of (1.1)–(1.2) in polyhedra.
They will be employed to establish exponential convergence of the hp-dGFEM in [30].
The spaces considered involve families Mσ = {M(&)}&≥1 of σ-geometric meshes in the
polyhedron Ω, and s-linear polynomial degree distributions on elements K ∈ M(&).

The outline of this section is as follows: we start by introducing a basic hexahedral
mesh M0 in Ω and by discussing some general mapping conditions. Subsequently,
we present a specific construction based on subdividing a coarse tetrahedral mesh T 0

into a regular mesh M0 of (trilinearly mapped) hexahedral elements. Then, families
of σ-geometric meshes in general Lipschitz polyhedra Ω ⊂ R3 will be considered.
They are obtained by sequences of possibly anisotropic element bisections with a
prescribed edge ratio σ ∈ (0, 1) (in particular, we allow ratios σ .= 1/2 known in
the one-dimensional case to yield superior error bounds of hp-approximations for
singularities, cf. [11, Theorem 3.2]). While at each stage only elements abutting
at the singular support of the solution are subdivided, the polynomial degrees in
the remaining elements are increased with each σ-subdivision. As both, mesh and
polynomial degrees, are changed simultaneously in hp-FEM, we refer to one step of
combined σ-subdivision of elements and directional polynomial degree increase as
hp-extension, following [11].

We introduce, following [8], the concept of mesh layers: as in the two-dimensional
case, the aim is to keep the ratio of the element diameter and the (assumed posi-
tive) distance to the solution’s singular support bounded from above and below uni-
formly over all elements of the geometric mesh family. Naturally, with a view towards
exponential convergence, the appearance of edges in the singular support require
anisotropic geometric mesh refinements and anisotropic polynomial degree distribu-
tions.

The hp-setup in this paper will be based on families of meshes M consisting of
(possibly anisotropic) disjoint, open, parametric hexahedral elements Ki, such that
Ω =

⋃
iKi. To allow for mesh refinement, the hexahedral meshes M necessarily

contain irregular nodes.

3.1. Basic Hexahedral Mesh M0 in Ω. We begin by introducing a regular3

basic (initial) hexahedral mesh M0 in Ω ⊂ R3 (also called the patch mesh). We
suppose that each hexahedron Qj′ ∈ M0 = {Qj}Jj=1 is an image of the reference

patch Q̃ = (−1, 1)3 under a diffeomorphic mapping Gj′ ,

∀Qj′ ∈ M0 : Qj′ = Gj′ (Q̃), j′ = 1, . . . , J. (3.1)

We collect the (finitely many) maps Gj in the patch map vector

G = {Gj : j = 1, ..., J} . (3.2)

We assume the patch maps to be compatible, i.e.

∀i .= j : if Qj ∩Qi .= ∅, then
(
Gj ◦G(−1)

i

)
|Qj∩Qi

= id . (3.3)

The hexahedral mesh M0 obtained in this fashion is shape-regular: there exists a
constant CM0 ≥ 1 (depending only on G and M0) such that

C−1
M0 ≤ ‖det(DG)‖L∞(Q̃) ≤ CM0 ∀G ∈ G, (3.4)

3By regular, we mean that the intersection of the closure of any two elements is either empty, or
an entire face, an entire edge or a vertex of both elements.
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as well as
∥∥∥D̃αG

∥∥∥
L∞(Q̃)

+
∥∥Dα(G−1)

∥∥
L∞(G(Q̃))

≤ CM0 ∀G ∈ G, ∀1 ≤ |α| ≤ 2 . (3.5)

Here, we denote by D̃α partial derivatives with respect to the coordinates in the
reference patch Q̃, and by Dα the derivatives with respect to the physical coordinates
on G(Q̃).

For the approximation of solutions with singular support at the edges E and
vertices C of Ω, we will require that physical edges and vertices of the polyhedron Ω
coincide with edges and vertices of certain hexahedra Qj′ ∈ M0 in exactly one of
several canonical ways.

Assumption 3.1. For each hexahedron Q ∈ M0 in the patch mesh exactly one
of the following cases is true: the intersection S ∩Q

1. is empty;
2. contains exactly one corner P of Q, and P ∈ C;
3. contains exactly one corner P of Q, where P ⊂ e for some e ∈ E, and P .∈ C;
4. contains exactly one closed edge e′ of Q, where e′ ⊂ e for some e ∈ E;

moreover, the intersection e′ ∩ C contains exactly one point P , where P is a
corner of both Q and Ω;

5. contains exactly one closed edge e′ of Q, where e′ ⊂ e for some e ∈ E,
and e′ ∩ C = ∅.

In the sequel, we shall outline one possible construction of a basic hexahedral
mesh satisfying Assumption 3.1 for a polyhedron with plane faces: We start the
construction from a regular partition T 0 of Ω into open, disjoint tetrahedra {Ti}i,
such that Ω =

⋃
iT i. Here, we may suppose that the mesh T 0 is sufficiently fine such

that, for any tetrahedron T ∈ T 0, we have that T ∩ S is either
(T1) empty;
(T2) one corner of T ;
(T3) or the closure of one entire edge e′ of T which is a subset of the closure of a

singular edge e of Ω (i.e., e′ ⊂ e ∈ E). Furthermore, e′ contains at most one
corner of Ω which, if any, is also a corner of T .

Elements in T 0 are assumed to be affine images of the reference tetrahedron T̂ =
{ (x̂1, x̂2, x̂3) ∈ R3 : x̂1, x̂2, x̂3 > 0, x̂1 + x̂2 + x̂3 < 1 }. More precisely, for each Ti ∈
T 0, there is an affine mapping Fi : T̂ → Ti such that Ti = Fi(T̂ ).

Then, in order to obtain a basic hexahedral meshM0 as described earlier, we split
the reference tetrahedron T̂ into four open hexahedra {Q̂j}4j=1 of equivalent diameter

as follows: every face of T̂ is broken into four quadrilaterals by introducing edges
joining the edge midpoints and the center of gravity of the face. An additional vertex
is introduced in the middle of the tetrahedron and linked with the centers of the faces.
Then, each of the four resulting hexahedra Q̂j ⊂ T̂ , j = 1, 2, 3, 4, is the image of the

reference patch Q̃ = (−1, 1)3 under a bijective trilinear transform Q̃ → Q̂j. The Q̂j are
then transported by affine maps Fi to hexahedra Qij in Ω; see Figure 3.1. We abuse
notation by indexing these hexahedra by a single index j′ = 1, . . . , J := 4

∣∣T 0
∣∣. The

union of the J hexahedra Qj′ ⊂ Ω obtained in this fashion constitutes a basic patch
mesh M0 in Ω. In this particular construction, the patch maps {Gj}Jj=1 from (3.1)
are compositions of trilinear and affine transformations, and hence, diffeomorphic.

According to our assumptions, the bounded Lipschitz polyhedron Ω ⊂ R3 admits
a partition T 0 into a finite number of simplices. Therefore, the above construction

7



Q̃T̂

Q̂j

trilinear

Qij = Qj′

Fi : T̂ → Ti

Gj′ : Q̃ → Qj′

Ti

Fig. 3.1. Trilinear patch mappings from the reference patch Q̃ to the patch mesh M0.

gives a mesh of convex, trilinearly mapped hexahedra in any bounded Lipschitz poly-
hedron Ω ⊂ R3 with plane faces.

Lemma 3.2. Assume that the initial tetrahedral mesh T 0 in Ω satisfies (T1)–
(T3). Then, the basic hexahedral mesh M0 resulting from the construction above
satisfies Assumption 3.1.

Proof. Let us consider a tetrahedron T ∈ T 0. The set of the four hexahedra
contained in T is denoted by QT . We suppose that T ∩S .= ∅ (if this intersection were
empty, then certainly Q ∩ S = ∅ for all Q ∈ QT , i.e., this is case 1). Recalling (T1)–
(T3), the following situations may occur:

(i) T ∩ S is a corner of T as well as a corner of Ω: it follows that there is exactly
one hexahedron Q ∈ QT which intersects with S, and this intersection is a corner
of Q (because it is a corner of T ), i.e., case 2. The closures of the remaining three
hexahedra do not intersect with S, i.e., case 1.

(ii) T∩S is a corner of T , but not a corner of Ω: again, there is exactly oneQ ∈ QT

for which Q ∩ S = T ∩ Ω is a corner of Q. Since this point is not a corner of Ω, it
can only be situated on an edge of Ω, i.e., case 3. Furthermore, the closures of the
remaining hexahedra in QT do not intersect with S, i.e., case 1.

(iii) T∩S is an entire closed edge of T containing one corner P of Ω (which by (T3)
is also a corner of T ): in this case, there exists an edge e ∈ E of Ω such that T ∩S ⊂ e,
and P = (T ∩ S) ∩ ∂e. Then, there is a hexahedron Q1 ∈ QT such that P is a corner
of Q1 and ∂Q1 ∩ S ⊂ e is the closure of an entire edge of Q1 that contains P . This
corresponds to case 4. Furthermore, there is a second hexahedron Q2 ∈ QT such
that ∂Q2 ∩ S ⊂ e is an entire closed edge of Q2 not containing a corner of Ω, i.e.,
case 5. The closures of the two remaining hexahedra do not have any intersection
with S.

