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Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Vekua’s Theory for the Helmholtz Operator 4
1.1 N–Dimensional Vekua’s Theory for the Helmholtz Operator . . . 5
1.2 Continuity of the Vekua Operators . . . . . . . . . . . . . . . . . 12
1.3 Generalized Harmonic Polynomials . . . . . . . . . . . . . . . . . 27

1.3.1 Generalized Harmonic Polynomials as Herglotz Functions 29

2 Approximation by Harmonic Polynomials 33
2.1 Approximation of Harmonic Functions . . . . . . . . . . . . . . . 33

2.1.1 h-Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 p-Estimates in Two Space Dimensions . . . . . . . . . . . 36
2.1.3 p-Estimates in N Space Dimensions . . . . . . . . . . . . 36

2.2 Approximation of Homogeneous Helmholtz Solutions . . . . . . . 43

3 Plane Wave Approximation Estimates 46

3.1 Approximation of Gener. Harmonic Polynomials by Plane Waves 47
3.1.1 Stable Bases . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 The Two-Dimensional Case . . . . . . . . . . . . . . . . . 52
3.1.3 The Three-Dimensional Case . . . . . . . . . . . . . . . . 58

3.2 Approximation of Homog. Helmholtz Solutions by Plane Waves . 61

A Special Functions 66

A.1 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Legendre Functions and Spherical Harmonics . . . . . . . . . . . 67

1



Abstract

This paper studies the approximation of the solutions of the homogeneous
Helmholtz equation by finite dimensional spaces of plane, circular and spherical
wave functions. The main results are the proofs of:

• algebraic convergence in the domain size h in two and three dimensions;

• algebraic convergence in the number p of approximating functions in two
dimensions.

The approximation error is measured in weighted Sobolev norms; the depen-
dence of all bounds on the wavenumber is made explicit.

The proofs rely on an explicit formulation of Vekua’s theory forN -dimension-
al Helmholtz equation (N ≥ 2) and on approximation properties for harmonic
functions.

The obtained estimates can be used in the analysis of the convergence of
several Trefftz-type finite elements methods.



Introduction

Standard polynomial finite element methods for the Helmholtz equation can be
computationally very expensive, in particular when the size of the domain is
much larger than the wavelength. This is due to the fact that a high number
of degrees of freedom are necessary in order to resolve the oscillations of the
analytical solution to be approximated.

A possible remedy to this problem is the use of Trefftz methods, where the
finite element spaces are made by functions that are solution of the (adjoint)
PDE in each element of the mesh.

For the homogeneous Helmholtz equation, different methods which exploit
this idea are available in the literature. A first example is the Ultra Weak Varia-
tional Formulation (UWVF) introduced by Cessenat and Després in [13]. Then
we mention the Discontinuous Enrichment Method (DEM, see for instance [21])
and the Plane Wave Discontinuous Galerkin method (PWDG, see [26, 28]),
which is a generalization of the UWVF. In all these methods, the approximating
spaces are made by plane wave functions, while in the Method of Fundamental
Solutions (MFS, see [8]), singular solutions of the Helmholtz equation are used
instead. Other methods employ plane wave functions modulated either by poly-
nomials or by partition of unit functions; the Partition of Unity Method (PUM,
see [5]) is based on this last approach.

The convergence analysis of each of these techniques requires a best ap-
proximation estimate: the finite element space must contain a function which
approximates the analytic solution of the problem with an error that goes to
zero when the mesh size h is reduced (h–convergence), or when the dimension p
of the local approximating space is raised (p–convergence). This error is usually
measured in Sobolev norms and an accurate estimate of the convergence rate
with respect to the parameters h and p is also important.

Only few results of this kind for plane wave spaces are available in litera-
ture. The first one is contained in Theorem 3.7 of [13]: the proof was based
on Taylor expansion and only h-convergence for two-dimensional domains was
proved; moreover, the obtained order of convergence is not sharp. This result
has been exploited in [12], combined with a duality technique, to bound the
approximation error measured in L2-norm of the UWVF. A more sophisticated
result is Proposition 8.4.14 of [32]: in this case, p-estimates were obtained in
the two-dimensional case by using complex analysis techniques and Vekua’s the-
ory. A similar approach was used in [35] to prove sharp estimates in h for the
PWDG method; there, the dependence on the wavenumber was made explicit.
In [26, Prop. 3.12, 3.13], a best approximation estimate for generalH2–functions
in two space dimensions was proved. This was used to prove h-convergence of
the PWDG method in both the L2 and H1–norms in the two-dimensional case.

In this paper, we adopt a similar approach to the one in [32, 35] and prove
some more general and sharper best approximation estimates in weighted So-
bolev norms. The major novelties are:

• the proof of sharp algebraic orders of convergence with respect to h in two
and three dimensions;

• the proof of explicit algebraic orders of convergence with respect to p in
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two dimensions;

• an explicit dependence of all the bounding constants on the wavenumber;

• the proof of best approximation estimates for both plane wave spaces and
circular and spherical wave spaces.

These improvements with respect to [32] have been made possible by a more
explicit definition of the Vekua operators (see Definition 1.1.4), and by the use
of harmonic analysis techniques, instead of complex analysis techniques.

The final results (Theorems 2.2.1, 3.2.2 and 3.2.3) can be used in the analysis
of the convergence of all the above cited Trefftz methods.

The approximation theory presented here is not completely satisfactory: in
the three-dimensional case, two main gaps still have to be filled. Firstly, in
Theorem 2.2.1 we show algebraic p-convergence for the approximation of solu-
tions to the homogeneous Helmholtz equation by three-dimensional generalized
harmonic polynomials, but we can not prove a reasonable explicit order of con-
vergence. Secondly, we are not able to approximate a generalized harmonic
polynomial using plane waves with an explicit dependence on the number of the
approximating functions; this fact prevents us from proving p–convergence in
three dimensions (see Lemma 3.1.6).

The outline of this paper is the following. In Chapter 1, we introduce Vekua’s
theory for the particular case of the N -dimensional Helmholtz equation and we
prove some basic results. We also introduce a class of functions called general-
ized harmonic polynomials, that correspond to circular and spherical waves in
two and three dimensions, respectively. In Chapter 2, we prove best approxi-
mation estimates of homogeneous Helmholtz solutions by generalized harmonic
polynomials using harmonic analysis techniques. Finally, in Chapter 3, we use
Jacobi-Anger expansions to approximate generalized harmonic polynomials by
plane waves and obtain the final best approximation estimates of homogeneous
Helmholtz solutions by plane wave functions.

Theorem 1.1.5 was already stated in [41], but the proof given in this paper is
new; apart from Theorems 2.1.2, 2.1.4 and 2.1.8, all the other results presented
in this paper are new, although many ideas in the first two chapters come from
the work of M. Melenk (see [32, 33]).
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Notation

In order to prove inequalities with constants that are explicit and sharp with
respect to the indices, we need to fix the definition of Sobolev norms and semi-
norms. Equivalent norms give different bounds. We denote by N the set of
natural numbers, including 0. The definitions we need are the following:

Br(x0) = {x ∈ R
N , |x− x0| < r}, Br = Br(0),

SN−1 = ∂B1 ⊂ R
N ,

Dαφ =
∂|α|

∂xα1
1 · · ·∂xαN

N

, |α| =
N
∑

j=1

αj ∀ α = (α1, . . . ,αN ) ∈ N
N ,

|u|Wk,p(Ω) =




∑

α∈NN ,|α|=k

∫

Ω
|Dαu(x)|p dx





1
p

,

‖u‖Wk,p(Ω) =





k
∑

j=1

|u|pW j,p(Ω)





1
p

=





∑

α∈NN ,|α|≤k

∫

Ω
|Dαu(x)|p dx





1
p

,

|u|k,Ω = |u|Wk,2(Ω) ,

‖u‖k,Ω = ‖u‖Wk,2(Ω) ,

|u|Wk,∞(Ω) = sup
α∈NN ,|α|=k

ess sup
x∈Ω

|Dαu(x)|,

‖u‖Wk,∞(Ω) = sup
j=0,...,k

|u|W j,∞(Ω) ,

‖u‖k,ω,Ω =





k
∑

j=0

ω2(k−j) |u|2j,Ω





1
2

∀ ω > 0, (1)

Hj(D) : =
{

φ ∈ Hj(D) : ∆φ = 0
}

∀ j ∈ N,

Hj
ω(D) : =

{

u ∈ Hj(D) : ∆u+ ω2u = 0
}

∀ j ∈ N, ω ∈ C,

n(N, l) : =







1 if l = 0,
(2l+N − 2)(l+N − 3)!

l! (N − 2)!
if l ≥ 1,

(2)

=










1 if l = 0,

N if l = 1,
(
N + l − 1

N − 1

)

−
(
N + l − 3

N − 1

)

if l ≥ 2.

The last expression n(N, l) is the number of the independent spherical harmonics
of degree l in RN , see [36, eq. (11)] and [4, Prop. 5.8].
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Chapter 1

Vekua’s Theory for the

Helmholtz Operator

Vekua’s theory (see [27, 41]) is a tool for transferring properties from harmonic
functions (solutions to the Laplace equation) to solutions to general second
order elliptic PDE’s. The so-called Vekua operators (inverse one of another)
map harmonic functions to solutions of the second order elliptic PDE of interest
and vice versa. Their continuity properties are essential in order to make explicit
the dependence on the space dimension, on the considered domain and on the
parameters appearing in the PDE of constants in estimates.

The original formulation takes into account elliptic PDEs with analytic co-
efficients in two space dimensions. Some generalizations to higher space dimen-
sions have been made (see [14–16,24,29,30] and the references therein) but the
Vekua operators in these general case are not completely explicit.

Here, the PDE we are interested in is the homogeneous Helmholtz equation.
In this particular case, simple explicit integral operators have been defined in
the original work of Vekua in any space dimension N ≥ 2 (see [39,40], and [41,
p. 59]), but there is no proof of their properties and, in our knowledge, these
results have never been used later on.

Thus, we will start by defining the Vekua operators for Helmholtz equation
andN ≥ 2 and prove their basic properties, namely, that they are inverse to each
other and map harmonic functions to solutions of the homogeneous Helmholtz
equation and vice versa (see Theorem 1.1.5). Next, we establish their conti-
nuity properties in (weighted) Sobolev norms, like in [32], but with continuity
constant explicit in the domain shape parameter, in the Sobolev regularity ex-
ponent and in the product of the wavenumber times the diameter of the domain
(see Theorem 1.2.1). The main difficulty in proving these continuity estimates
consists in establishing precise interior estimates. Finally, we introduce the gen-
eralized harmonic polynomials, which are the mapping through the direct Vekua
operator of the harmonic polynomials, and derive their explicit expression. All
the proofs are self-contained and do not need the use of other results concerning
Vekua’s theory.
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1.1 N–Dimensional Vekua’s Theory for the Helm-

holtz Operator

We will always consider a domain that satisfies the following assumption.

Assumption 1.1.1. Let D ⊂ RN , N ≥ 2, be a bounded open set such that

• diamD = h;

• ∂D is Lipschitz;

• there exists ρ ∈ (0, 1/2] such that Bρh ⊆ D;

• there exists 0 < ρ0 ≤ ρ such that D is star-shaped with respect to Bρ0h.

Not all these assumptions are necessary in order to establish the first results
of this chapter (see Remark 1.1.7 below).

Remark 1.1.2. If D is a domain as in Assumption 1.1.1, then

Bρh ⊆ D ⊆ B(1−ρ)h.

The maximum 1/2 for the parameter ρ is achieved when the domain is a sphere:
D = Bh

2
.

Figure 1.1: A domain D that satisfies Assumption 1.1.1

!h

0

!"h

D

Definition 1.1.3. Given a positive number ω, we define two continuous func-
tions

M1,M2 : D × [0, 1) → R,

M1(x, t) = −
ω|x|
2

√
t
N−2

√
1− t

J1(ω|x|
√
1− t),

M2(x, t) = −
iω|x|
2

√
t
N−3

√
1− t

J1(iω|x|
√

t(1 − t)),

(1.1)

where J1 is the 1-st order Bessel function of the first kind.
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Using the expression (A.1) in the Appendix, we can write

M1(x, t) = −t
N
2 −1

∑

k≥0

(−1)k
(

ω|x|
2

)2k+2
(1− t)k

k! (k + 1)!
,

M2(x, t) =
∑

k≥0

(
ω|x|
2

)2k+2
(1− t)k tk+

N
2 −1

k! (k + 1)!
.

Note that M1 and M2 are radially symmetric and belong to C∞(D × (0, 1]); if
N is even, they are C∞ in the whole domain.

Figure 1.2: The functions M1(x, t) and M2(x, t) in two and three dimensions
with ω = 50. Only a segment of D is represented.

Definition 1.1.4. We define the Vekua operator V1 and the inverse Vekua
operator V2 for the Helmholtz equation:

V1, V2 : L∞(D) → L∞(D),

Vj [φ](x) = φ(x) +

∫ 1

0
Mj(x, t)φ(tx) dt ∀φ ∈ L∞(D), a.e. x ∈ D, j = 1, 2.

(1.2)

Notice that Mj(x, ·)φ(·x), j = 1, 2, belong to L1([0, 1]) for almost every
x ∈ D; consequently, V1 and V2 are well defined. The operators V1 and V2

can also be defined from the space of continuous function in the domain C(D)
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to itself, or from Lp(D) to L2(D), with a sufficiently high p depending on the
dimension. We will call V1[φ] the Vekua transform of φ.

In the following theorem, we summarize general results about the Vekua
operators, while their continuity will be proved in Theorem 1.2.1 below.

Theorem 1.1.5. Let D be a domain as in the Assumption 1.1.1; the Vekua
operators satisfy:

(i) V2 is the inverse of V1:

V1

[

V2[φ]
]

= V2

[

V1[φ]
]

= φ ∀ φ ∈ L∞(D) .

(ii) If φ is harmonic in D, i.e.,

∆φ = 0 in D , (1.3)

then
∆V1[φ] + ω2V1[φ] = 0 in D ;

if u is a solution of the homogeneous Helmholtz equation with wavenumber
ω > 0 in D, i.e.,

∆u+ ω2u = 0 in D , (1.4)

then
∆V2[u] = 0 in D .

Theorem 1.1.5 states that the operators V1 and V2 are inverse to each other
and map harmonic functions to solutions of the homogeneous Helmholtz equa-
tion and vice versa.

The results of this theorem were stated in [41, Chapter 1, § 13.2-3]. In
two space dimensions, the operator V1 was introduced as a special case of the
general Vekua’s theory for elliptic PDEs; this implies that V1 is a bijection
between the space of complex harmonic function and the space of solutions of
the homogeneous Helmholtz equation. The proof in higher space dimensions
is probably contained only in the part of the paper [39] written in Georgian,
that is not easy to obtain. The fact that the inverse of V1 can be written
as the operator V2 (part (i) of Theorem 1.1.5) was stated in [40], and the
proof was sketched as an “easy calculation”, after reducing the problem to a
one-dimensional Volterra integral equation. Here, we give a completely self-
contained proof of Theorem 1.1.5 in its generality.

As in Theorem 1.1.5, in the following we will usually denote the solutions of
the homogeneous Helmholtz equation with the letter u, and harmonic functions,
as well as generic functions defined on D, with the letter φ.

Remark 1.1.6. Theorem 1.1.5 holds with the same proof also for every ω ∈ C,
i.e., for the Helmholtz equation in lossy materials.

Remark 1.1.7. Theorem 1.1.5 holds also for an unbounded or irregular domain:
the only necessary hypotheses are that D has to be open and star-shaped with
respect to the origin. In fact the proof relies only on the local properties of the
functions on the segment [0, x].

The hypothesis of being star-shaped with respect to a ball (ρ0 > 0) will be used
only in the next chapters to prove approximation properties; here it is enough
that D is star-shaped with respect to the origin.
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Theorem 1.1.5 can be proved by using elementary mathematical analysis
results. We proceed by proving the parts (i) and (ii) separately.

Proof of Theorem 1.1.5, part (i). We define a function

g : [0,∞)× [0,∞) → R,

g(r, t) =
ω
√
r t

2
√
r − t

J1(ω
√
r
√
r − t).

Note that if r < t the argument of the Bessel function J1 is imaginary on the
standard branch cut but the function g is always real-valued.

Using the change of variable s = t|x|, for every φ ∈ L∞(D) and for almost
every x ∈ D, we can compute

V1[φ](x) = φ(x) +

∫ |x|

0
M1

(

x,
s

|x|

)

φ
(

s
x

|x|

) 1

|x|
ds

= φ(x) −
∫ |x|

0

ω|x|
2

√
s

|x|

N−2
√

|x|
√

|x|− s

1

|x|
J1
(

ω
√

|x|
√

|x|− s
)

φ
(

s
x

|x|

)

ds

= φ(x) −
∫ |x|

0

s
N−4

2

|x|N−2
2

g(|x|, s) φ
(

s
x

|x|

)

ds,

V2[φ](x) = φ(x) +

∫ |x|

0
M2

(

x,
s

|x|

)

φ
(

s
x

|x|

) 1

|x|
ds

= φ(x) −
∫ |x|

0

iω|x|
2

√
s

|x|

N−3
√

|x|
√

|x|− s

1

|x|
J1
(

iω
√
s
√

|x|− s
)

φ
(

s
x

|x|

)

ds

= φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2
2

g(s, |x|) φ
(

s
x

|x|

)

ds

because s ≤ |x| and we have fixed the sign
√

s− |x| = i
√

|x|− s. Note that
in the expression of the two operators the arguments of the functions g are
exchanged. Now we apply the first operator after the second one, switch the
order of the integration in the obtained double integral and get

V1

[

V2[φ]
]

(x) =

[

φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2
2

g(s, |x|) φ
(

s
x

|x|

)

ds

]

−
∫ |x|

0

s
N−4

2

|x|N−2
2

g(|x|, s)

[

φ
(

s
x

|x|

)

+

∫ s

0

z
N−4

2

s
N−2

2

g(z, s)φ
(

z
x

|x|

)

dz

]

ds

= φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2
2

(

g(s, |x|)− g(|x|, s)
)

φ
(

s
x

|x|

)

ds

−
∫ |x|

0

z
N−4

2

|x|N−2
2

φ
(

z
x

|x|

) ∫ |x|

z

1

s
g(z, s) g(|x|, s) ds dz.

Notice that V1

[

V2[φ]
]

= V2

[

V1[φ]
]

, so we only have to show that V2 is right
inverse of V1.
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In order to prove that V1

[

V2[φ]
]

= φ it is enough to show that

g(t, r)− g(r, t) =

∫ r

t

g(t, s) g(r, s)

s
ds ∀ r ≥ t ≥ 0, (1.5)

so that all the integrals in the previous expression vanish, and we are done. Using
(A.1), we expand g in power series (recall that, for k ≥ 0 integer, Γ(k+1) = k!):

g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l rl (r − t)l

22l l! (l + 1)!
,

from which we get

g(t, r) − g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l (r − t)l
(

(−t)l − rl
)

22l l! (l + 1)!
. (1.6)

We compute the following integral using the change of variables z = s−t
r−t and the

expression of the beta integral
∫ 1
0 (1− z)pzq dz = B(p+1, q+1) =

p! q!

(p+ q + 1)!
:

∫ r

t
s(r − s)j(t− s)k ds = (−1)k (r − t)j+k+1

∫ 1

0
(1− z)j zk

(

zr + (1− z)t
)

dz

= (−1)k (r − t)j+k+1 j! k!

(j + k + 2)!

(

r(k + 1) + t(j + 1)
)

.

Thus, expanding the product of g(t, s) g(r, s) in a double power series, integrat-
ing term by term and using the previous identity give

∫ r

t

g(t, s) g(r, s)

s
ds

=
ω2 r t

4

∑

j,k≥0

(−1)j+k ω2(j+k+1) rj tk

22(j+k+1) j! (j + 1)! k! (k + 1)!

∫ r

t

s2(r − s)j(t− s)k

s
ds

=
ω2 r t

4

∑

j,k≥0

(−1)j ω2(j+k+1) rj tk (r − t)j+k+1

22(j+k+1) (j + 1)! (k + 1)! (j + k + 2)!

(

r(k + 1) + t(j + 1)
)

(l=j+k+1)
=

ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)!

1

l!

l−1
∑

j=0

l!
(−1)j rj tl−j−1

(j + 1)! (l − j)!

(

r(l − j) + t(j + 1)
)

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!

l−1
∑

j=0

[

−
(

l

j + 1

)

(−r)j+1 tl−j−1 +

(
l

j

)

(−r)j tl−j

]

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!

[

−(t− r)l + tl + (t− r)l − (−r)l
]

= g(t, r)− g(r, t),

thanks to the binomial theorem and (1.6), where the term corresponding to
l = 0 is zero. This proves (1.5), and the proof is complete.

Proof of Theorem 1.1.5, part (ii). Let φ ∈ L∞(D) be a harmonic function, then
φ ∈ C∞(D), thanks to the regularity theorem for harmonic functions (see,
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e.g., [20, Theorem 3, Section 6.3.1]). We prove that (∆ + ω2)V1[φ](x) = 0. In
order to do that, we establish some useful identities.

We set r := |x| and compute

∂

∂r
M1(x, t) = ω

√
1− t

∂

∂(ωr
√
1− t)

[

−
√
t
N−2

2(1− t)
ωr

√
1− t J1(ωr

√
1− t)

]

(A.6)
= −

ω2r
√
t
N−2

2
J0(ωr

√
1− t),

∆M1(x, t) =
N − 1

r

∂

∂r
M1(x, t) +

∂2

∂r2
M1(x, t)

=−
ω2

√
t
N−2

2

(

N J0(ωr
√
1− t)− ωr

√
1− t J1(ωr

√
1− t)

)

,

(1.7)
where the Laplacian acts on the x variable.

Since M1 depends on x only through r, we can compute

∆
(

M1(x, t)φ(tx)
)

= ∆M1(x, t) φ(tx) + 2∇M1(x, t) ·∇φ(tx) +M1(x, t)∆φ(tx)

= ∆M1(x, t) φ(tx) + 2
∂

∂r
M1(x, t)

x

r
· t∇φ

∣
∣
∣
tx

+ 0

= ∆M1(x, t) φ(tx) + 2
t

r

∂

∂r
M1(x, t)

∂

∂t
φ(tx),

because ∂
∂tφ(tx) = x ·∇φ

∣
∣
∣
tx
.

Finally, we define an auxiliary function f1 : [0, h]× [0, 1] → R by

f1(r, t) =
√
t
N

J0(ωr
√
1− t).

This function verifies

∂

∂t
f1(r, t) =

N
√
t
N−2

2
J0(ωr

√
1− t) +

√
t
N
ωr

2
√
1− t

J1(ωr
√
1− t),

f1(r, 0) = 0, f1(r, 1) = 1.

At this point, we can use all these identities to prove that V1[φ] is a solution
of the homogeneous Helmholtz equation:

(∆+ ω2)V1[φ](x)

= ∆φ(x) + ω2φ(x) +

∫ 1

0
∆
(

M1(x, t)φ(tx)
)

dt+

∫ 1

0
ω2M1(x, t)φ(tx) dt

= ω2φ(x) − ω2

∫ 1

0

√
t
N
J0(ωr

√
1− t)

∂

∂t
φ(tx) dt

− ω2

∫ 1

0

(

N
√
t
N−2

2
J0(ωr

√
1− t)−

ωr
√
t
N−2

2

1− t√
1− t

J1(ωr
√
1− t)

+
ωr

√
t
N−2

2
√
1− t

J1(ωr
√
1− t)

)

φ(tx) dt
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= ω2φ(x) − ω2

∫ 1

0

(

f1(r, t)
∂

∂t
φ(tx) +

∂

∂t
f1(r, t)φ(tx)

)

dt

= ω2

(

φ(x) −
[

f1(r, t)φ(tx)
]t=1

t=0

)

= 0.

We have used the values assumed by φ only in the segment [0, x] that lies inside
D, because D is star-shaped with respect to 0. Thus, the values of the function
φ and of its derivative are well defined and the fundamental theorem of calculus
applies, thanks to the regularity theorem for harmonic functions.

Let now u ∈ L2(D) be a solution of the homogeneous Helmholtz equa-
tion. Since the mentioned regularity theorem holds also for the solutions of the
homogeneous Helmholtz equation, then u ∈ C∞(D). In order to prove that
∆V2[u] = 0, we proceed as before. We compute

∂

∂r
M2(x, t) =

ω2r
√
t
N−2

2
J0(iωr

√

t(1− t)), (1.8)

∆M2(x, t) =
ω2

√
t
N−2

2

(

N J0(iωr
√

t(1− t)) (1.9)

−iωr
√

t(1 − t) J1(iωr
√

t(1− t))
)

, (1.10)

∆ (M2(x, t)u(tx)) = ∆M2(x, t)u(tx) + 2
t

r

∂

∂r
M2(x, t)

∂

∂t
u(tx) (1.11)

− ω2t2M2(x, t)u(tx),

and we define the function

f2(r, t) =
√
t
N

J0(iωr
√

t(1− t)),

which verifies

∂

∂t
f2(r, t) =

N
√
t
N−2

2
J0(iωr

√

t(1− t))−
√
t
N
iωr(1− 2t)

2
√

t(1− t)
J1(iωr

√

t(1− t)),

f2(r, 0) = 0, f2(r, 1) = 1.