(iv) T ∩ S is an entire closed edge of T not containing a corner of Ω: there
are exactly two hexahedra Q1, Q2 ∈ QT whose boundaries intersect with S. More
precisely, Q1 ∩S, Q2 ∩S are entire edges of Q1 and Q2, respectively, that are subsets
of the closure of an edge e ∈ E of Ω. The intersections e ∩ Q1 and e ∩ Q2 do not
contain any corners of Ω, i.e., case 5. There are no further intersections with S in this
case.

To sum up, our assumptions on the initial tetrahedral mesh T 0 imply that only
the five cases above may appear. This completes the proof.

Remark 3.3. As any Lipschitz polyhedron with plane faces admits a regular
triangulation T 0, the above construction of a basic hexahedral mesh as well as the
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Q̂Q̃, M̃jK, Mj

K̃

Hj,K̃

ΦK

Gj

Fig. 3.2. Element mapping ΦK from the reference element Q̂ to the physical element K. The
reference element Q̂ is first mapped to the cuboid K̃ of the mesh M̃j in the reference patch Q̃ using

the dilation-translation H
j,K̃

and then to K via the patch map Gj : Q̃ → Qj.

ensuing one of hp-FE spaces will be possible in any such polyhedron. We emphasize
again, however, that partitioning Ω into tetrahedra might not be necessary if a fortiori
a partition M0 into hexahedra satisfying Assumption 3.1 is available.

3.2. (σ, s)-Extensions of (M0,p0). For a refinement parameter σ ∈ (0, 1),
sequences of σ-geometric meshes Mσ in Ω will be obtained by a sequence of pos-
sibly anisotropic σ-subdivisions of those elements {Q}Q∈M0 in the basic hexahedral
mesh M0 which abut at the set S, combined with simultaneous, possibly anisotropic
increase of the elemental polynomial degrees characterized by the slope parameter
s > 0. The resulting spaces of discontinuous, piecewise polynomial functions of (in
local coordinates) possibly anisotropic degrees are characterized by the mesh-degree
combinations (M,p). The combination of simultaneous σ-subdivision and s-linear
polynomial degree increase of a given mesh-degree combination will be referred to as
(σ, s)-extension.

In the particular construction described below, all mesh refinements are per-
formed on the reference patch Q̃ = (−1, 1)3 (to be distinguished from the reference
element Q̂ = (−1, 1)3). The resulting basic edge, corner and corner-edge geometric
refinements in the reference patch will subsequently be mapped into appropriate sub-
sets of the physical domain Ω. To start the construction, consider a patch Qj ∈ M0

for some index j. We build structured geometric meshes Mj on patch Qj by mapping

several classes of possibly anisotropic reference subdivisions M̃j defined on the refer-

ence patch Q̃. Then, an element K ∈ Mj is the image of an axiparallel but possibly

anisotropic cuboid K̃ ∈ M̃j under the patch map

K = Gj(K̃), K̃ ∈ Q̃ (3.6)

from (3.1). For K̃ ∈ M̃j , we can further write K̃ = Hj,K̃(Q̂), where Hj,K̃ : Q̂ → K̃ is
a possibly anisotropic dilation combined with a translation from the reference element
Q̂ to K̃. Then, any refinement of the patch Qj considered below will be given by

Mj =
{
K : K = (Gj ◦Hj,K̃)(Q̂), K̃ ∈ M̃j

}
, j = 1, . . . , J ;

as illustrated in Figure 3.2. The mesh M in Ω is the union of the J patch refinements:

9



M =
J⋃

j=1

Mj . (3.7)

For the refined meshes M obtained from M0 in this fashion, each hexahedral element
K ∈ M is the image of reference cube Q̂ = (−1, 1)3 under an element mapping ΦK :
K = ΦK(Q̂) with the following structure:

ΦK = Gj(K) ◦HK : Q̂ → K ∈ M, (3.8)

where Gj : Q̃ → Qj , j = 1, . . . , J , is the patch map, and HK : Q̂ → Q̃ is a possibly
anisotropic dilation combined with a translation. In particular, ΦK is analytic from

Q̂ to K.
Now we store the element mappings ΦK defined in (3.8) in the mapping vector

Φ(M) := {ΦK : K ∈ M}. (3.9)

Keeping in mind the proof of exponential convergence of hp-finite element dis-
cretizations, we will show in [30] that the anisotropic weights appearing in the def-
inition of Mm

β (Ω) yield exponential convergence even with a directionally reduced,
anisotropic choice of the elementwise polynomial degrees, in addition to geometric
mesh refinement towards S. To that end, we associate with each element K ∈ M
a polynomial degree vector pK = (pK,1, pK,2, pK,3) ∈ N3

0, whose components corre-

spond to the coordinate directions in Q̂ = Φ−1
K (K). The polynomial degree vector pK

is called isotropic if pK,1 = pK,2 = pK,3 = pK . Often, we shall also decompose

pK = (p⊥
K , p‖K) into a degree vector p⊥

K = (p⊥K,1, p
⊥
K,2) and a scalar degree p‖K per-

pendicular respectively parallel to an edge e. We shall be mainly concerned with the
situation where p⊥K,1 = p⊥K,2 =: p⊥K ; in this case we simply write

pK = (p⊥K , p‖K). (3.10)

Given a mesh M of hexahedral elements in Ω, we combine the elemental polynomial
degrees pK into the polynomial degree vector

p(M) := {pK : K ∈ M}. (3.11)

We now recall from Lemma 3.2 that there are five possibilities for each patch
Qj ∈ M0 to intersect with S. Our error analysis below and in [30] will show that the
resolution of singularities along S in these patches will require four different types of
(σ, s)-extensions. To define them, let ( ≥ 0 be a refinement level, σ ∈ (0, 1) a grading
factor and s > 0 an order increment parameter.

Then, by (-fold iteration, we generate four basic geometric mesh sequences R̃(&)
i

on Q̃, i = 1, 2, 3, 4, and associated polynomial degree distributions p(R̃(&)
i ) as in (3.11).

For any i = 1, 2, 3, 4 and ( ≥ 0, the polynomial degree vector p(R̃(&)
i ) will be defined

by means of a co-polynomial degree vector p̌(R̃(&)
i ) with non-negative real entries.

More precisely, p(R̃(&)
i ) is defined elementwise by

pK = 4p̌K5 ∀K ∈ R̃(&)
i , (3.12)

where 4·5 denotes componentwise rounding to the next greater integer, and p̌K =
(p̌K,1, p̌K,2, p̌K,3) denotes the elementwise co-polynomial degree vector (with p̌K,j ∈ R,
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p̌K,j ≥ 1, j = 1, 2, 3) on K ∈ R̃(&)
i . These quantities together with the geometric

mesh refinements shall be described in the sequel. The advantage of employing a
co-polynomial degree vector is that they allow for non-integer order increment pa-

rameters s. For ( = 0, we define R̃(0)
1 = · · · = R̃(0)

4 = {Q̃} and set the elemental

co-polynomial degree vectors to p̌K = (1, 1, 1) for all K ∈ R̃(0)
i . In order to obtain

the hp-extensions for refinement levels ( ≥ 1, we proceed iteratively:

(Ex1) No element subdivision. The new mesh-degree combination (R̃(&)
1 , p̌(R̃(&)

1 ))

is obtained from (R̃(&−1)
1 , p̌(R̃(&−1)

1 )) by increasing the elemental co-polynomial degree
vectors isotropically in each coordinate direction by s. That is, on level ( the elemental

co-polynomial degree vector p̌(&)

K̃
on K̃ is updated from the one on level (− 1 by:

p̌
(&)

K̃
:=

(
p̌(&−1)

K̃,1
+ s, p̌(&−1)

K̃,2
+ s, p̌(&−1)

K̃,3
+ s

)
. (3.13)

Extension (Ex1) will be used in elements located in the subdomain Ω0 where the
solution is analytic due to (2.3).

(Ex2) (σ, s)-Extension towards a corner c. This so-called corner extension is

obtained as follows: in the mesh R̃(&−1)
2 , there is a unique hexahedral element Q

abutting at corner c. The mesh-degree combination (R̃(&)
2 , p̌(R̃(&)

2 )) is obtained from

(R̃(&−1)
2 , p̌(R̃(&−1)

2 )) by σ-subdividing Q ∈ R̃(&−1)
2 towards the corner (assumed to

coincide with the origin (0, 0, 0))4 for σ ∈ (0, 1): here, the set of open subdomains

{(0,σa), (σa, a)}×{ (0,σb), (σb, b)}×{ (0,σc), (σc, c)}

is called a σ-subdivision of the hexahedron Q = (0, a) × (0, b) × (0, c), a, b, c > 0,
towards the corner c = (0, 0, 0). Thereby, the cube Q is split isotropically into 8 new
cubes; cf. Figure 3.3 (left). The elemental co-polynomial degree vectors in each of
the newly generated cubes abutting at c are set to be (1, 1, 1). Furthermore, on the
remaining cubes, the co-polynomial degrees are increased isotropically by s in each
coordinate direction as described in (3.13).

(Ex3) (σ, s)-Extension towards an edge e. Here, (R̃(&)
3 , p̌(R̃(&)

3 )) is obtained from

(R̃(&−1)
3 , p̌(R̃(&−1)

3 )) by σ-subdividing the unique element Q ∈ R̃(&−1)
3 abutting at the

edge e anisotropically towards this edge e into 4 new hexahedral elements. Here, the
set of open subdomains

{(0,σa), (σa, a)} × {(0,σb), (σb, b)}×{ (0, c)}

is called a σ-subdivision of Q = (0, a)× (0, b)× (0, c), a, b, c > 0 towards the edge e =
{ (0, 0, x3) : 0 < x3 < c }; three of these elements, denoted by Q′

1, Q
′
2, Q

′
3, say, do not

abut the edge e, while the fourth one, denoted by Q′′, does; cf. Figure 3.3 (center).
We then define

R̃(&)
3 := (R̃(&−1)

3 \{Q}) ∪ {Q′
1, Q

′
2, Q

′
3, Q

′′}, ( ≥ 1.