We conclude by computing the Laplacian of V2[u]:

∆V2[u](x) = ∆u(x) +

∫ 1

0
∆
(

M2(x, t)u(tx)
)

dt

= −ω2u(x) + ω2

∫ 1

0

√
t
N
J0(iωr

√

t(1− t))
∂

∂t
u(tx) dt

+ ω2

∫ 1

0

√
t
N−2

2

(

N J0(iωr
√

t(1− t))

−iωr
√
t
1− t√
1− t

J1(iωr
√

t(1− t)) +
iωrt

√
t√

1− t
J1(iωr

√

t(1− t))

)

u(tx) dt

= −ω2u(x) + ω2

∫ 1

0

(

f2(r, t)
∂

∂t
u(tx) +

∂

∂t
f2(r, t)u(tx)

)

dt = 0.
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Remark 1.1.8. With a slight modification in the proof, it is possible to show
that V1 transforms the solutions of the homogeneous Helmholtz equation

∆φ+ ω2
0φ = 0

into solutions of
∆φ+ (ω2

0 + ω2)φ = 0

for every ω and ω0 ∈ C, and V2 does the converse.

1.2 Continuity of the Vekua Operators

In the following theorem, we establish the continuity of V1 and V2 in Sobolev
norms with continuity constants of the most explicit possible nature.

Theorem 1.2.1. Let D be a domain as in the Assumption 1.1.1; the Vekua
operators

V1 : Hj(D) → Hj
ω(D),

V2 : Hj
ω(D) → Hj(D),

with Hj(D) and Hj
ω(D) both endowed with the norm ‖·‖j,ω,D defined in (1), are

continuous. More precisely, for all space dimensions N ≥ 2, for all φ and u in
Hj(D), j ≥ 0, solutions to (1.3) and (1.4), respectively, the following continuity
estimates hold:

‖V1[φ]‖j,ω,D ≤ C1(N) ρ
1−N

2 (1 + j)
3
2N+ 1

2 ej
(

1 + (ωh)2
)

‖φ‖j,ω,D , (1.12)

‖V2[u]‖j,ω,D ≤ C2(N,ωh, ρ) (1 + j)
3
2N− 1

2 ej ‖u‖j,ω,D , (1.13)

where the constant C1 > 0 depends only on the space dimension N , and C2 > 0
depends also on the product ωh and the shape parameter ρ. Moreover, we can
establish the following continuity estimates for V2 with constants dependent only
on N :

‖V2[u]‖0,D ≤ CN ρ
1−N

2
(

1 + (ωh)4
)

e
1
2 (1−ρ)ωh

(

‖u‖0,D + h |u|1,D
)

(1.14)

if N = 2, . . . , 5, u ∈ H1(D),

‖V2[u]‖j,ω,D ≤ CN ρ
1−N

2 (1 + j)2N−1 ej
(

1 + (ωh)4
)

e
3
4 (1−ρ)ωh ‖u‖j,ω,D

(1.15)

if N = 2, 3, j ≥ 1, u ∈ Hj(D),

‖V2[u]‖L∞(D) ≤

(

1 +

(

(1− ρ)ωh
)2

4
e

1
2 (1−ρ)ωh

)

‖u‖L∞(D) (1.16)

if N ≥ 2, u ∈ L∞(D).

Theorem 1.2.1 states that the operators V1 and V2 preserve the Sobolev
regularity when applied to harmonic functions and solutions of the homogeneous

12



Helmholtz equation (see Theorem 1.1.5). For these functions, these operators
are continuous fromHj(D) to itself with continuity constants that depend on the
wavenumber ω only through the product ωh. In two and three space dimensions,
we can make explicit the dependence of the bounds on ωh. The only exception
is the L2–continuity of V2 (see (1.14)), where a weighted H1–norm appears on
the right-hand side; this is due to the poor explicit interior estimates available
for the solutions of the homogeneous Helmholtz equation.

All the continuity constants are explicit with respect to the order of the
Sobolev norm and depend on D only through its shape parameter ρ and its
diameter h, the latter only appearing within the product ωh.

In literature, there exist many proofs of the continuity of V1 and V2 in L∞–
norm (in two space dimensions); see, for example, [10,19]. To our knowledge, the
only continuity result in Sobolev norms is the one given in [32, Section 4.2]: this
holds for general PDEs and for norms with non integer indices, but is restricted
to the two-dimensional case, and the constants in the bounds are not explicit
in the various parameters.

In order to prove Theorem 1.2.1, we need some preliminary results. For here
on, if β is multi-index in NN , we will denote byDβ the corresponding differential
operator with respect to the space variable x ∈ RN .

Lemma 1.2.2. For ξ = 1, 2, j ≥ 0 and φ ∈ Hj(D), we have

|Vξ[φ]|2j,D ≤ 2 |φ|2j,D

+ 2(j + 1)3N−2e2j
j

∑

k=0

sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D)

∑

|β|=k

∫ 1

0

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt.

(1.17)

Proof. From Definition 1.1.4, we have

∣
∣Vξ[φ]

∣
∣
2

j,D
≤ 2 |φ|2j,D + 2

∑

|α|=j

∫

D

∣
∣
∣
∣

∫ 1

0
Dα (Mξ(x, t)φ(tx)) dt

∣
∣
∣
∣

2

dx

≤ 2 |φ|2j,D + 2
∑

|α|=j

∫

D

∫ 1

0

∣
∣
∣
∣
∣
∣

∑

β≤α

(
α

β

)

Dα−βMξ(x, t)D
βφ(tx)

∣
∣
∣
∣
∣
∣

2

dt dx

≤ 2 |φ|2j,D + 2

∫

D

∫ 1

0

∣
∣
∣
∣
∣

j
∑

k=0

∑

|β|=k

∣
∣Dβφ(tx)

∣
∣
∑

|α|=j
α≥β

(
α

β

)
∣
∣Dα−βMξ(x, t)

∣
∣

∣
∣
∣
∣
∣

2

dt dx ,

where in the second inequality we have applied the Jensen inequality and the
product (Leibniz) rule for multi-indices (see [1, Sec. 1.1]); here, the binomial

coefficient for multi-indices is
(α
β

)

=
∏N

i=1

(αi

βi

)

. We multiply by the number
(
N+k−1
N−1

)

of the multi-indices β of length k in NN , in order to move the square
inside the sum, and we obtain
∣
∣Vξ[φ]

∣
∣
2

j,D
≤ 2 |φ|2j,D +

2

∫

D

∫ 1

0
(j + 1)

j
∑

k=0

(
N+k−1
N−1

) ∑

|β|=k

∣
∣Dβφ(tx)

∣
∣
2

∣
∣
∣
∣
∣

∑

|α|=j
α≥β

(
α

β

)
∣
∣Dα−βMξ(x, t)

∣
∣

∣
∣
∣
∣
∣

2

dt dx
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≤ 2 |φ|2j,D + 2(j + 1)
(N+j−1

N−1

)
j

∑

k=0

∑

|β|=k

∫

D

∫ 1

0

∣
∣Dβφ(tx)

∣
∣
2
dt dx

· sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D) sup
|β|=k

[

∑

|α|=j
α≥β

(
α

β

)
]2

;

the last factor can be bounded as

sup
|β|=k

∑

|α|=j
α≥β

N
∏

i=1

(
αi

βi

)

≤ sup
|β|=k

∑

|α|=j
α≥β

N
∏

i=1

αβi

i

βi!
≤

∑

|α|=j

e
PN

i=1 αi

≤ ej · #{α ∈ N
N , |α| = j} = ej

(
N+k−1
N−1

)

≤ ej
(
N+j−1
N−1

)

.

Finally, we note that, for every j ∈ N, N ≥ 2, we have

(
N + j − 1

N − 1

)

=
N + j − 1

N − 1

N + j − 2

N − 2
· · ·

1 + j

1
≤ (1 + j)N−1 , (1.18)

from which the assertion follows.

Now we need to bound the terms present in (1.17). The next lemma provides
W j,∞(D) estimates for M1 and M2 uniformly in t. The proof relies on some
properties of Bessel functions.

Lemma 1.2.3. The functions M1 and M2 satisfy the following bounds:

‖M1‖L∞(D×[0,1]) ≤
(

(1− ρ) ω h
)2

4
, (1.19)

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) ≤
(1 − ρ) ω2 h

2
, (1.20)

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤
ωj

2
(j + (1− ρ) ω h) ∀j ≥ 2, (1.21)

‖M2‖L∞(D×[0,1]) ≤
(

(1− ρ) ω h
)2

4
e

1
2 (1−ρ)ωh , (1.22)

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D) ≤
(1 − ρ) ω2 h

2
e

1
2 (1−ρ)ωh, (1.23)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤
ωj

2j−1

(

j +
(1 − ρ) ω h

2

)

e
3
4 (1−ρ)ωh ∀j ≥ 2.

(1.24)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤
ωj

2j−1

(

j +
(1 − ρ) ω h

2

)

·

(

1 +

(
(1− ρ) ω h

4

)j+1
)

e
1
2 (1−ρ)ωh

Proof. Thanks to the Remark 1.1.2, we have that supx∈D |x| ≤ (1− ρ) h.
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The L∞ inequalities (1.19) and (1.22) follow directly from (A.4).
Since M1 and M2 depend on x only through |x|, we obtain the W 1,∞

bounds (1.20) and (1.23):

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) = sup
t∈[0,1], x∈D

∣
∣
∣
∣

∂

∂|x|
M1(x, t)

∣
∣
∣
∣

(A.6)
≤ sup

t∈[0,1],
|x|∈[0,(1−ρ)h]

∣
∣
∣
∣
∣

ω2|x|
√
t
N−2

2
J0(ω|x|

√
1− t)

∣
∣
∣
∣
∣

(A.3)
≤

(1− ρ) ω2 h

2
,

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D)

(A.6)
≤ sup

t∈[0,1],
|x|∈[0,(1−ρ)h]

∣
∣
∣
∣
∣

ω2|x|
√
t
N−2

2
J0(iω|x|

√

t(1− t))

∣
∣
∣
∣
∣

(A.4)
≤

(1− ρ) ω2 h

2
e

1
2 (1−ρ)ωh.

In order to prove (1.21) and (1.24), we define an auxiliary complex-valued
function

f(s) = s J1(s).

It is easy to verify by induction that its derivative of order k is

∂k

∂sk
f(s) = k

∂k−1

∂sk−1
J1(s) + s

∂k

∂sk
J1(s).

We can bound this derivative using (A.7) and the binomial theorem:

∣
∣
∣
∣

∂k

∂sk
f(s)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
k

1

2k−1

k−1
∑

m=0

(−1)m
(
k − 1

m

)

J2m−k+2(s) + s
1

2k

k
∑

m=0

(−1)m
(
k

m

)

J2m−k+1(s)

∣
∣
∣
∣
∣

≤ (k + |s|) max
l=1−k,...,1+k

|Jl(s)|.

(1.25)
The functions M1 and M2 are related to f by

M1(x, t) = −
√
t
N−2

2(1− t)
f(ω|x|

√
1− t),

M2(x, t) = −
√
t
N−4

2(1− t)
f(iω|x|

√

t(1− t)),

so we can bound their derivatives of order j ≥ 2:

sup
t∈[0,1]

|M1|W j,∞(D) ≤ sup
t∈[0,1], x∈D

∣
∣
∣
∣

∂j

∂|x|j
M1(x, t)

∣
∣
∣
∣

≤ sup
t∈[0,1], x∈D

∣
∣
∣
∣
∣

√
t
N−2

2(1− t)

(

ω
√
1− t

)j ∂j

∂(ω|x|
√
1− t)j

f(ω|x|
√
1− t)

∣
∣
∣
∣
∣
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(1.25), (A.3)
≤

ωj

2
(j + (1− ρ)ωh),

sup
t∈[0,1]

|M2|W j,∞(D)

≤ sup
t∈[0,1], x∈D

∣
∣
∣
∣
∣

√
t
N−4

2(1− t)

(

iω
√

t(1− t)
)j ∂j

∂(iω|x|
√

t(1 − t))j
f(iω|x|

√

t(1− t))

∣
∣
∣
∣
∣

(1.25), (A.4)
≤

ωj

2j−1

(

j +
(1 − ρ)ωh

2

)

e
3
4 (1−ρ)ωh.