In the three elements Q′
1, Q

′
2 and Q′

3 not abutting edge e, the co-polynomial degrees
corresponding to the two directions transversal to the edge e, denoted by p̌⊥

Q′
i
, are set

4Throughout, Q denotes an open cuboid given in a local coordinate system:

Q = { (x1, x2, x2) : 0 < x1 < a, 0 < x2 < b, 0 < x3 < c }, a, b, c > 0.
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Fig. 3.3. Examples of three basic geometric mesh subdivisions in reference patch Q̃ with sub-
division ratio σ = 1

2
: isotropic towards corner c (left), anisotropic towards edge e (center), and

anisotropic towards one corner-edge pair ce (right). The sets c, e, ce are shown in boldface.

to (1, 1), while the co-polynomial degree in the direction parallel to edge e, denoted

by p̌‖Q′
i
, is given by the corresponding co-polynomial degree in the parent element

increased by s. That is, p̌‖Q′
i
:= p̌‖Q + s. Similarly, for the element Q′′, we set

p̌‖Q′′ := p̌‖Q + s and p̌⊥
Q′′ := (1, 1). The remaining hexahedra Q ∈ R̃(l−1)

3 which do
not abut edge e are not subdivided, but the co-polynomial degree vectors p̌Q in these
elements are increased isotropically by s as described in (3.13).

(Ex4) (σ, s)-Extension towards a corner-edge pair ce. Here, the singular corner c
is contained in the closure of the singular edge e, referred to as corner-edge pair ce.

Then, R̃(&)
4 results from R̃(l−1)

4 by σ-subdividing the mesh isotropically towards the
corner as in (Ex2) and anisotropically towards the edge as in (Ex3); see Figure 3.3
(right). In addition, the co-polynomial degrees are chosen in correspondence with the
previous rules for these refinements.

The mesh-degree combinations (R̃(&)
i ,p(R̃(&)

i )) which will be used for the construc-
tion of the hp-finite element spaces for the numerical approximation of (1.1)–(1.2)

are now obtained from the sequences of mesh patches R̃(&)
i and corresponding (co-)

polynomial degree vectors p̌(R̃(&)
i ) resulting from the (σ, s)-extensions (Ex1)–(Ex2),

where p(R̃(&)
i ) is defined by (3.12).

Remark 3.4. Elements Q ∈ R̃(&)
3 or Q ∈ R̃(&)

4 are hexahedra with axiparallel faces
whose aspect ratio increases exponentially as ( → ∞.5 Some care is therefore required

when speaking about the mesh width hQ for elements Q ∈ R̃(&)
3 ∪ R̃(&)

4 : we introduce

for elements Q ∈ R̃(&)
3 ∪ R̃(&)

4 the diameters h‖
Q and h⊥

Q of Q parallel respectively

perpendicular to the nearest singular edge e on K̃. If K = Gj(Q) under a patch

map Gj as in (3.6), we define the quantities h‖
K and h⊥

K as h‖
Q and h⊥

Q, respectively.
In addition, we denote by hK the diameter of element K.

3.3. σ-Geometric Mesh Families Mσ in Ω. Using the basic (σ, s)-extensions

in the reference patch and the four mesh-degree combinations (R̃(&)
i ,p(R̃(&)

i ))&≥0 ob-
tained from them, corresponding mesh-degree combinations are obtained on the poly-
hedron Ω by proper combination of these four basic combinations in the (hexahedral)
basic patches Qj ∈ M0. More precisely, the resulting geometric mesh in Ω is obtained

5As our hp-convergence analysis in [30] will show, this loss of elemental shape-regularity is nec-
essary to achieve exponential convergence.
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by transporting the corresponding geometric subdivisions on Q̃ into Ω by means of
the patch mappings Gj . It will be referred to as (hexahedral) σ-geometric mesh.

Definition 3.5 (σ-Geometric mesh M(&)
σ ). Consider a refinement level ( ≥ 0.

Then, a σ-geometric mesh M(&)
σ with grading factor σ ∈ (0, 1) and with ( layers on Ω

is defined by mapping finitely many copies of the reference σ-geometric meshes R̃(&)
i ,

i = 1, 2, 3, 4, on Q̃ onto the basic hexahedral mesh M0 = {Qj}Jj=1 in Ω by applying
the patch mappings Gj. More precisely, the reference mesh combinations are chosen
as follows (cf. Lemma 3.2): If the intersection Qj ∩ S is

1. empty, then the (single element) mesh R̃(&)
1 is mapped;

2. exactly one corner c of Ω, then R̃(&)
2 (with isotropic geometric refinement

towards c, cf. Figure 3.3 (left)) is mapped;
3. a closed subset of an edge e ∈ E of Ω not containing any corner c of Ω, then

R̃(&)
3 is mapped (with anisotropic refinement towards the edge, cf. Figure 3.3

(middle));
4. a closed subset of an edge e ∈ E of Ω containing exactly one corner c of Ω,

then R̃(&)
4 is mapped (with refinement towards both, corner c and edge e; cf.

Figure 3.3 (right));
5. exactly one point on an edge e ∈ E of Ω (which is not a corner of Ω), then

R̃(&)
1 is mapped (with σ-geometric refinement towards this intersection point).

Remark 3.6. Note that the reference configurations on Q̃ need to be suitably
oriented before being mapped to M0.

In the sequel, we shall be working with sequences of σ-geometrically refined

meshes M(0)
σ ,M(1)

σ ,M(2)
σ , . . . , where M(0)

σ := M0, and, for ( ≥ 1, there holds:

if K ∈ M(&)
σ , then there exists K ′ ∈ M(&−1)

σ such that K ⊂ K ′. As before, we shall

refer to the index ( as refinement level and to the sequence {M(&)
σ }&≥1 of σ-geometric

meshes in Ω as σ-geometric mesh family. It will be denoted by Mσ.

3.4. Mesh Layers. It will be convenient to partition the σ-geometric mesh

family Mσ = {M(&)
σ }&≥1 defined above into certain subsets of elements with identical

scaling properties in terms of their relative distance to the sets C and E . To this
end, we use the concept of mesh layers introduced in [8, Section 3]. The geometric
mesh families Mσ defined by the construction above admit such a decomposition into
layers.

Proposition 3.7. Any σ-geometric mesh family Mσ obtained by iterating the
basic extensions (Ex1)–(Ex4) above can be partitioned into a countable sequence of
disjoint mesh layers L&

σ, ( ≥ 0, and a corresponding nested sequence of terminal

layers T&
σ, ( = 1, 2, 3, . . . such that each M(&)

σ ∈ Mσ, ( ≥ 1 can be written as

M(&)
σ = L

0
σ

.
∪ L

1
σ

.
∪ . . .

.
∪ L

&−1
σ

.
∪ T

&
σ. (3.14)

Proof. We proceed by induction with respect to the number ( ≥ 1 of layers. If

( = 1, the assertion follows with the observation that M(1)
σ is obtained by one σ-

geometric refinement of the initial mesh M0 of hexahedra K. We partition M(1)
σ into

elements K for which K ∩ (E ∪ C) = ∅; these constitute L0
σ, and collect the remaining

elements K ∈ M(1)
σ in T1

σ. Then M(0)
σ = L0

σ

.
∪ T1

σ satisfies (3.14) for ( = 1.
Next, assume that the assertion has been established for some (0 ≥ 1. Then, for

( = (0 +1, all elements K not belonging to T&0
σ are left unaltered. All elements in the
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terminal layer T&0
σ are σ-subdivided once towards the singular points in E ∪ C. The

elements K resulting from this σ-subdivision with K ∩ (E ∪ C) = ∅ are collected in
the new mesh layer L&0

σ , the remaining elements K resulting from the σ-subdivision of

Q ∈ T&0
σ constitute T&0+1

σ . Then, by construction, M(&0+1)
σ = L0

σ

.
∪ L1

σ

.
∪ . . .

.
∪ L&0

σ

.
∪

T&0+1
σ which proves (3.14) for all ( ≥ 1.

We shall require notation for those elements of the geometric mesh M(&)
σ ∈ Mσ

which are not abutting at a corner or an edge. To this end, we define with the interior

mesh layers Ll
σ the submesh O&

σ ⊂ M(&)
σ of elements K ∈ M(&)

σ not intersecting C ∪E :

O
&
σ := L

0
σ

.
∪ L

1
σ

.
∪ . . .

.
∪ L

&−1
σ ⊂ M(&)

σ ∈ Mσ, ( ≥ 1. (3.15)

Evidently, M(&)
σ = O&

σ ∪ T&
σ for ( ≥ 1.

We partition the terminal layer T&
σ according to the construction of the basic

hexahedral mesh M0, cf. Lemma 3.2 and Definition 3.5:

V&
C =

{
K ∈ T

&
σ : K ∩ S = c for some c ∈ C

}
,

V&
E,1 =

{
K ∈ T

&
σ : K ∩ C = ∅ and ∃e ∈ E such that K ∩ S ⊂ e is a corner of K

}
,

V&
E,2 =

{
K ∈ T

&
σ : K ∩ C = ∅ and ∃e ∈ E such that K ∩ S ⊂ e is an edge of K

}
,

V&
CE =

{
K ∈ T

&
σ : ∃c ∈ C and e ∈ Ec such that c ∈ K ∩ S ⊂ e

}
.

Remark 3.8. We notice that elements in V&
C, V&

E,1 and V&
CE are isotropic with

element diameter denoted by hK * h⊥
K * h‖

K . Furthermore, elements in V&
E,2 might

be anisotropic.

3.5. Finite Element Spaces. We are now ready to introduce the hp-version
discontinuous Galerkin finite element spaces. To this end, let M be a geometric mesh
of a σ-geometric mesh family Mσ in Ω. Let Φ(M) and p(M) be the associated map-
ping and polynomial degree vectors, as introduced in (3.9) and (3.11), respectively.
We then introduce the finite element space

V (M,Φ,p) =
{
u ∈ L2(Ω) : u|K ∈ QpK (K), K ∈ M

}
. (3.16)

Here, we define the local polynomial approximation space QpK (K) as follows: first,
on the reference element Q̂ and for a polynomial degree vector p = (p1, p2, p3) ∈ N3

0,
we introduce the following, anisotropic polynomial space:

Qp(Q̂) = Pp1(Î)⊗ Pp2(Î)⊗ Pp3(Î) = span { x̂α : αi ≤ pi, 1 ≤ i ≤ 3 } . (3.17)

Here, for p ∈ N0, we denote by P̂p(Î) the space of all polynomials of degree at most p
on the reference interval Î = (−1, 1). Then, if K is a hexahedral element of M with
associated elemental mapping ΦK : Q̂ → K and polynomial degree vector pK =
(pK,1, pK,2, pK,3), we define

QpK (K) =
{
u ∈ L2(K) : (u|K ◦ ΦK) ∈ QpK (Q̂)

}
. (3.18)

In the case, where the polynomial degree vector pK associated with K is isotropic,
i.e., pK,1 = pK,2 = pK,3 = pK , we simply write QpK (K) = QpK (K), i.e., we replace
the vector pK by the scalar pK .

We now introduce two families of hp-finite element spaces for the discontinuous
Galerkin methods; both yield exponentially convergent approximations and are based
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on the σ-geometric mesh families Mσ = {M(&)
σ }&≥1. The first family has uniform

polynomial degree distributions, while the second (smaller) family will have linearly
increasing polynomial degree vectors. The first family of hp-dG subspaces is defined
by

V &
σ := V (M(&)

σ ,Φ(M(&)
σ ),p1(M(&)

σ )), ( ≥ 1, (3.19)

where the elemental polynomial degree vectors pK in p1(M(&)
σ ) are isotropic and

uniform, given on each element K as

pK = ( ∀K ∈ M(&)
σ . (3.20)

The second family of hp-dG subspaces is chosen as

V &
σ,s := V (M(&)

σ ,Φ(M(&)
σ ),p2(M(&)

σ )), ( ≥ 1, (3.21)

for an increment parameter s > 0. Here the polynomial degree vectors p2(M(&)
σ )

are the anisotropic ones obtained from the (σ, s)-extensions described in Section 3.2.
Note that both families of hp-spaces defined above are nested: for 0 < σ < 1 and
s = 1, we have

V &
σ,1 ⊂ V &

σ and V &−1
σ,1 ⊂ V &

σ,1, ( ≥ 1. (3.22)

Our hp-dG analysis will require certain uniformity conditions for the vectors Φ(M)
and p2(M) of element mappings and element polynomial degrees, respectively. These
will be specified next.

3.6. Degree Vectors of µ-Bounded Variation. From the analysis of hp-FEM
in the one-dimensional setting in [11] it is known that exponential convergence for
singular solutions can be achieved upon combination of σ-geometric mesh refinement
with either uniform polynomial degree increase or with s-linear polynomial degree
increase, i.e., the polynomial degrees within each element increase linearly with the
number of mesh layers between that element and the component of the singular set S
nearest to it, with the factor of proportionality (“slope” in the terminology of [11])
being the parameter s > 0.

In the three-dimensional situation under consideration here, an anisotropic version
of this concept, namely polynomial degree vectors p(M) of µ-bounded variation on
meshes M ∈ Mσ will be used. To define it, for any M ∈ Mσ, we denote the set of
all interior faces in M by

FI(M) =
{
(∂K' ∩ ∂K()

◦ : K', K( ∈ M, ∂K' ∩ ∂K( .= ∅
}
,

and, similarly, the set of all boundary faces by FB(M). In addition, let F(M) =
FI(M)∪FB(M) denote the set of all (smallest) faces of M. If the mesh M ∈ Mσ is
clear from the context, we shall omit the dependence of these sets onM. Furthermore,
for an element K ∈ M, we denote the set of its faces by FK = { f ∈ F : f ⊂ ∂K }.
In local coordinates on K ∈ M, hp-dG solutions are tensor products of univariate
polynomials of possibly anisotropic polynomial degrees which are collected in the
vector pK , cf. (3.18).

The notion of µ-bounded degree vectors pertains to changes in polynomial degrees
across faces f ∈ F(M). To precise this, we denote for any element K ∈ M and any

f ∈ FK , by p‖,(1)K,f , p‖,(2)K,f the two components of pK parallel to f , and by p⊥K,f the
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polynomial degree of pK transversal to f (defined as the corresponding components
on Φ−1

K (K), cf. (3.18)). A degree vector p(M) is said to be of µ-bounded variation if
there is a constant µ ∈ (0, 1) such that

µ ≤ p⊥K",f
/p⊥K#,f

≤ µ−1, (3.23)

uniformly for all interior faces f = (∂K' ∩ ∂K()
◦ ∈ FI(M). A family of degree

vectors is of µ-bounded variation if each vector in the family is of µ-bounded variation
(uniformly for the entire family).

Remark 3.9. For a mesh M in a σ-geometric family Mσ obtained by a sequence
of (σ, s)-extensions, the number of faces f ∈ FK contained in the boundary of any
element K ∈ M is uniformly bounded, i.e., there exists a constant C(Mσ) < ∞ such
that supM∈Mσ

supK∈M |FK | ≤ C. Also, the degree vectors in the sequences of mesh-
degree combinations produced by the (σ, s)-extensions (Ex1)–(Ex4) are of µ-bounded
variation. Moreover, the elemental polynomial degrees in the corresponding degree
vectors are s-linearly increasing in the mesh layers between elements K ∈ M, away
from the singular support S of the solution u of (1.1)–(1.2).

4. Discontinuous Galerkin Discretization. We present the hp-dG discretiza-
tions of (1.1)–(1.2) for which we establish stability and error bounds on Mσ.

4.1. Face Operators. In order to define a dG formulation on a given mesh M
for the model problem (1.1)–(1.2), we shall first recall some element face operators.
For this purpose, consider an interior face f = (∂K' ∩ ∂K()

◦ ∈ FI(M) shared by two
elements K' and K( in M; cf. Section 3.6. Furthermore, let v,w be a scalar- respec-
tively a vector-valued function that is sufficiently smooth inside the elements K', K(.
Then we define the following jumps and averages of v and w along f :

[[v]] = v|K"nK" + v|K#
nK#

〈〈v〉〉 = 1

2

(
v|K" + v|K#

)

[[w]] = w|K" · nK" +w|K#
· nK#

〈〈w〉〉 = 1

2

(
w|K" +w|K#

)
.

Here, for an element K ∈ M, we denote by nK the outward unit normal vector
on ∂K. For a boundary face f = (∂K ∩ ∂Ω)◦ ∈ FB(M) for K ∈ M, and sufficiently
smooth functions v,w on K, we let [[v]] = v|KnΩ, [[w]] = w|K · nΩ, and 〈〈v〉〉 = v|K ,
〈〈w〉〉 = w|K , where nΩ is the outward unit normal vector on ∂Ω.

4.2. Interior Penalty Discretizations. The problem (1.1)–(1.2) will be dis-
cretized using an interior penalty (IP) discontinuous Galerkin method. More precisely,
we consider the subspaces V (M,Φ,p) = V &

σ respectively V &
σ,s defined in (3.19), (3.21)

with a σ-geometric mesh M ∈ Mσ and an increment parameter s > 0. For a fixed
parameter θ ∈ [−1, 1], we define the hp-discontinuous Galerkin solution uDG by

uDG ∈ V (M,Φ,p) : aDG(uDG, v) =

∫

Ω
fv dx ∀ v ∈ V (M,Φ,p), (4.1)

where the form aDG(u, v) is given by

aDG(w, v) = ADG(w, v) − FDG(w, v) + θFDG(v, w) + γJDG(v, w), (4.2)
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with

ADG(w, v) =

∫

Ω
((A∇hw) ·∇hv + cwv) dx, FDG(w, v) =

∫

F(M)
〈〈A∇hw〉〉 · [[v]] ds,

JDG(w, v) =

∫

F(M)
α[[w]] · [[v]] ds.

Here, ∇h is the elementwise gradient, and γ > 0 is a stabilization parameter that will
be specified later. Furthermore, α ∈ L∞(F) is a discontinuity stabilization function
which is defined as follows:

α(x) =






max
(
p⊥K",f

, p⊥K#,f

)2

min
(
h⊥
K",f

, h⊥
K#,f

) if x ∈ f = (∂K' ∩ ∂K()
◦ ∈ FI

for K', K( ∈ M,

(p⊥K,f )
2

h⊥
K,f

if x ∈ f = (∂K ∩ ∂Ω)◦ ∈ FB for K ∈ M.