The last bound in the thesis of the lemma is obtained by modifying the last
step of this chain of inequalities.

Remark 1.2.4. We can summarize the bounds of Lemma 1.2.3 for every j ≥ 0
in less detailed estimates:

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤ ωj
(

j + (ωh)2
)

, (1.26)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤ ωj (1 + ωh) e
3
4 (1−ρ)ωh. (1.27)

We forget the algebraic dependence on ρ because it will be absorbed in a generic
bounding constant. On the contrary, in a nice domain, ρ ≤ 2 can be used to
reduce the exponential dependence on ωh.

Remark 1.2.5. If the wavenumber ω = ωR+iωI is complex, the following more
general estimates hold:

‖M1‖L∞(D×[0,1]) ≤
(

(1− ρ)|ω|h
)2

4
e(1−ρ)|ωI |h,

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) ≤
(1− ρ)|ω|2 h

2
e(1−ρ)|ωI |h,

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤
|ω|j

2

(

j + (1− ρ)|ω|h
)

e
3
2 (1−ρ)|ω|h ∀j ≥ 2,

‖M2‖L∞(D×[0,1]) ≤
(

(1− ρ)|ω|h
)2

4
e

1
2 (1−ρ)|ωR|h,

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D) ≤
(1− ρ)|ω|2h

2
e

1
2 (1−ρ)|ωR|h,

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤
|ω|j

2j−1

(

j +
(1− ρ)|ω|h

2

)

e
3
4 (1−ρ)|ω|h ∀j ≥ 2.

Remark 1.2.6. By using the bounds in Remark 1.2.5, we can extend Theo-
rem 1.2.1 to every ω ∈ C, similarly to Theorem 1.1.5 (see Remark 1.1.6). In
fact, the case ω = 0 is trivial, since V1 and V2 reduce to the identity, while
in general, thanks to the Remark 1.2.5, Theorem 1.2.1 holds by substituting ω
with |ω| in the estimates and in the definition of the weighted norm (1), and
multiplying the right-hand side of (1.12) by e

3
2 |ω|h.
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Lemma 1.2.7. Let φ ∈ Hk(D), β ∈ NN be a multi-index of length |β| = k and
Dβ be the corresponding differential operator in the variable x. Then

∫ 1

0

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt (1.28)

≤











1

2k −N + 1

∥
∥Dβφ

∥
∥
2

0,D
if 2k −N ≥ 0,

K
∥
∥Dβφ

∥
∥
2

0,D
+
(ρ

2

)2k+1 |D|
2k + 1

∥
∥Dβφ

∥
∥
2

L∞(B ρh
2

)
if 2k −N < 0,

where K = log 2
ρ if 2k − N = −1, K =

(
2
ρ

)N−1
if 2k − N < −1, |D| denotes

the measure of D and ρ is given in Assumption 1.1.1.

Proof. In the first case, we can simply compute the integral with respect to t
with the change of variables y = tx:

∫ 1

0

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt =

∫ 1

0

∫

tD
t2|β|

∣
∣Dβφ(y)

∣
∣
2 dy

tN
dt

=
1

2k −N + 1

∥
∥Dβφ

∥
∥
2

0,tD
≤

1

2k −N + 1

∥
∥Dβφ

∥
∥
2

0,D
;

the set tD is included in D because this is star-shaped with respect to 0.
In the case 2k −N < 0, the integral in t is not bounded so we need to split

it in two parts, treating the second part as before:

∫ 1

0

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt =

∫ ρ
2

0

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt+

∫ 1

ρ
2

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt

≤
∫ ρ

2

0
t2|β| dt|D|

∥
∥Dβφ

∥
∥
2

L∞(B ρh
2

)
+

∫ 1

ρ
2

t2k−N
∥
∥Dβφ

∥
∥
2

0,tD
dt

=
1

2k + 1

(ρ

2

)2k+1
|D|

∥
∥Dβφ

∥
∥
2

L∞(B ρh
2

)
+

∫ 1

ρ
2

t2k−N
∥
∥Dβφ

∥
∥
2

0,tD
dt,

and the assertion comes from the expression

1∫

ρ
2

t2k−N dt =











log
2

ρ
if 2k −N = −1,

1

2k −N + 1

(

1−
(ρ

2

)2k−N+1
)

≤
(
2

ρ

)N−1

if 2k −N < −1.

Remark 1.2.8. We can reduce the bounds of Lemma 1.2.7 for every value of
the multi-index length k with the estimate

∫ 1

0

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt

≤
(
2

ρ

)N−1
∥
∥Dβφ

∥
∥
2

0,D
+
(ρ

2

)2k+1 |D|
2k + 1

∥
∥Dβφ

∥
∥
2

L∞(B ρh
2

)
.

(1.29)
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From Lemma 1.2.7, it is clear that, in order to prove the continuity of V1 and
V2 in the L2–norm and in high-order Sobolev norms, we need interior estimates
that bound the L∞–norm of φ and its derivatives in a small ball contained in
D with its L2–norm and Hj–norms on D. It is easy to find such estimates for
harmonic functions, thanks to the mean value theorem (see, e.g., Theorem 2.1
of [23]).

Notice that it is not possible to avoid the use of interior estimates for the
continuity in Hj(D) when j ≥ N

2 as the assertion of Lemma 1.2.7 may suggest:

in fact, Lemma 1.2.2 requires to estimate
∫ 1
0

∫

D

∣
∣Dβφ(tx)

∣
∣
2
dxdt for all the

multi-index lengths |β| = k ≤ j, so we necessarily end up in the cases 2k−N =
−1 and 2k −N < −1.

Lemma 1.2.9 (Interior estimates for harmonic functions). Let φ be a harmonic
function in BR(x), R > 0, then

|φ(x)|2 ≤
1

RN |B1|
‖φ‖20,BR(x) , (1.30)

where |B1| = π
N
2

Γ(N
2 +1)

is the volume of the unit ball in RN . If φ ∈ Hk(D) and

β ∈ NN , |β| ≤ k, then

∥
∥Dβφ

∥
∥
2

L∞(B ρh
2

)
≤

1

|B1|

(
2

ρh

)N
∥
∥Dβφ

∥
∥
2

0,D
, (1.31)

Proof. By the mean value property of harmonic functions (see Theorem 2.1
of [23]) and the Jensen inequality, we get the first estimate:

|φ(x)|2 =

∣
∣
∣
∣
∣

1

|BR(x)|

∫

BR(x)
φ(y) dy

∣
∣
∣
∣
∣

2

≤
1

|BR|

∫

BR(x)
|φ(y)|2 dy

=
1

RN |B1|
‖φ‖20,BR(x) .

The second bound follows applying the first one to the derivatives of φ, which
are harmonic in the ball B ρh

2
(x) ⊂ Bρh ⊂ D.

Remark 1.2.10. The interior estimates for harmonic functions are related to
Cauchy’s estimates for their derivatives. Theorem 2.10 in [23] states that, given
two domains Ω1 ⊂ Ω2 ⊂ RN such that d(Ω1, ∂Ω2) = d, φ harmonic in Ω2, for
every multi-index α

‖Dαφ‖L∞(Ω1)
≤

(
N |α|
d

)|α|

‖φ‖L∞(Ω2)
. (1.32)

In order to find analogous estimates for the Sobolev norms, we can combine
(1.32) and (1.30) using the intermediate domain {x ∈ RN : d(x,Ω1) < d

2} and
obtain

‖Dαφ‖0,Ω1
≤ CN,α|Ω1|

N/2 d−|α|−N/2 ‖φ‖20,Ω2
,

but the order of the power of d is not satisfactory. In order to improve it,
we represent the derivatives of a harmonic function ψ in B1 ⊂ RN using the
Poisson kernel P :

Dαψ(y) =

∫

SN−1

ψ(z) Dα
1P (y, z) dσ(z) y ∈ B1, ∀ α ∈ N

N ,
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where the derivatives of P are taken with respect to the first variable (see (1.22)
in [4]). Rewriting this formula in y = 0 and then translating in a point x, if ψ
is harmonic in B1(x), we have

Dαψ(x) =

∫

SN−1

ψ(x+ z) Dα
1P (0, z) dσ(z) ∀ α ∈ N

N .

Given two domains Ω̂1 ⊂ Ω̂2 such that d(Ω̂1, ∂Ω̂2) = 1 and φ̂ harmonic in Ω̂2

∥
∥
∥Dαφ̂

∥
∥
∥
0,Ω̂1

=

∫

Ω̂1

|Dαφ̂(x)|2 dx =

∫

Ω̂1

∣
∣
∣
∣

∫

SN−1

φ̂(x + z) Dα
1 P (0, z) dσ(z)

∣
∣
∣
∣

2

dx

y=x+z
≤ |SN−1|

∫

SN−1

(∫

Ω̂2

|φ̂(y)|2 dy

)

|Dα
1P (0, z)|2 dσ(z) ≤ CN,α

∥
∥
∥φ̂

∥
∥
∥
0,Ω̂2

,

where we have used the Jensen inequality and the Fubini theorem. By summing
over all the multi-indices of the same length and scaling the domains such that
Ω1 ⊂ Ω2 ⊂ RN and d(Ω1, ∂Ω2) = d, we finally obtain

|φ|j+k,Ω1
≤ CN,j,k d−k |φ|j,Ω2

, j, k ∈ N. (1.33)

We will use the bicontinuity of the Vekua operator to prove an analogous
result for the solutions of the Helmholtz equations, see Lemma 3.2.1.

The main tool used to prove the interior estimates for harmonic functions
is the mean value theorem. For the solutions of the homogeneous Helmholtz
equation, we have an analogous mean value formula [18, page 289] but it does
not provide good estimates.

Another way to prove interior estimates for the solutions of the homogeneous
Helmholtz equation is to use the Green formula for the Laplacian in a ball, but
this gives estimates that either involve the H1–norm of u on the right-hand side
of the bound or give bad order in the domain diameter R.

A third way is to use the technique presented in Lemma 4.2.7 of [32] for
the two-dimensional case. This method can be generalized only to three space
dimensions, and does not provide estimates with only the L2–norm of u on the
right-hand side. On the other hand, it is possible to make explicit the depen-
dence of the bounding constants on ωR. We will prove these interior estimates
in Lemma 1.2.12 and we will use them in the estimates of the approximation
error of a generic homogeneous Helmholtz solution by plane waves.

A more general way is to use Theorem 8.17 of [23]. This holds in every space
dimension with the desired norms and the desired order in R. The only short-
coming of this result is that the bounding constant still depends on the product
ωR but this dependence is not explicit. We report this result in Theorem 1.2.11.

Summarizing: we are able to prove interior estimates for homogeneous Helm-
holtz solutions with sharp order in R in two fashions. Theorem 1.2.11 works in
any space dimension and with good norms (L2). Lemma 1.2.12 works only in
low space dimensions and with different norms but the constant in front of the
estimates is explicit in ωR. Both techniques, however, allow to prove the final
best approximation results we are looking for with the same order and in the
same norms.

Theorem 1.2.11 (Interior estimates for Helmholtz solutions, version 1). For
every N ≥ 2, let u ∈ H1(BR(x0)) be a solution of the homogeneous Helmholtz
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equation. Then there exists a constant C > 0 depending only on the product ωR
and the dimension N , such that

‖u‖L∞(BR
2
(x0))

≤ C(ωR,N) R−N
2 ‖u‖0,BR(x0)

. (1.34)

This is exactly Theorem 8.17 of [23]; with that notation, for the homogeneous
Helmholtz equation we have k(R) = 0, λ = 1, Λ =

√
N ν = ω and p = 2 (q is

not relevant for the homogeneous problem); see also [23], p. 178.