(4.3)

We recall from Section 3.6 that, for K ∈ M and f ∈ FK , we denote by p⊥K,f the
component of pK in the direction transversal to f (defined as the corresponding
component on Φ−1

K (K); cf. (3.18)). Analogously, h⊥
K,f is the height of K over the

face f , i.e., the diameter of element K in the direction transversal to f , defined as the
corresponding quantity on the axiparallel cuboid G−1

j (K); see (3.6). The parameter θ
allows us to describe a whole range of interior penalty methods: for θ = −1 we
obtain the standard symmetric interior penalty (SIP) method while for θ = 1 the
non-symmetric (NIP) version is obtained; cf. [2] and the references therein.

Remark 4.1. The stabilization term α(x) is often chosen in dependence on A.
For the sake of simplicity, we will not consider this choice. As a result, the stabiliza-
tion parameter γ will have to be selected as a function of (the upper and lower bounds
of) A; see also the coercivity result in Theorem 4.4 below.

4.3. Trace and Inverse Inequalities. In order to analyze the numerical fluxes
in the dG formulation, we shall require some inequalities on the faces of elements.

We begin by proving an anisotropic trace inequality. Recall from (3.6) that an
element K ∈ Mσ belonging to patch Qj is the image of an axiparallel cuboid K̃ via

the patch map Gj : Q̃ → Qj , as in (3.6). Similarly, we denote the preimage of a face

f ∈ FK by f̃ ∈ FK̃ . Functions and gradients are then transformed from K to K̃ via
the patch maps according to

ṽ(x̃) = v(x), ∇̃ṽ(x̃) = DG%
j (x)∇v(x), (4.4)

where x = Gj(x̃). Hence, from (3.4) and (3.5), we have

‖v‖Lt(f) * ‖ṽ‖Lt(f̃) , ‖∇v‖Lt(f) *
∥∥∥∇̃ṽ

∥∥∥
Lt(f̃)

, (4.5)

and

|ṽ|W 1,t(K̃) * |v|W 1,t(K̃) , |ṽ|W 2,t(K̃) * |v|W 2,t(K) , (4.6)

for any t ≥ 1.
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Lemma 4.2. Let Mσ be a geometric mesh family with 0 < σ < 1, M ∈ Mσ,
K ∈ M, f ∈ FK, and t ≥ 1. Then for any v ∈ W 1,t(K), we have the trace inequality

‖v‖tLt(f) ≤ Ct

(
h⊥
K,f

)−1
(
‖v‖tLt(K) +

(
h⊥
K,f

)t ∥∥∥∂̃K̃,f̃ ,⊥(ṽ)
∥∥∥
t

Lt(K̃)

)
.

The constant Ct > 0 depends on σ and the constant CM0 in (3.4)–(3.5), but is

independent of the element size and element aspect ratio. Here, ∂̃K̃,f̃ ,⊥(ṽ) signifies the

partial derivative of ṽ in direction transversal to f̃ ∈ FK̃ , expressed in the coordinates

on the reference patch Q̃.
Proof. We first assume that K is an axiparallel cuboid. Due to density, we may

further assume that v ∈ C∞(K). Then, we introduce a local coordinate system in K
such that all points in f satisfy x3 = 0 and the x3-axis is orthogonal to f . We
have h3 = h⊥

K,f . Then, for (x1, x2, 0) ∈ f ,

|v(x1, x2, 0)| =

∣∣∣∣∣

∫ h3

0
∂x3

(
x3 − h3

h3
v

)
dx3

∣∣∣∣∣ =

∣∣∣∣∣

∫ h3

0

(
h−1
3 v +

x3 − h3

h3
∂x3v

)
dx3

∣∣∣∣∣

≤ h−1
3

∫ h3

0
|v| dx3 +

∫ h3

0

∣∣∣∣
x3 − h3

h3
∂x3v

∣∣∣∣ dx3.

Then, using that (|a|+ |b|)t ≤ 2t−1(|a|t + |b|t) for any a, b ∈ R, it follows that

|v(x1, x2, 0)|t ≤ 2t−1



h−t
3

(∫ h3

0
|v| dx3

)t

+

(∫ h3

0

∣∣∣∣
x3 − h3

h3
∂x3v

∣∣∣∣ dx3

)t


 .

Applying Hölder’s inequality, we have that

∫ h3

0
|v| dx3 ≤ h

t−1
t

3

(∫ h3

0
|v|t dx3

) 1
t

,

and

∫ h3

0

∣∣∣∣
x3 − h3

h3
∂x3v

∣∣∣∣ dx3 ≤
(∫ h3

0

∣∣∣∣
x3 − h3

h3

∣∣∣∣

t
t−1

dx3

) t−1
t

(∫ h3

0
|∂x3v|t dx3

) 1
t

≤ C′
th

t−1
t

3

(∫ h3

0
|∂x3v|t dx3

) 1
s

,

with a constant C′
t > 0 only depending on t. Therefore,

|v(x1, x2, 0)|t ≤ Cth
−1
3

(∫ h3

0
|v|t dx3 + ht

3

∫ h3

0
|∂x3v|t dx3

)

,

and thus,

‖v‖tLt(f) =

∫

f

|v(x1, x2, 0)|t dx1 dx2 ≤ Cth
−1
3

∫

K

(
|v|t + ht

3|∂x3v|t
)
dx.
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This shows the assertion for an axiparallel cuboid.
If now K = Gj(K̃) for a cuboid K̃, f ∈ FK and f̃ ∈ FK̃ the corresponding face

on K̃, then the equivalence properties in (4.5) and the result on K̃ give

‖v‖tLt(f) * ‖ṽ‖tLt(f̃) ! (h⊥
K̃,f̃

)−1

(
‖ṽ‖tLt(K̃) + (h⊥

K̃,f̃
)t
∥∥∥∂̃K̃,f̃,⊥(ṽ)

∥∥∥
t

Lt(K̃)

)
.

Noting that h⊥
K̃,f̃

= h⊥
K,f by Remark 3.4, and scaling back the Lt-norm from K̃ to K

by using (4.6) yield the desired inequality on K. To bound gradients on faces, we
proceed similarly. Scaling using (4.5) and applying Lemma 4.2 on the axiparallel
element K̃ result in

‖∇v‖Lt(f) *
∥∥∥∇̃ṽ

∥∥∥
Lt(f̃)

! (h⊥
K,f )

−1

(∥∥∥∇̃ṽ
∥∥∥
t

Lt(K̃)
+ (h⊥

K,f )
t
∥∥∥∂̃K̃,f̃,⊥(∇̃ṽ)

∥∥∥
t

Lt(K̃)

)
.

Scaling back the Lt-norm of the gradient with (4.6) implies the following bound:

‖∇v‖tLt(f) ≤ C(h⊥
K,f )

−1

(
‖∇v‖tLt(K) + (h⊥

K,f )
t
∥∥∥∂̃K̃,f̃,⊥(∇̃ṽ)

∥∥∥
t

Lt(K̃)

)
. (4.7)

Moreover, if we scale back from K̃ to K the second-order derivative on the right-hand
side of (4.7), we obtain

‖∇v‖tLt(f) ≤ C(h⊥
K,f )

−1
(
‖∇v‖tLt(K) + (h⊥

K,f )
t |v|tW 2,t(K)

)
. (4.8)

This completes the proof.
Next, we establish various inequalities for discrete functions on faces. To that

end, we denote by |f | the surface measure of a face f .
Lemma 4.3. Let M ∈ Mσ for 0 < σ < 1, φ ∈ V (M,Φ,p), K ∈ M, and f ∈ FK .

Then, there exist constants Ci > 0, i = 1, 2, 3, (depending only on σ and on the
constant CM0 in (3.4)–(3.5)) such that we have

a) the polynomial trace inequality:

‖φ‖2L2(f) ≤ C1

(
p⊥K,f

)2
(h⊥

K,f )
−1 ‖φ‖2L2(K) ;

b) the inverse inequality:

‖φ‖L∞(f) ≤ C2 |f |−
1
2 p‖,(1)K,f p‖,(2)K,f ‖φ‖L2(f) ;

c) and the bound:

∑

K∈M

∑

f∈FK

∫

f

α−1|∇φ|2 ds ≤ C3 ‖∇hφ‖2L2(Ω) .

Here, C1, C2, C3 > 0 are constants independent of φ, p⊥K,f , and of h⊥
K,f .

We note that related results have been proved earlier, for instance, in [6, 10].
Proof. We first prove the result of a) on the unit cube Q̂ = (−1, 1)3 in two

steps: let Î = (−1, 1) denote the unit interval and let Li(x̂) denote the i-th Legendre
polynomial in Î, normalized such that Li(1) = 1. Then, any φp ∈ Pp(Î) can be written
as φp(x̂) =

∑p
i=0 aiLi(x̂), and for x̂ ∈ Î, we have

|φp(x̂)| ≤ ‖φp‖L∞(Î) ≤ 4p‖φp‖L2(Î); (4.9)
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cf. [25]. Next, let H be a separable Hilbert space with norm ‖ ◦ ‖H , inner product
(·, ·)H and countable orthonormal basis {ψν}ν≥1. Denote by Pp(Î ;H) the polynomial
functions of degree p on Î with coefficients in H . Then, we can write, for φp ∈
Pp(Î;H),

φp =
∞∑

ν=1

φpνψν , φpν = (φp,ψν)H ∈ Pp(Î), ν ≥ 1.