Lemma 1.2.12 (Interior estimates for Helmholtz solutions, version 2). Let
u ∈ H1(BR(x0)) be a solution of the inhomogeneous Helmholtz equation

−∆u− ω2u = f,

with f ∈ H1(BR(x0)). Then there exists a constant C > 0 depending only on
the space dimension N such that

if N = 2:

‖u‖L∞(BR
2
(x0))

≤ C R−1
(
(

1 + ω2R2
)

‖u‖0,BR(x0)
+R ‖∇u‖0,BR(x0)

+R2 ‖f‖0,BR(x0)

)

, (1.35)

if N = 3, 4, 5:

‖u‖L∞(BR
2
(x0))

≤ C R−N
2

(

(1 + ω2R2) (‖u‖0,BR(x0)
+R ‖∇u‖0,BR(x0)

)

+R2 ‖f‖0,BR(x0)
+R3 ‖∇f‖0,BR(x0)

)

, (1.36)

if N = 2, 3:

‖∇u‖L∞(BR
2
(x0))

≤ C R−N
2

(

ω2R ‖u‖0,BR(x0)
+ (1 + ω2R2) ‖∇u‖0,BR(x0)

+R ‖f‖0,BR(x0)
+R2 ‖∇f‖0,BR(x0)

)

. (1.37)

Remark 1.2.13. In the homogeneous case, Lemma 1.2.12 reads as follows. Let
u ∈ H1(BR(x0)) be a solution of the homogeneous Helmholtz equation. Then
there exists a constant C > 0 depending only on the space dimension N such
that

if N = 2, 3, 4, 5:

‖u‖L∞(BR
2
(x0))

≤ C R−N
2 (1 + ω2R2) (‖u‖0,BR(x0)

+R ‖∇u‖0,BR(x0)
),

(1.38)

if N = 2, 3:

‖∇u‖L∞(BR
2
(x0))

≤ C R−N
2

(

ω2R ‖u‖0,BR(x0)
+ (1 + ω2R2) ‖∇u‖0,BR(x0)

)

.

(1.39)

Proof of Lemma 1.2.12. It is enough to bound |u(x0)| and |∇u(x0)|, because
for all x ∈ BR

2
(x0) we can repeat the proof using BR

2
(x) instead of BR(x0) with

the same constants. We can also fix x0 = 0.
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Let ϕ : R+ → [0, 1] be a smooth cut-off function such that

ϕ(r) =

{

1 |r| ≤ 1
4 ,

0 |r| ≥ 3
4 ,

and ϕR : RN → [0, 1], ϕR(x) := ϕ
( |x|

R

)

. Then

∇ϕR(x) = ϕ′
(
|x|
R

)
x

R|x|
, ∆ϕR(x) =

1

R2
ϕ′′

(
|x|
R

)

+
N − 1

R|x|
ϕ′

(
|x|
R

)

.

We define the average of u and two auxiliary functions on BR:

u :=
1

|BR|

∫

BR

u(y) dy, g(x) := u(x) ϕR(x), g(x) := (u(x)− u) ϕR(x);

their Laplacians are:

f̃(x) : = f̃1(x) + f̃2(x) + f̃3(x) := −∆g(x)

= −
[
1

R2
ϕ′′( |x|

R

)

+
N − 1

R|x|
ϕ′( |x|

R

)
]

u(x)− 2ϕ′( |x|
R

) x

R|x|
·∇u(x)

+ ϕ
( |x|

R

)

(ω2u(x) + f(x)),

f(x) : = f1(x) + f2(x) + f3(x) := −∆g(x)

= −
[
1

R2
ϕ′′( |x|

R

)

+
N − 1

R|x|
ϕ′( |x|

R

)
]

(u(x)− u)− 2ϕ′( |x|
R

) x

R|x|
·∇u(x)

+ ϕ
( |x|

R

)

(ω2u(x) + f(x)).

The fundamental solution formula for Poisson equation states that, if −∆a =
b in RN , then

a(x) =

∫

RN

Φ(x−y) b(y) dy, with Φ(x) =











−
1

2π
log |x| N = 2,

1

N(N − 2)|B1|
|x|2−N N ≥ 3.

(1.40)
The identity (1.40) holds for all b ∈ L2(BR), thanks to Theorem 9.9 of [23]. We
notice that

|∇Φ(x)| =
∣
∣
∣
∣
−

1

N |B1|
x

|x|N

∣
∣
∣
∣
=

1

N |B1|
|x|1−N ∀ N ≥ 2.

We start by bounding |u(0)| for N = 2. In this case, it is easy to see that,
for all R > 0, we have

∫

BR

(

log |x|− logR
)2

dx =
π

2
R2. (1.41)

We note that from the divergence theorem
∫

BR

f̃(y) dy = −
∫

BR

∆g(y) dy = −
∫

∂BR

∇g(s) · n ds = 0,
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because g ≡ 0 in R2 \B 3
4R

and, since f̃ = 0 outside B 3
4R

then f̃ has zero mean

value in the whole R2.
We apply (1.40) with a = g and b = f̃ ; using the Cauchy-Schwartz inequality,

the identity (1.41) and the fact that f̃ has zero mean value in R2, we obtain:

|u(0)| = |g(0)| =
∣
∣
∣
∣
−

1

2π

∫

R2

(

log |y|− logR
)

f̃(y) dy

∣
∣
∣
∣
≤

1

2π

√

π

2
R ‖f̃‖0,B 3

4R

≤ CN,ϕR

(
1

R2
‖u‖0,BR

+
1

R
‖∇u‖0,BR

+ ω2 ‖u‖0,BR
+ ‖f‖0,BR

)

,

where the constant CN,ϕ depends only on N and ϕ; in the last step we have

used the definition of f̃ and the fact that ϕ′( |x|R ) = 0 in BR
4
. The estimate (1.35)

easily follows.

Proving all the other bounds (on |u(0)| for N ≥ 2 and on |∇u(0)| for N ≥ 2)
is more involved. We fix p, p′ > 1 such that 1

p +
1
p′ = 1. For α > 0, we calculate

‖|y|α‖Lp′(BR) =

(
∫

SN−1

∫ R

0
rαp

′

rN−1 dr dS

) 1
p′

=

(
|SN−1|
αp′ +N

) 1
p′

Rα+N
p′ = CN,p′,αR

α+N−N
p ,

(1.42)

that holds if αp′ +N /= 0, that is equivalent to (α+N)p /= N , for every N ≥ 2.
We compute also

‖Φ‖Lp(B 3
4R

\B 1
4 R

) = CN,p

(

|SN−1|
∫ 3

4R

1
4R

r(2−N)p rN−1 dr

) 1
p

= CN,p |SN−1|
1
p

(
(
3

4
R

)(2−N)p+N

−
(
1

4
R

)(2−N)p+N
) 1

p

= CN,p R2−N+N
p ,

(1.43)

for every p /= N
N−2 , N ≥ 3, and the analogue

‖∇Φ‖Lp(B 3
4R

\B 1
4R

) = CN,p

(

|SN−1|
∫ 3

4R

1
4R

r(1−N)p rN−1 dr

) 1
p

= CN,p R1−N+N
p ,

(1.44)

that holds for every p /= N
N−1 , N ≥ 2.

For all ψ ∈ H1
0 (BR), using scaling arguments, the continuity of the Sobolev

embeddings H1
0 (B1) ↪→ Lp(B1) which hold provided that 2 ≤ p ≤ 2N

N−2 , if
N ≥ 3, and 2 ≤ p < ∞, if N = 2 (see [1, Th. 5.4,I,A-B]), and the Poincaré
inequality, we obtain

‖ψ‖Lp(BR) = R
N
p ‖ψ̂‖Lp(B1) ≤ CN,p R

N
p ‖ψ̂‖1,B1

≤ CN,p R
N
p ‖∇ψ̂‖0,B1 ≤ CN,p R

N
p +1−N

2 ‖∇ψ‖0,BR
.

(1.45)
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Now we can estimate u in the caseN ≥ 3. From the Hölder inequality for the
pair of spaces Lp′

, Lp, p > 2 (thus, p < 2), and the fact that f̃1 ≡ f̃2 ≡ 0 in B 1
4R

(see the definition of f̃), we can write

|u(0)| = |g(0)| =
∣
∣
∣
∣

∫

RN

Φ(x)f̃ (x) dx

∣
∣
∣
∣

≤ ‖Φ‖Lp(B 3
4R

\B 1
4R

) ‖f̃1 + f̃2‖Lp′(B 3
4R

\B 1
4R

)

+ ‖Φ‖Lp′(BR) ‖f̃3‖Lp(BR).

Using (1.43) to bound the Lp–norm of Φ, the continuity of the embedding of
Lp′

(B 3
4R

\ B 1
4R

) into L2(B 3
4R

\ B 1
4R

) (recall that 1 < p′ < 2) with constant

|B 3
4R

\ B 1
4R

|
1
p′

− 1
2 for the norm of f̃1 + f̃2, the definition (1.40) of Φ and (1.42)

with α = 2 − N , which requires p > N
2 , to bound the Lp′

–norm of Φ, and

finally (1.45)which requires 2 ≤ p ≤ 2N
N−2 , to bound the norm of f̃3 (recall that

f̃3 ∈ H1
0 (BR)), we have

|u(0)| ≤ CN,pR
2−N+N

p |B 3
4R

|
1
p′

− 1
2

∥
∥
∥f̃1 + f̃2

∥
∥
∥
0,B 3

4 R
\B 1

4R

+ CN,pR
2−N

p R
N
p +1−N

2

∥
∥
∥∇f̃3

∥
∥
∥
0,BR

Finally, using the definitions of the f̃i’s, |∇ϕR| ≤ 1
RCϕ and 1

p +
1
p′ = 1 we obtain

|u(0)| ≤ CN,p,ϕR
2−N+N

p R
N
p′

−N
2

(
1

R2
‖u‖0,BR

+
1

R
‖∇u‖0,BR

)

+ CN,p,ϕR
3−N

2

(

ω2 ‖∇u‖0,BR
+ ‖∇f‖0,BR

+
1

R
ω2 ‖u‖0,BR

+
1

R
‖f‖0,BR

)

≤ CN,p,ϕ R−N
2

(

(1 + ω2R2) ‖u‖0,BR
+R (1 + ω2R2) ‖∇u‖0,BR

+R2 ‖f‖0,BR
+R3 ‖∇f‖0,BR

)

.

The previous argument for bounding |u(0)| requires that there exists p such that
N
2 < p ≤ 2N

N−2 , which is possible only if N < 6; this is the reason of the upper
bound on the space dimension in the statement.

In order to conclude this proof, we have to estimate |∇u(0)|. We use the
same technique as before, after differentiating the relation (1.40) with a = g and
b = f . For everyN ≥ 2, thanks to (1.44), the embedding of Lp′

(B 3
4R

\B 1
4R

) into

L2(B 3
4R

\B 1
4R

), (1.42) with α = 1−N and (1.45), that require N < p ≤ 2N
N−2 ,

we have

|∇u(0)| = |∇g(0)| =
∣
∣
∣
∣

∫

RN

∇Φ(x)f(x) dx

∣
∣
∣
∣

≤ ‖∇Φ‖Lp(B 3
4 R

\B 1
4R

) ‖f1 + f2‖Lp′(B 3
4R

\B 1
4 R

)

+ ‖∇Φ‖Lp′(BR) ‖f3‖Lp(BR)
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≤ CN,pR
1−N+N

p |B 3
4R

|
1
p′

− 1
2 ‖f1 + f2‖0,B 3

4 R
\B 1

4R

+ CN,pR
1−N

p R
N
p +1−N

2 ‖∇f̃3‖0,BR .

By using the Poincaré–Wirtinger inequality, whose constant scales with R, to
bound ‖u− u‖0,BR

, we obtain

|∇u(0)| ≤ CN,p,ϕ R−1−N
2

(

R−2 ‖u− u‖0,BR
+R−1 ‖∇u‖0,BR

)

+ CN,p,ϕ R2−N
2

(

R−1
∥
∥ω2u+ f

∥
∥
0,BR

+
∥
∥∇(ω2u+ f)

∥
∥
0,BR

)

≤ CN,p,ϕ R−N
2

(

ω2R ‖u‖0,BR
+ (1 + ω2R2) ‖∇u‖0,BR

+R ‖f‖0,BR
+R2 ‖∇f‖0,BR

)

,

The requirement that there exists p such that N < p ≤ 2N
N−2 can be satisfied

only if N < 4.

Lemma 1.2.12 is the only result in this section which we are not able to gen-
eralize to all the space dimensions N ≥ 2. This is because in its proof we make
use of a pair of conjugate exponents p and p′ such that the fundamental solution
Φ of the Laplace equation (together with its gradient) belongs to Lp′

(BR) and,
at the same time, H1(BR) is continuously embedded in Lp(BR). This require-
ment yields the upper bounds on the space dimension we have required in the
statement of Lemma 1.2.12.

Combining the results of the previous lemmas, we can now prove Theo-
rem 1.2.1.

Proof of Theorem 1.2.1. We start by proving the continuity bound (1.12) for
V1. For every j ∈ N, N ≥ 2, φ ∈ Hj(D), inserting (1.26) and (1.29) into (1.17)
with ξ = 1, we have

|V1[φ]|j,D ≤

[

2 |φ|2j,D + 2(1 + j)3N−2e2j
j

∑

k=0

ω2(j−k)
(

j − k + (ωh)2
)2

·

(
(
2

ρ

)N−1

|φ|2k,D +
(ρ

2

)2k+1 |D|
2k + 1

∑

|β|=k

∥
∥Dβφ

∥
∥
2

L∞(B ρh
2

)

)] 1
2

.