Applying Parseval’s equality in H , we get

‖φp(x̂)‖2H =
∞∑

ν=1

|φpν(x̂)|2 ≤ 16p2
∞∑

ν=1

‖φpν‖2L2(Î)
= 16p2‖φp‖2L2(Î;H)

, x̂ ∈ Î .

We obtain the asserted result for the unit cube by choosing x̂ = −1 and H to be

the space of polynomials H = Qp(f) with p = p
‖
K,f , equipped with the L2(f) inner

product, and p = p⊥K,f . Axiparallel scaling readily shows the result on an axiparallel
cuboid, and the case of a general element follows from scaling using (4.5)–(4.6).

Proof of b): Consider first f = (−1, 1)2, and φ ∈ Pp1(Î) ⊗ Pp2(Î). Furthermore,
let (x̂, ŷ) ∈ [−1, 1]2 such that |φ(x̂, ŷ)| = ‖φ‖L∞(f). Then, using (4.9), we obtain

‖φ‖2L∞(f) ≤ Cp21

∫ 1

−1
φ(τ, ŷ)2 dτ ≤ Cp21

∫ 1

−1
sup
ŷ∈Î

φ(τ, ŷ)2 dτ ≤ Cp21p
2
2

1∫∫

−1

φ(τ, θ)2 dθ dτ.

Then, applying scaling as in a) and taking the square root, results in the desired
bound.

Proof of c): Let f be a face of FK . With scaling to the patch, the definition of α
in (4.3), and estimate a) on K̃, we obtain

(α|f )−1

∫

f

|∇φ|2 ds ≤ C(α|f )−1

∫

f̃

|∇̃φ̃|2 ds̃ ≤ C
∥∥∥∇̃φ̃

∥∥∥
2

L2(K̃)
≤ C ‖∇φ‖2L2(K) .

Hence, summing over all elements K ∈ M and faces f ∈ FK , and taking into account
Remark 3.9 complete the proof.

4.4. Coercivity and Continuity. We shall now study the well-posedness of
the hp-dGFEM. To this end, we shall use the standard dG norm given by

|||v|||2DG =

∫

Ω

(
|∇hv|2 + cv2

)
dx+ γ

∫

F
α |[[v]]|2 ds (4.10)

for any V (M,Φ,p) +H1(Ω).

Theorem 4.4. For any σ-geometric mesh family Mσ = {M(&)
σ }&≥1 and family

of degree vectors {p(M(&)
σ )}&≥1 of µ-bounded variation, the dG bilinear form aDG(·, ·)

is continuous and coercive uniformly in (. More precisely, there exist constants 0 <
C1(σ, µ, CM0 , θ, γ,α0) ≤ C2(σ, µ, CM0 , θ, γ,α0) < ∞ such that

|aDG(v, w)| ≤ C1|||v|||DG|||w|||DG ∀ v, w ∈ V (M(&)
σ ,Φ(M(&)

σ ),p(M(&)
σ )).

Moreover, for γ > 0 sufficiently large (except for the NIP method, θ = 1 in (4.2),
where any γ > 0 can be selected), independently of the refinement level (, the element
aspect ratios, the local mesh sizes, and the local polynomial degree vectors,

aDG(v, v) ≥ C2|||v|||2DG ∀ v ∈ V (M(&)
σ ,Φ(M(&)

σ ),p(M(&)
σ )).

20



In particular, there exists a unique solution uDG of (4.1).
Proof. Due to the uniform ellipticity assumption (1.3) we may suppose, without

loss of generality, that A = id. Then, recalling the splitting (4.2), employing the
Cauchy-Schwarz inequality and using (1.3), there holds

|ADG(w, v)|+ |JDG(w, v)| ≤ |||w|||DG|||v|||DG.

To prove continuity of FDG(·, ·), we use Lemma 4.3 c), to obtain

|FDG(v, w)| ≤
∥∥∥α− 1

2 〈〈∇hv〉〉
∥∥∥
L2(F)

∥∥∥α
1
2 [[w]]

∥∥∥
L2(F)

≤




∑

K∈M

∑

f∈FK

∫

f

α−1|∇v|2 ds





1
2 ∥∥∥α

1
2 [[w]]

∥∥∥
L2(F)

≤ C3γ
− 1

2 |||v|||DG|||w|||DG.

(4.11)

The same bound holds for |FDG(w, v)| and hence, applying the triangle inequality
to (4.2) and inserting the above bounds, yields the continuity of aDG.

To show coercivity we use (1.3) and (4.11) (with w = v) to obtain

aDG(v, v) ≥ ‖∇hv‖2L2(Ω) +
∥∥∥c

1
2 v

∥∥∥
2

L2(Ω)
− (1 + |θ|)FDG(v, v) + γ

∥∥∥α
1
2 [[v]]

∥∥∥
2

L2(F)

≥ |||v|||2DG − C3(1 + |θ|)γ− 1
2 |||v|||2DG.

Choosing γ > 0 sufficiently large (and independent of v ∈ V (M,Φ,p)) shows the
coercivity of aDG.

4.5. Galerkin Orthogonality. The aim of this section is to prove that the dG
formulation (4.1) satisfies the property of Galerkin orthogonality. We first establish
the following auxiliary result:

Lemma 4.5. Let α ∈ N3
0 be a multi-index, and K ∈ M(&)

σ . Then for |α| ≤ 2 and

v ∈ M |α|
−1−β(K), with a weight vector β fulfilling (2.8) and (2.11), we have

‖Dαv‖L1(K) !






|K| 12 ‖Dαv‖L2(K) if K ∈ O&
σ,

h
5
2+βc−|α|
K |v|

M
|α|
−1−β

(K)
if K ∈ V&

C ∪ V&
CE ,

h
5
2+βe−|α⊥|
K |v|

M
|α|
−1−β

(K)
if K ∈ V&

E,1,
(
h‖
K

) 1
2 (

h⊥
K

)2+βe−|α⊥| |v|
M

|α|
−1−β

(K)
if K ∈ V&

E,2.

Proof. Let us first consider the case where K ∩ S = ∅, i.e. K ∈ O&
σ. Then, the

distance functions rc, re and ρce from (2.2) occurring in (2.9) are strictly positive,
and it follows that Dαv ∈ L2(K). Hence, by Hölder’s inequality, we have

‖Dαv‖L1(K) ≤ ‖1‖L2(K) ‖D
αv‖L2(K) ! |K|

1
2 ‖Dαv‖L2(K) .

Furthermore, elements belonging to V&
C , V&

CE and V&
E,1 are isotropic; cf. Remark 3.8.

Hence, for K ∈ V&
C and |α| < 5

2 + βc, there holds

‖Dαv‖L1(K) ≤
∥∥∥r1+βc−|α|

c

∥∥∥
L2(K)

∥∥∥r−1−βc+|α|
c D

αv
∥∥∥
L2(K)

! h
5
2+βc−|α|
K

∥∥∥r−1−βc+|α|
c D

αv
∥∥∥
L2(K)

.
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Similarly, for K ∈ V&
CE , and |α| < 5

2 + βc and |α⊥| < 2 + βe,

‖Dαv‖L1(K) ≤
∥∥∥r1+βc−|α|

c ρ1+βe−|α⊥|
ce

∥∥∥
L2(K)

∥∥∥r−1−βc+|α|
c ρ−1−βe+|α⊥|

ce D
αv

∥∥∥
L2(K)

! h
5
2+βc−|α|
K

∥∥∥r−1−βc+|α|
c ρ−1−βe+|α⊥|

ce D
αv

∥∥∥
L2(K)

.

Additionally, for K ∈ V&
E,1, we obtain

‖Dαv‖L1(K) ≤
∥∥∥r1+βe−|α⊥|

e

∥∥∥
L2(K)

∥∥∥r−1−βe+|α⊥|
e D

αv
∥∥∥
L2(K)

! h
5
2+βe−|α⊥|
K

∥∥∥r−1−βe+|α⊥|
e D

αv
∥∥∥
L2(K)

.

Finally, for any (possibly anisotropic) K ∈ V&
E,2, we have

‖Dαv‖L1(K) ≤
∥∥∥r1+βe−|α⊥|

e

∥∥∥
L2(K)

∥∥∥r−1−βe+|α⊥|
e D

αv
∥∥∥
L2(K)

!
(
h‖
K

) 1
2 (

h⊥
K

)2+βe−|α⊥|
∥∥∥r−1−βe+|α⊥|

e D
αv

∥∥∥
L2(K)

.

This shows the desired bounds.
Remark 4.6. We point out that all the norms on the right-hand sides of the esti-

mates in Lemma 4.5 are part of the full norm ‖◦‖
M

|α|
−1−β

(Ω)
. Particularly, all of these

expressions remain bounded under the regularity assumptions of Proposition 2.2.
Lemma 4.7. Let u ∈ M2

−1−β(Ω) and assume that f ∈ FI(M) for M ∈ Mσ,
0 < σ < 1. Then, there holds [[A∇u]]|f = 0.

Proof. Using Lemma 4.5, the trace inequality (4.8) with t = 1, and the bound-
edness of A, it follows that ‖A∇u‖L1(f) is bounded, albeit with mesh dependent

constants. Furthermore, noting that A∇u belongs to H1 away from the singular
points S, implies that [[A∇u]]|f ′ = 0 for all subsets f ′ ⊂ f with f ′ ⊂ f . The result
follows using the dominated convergence theorem as in [31, Lemma 3].