Then, using the interior estimates (1.31), we get

|V1[φ]|j,D ≤ CN (1 + j)
3
2N−1+1 ej

(

1 + (ωh)2
)

·

[
j

∑

k=0

ω2(j−k)

(

ρ1−N + ρ2k+1 |D|
(ρh)N

)

|φ|2k,D

] 1
2

≤ CN ρ
1−N

2 (1 + j)
3
2N ej

(

1 + (ωh)2
)

‖φ‖j,ω,D ,

by the definition of weighted Sobolev norms (1), and because |D| ≤ hN and
ρ < 1. The constant CN depends only on the dimension N of the space. Passing
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from the seminorms to the complete Sobolev norms gives an extra coefficient
(1 + j)1/2 and the bound (1.12) follows.

In order to prove the continuity bound (1.13) for V2, we proceed similarly.
For every j ∈ N, N ≥ 2, u ∈ Hj

ω(D), inserting (1.27) and (1.29) into (1.17) with
ξ = 2, we have

|V2[u]|j,D ≤

[

2 |u|2j,D + 2(1 + j)3N−2e2j
j

∑

k=0

ω2(j−k)(1 + ωh)2e
3
2 (1−ρ)ωh

·

(
(
2

ρ

)N−1

|u|2k,D +
(ρ

2

)2k+1 |D|
2k + 1

∑

|β|=k

∥
∥Dβu

∥
∥
2

L∞(B ρh
2

)

)] 1
2

(1.34)
≤ C(N,ωh,ωρh) (1 + j)

3
2N−1 ej

·

[
j

∑

k=0

ω2(j−k)

(

ρ1−N + ρ2k+1 |D|
(ρh)N

)

|u|2k,D

] 1
2

≤ C(N,ωh, ρ) (1 + j)
3
2N−1 ej ‖u‖j,ω,D .

Again, passing from the seminorms to the complete Sobolev norms gives an
extra coefficient (1 + j)1/2 and the bound (1.13) follows.

Now we proceed by proving the bounds (1.14), (1.15) and (1.16) for V2 with
constants only depending on N .

For the continuity bound (1.14) for the V2 operator from H1(D) to L2(D),
we repeat the same reasoning as above. If u ∈ H1

ω(D), N = 2, . . . , 5, using the
definition of V2, (1.22), (1.29) and (1.38), we have

‖V2[u]‖0,D ≤

[

2 ‖u‖20,D + 2 ‖M2‖2L∞(D×[0,1])

∫ 1

0

∫

D
|u(tx)|2 dxdt

] 1
2

≤

[

2 ‖u‖20,D + 2

(
(ωh)2

4
e

1
2 (1−ρ)ωh

)2 [(
2

ρ

)N−1

‖u‖20,D

+
ρ

2
|D|

(

CN (ρh)−
N
2
(

1 + (ωρh)2
)(

‖u‖0,D + ρh ‖∇u‖0,D
)
)2]

] 1
2

≤ CN ρ
1−N

2
(

1 + (ωh)4
)

e
1
2 (1−ρ)ωh

(

‖u‖0,D + ρh ‖∇u‖0,D
)

,

which immediately gives (1.14).
Let us prove now (1.15). To this aim, given a multi-index β ∈ NN , we need

to bound
∥
∥Dβu

∥
∥
L∞(B ρh

2
)
. If |β| = 0, for N = 2, 3, 4, 5, we simply use (1.38) and

get

∥
∥Dβu

∥
∥
L∞(B ρh

2
)
= ‖u‖L∞(B ρh

2
) (1.46)

≤ CN (ρh)−
N
2 (1 + ω2ρ2h2)

(

‖u‖0,D + ρh ‖∇u‖0,D
)

.
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If |β| = j ≥ 1, we note that there exists another multi-index α ∈ NN of length
|α| = j − 1, such that for N = 2, 3 and u ∈ Hj

ω(D) it holds

∥
∥Dβu

∥
∥
L∞(B ρh

2
)
≤ ‖∇Dαu‖L∞(B ρh

2
) (1.47)

≤ CN (ρh)−
N
2

(

ω2ρh ‖Dαu‖0,D +
(

1 + (ωρh)2
)

‖∇Dαu‖0,D
)

,

thanks to (1.39). Notice that the restriction to N = 2, 3 in this proof is due to
the use of (1.39). Again, inserting (1.27) and (1.29) into (1.17) with ξ = 2 gives

|V2[u]|j,D ≤ CN

[

|u|2j,D + (1 + j)3N−2 e2j
j

∑

k=0

ω2(j−k)(1 + ωh)2e
3
2 (1−ρ)ωh

·
(

ρ1−N |u|2k,D + ρ2k+1|D|
∑

|β|=k

∥
∥Dβu

∥
∥
2

L∞(B ρh
2

)

)
] 1

2

≤ CN (1 + j)
3
2N−1 ej (1 + ωh) e

3
4 (1−ρ)ωh

·

[
j

∑

k=0

ω2(j−k)

(

ρ1−N |u|2k,D + ρ2k+1|D|
∑

|β|=k

∥
∥Dβu

∥
∥
2

L∞(B ρh
2

)

)
] 1

2

,

and thus, as a consequence of (1.46) and (1.47), we obtain

|V2[u]|j,D ≤ CN (1 + j)
3
2N−1 ej (1 + ωh) e

3
4 (1−ρ)ωh

·

[

ω2jρ1−N

(

‖u‖20,D +
|D|
hN

(1 + ω2ρ2h2)2
(

‖u‖0,D + ρh ‖∇u‖0,D
)2
)

+
j

∑

k=1

ω2(j−k)ρ1−N

(

|u|2k,D + ρ2k
(
N+k−1
N−1

) |D|
hN

·
(

ω2ρh |u|k−1,D + (1 + ω2ρ2h2) |u|k,D
)2
)
] 1

2

≤ CN (1 + j)
3
2N−1 ρ

1−N
2 ej (1 + ωh) e

3
4 (1−ρ)ωh

·

[

ω2j(1 + ω2h2)2
(

‖u‖0,D + h ‖∇u‖0,D
)2

+
j

∑

k=1

ω2(j−k)(1 + k)N−1
(

ω2h |u|k−1,D + (1 + ω2h2) |u|k,D
)2

] 1
2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej (1 + ωh) e

3
4 (1−ρ)ωh

·

[

(

1 + (ωh)2
)2

ω2j ‖u‖20,D +
(

(ωh)2 + (ωh)6
)

ω2(j−1) |u|21,D

+ (ωh)2
j

∑

k=1

ω2(j−k+1) |u|2k−1,D +
(

1 + (ωh)2
)2

j
∑

k=1

ω2(j−k) |u|2k,D

] 1
2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej

(

1 + (ωh)4
)

e
3
4 (1−ρ)ωh ‖u‖j,ω,D ,
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where the binomial coefficient comes from the number of the multi-indices |β| =
k and is bounded by (1.18). As before, passing from the seminorms to the
complete Sobolev norms gives an extra coefficient (1 + j)1/2 and the bound
(1.15) follows.

Finally, we prove the continuity of V2 in the L∞–norm stated in (1.16).
Thanks to the definition of V2 and (1.22), we have

‖V2[u]‖L∞(D) ≤
(

1 + ‖M2‖L∞(D×[0,1])

)

‖u‖L∞(D)

≤

(

1 +

(

(1− ρ)ωh
)2

4
e

1
2 (1−ρ)ωh

)

‖u‖L∞(D) ,

that holds for every φ ∈ L∞(D) and for every N ≥ 2. This proves (1.16) and
the proof of Theorem 1.2.1 is complete.

1.3 Generalized Harmonic Polynomials

We want to use Vekua’s theory to derive approximation estimates for the so-
lutions of the homogeneous Helmholtz equation using finite dimensional spaces
of particular functions. The approximating functions we want to use are the
generalized harmonic polynomials.

Definition 1.3.1. Given D ⊂ RN , we denote with PL(D) the space of the
ordinary homogeneous polynomials of degree L ∈ N defined in the domain D.
The subspace of harmonic polynomials is denoted as

H
L(D) = {P ∈ P

L(D) : ∆P = 0}.

Its image under the operator V1 is

H
L
ω(D) = V1[H

L(D)] = {Q ∈ L2(D) : ∃P ∈ H
L(D) s.t. Q = V1[P ]}.

The elements of HL
ω(D) are called generalized harmonic polynomials of degree L.

Notice that PL(D), HL(D), HL
ω(D) are vector spaces of dimensions

dimP
0(D) = dimH

0(D) = dimH
0
ω(D) = 1,

dimP
L(D) =

(
N + L− 1

N − 1

)

,

dimH
L(D) = dimH

L
ω(D) = n(N,L) =

(2L+N − 2)(L+N − 3)!

L! (N − 2)!
L ≥ 1,

(see (2) and [36, eq. (11)]). In particular, if N = 2 then dimH0
ω(D) = 1 and

dimHL
ω(D) = 2 for L ≥ 1, while if N = 3 then dimHL

ω(D) = 2L+ 1.
Thanks to the results of the previous sections, the generalized harmonic

polynomials are solution of the homogeneous Helmholtz equation with wave-
number ω and belong to Hk(D) for every k ∈ N, so they are also in C∞(D).

In order to write explicitly the generalized harmonic polynomials we prove
the following lemma for homogeneous functions.
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Lemma 1.3.2. If φ ∈ L2(D) is an l-homogeneous function with l ∈ R, l > −N
2 ,

i.e., there exists g ∈ L2(SN−1) such that

φ(x) = g
( x

|x|

)

|x|l, a.e. x ∈ D,

then its Vekua transform is

V1[φ](x) = Γ
(

l +
N

2

)
(
2

ω

)l+N
2 −1

g
( x

|x|

)

|x|1−
N
2 Jl+N

2 −1(ω|x|) a.e. x ∈ D.

(1.48)

Proof. Using the Beta integral
∫ 1
0 ta(1 − t)b dt = Γ(a+1) Γ(b+1)

Γ(a+b+2) , a, b > −1, we
can compute directly the Vekua transform from the definition of V1:

V1[φ](x) = g
( x

|x|

)

|x|l +
∫ 1

0
g
( x

|x|

)

(|x|t)l M1(x, t) dt

= g
( x

|x|

)

|x|l
(

1 +

∫ 1

0
tlM1(x, t) dt

)

= g
( x

|x|

)

|x|l




1−

∫ 1

0
tl+

N
2 −1

∑

j≥0

(−1)j
(

ω|x|
2

)2j+2
(1 − t)j

j! (j + 1)!
dt






= g
( x

|x|

)

|x|l




1−

∑

j≥0

(−1)j
(

ω|x|
2

)2j+2

j! (j + 1)!

Γ
(

l+ N
2

)

Γ(j + 1)

Γ
(

l+ N
2 + j + 1

)






k=j+1
= g

( x

|x|

)

|x|l




1 +

∑

k≥1

(−1)k
(

ω|x|
2

)2k

k! Γ
(

l+ N
2 + k

) Γ
(

l+
N

2

)






= g
( x

|x|

)

|x|l
∑

k≥0

(−1)k
(

ω|x|
2

)2k

k! Γ
(

l + N
2 + k

) Γ
(

l +
N

2

)

= Γ
(

l+
N

2

)

g
( x

|x|

)

|x|1−
N
2

(
2

ω

)l+N
2 −1 ∑

k≥0

(−1)k
(

ω|x|
2

)2k+l+N
2 −1

k! Γ
(

l + N
2 + k

)

= Γ
(

l+
N

2

) (
2

ω

)l+N
2 −1

g
( x

|x|

)

|x|1−
N
2 Jl+N

2 −1(ω|x|).

The condition l > −N
2 is necessary to compute the integral

∫ 1
0 tl+

N
2 −1(1 −

t)j dt.

As a consequence, the general (non homogeneous) harmonic polynomial of
degree L and its Vekua transform can be written, in terms of spherical harmonics
and hyperspherical Bessel functions (see the Appendix), by

P (x) =
L
∑

l=0

n(N,l)
∑

m=1

al,m |x|l Yl,m

( x

|x|

)

, (1.49)
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V1[P ](x) = |x|1−
N
2

L
∑

l=0

n(N,l)
∑

m=1

al,m Γ
(

l +
N

2

)
(
2

ω

)l+N
2 −1

Yl,m

( x

|x|

)

Jl+N
2 −1(ω|x|)

=
2 (N − 4)!!