Lemma 4.8. Let u ∈ M2
−1−β(Ω) and v ∈ C1(M(&)

σ ,Ω), where

C1(M(&)
σ ,Ω) =

{
v ∈ L2(Ω) : v|K ∈ C1(K) ∀K ∈ M(&)

σ

}
.

Then, there holds the Green’s formula
∫

K

v Lu dx =

∫

K

(A∇u) ·∇v dx+

∫

K

cuv dx−
∫

∂K

((A∇u) · nK) v ds (4.12)

for all K ∈ M(&)
σ , where L is the operator from (1.1).

We remark that in light of Lemma 4.5 and (4.8) with t = 1, the boundary inte-
gral on the right-hand side of (4.12) is well-defined as a continuous bilinear form on
L1(∂K)× L∞(∂K).

Proof. Let {φn}n≥0 ⊂ C∞
0 (Ω) with limn→∞ ‖u− φn‖M2

−1−β
(Ω) = 0. Then, recall-

ing Lemma 4.5 and the trace inequality (4.8) with t = 1, there holds

‖L(u− φn)‖L1(K) + ‖A∇(u − φn)‖L1(K) + ‖c(u− φn)‖L1(K)

≤ C
∑

|α|≤2

‖Dα(u− φn)‖L1(K) ≤ C ‖u− φn‖M2
−1−β

(Ω)
n→∞−→ 0,
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and

‖A∇(u − φn)‖L1(∂K) ≤ C
∑

f∈FK

‖∇(u− φn)‖L1(f) ≤ C ‖u− φn‖M2
−1−β

(Ω)
n→∞−→ 0.

As before, the (generic) constant C > 0 may depend on the mesh. Thence, using the
fact that the Green formula (4.12) holds for φn for all n ≥ 0, and applying the above
estimates, results in
∣∣∣∣

∫

K

v Lu dx−
∫

K

(A∇u) ·∇v dx−
∫

K

cuv dx+

∫

∂K

(A∇u) · nK)v ds

∣∣∣∣

=

∣∣∣∣

∫

K

v L(u− φn) dx−
∫

K

(A∇(u − φn)) ·∇v dx−
∫

K

c(u− φn)v dx

+

∫

∂K

(A∇(u − φn)) · nK)v ds

∣∣∣∣

≤ ‖v‖L∞(K) ‖L(u− φn)‖L1(K) + ‖A∇(u− φn)‖L1(K) ‖∇v‖L∞(K)

+ ‖c(u− φn)‖L1(K) ‖v‖L∞(K) + ‖A∇(u − φn)‖L1(∂K) ‖v‖L∞(∂K)
n→∞−→ 0.

This implies (4.12) for u ∈ M2
−1−β(Ω).

We can now prove the Galerkin orthogonality of the hp-dGFEM on rather general
families of hp-dG spaces which include, in particular, the dG spaces V &

σ and V &
σ,s

in (3.19) and (3.21), respectively.
Theorem 4.9. Suppose that the solution u of (1.1)–(1.2) belongs to M2

−1−β(Ω),
where β is the weight vector from (2.8) and (2.11). Then, every dG approximation
uDG ∈ V (M,Φ,p) satisfies the Galerkin orthogonality property

aDG(u− uDG, v) = 0 ∀ v ∈ V (M,Φ,p),

where uDG is the dG solution from (4.1) and where V (M,Φ,p) is a hp-dG space with
a σ-geometric mesh of hexahedra and a µ-bounded polynomial degree vector.

Proof. Due to the fact that u ∈ H1
0 (Ω) we have that [[u]] = 0 on F . Hence,

for v ∈ V (M,Φ,p), there holds

aDG(u, v) =
∑

K∈M

∫

K

(∇v ·A∇u+ cuv) dx−
∫

F
〈〈A∇u〉〉 · [[v]] ds.

We remark here that the last integral over the faces in F is well-defined due to the
smoothness of A (cf. Section 2), Lemma 4.5, (4.8) with t = 1, and the fact that
v ∈ V (M,Φ,p). Upon integrating by parts, Lemma 4.8, we arrive at

aDG(u, v) =

∫

Ω
v Lu dx+

∑

K∈M

∫

∂K

(A∇u · nK)v ds−
∫

F
〈〈A∇u〉〉 · [[v]] ds.

Furthermore, noticing that

∑

K∈M

∫

∂K

(A∇u · nK)v ds =

∫

F
〈〈A∇u〉〉 · [[v]] ds+

∫

FI

[[A∇u]]〈〈v〉〉ds

results in

aDG(u, v) =

∫

Ω
v Lu dx+

∫

FI

[[A∇u]]〈〈v〉〉ds.
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Then, using Lemma 4.7, we obtain

aDG(u, v) =

∫

Ω
v Lu dx =

∫

Ω
fv dx = aDG(uDG, v).

This completes the proof.

4.6. Error Estimates. We will now analyze the error of the dG method (4.1)
and show that it can be bounded by a certain interpolation error of the exact solution
in the dG subspace. We proceed in a standard way and split the error eDG = u−uDG

of the dG method, where u is the solution of (1.1)–(1.2) and uDG ∈ V (M,Φ,p) is
the dG solution from (4.1), into two parts η and ξ: eDG = η + ξ, where

η = u−Πu ∈ H1
0 (Ω) + V (M,Φ,p), ξ = Πu− uDG ∈ V (M,Φ,p). (4.13)

Here, Π : M2
−1−β(Ω) → V (M,Φ(M),p) is a suitable hp-(quasi)interpolant.

To state our abstract error estimates of the hp-dGFEM, we introduce the func-
tionals

ΥO%
σ
[ζ] =

∑

K∈O%
σ

(
max
f∈FK

(
h⊥
K,f

)−2 ‖ζ‖2L2(K) + ‖∇ζ‖2L2(K)

)

+
∑

K∈O%
σ

∑

f∈FK

(
h⊥
K,f

)2 ∥∥∥∂̃K̃,f̃ ,⊥∇̃ζ̃
∥∥∥
2

L2(K̃)
,

(4.14)

and

ΥT%
σ
[ζ] =

∑

K∈T%
σ

(
max
f∈FK

(
h⊥
K,f

)−2 ‖ζ‖2L2(K) + ‖∇ζ‖2L2(K)

)

+
∑

K∈T%
σ

∑

f∈FK

|f |−1 h⊥
K,f ‖∇ζ‖2L1(f) .

(4.15)

Here, recall that |f | is the surface measure of a face f . Furthermore, ∂̃K̃,f̃ ,⊥∇̃ζ̃

in (4.14) is the patch derivative of the gradient of ζ, pulled back to the axiparallel
element K̃ = G−1

j (K) as in (4.7) and (4.4). In light of the results of the previous
subsection, the above functionals are well-defined provided that ζ ∈ M2

−1−β(K) for

all K ∈ M(&)
σ ; in particular, ∂̃K̃,f̃,⊥∇̃ζ̃ ∈ L2(K̃) for any K = Gj(K̃) ∈ O&

σ since

functions in M2
−1−β(K) (together with their pull-backs to the reference patch) belong

to H2 away from the singular set S.
We can now state our error estimate.
Theorem 4.10. Let the solution of (1.1)–(1.2) satisfy u ∈ M2

−1−β(Ω), with a
weight vector fulfilling (2.8) and (2.11). Assume that on any σ-geometric mesh family

Mσ = {M(&)
σ }&≥1 and for any family of polynomial degree vectors {p(M(&)

σ )}&≥1 of
µ-bounded variation, the hp-interpolant is stable: there exists a finite constant B
(depending only on σ, µ and on the patch maps G) such that

∀v ∈ M2
−1−β(Ω) : ΥO%

σ
[Πv] +ΥT%

σ
[Πv] ≤ B < ∞ . (4.16)

Then, there holds the quasioptimality bound

|||u− uDG|||2DG ≤ Cp4
max

(
ΥO%

σ
[η] +ΥT%

σ
[η]

)
, (4.17)
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where η is the interpolation term from (4.13), and uDG ∈ V (M(&)
σ ,Φ(M(&)

σ ),p(M(&)
σ ))

is the numerical solution from (4.1). Here, C = C(σ, µ, CM0 , θ, γ,α0) > 0 is a
constant independent of the refinement level (, the aspect ratios, the local mesh sizes,
and the local polynomial degree vectors. Furthermore, pmax = max

K∈M
(%)
σ

maxpK .
Proof. From the triangle inequality we have that

|||u− uDG|||DG ≤ |||η|||DG + |||ξ|||DG. (4.18)

We bound the two norms on the right-hand side of this inequality separately.
Bounding |||ξ|||DG. Galerkin orthogonality (Theorem 4.9) and coercivity (Theo-

rem 4.4) imply the existence of a constant C > 0 such that

C|||ξ|||2DG ≤ aDG(ξ, ξ) = −aDG(η, ξ). (4.19)

Recalling (4.2), we can write

|aDG(η, ξ)| ≤ |ADG(η, ξ)|+ |FDG(η, ξ)| + |θ||FDG(ξ, η)|+ γ|JDG(η, ξ)| (4.20)

Using the Cauchy-Schwarz inequality, we obtain

|ADG(η, ξ)| ≤ ‖A∇hη‖L2(Ω) ‖∇hξ‖L2(Ω)+
∥∥√cη

∥∥
L2(Ω)

∥∥√cξ
∥∥
L2(Ω)

! ‖η‖H1(Ω) |||ξ|||DG.