Γ
(
N
2 − 1

)

L∑

l=0

n(N,l)
∑

m=1

al,m Γ

(

l +
N

2

) (
2

ω

)l

Yl,m

( x

|x|

)

jNl (ω|x|).

(1.50)

If N = 2, identifying R2 = C and using the complex variable z = reiψ , using
directly (1.48), we have

P (z) =
L
∑

l=−L

al r
|l| eilψ, (1.51)

V1[P ](z) =
L
∑

l=−L

al |l|!
(
2

ω

)|l|

eilψ J|l|(ωr). (1.52)

If N = 3, we use the definition of spherical Bessel function (A.8) to get

P (x) =
L
∑

l=0

l
∑

m=−l

al,m |x|l Yl,m

( x

|x|

)

, (1.53)

V1[P ](x) =
2√
π

L
∑

l=0

l
∑

m=−l

al,m Γ
(

l +
3

2

)
(
2

ω

)l

Yl,m

( x

|x|

)

jl(ω|x|) (1.54)

=
L
∑

l=0

l
∑

m=−l

al,m
(2l + 1)!

l!

(
1

2ω

)l

Yl,m

( x

|x|

)

jl(ω|x|),

where {Yl,m}m=−l,...,l are a basis of spherical harmonics of order l, and we have

used Γ(l+ 3
2 ) =

√
π (2l+1)!
22l+1 l! , which follows from Γ(s+1) = sΓ(s) and Γ(12 ) =

√
π.

This means that the generalized harmonic polynomials in 2D and 3D are the
well-known circular and spherical waves, respectively.

1.3.1 Generalized Harmonic Polynomials as Herglotz Func-
tions

In this section, we define an important family of solutions of the homogeneous
Helmholtz equation: the Herglotz functions (see [17, Def. 3.14]), and we see that
the generalized harmonic polynomials belong to this class. This result could be
used to prove approximation properties for plane waves, as in [32, Prop. 8.4.14].
In the following, we will adopt a different approach: by using the Jacobi-Anger
expansions, we can directly correlate the generalized harmonic polynomials to
the plane waves and find in this way sharper bound in an easier way. On
the other hand, we report the result on generalized harmonic polynomials as
Herglotz functions for the sake of completeness.

Definition 1.3.3. Given a function g ∈ L2(SN−1) we define the Herglotz func-
tion with Herglotz kernel g and wavenumber ω as the the function in C∞(RN )

wg(x) =

∫

SN−1

g(d) eiωx·d dσ(d) x ∈ R
N . (1.55)
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Figure 1.3: The real and imaginary parts of the 2-dimensional generalized har-
monic polynomials V1[zl], l = 0, . . . , 4, ω = 10, in [−1, 1]2.
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The Herglotz functions are entire solutions of the homogeneous Helmholtz
equation; it is known that they are dense in Hk

ω(D) with respect to the Hk(D)–
norm or the C∞(D) topology, where D is a Ck−1,1 domain; the proof is given
in Theorem 2 of [45]. In part (iv) of Theorem 2.2.1 we will prove that the
generalized harmonic polynomials, which are Herglotz functions, are dense in
Hk

ω(D) in two and three dimensions. This means that, for k ≥ 2, we slightly
generalize the result of [45] to domains that satisfy only Assumption 1.1.1: we
weaken the regularity assumption Ck−1,1 to Lipschitz continuity, but we require
the star-shapedness.

Lemma 1.3.4. Let P be a harmonic polynomial of degree L ∈ N in R2 or RN ,
N ≥ 3, defined as in (1.51) or in (1.49), respectively. Then the corresponding
generalized harmonic polynomial V1[P ] is a Herglotz function wg with Herglotz
kernel

g(θ) =
L
∑

l=−L

al
|l|!
2π

(
2

iω

)|l|

eilθ N = 2,

g(d) =
L
∑

l=0

n(N,l)
∑

m=1

al,m
Γ
(

l + N
2

)
(
N
2 − 1

)

π
N
2 (N − 2)

(
2

iω

)l

Yl,m(d) N ≥ 3.

Proof. We only have to use the Jacobi-Anger expansion and the summation
theorem for spherical harmonics to verify that the Herglotz functions with these
kernels correspond to (1.52) and (1.50), respectively.

In two space dimensions with the polar coordinates z = r eiψ we have

wg(z) =

∫ 2π

0

L
∑

l=−L

al
|l|!
2π

(
2

iω

)|l|

eilθ eiωr(cosψ,sinψ)·(cos θ,sin θ) dθ

=
L
∑

l=−L

al
|l|!
2π

(
2

iω

)|l| ∫ 2π

0
eilθ eiωr cos(ψ−θ) dθ

(A.15)
=

L
∑

l=−L

al
|l|!
2π

(
2

iω

)|l| ∫ 2π

0
eilθ

∑

l′∈Z

il
′

Jl′(ωr) e
il′(ψ−θ) dθ

=
L
∑

l=−L

∑

l′∈Z

al
|l|!
2π

(
2

iω

)|l|

il
′

Jl′(ωr) e
ilψ

∫ 2π

0
ei(l−l′)θ dθ

=
L
∑

l=−L

al |l|!
(
2

ω

)|l|

Jl(ωr) e
ilψ = V1[P ](z),

where in the second last step we have used the identity
∫ 2π
0 ei(l−l′)θ dθ = 2π δl,l′ .

In higher space dimensions, we use the orthonormality of the spherical har-
monics

∫

SN−1 Yl,mYl′,m′ = δl,l′δm,m′ :

wg(x) =

∫

SN−1

L
∑

l=0

n(N,l)
∑

m=1

al,m
Γ
(

l + N
2

)
(
N
2 − 1

)

π
N
2 (N − 2)

(
2

iω

)l

Yl,m(d) eiωx·d dσ(d)

(A.17)
=

∫

SN−1

L
∑

l=0

n(N,l)
∑

m=1

al,m
Γ
(

l+ N
2

)
(
N
2 − 1

)

π
N
2 (N − 2)

(
2

iω

)l

Yl,m(d)
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·
∑

l′≥0

n(N,l′)
∑

m′=1

(N − 2)!! |SN−1| il
′

jNl′ (ω|x|) Yl′,m′

( x

|x|

)

Yl′,m′(d) dσ(d)

=
(N − 2)!!

(
N
2 − 1

)

2π
N
2

π
N
2 (N − 2)Γ

(
N
2

)

·
L
∑

l=0

n(N,l)
∑

m=1

al,m Γ
(

l +
N

2

) (
2

ω

)l

Yl,m

( x

|x|

)

jNl (ω|x|)

(1.50)
= V1[P ](x),

where in the second last step we have used the formula |SN−1| = 2π
N
2 /Γ

(
N
2

)

.
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Chapter 2

Approximation by

Harmonic Polynomials

We want to provide hp-estimates for the approximation of solutions of the ho-
mogeneous Helmholtz equation using finite dimensional spaces of generalized
harmonic polynomials. Thanks to the continuity of the Vekua operator and
its inverse, in order to find approximation estimates for HL

ω(D) in Hj
ω(D) it

is enough to derive approximation estimates in Sobolev norms for HL(D) in
Hj(D). This means that we have to approximate harmonic functions using har-
monic polynomials, with respect to both decreasing diameters h and increasing
orders L.

In Section 2.1, we state three theorems in this direction: i) Theorem 2.1.2
(Bramble-Hilbert argument), which gives sharp error estimates with respect to
h in every space dimension (these estimates do not converge in the polynomial
degree L); ii) Theorem 2.1.4 (which is Theorem 2.9 of [33]), where sharp esti-
mates both in h and L are established in the case N = 2 (its proof is based
on complex analysis techniques and thus can not be extended to N ≥ 3); iii)
Theorem 2.1.10, which gives hp-estimates for every N ≥ 2, but the dependence
of the algebraic order of convergence in L on the shape of the domain is not
explicit.

In Section 2.2, we use the continuity of the Vekua operators in order to
state analogous results for the approximation of solutions of the homogeneous
Helmholtz equation by generalized harmonic polynomials. Theorem 2.2.1 con-
tains the main results of this chapter.

2.1 Approximation of Harmonic Functions

2.1.1 h-Estimates

The first result is Bramble-Hilbert theorem, as presented in [11, Lemma 4.3.8].
We rewrite the proof for harmonic functions, in the Hilbert case (p = 2) and
making explicit the dependence of the bounding constants on the degree of the
approximating polynomial and the order of the norms.

We introduce the averaged Taylor polynomials, following [11, Section 4.1].
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Definition 2.1.1. Let φ ∈ Hm−1(D), with D as in Assumption 1.1.1, and ψ
be a smooth cut-off function such that

suppψ = Bρ0h,

∫

Bρ0h

ψ = 1, ‖ψ‖L∞(Bρ0h)
≤ C(ρ0h)

−N ,

with C independent of ρ0 and h.
Let y ∈ Bρ0h. If Tm

y [φ](x) =
∑

|α|<m
1
α!D

αφ(y)(x − y)α is the value in x
of the Taylor polynomial of order m of φ centered at y, we define the averaged
Taylor polynomial of order m of φ as

Qmφ(x) =

∫

Bρ0h

Tm
y [φ](x) ψ(y) dy

=

∫

Bρ0h

∑

|α|<m

1

α!
Dαφ(y) (x − y)α ψ(y) dy.

(2.1)

Qmφ is a polynomial of degree at most m− 1 and it is possible to define it
for every φ ∈ L1(Bρ0h) (see [11, Proposition 4.1.9]).

For every multi-index β such that |β| ≤ m− 1,

DβQmφ(x) =

∫

Bρ0h

∑

|α|<m
α≥β

1

α!
Dαφ(y)

α!

(α− β)!
(x− y)α−β ψ(y) dy (2.2)

γ=α−β
=

∫

Bρ0h

∑

|γ|<m−|β|

1

γ!
Dβ+γφ(y) (x− y)γ ψ(y) dy (2.3)

= Qm−|β|Dβφ(x).

This fact, with the linearity of Qm, implies that if φ is harmonic then the
polynomials Qmφ are harmonic for every m ∈ N:

∆Qmφ =
N
∑

i=1

∂2

∂x2
i

Qmφ =
N
∑

i=1

Qm−2 ∂2

∂x2
i

φ = Qm−2∆φ = 0. (2.4)

The version of the Bramble-Hilbert theorem (see [11, Lemma 4.3.8]) we need
is the following.

Theorem 2.1.2 (Bramble-Hilbert for harmonic functions). Let D be a domain
as in Assumption 1.1.1 and φ ∈ Hm(D) be a harmonic function. Then the
harmonic polynomial Qmφ approximates φ with the estimates

|φ−Qmφ|j,D ≤ Cρ0,N (1 + j)
N−1

2 hm−j |φ|m,D j = 0, . . . ,m, (2.5)

where the constant C depends only on ρ0 and N , but is independent of h, m, j
and φ.

Proof. If j = m the thesis is trivial: |φ−Qmφ|m,D = |φ|m,D. Then, assume
0 ≤ j < m.

For z ∈ D, we compute

∫

D
|x− z|m−N dx ≤ |SN−1|

∫ h

0
rm−N rN−1 dr = |SN−1|

hm

m
.
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If f ∈ L2(D) we define

g(x) =

∫

D
|x− z|m−N |f(z)| dz,

then for every m > 0:

‖g‖20,D =

∫

D

(∫

D
|x− z|m−N |f(z)| dz

)2

dx

≤
∫

D

(∫

D
|x− z|m−N |f(z)|2 dz

) (∫

D
|x− z|m−N dz

)

dx

≤
∫

D

(∫

D
|x− z|m−N dx

)

|f(z)|2 dz |SN−1|
hm

m

≤ |SN−1|2
h2m

m2
‖f‖20,D .

(2.6)

Proposition 4.2.8 of [11] states that

φ(x) −Qmφ(x) = m
∑

|α|=m

∫

Cx

1

α!
(x − z)α k(x, z)Dαφ(z) dz x ∈ D,

where Cx is the convex hull of {x}∪Bρ0h (that is a subset of D because this is
star-shaped with respect to Bρ0h) and

|k(x, z)| ≤ CN,ψ

(

1 +
1

ρ0h
|x|

)N

|x− z|−N ≤ CN,ψ

(

1 +
1

ρ0

)N

|x− z|−N ,

where the constant CN,ψ is independent of m, φ, ρ0 and h.
We restrict ourselves to a domain D with diamD = h = 1.
For j = 0, we have

‖φ−Qmφ‖0,D ≤ m
∑

|α|=m

1

α!