Furthermore, special care has to be taken in dealing with ∇η on faces close to S.
We first notice that

|FDG(η, ξ)| =
∣∣∣∣

∫

F
〈〈A∇hη〉〉 · [[ξ]] ds

∣∣∣∣ !
∑

K∈M(%)
σ

∑

f∈FK

∫

f

|∇η| |[[ξ]]| ds.

Then, on O&
σ, there holds:

∑

K∈O%
σ

∑

f∈FK

∫

f

|∇η| |[[ξ]]| ds

!




∑

K∈O%
σ

∑

f∈FK

∫

f

α−1 |∇η|2 ds





1
2



∑

K∈O%
σ

∑

f∈FK

γ

∫

f

α |[[ξ]]|2 ds





1
2

!




∑

K∈O%
σ

∑

f∈FK

∫

f

α−1 |∇η|2 ds





1
2

|||ξ|||DG.

Moreover, on T&
σ, we apply Lemma 4.3 b)

∑

K∈T%
σ

∑

f∈FK

∫

f

|∇η| |[[ξ]]| ds

≤
∑

K∈T%
σ

∑

f∈FK

‖∇η‖L1(f) ‖[[ξ]]‖L∞(f)

! p2
max

∑

K∈T%
σ

∑

f∈FK

|f |−
1
2 ‖∇η‖L1(f) ‖[[ξ]]‖L2(f) .
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We note in passing that for f ∈ FK , the jump [[ξ]]|f might couple over two mesh
patches. In this case, the compatibility condition (3.3) ensures that [[ξ]]|f is a mapped
polynomial with respect to element K. Applying the Cauchy-Schwarz inequality then
yields

∑

K∈T%
σ

∑

f∈FK

∫

f

|∇η| |[[ξ]]| ds

! p2
max




∑

K∈T%
σ

∑

f∈FK

|f |−1
∥∥∥α− 1

2∇η
∥∥∥
2

L1(f)





1
2



∑

K∈T%
σ

∑

f∈FK

γ
∥∥∥α

1
2 [[ξ]]

∥∥∥
2

L2(f)
ds





1
2

! p2
max




∑

K∈T%
σ

∑

f∈FK

|f |−1 h⊥
K,f ‖∇η‖2L1(f)





1
2

|||ξ|||DG.

Adding the above estimates for O&
σ and T&

σ, we arrive at

|FDG(η, ξ)|

! p2
max




∑

K∈O%
σ

∑

f∈FK

∥∥∥α− 1
2∇η

∥∥∥
2

L2(f)
+

∑

K∈T%
σ

∑

f∈FK

|f |−1 h⊥
K,f ‖∇η‖2L1(f)





1
2

|||ξ|||DG.

In addition, we have

|FDG(ξ, η)| !




∑

K∈M
(%)
σ

∑

f∈FK

∫

f

α−1|∇ξ|2 ds





1
2 (∫

F
α |[[η]]|2 ds

) 1
2

.

Thus, employing Lemma 4.3 c) leads to

|FDG(ξ, η)| ! ‖∇hξ‖L2(Ω)

(∫

F
α |[[η]]|2 ds

) 1
2

! |||ξ|||DG




∑

K∈M
(%)
σ

∑

f∈FK

∥∥∥α
1
2 η

∥∥∥
2

L2(f)





1
2

.

Furthermore, applying the Cauchy-Schwarz inequality, we conclude

|JDG(η, ξ)| ≤
(∫

F
α |[[η]]|2 ds

) 1
2
(∫

F
α |[[ξ]]|2 ds

) 1
2

!




∑

K∈M(%)
σ

∑

f∈FK

∥∥∥α
1
2 η

∥∥∥
2

L2(f)





1
2

|||ξ|||DG.

Combining (4.19)–(4.20) with the above estimates gives

|||ξ|||2DG ! ‖η‖2H1(Ω) +
∑

K∈M(%)
σ

∑

f∈FK

∥∥∥α
1
2 η

∥∥∥
2

L2(f)

+ p4
max

∑

K∈O%
σ

∑

f∈FK

∥∥∥α− 1
2∇η

∥∥∥
2

L2(f)

+ p4
max

∑

K∈T%
σ

∑

f∈FK

|f |−1 h⊥
K,f ‖∇η‖2L1(f) .
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Bounding |||η|||DG. There holds:

|||η|||2DG !
∑

K∈M(%)
σ

‖η‖2H1(K) + γ
∑

K∈M(%)
σ

∑

f∈FK

∥∥∥α
1
2 [[η]]

∥∥∥
2

L2(f)

!
∑

K∈M(%)
σ

‖η‖2H1(K) +
∑

K∈M(%)
σ

∑

f∈FK

∥∥∥α
1
2 η

∥∥∥
2

L2(f)
.

Bounding |||eDG|||DG. Referring to (4.18) and utilizing the estimates for |||ξ|||DG

and |||η|||DG, we obtain

|||u − uDG|||2DG

! ‖η‖2H1(Ω) +
∑

K∈M(%)
σ

∑

f∈FK

∥∥∥α
1
2 η

∥∥∥
2

L2(f)

+ p4
max

∑

K∈O%
σ

∑

f∈FK

∥∥∥α− 1
2∇η

∥∥∥
2

L2(f)
+ p4

max

∑

K∈T%
σ

∑

f∈FK

|f |−1 h⊥
K,f ‖∇η‖2L1(f) .

Applying the trace inequality from Lemma 4.2 (with s = 2) implies that

∑

K∈M
(%)
σ

∑

f∈FK

∥∥∥α
1
2 η

∥∥∥
2

L2(f)

! p2
max

∑

K∈M
(%)
σ

∑

f∈FK

h−1
K,f

((
h⊥
K,f

)−1 ‖η‖2L2(K) + h⊥
K,f

∥∥∥∂K̃,f̃,⊥η̃
∥∥∥
2

L2(K̃)

)

! p2
max

∑

K∈M
(%)
σ

∑

f∈FK

((
h⊥
K,f

)−2 ‖η‖2L2(K) +
∥∥∥∇̃η̃

∥∥∥
2

L2(K̃)

)

! p2
max

∑

K∈M
(%)
σ

(
max
f∈FK

(
h⊥
K,f

)−2 ‖η‖2L2(K) + ‖∇η‖2L2(K)

)
,

where in the last step, we have employed scaling from K̃ to K with (4.6).
Similarly, the trace estimate (4.7) with t = 2 yields

∑

K∈O%
σ

∑

f∈FK

∥∥∥α− 1
2∇η

∥∥∥
2

L2(f)
!

∑

K∈O%
σ

∑

f∈FK

(
‖∇η‖2L2(K) +

(
h⊥
K,f

)2 ∥∥∥∂̃K̃,f̃ ,⊥∇̃η̃
∥∥∥
2

L2(K̃)

)
.

Finally, noticing that

‖η‖2H1(Ω) !
∑

K∈M
(%)
σ

(
max
f∈FK

(
h⊥
K,f

)−2 ‖η‖2L2(K) + ‖∇η‖2L2(K)

)

completes the proof.

5. Concluding Remarks. We have introduced a class of hp-version discontin-
uous Galerkin discretizations of second-order linear elliptic problems in polyhedra

in R3. We have considered families Mσ = {M(&)
σ }&≥1 of irregular geometric meshes

of mapped hexahedral elements with subdivision factor σ ∈ (0, 1) (not necessarily
equal to 1/2). Since (interior penalty) dG discretizations do not require conformity
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of the meshes, anisotropic geometric mesh refinements towards edges and vertices of
the domain are possible with only hexahedral elements in fairly general polyhedra.
We have presented an algorithm to generate, for given σ ∈ (0, 1) and any Lipschitz
polyhedron Ω with a finite number of plane faces, families Mσ of σ-geometric meshes,

i.e., there is a constant σ ∈ (0, 1) such that any two elements K,K ′ ∈ M(&)
σ ∈ Mσ

abutting at a common face f = (K∩K′
)◦ have diameters perpendicular to f which are

bounded from above and below by an absolute multiple of min{σ/(1− σ), (1− σ)/σ}
respectively of max{σ/(1− σ), (1 − σ)/σ}.

In local coordinates on elements K ∈ M(&)
σ , the approximate solutions belong to

a tensor product polynomial space QpK (K) of elemental polynomial degrees pK . In
particular, we have admitted nonuniform, possibly anisotropic and s-linear elemental
polynomial degree distributions of µ-bounded variation. The hexahedral elements

K ∈ M(&)
σ are mapped images of the unit cube in R3, i.e., each element K ∈ M(&)

σ is,
upon some anisotropic dilation-translation, the image of the unit cube under analytic
element mappings with Jacobians which are uniformly bounded from below and above
over the whole geometric mesh family Mσ.

We have proved that the hp-dG finite element approximation is well-defined and
stable on these meshes, independent of the level ( of refinement. Although here we
have considered only the scalar model problem (1.1)–(1.2), we mention that analogous
hp-dGFEM could be readily defined for second-order elliptic systems (see [23, 22] for
the required regularity). In our subsequent work [30], we shall show that, on the
σ-geometric meshes and s-linearly increasing polynomial degrees constructed in this
article, the error bounds in Theorem 4.10 yield exponential convergence rates for hp-
dG FEM in polyhedra if the data in (1.1)–(1.2) is piecewise analytic.
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