∥
∥
∥
∥

∫

Cx

(x− z)α k(x, z)Dαφ(z) dz

∥
∥
∥
∥
0,D

≤ m CN,ψ

(

1 +
1

ρ0

)N ∑

|α|=m

1

α!

∥
∥
∥
∥

∫

D
|x− z|m−N |Dαφ(z)| dz

∥
∥
∥
∥
0,D

(2.6)
≤ m CN,ρ0,ψ

∑

|α|=m

1

α!

|SN−1|
m

‖Dαφ‖0,D

≤ CN,ρ0,ψ
(1 +m)N−1

(⌊
m
N

⌋

!
)N

|φ|m,D ≤ CN,ρ0,ψ |φ|m,D , (2.7)

because α! ≥
(⌊

m
N

⌋

!
)N

where 2·3 is the integer part, and thanks to the (1.18)
that controls the number of the multi-indices of length m.

For 0 < j < m, we obtain

|φ−Qmφ|j,D
(2.2)
=




∑

|β|=j

∥
∥Dβφ−Qm−jDβφ

∥
∥
2

0,D





1
2
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(2.7)
≤ CN,ρ0,ψ





∑

|β|=j

∣
∣Dβφ

∣
∣
2

m−j,D





1
2

≤ CN,ρ0,ψ (1 + j)
N−1

2 |φ|m,D .

Finally the assertion holds for a generic domain D by a standard scaling argu-
ment.

2.1.2 p-Estimates in Two Space Dimensions

The second theorem is Theorem 2.9 of [33]. Its proof uses complex analysis
techniques and thus that cannot be directly generalized to dimensions higher
than two: R2 is identified with C and the harmonic function to be approximated
is considered as the sum of a holomorphic function and the complex conjugate
of another holomorphic function. These two functions can be approximated by
complex polynomials and their conjugates.

Definition 2.1.3. We say that the domain D satisfies the exterior cone condi-
tion with angle λπ, λ ∈ (0, 1] if for every z ∈ C \D there is a cone C ⊂ C \D
with vertex in z and congruent to

C0(λπ, r) = {x ∈ C | 0 < arg x < λπ, |x| < r}.

A convex domain satisfies the exterior cone condition with angle π (λ = 1).

Theorem 2.1.4 ( [33, Theorem 2.9]). Let D ∈ R2 be a domain as in As-
sumption 1.1.1 that satisfies the exterior cone condition with angle λπ and
φ ∈ Hk+1(D), k integer ≥ −1. Then for every L ≥ k there exists a harmonic
polynomial PL of degree L such that

|φ− PL|j,D ≤ C hk+1−j

(
log(L + 2)

L+ 2

)λ(k+1−j)

|φ|k+1,D j = 0, . . . , k + 1,

(2.8)
where the constant C depends only on k and the shape of D.

The term (L + 2)−λ(k+1−j) gives the algebraic convergence of the approxi-
mation when the degree of the polynomials is raised. These orders are sharp
as shown in the numerical examples provided in [33, Section 2.4]. The speed of
convergence can be improved when the singularity is located on a convex corner
of the domain (see [33, Corollary 2.13]) and becomes exponential when the error
is measured on a compact subset (see [34, Section 2.5]).

For complete polynomial spaces, the term (log(L+2))λ(k+1−j) can be avoided
in the best approximation spectral estimates, but it is not guaranteed that,
given a harmonic function, this sharper estimate is attained with a harmonic
polynomial.

2.1.3 p-Estimates in N Space Dimensions

In two space dimensions, there are several results concerning the approximation
of harmonic functions by harmonic polynomials; see for example [43]. Since
all the proofs are based on complex analysis techniques, only very few of them
have been generalized to higher space dimensions. The proof of the density of
three dimensional harmonic polynomials dates back to the work of Bergmann
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and Walsh (see [9,38,42]) but the first estimates of the order of convergence are
much more recent (see [2, 7]).

The technique used by Melenk in the proof of Theorem 2.1.4 is based on
a deformation of the harmonic (holomorphic in two dimensions) function to a
function defined in a larger domain. Then, a classical result gives exponen-
tial convergence in the original domain, since it is compactly contained in the
enlarged one; the dilation reduce the speed of convergence to an algebraic order.

In order to exploit the same idea in higher space dimensions, we need a
result that gives exponential convergence in compact subdomains with a suitable
dependence on the size of the extended domain. This result is provided by [6]
and reported here in Theorem 2.1.8. This fact allows to prove Theorem 2.1.10
below, which generalizes Theorem 2.1.4 to higher space dimensions. For L large
enough, both statements give an algebraic order of convergence in L equal to
λ(k+1− j). The main difference between the two results is that the geometric
constant λ for N ≥ 3 is not explicit, even for convex domains. This fact prevents
the hp-estimates from being fully explicit. We are currently investigating how
to find an explicit bound for λ, at least for (three dimensional) convex domain,
by revisiting the proof of Theorem 2.1.8 given in [6] in this particular case.

In order to apply the compact subset convergence theorem, we need to re-
quire that our domain D is the interior of the complement of a John domain.
We report the definition of John domain, according to [6].

Definition 2.1.5. A domain Ω ⊂ RN is called a John domain if RN \ Ω is
nonempty and compact and there is a constant 0 < J ≤ 1 such that for every
y ∈ Ω there exists a locally rectifiable curve γ(s) ⊂ Ω, parametrized by the
arclength, with γ(0) = y and γ(∞) = ∞, such that d(γ(s),RN \ Ω) ≥ sJ , for
every positive s.

In two dimensions, if Ω is a John domain with constant J , then the interior of
its complement D = R2 \ Ω, satisfies the exterior cone condition with constant
λ = 2/π arcsinJ . The converse is not true, in general, but it depends on the
star-shapedness of D.

Remark 2.1.6. Let D ⊂ RN be a domain as in Assumption 1.1.1; the exterior
RN \D is a John domain with constant J ≥ ρ0/ρ: for every y /∈ D it is possible
to choose the curve γ of Definition 2.1.5 as the half line γ(s) = (1+ s/|y|)y. In
two dimensions, the cone {Bρ0s/ρ(γ(s))}s≥0 lies outside D, as shown in Figure
2.1.

Lemma 2.1.7. In any dimension N ≥ 2 an open bounded set D ⊂ RN is
convex if and only if the interior of its complement RN \D is a John domain
with constant J = 1.

Proof. If D is convex, we suppose without loss of generality that 0 ∈ D. For
every y /∈ D the curve γ(s) = (1 + s/|y|)y satisfies Definition 2.1.5 with J = 1.

We prove the converse by contradiction: we assume D to be non-convex and
RN \D to be a John domain with J = 1. Since D is non-convex there exist w1

and w2 ∈ D such that (w1 + w2)/2 /∈ D and since D is also open there exists
r ∈ (0, |w1 − w2|/2) such that Br(w1) ∪ Br(w2) ⊂ D. We assume without loss
of generality that w1 = (0, . . . , 0, z) and w2 = −w1; z > r follows.

By definition of John domain, there exists a curve γ(s) in the arclength s
such that γ(0) = (w1 + w2)/2 = 0 and d

(

γ(s), Br(w1) ∪ Br(w2)
)

≥ s for every
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Figure 2.1: The exterior of D is a John domain with J = ρ0/ρ. Given a point
y = γ(0) inside the re-entrant corner, the curve γ(s) is the dashed half line.

!h

0

!"h

D

#(s)
#(0)

s /! !"

s

real s > 0. We fix s∗ = z2/r − r and we have that γ(s∗) ∈ Bs∗ because γ is
parametrized by the arclength. We have:

s∗ ≤ d
(

γ(s∗), Br(w1) ∪Br(w2)
)

≤ sup
y∈Bs∗

d
(

y,Br(w1) ∪Br(w2)
)

= d
(

(s∗, 0, . . . , 0), Br(w1) ∪Br(w2)
)

= |(s∗, 0, . . . , 0)− w1|− r

=
√

s2∗ + z2 − r =

√

z4

r2
+ r2 − 2z2 + z2 − r

=

√

z4 + r2(r2 − z2)

r2
− r

r<z
<

z2

r
− r = s∗,

that is a contradiction because the last inequality is strict. This implies that if
J is equal to 1, then D must be convex.

We report Theorem 1 of [6], where the best approximation error for har-
monic functions with harmonic polynomials in the L∞–norm on the domain D
is bounded in terms of the L∞–norm of the harmonic functions on an enlarged
domain. We will use the following notation:

Dδ = {x ∈ R
N : d(x,D) < δh}.

Theorem 2.1.8 ( [6, Theorem 1]). Let D ⊂ RN be an open set such that its
exterior RN \ D is a John domain. Then there exist constants p > 0, b > 1,
q > 0 and C > 0 depending only on D, such that, for every δ ∈ (0, 1), for every
φ harmonic in Dδ, and for every polynomial degree L > 0, it holds

inf
P∈HL

‖φ− P‖L∞(D) ≤ C (δh)−p b−L(δh)q ‖φ‖L∞(Dδ) . (2.9)

We cannot expect that the function φ we want to approximate can be ex-
tended outside the domainD because a singularity can be present on the bound-
ary of D. In order to use this Theorem 2.1.8, we need to introduce a function
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Tφ defined on a neighborhood of D such that: i) Tφ has the same regularity
of φ; ii) is harmonic; iii) Tφ approximates φ in the different Sobolev norms.
In the next lemma we build a function that satisfies this requirements using a
technique analogue to the one used in [33, Lemma 2.11].

Lemma 2.1.9. Let D⊂RN be a domain as in Assumption 1.1.1, φ ∈ Hk+1(D),
k ∈ N, ε ∈ (0, 1/2). Denote by Dε ⊃ D the enlarged domain

Dε :=
1

1− ε
D =

(

1 +
ε

1− ε

)

D,

and by Tl[φ](x) the functions defined on Dε by

Tl[φ](x) := T l+1
(1−ε)x[φ](x) =

∑

|α|≤l

1

α!
Dαφ

(

(1− ε)x
)

(εx)α l = 0, . . . , k.

(2.10)
Then:

(i)
ρ0 h ε ≤ d(D, ∂Dε) ≤ 2 h ε; (2.11)

(ii) there exist a constant CN,k independent of ε, D and φ such that

‖Tk[φ]‖0,Dε
≤ CN,k

k
∑

l=0

(εh)l |φ|l,D ; (2.12)

(iii) for every multi-index β, |β| ≤ k

Dβ Tk[φ] =

|β|
∑

l=0

(
|β|
l

)

εl (1− ε)|β|−l Tk−l[D
βφ], (2.13)

which also implies that if φ is harmonic in D then Tk[φ] is harmonic in
Dε;

(iv) if φ is harmonic in D, there exist a constant CN,k independent of ε, D
and φ such that

|φ− Tk[φ]|j,D ≤ CN,k ρ−j
0 (εh)k+1−j |φ|k+1,D ∀ j = 0, . . . , k. (2.14)

Proof. Item (i) follows from the bound

ρ0hε ≤
ρ0hε

1− ε
≤ d(D, ∂Dε) ≤ sup

x∈D
d
(

x,
1

1− ε
x
)

≤ h
( 1

1− ε
− 1

)

=
hε

1− ε
≤ 2hε,

where the second inequality is proved in [32, Appendix A.3] (due to the slightly
different definitions of Dε, the ε of [32, Appendix A.3] corresponds to our ε

1−ε ).
The bound (2.12) in item (ii) is straightforward:

‖Tk[φ]‖20,Dε
≤
∫

Dε

∑

|α|≤k

1

(α!)2

∣
∣
∣Dαφ

(

(1− ε)x
)
∣
∣
∣

2
|εx|2|α| dx (#{α : |α| ≤ k})
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y=(1−ε)x
≤

∫

D

∑

|α|≤k

1

(α!)2

∣
∣
∣Dαφ (y)

∣
∣
∣

2 ∣
∣
∣

εh

1− ε

∣
∣
∣

2|α| dy

(1− ε)N
(#{α : |α| ≤ k})

l=|α|
≤ CN,k

k∑

l=0

(εh)2l |φ|2l,D.

For item (iii), we proceed by induction on |β|. For the case |β| = 1, given
m ∈ {1, . . . , N}, we denote em = (0, . . . , 0

︸ ︷︷ ︸

m−1

, 1, 0, . . . , 0) ∈ NN and by αm the

m–th component of α; then

DxmTk[φ](x) =
∑

|α|≤k

(1 − ε)

α!
(DxmDα)φ

(

(1 − ε)x
)

(εx)α

+
∑

|α|≤k
αm≥1

1

α!
Dαφ

(

(1− ε)x
)

εαm (εx)α−em

γ=α−em= (1− ε) Tk[Dxmφ](x) +
∑

|γ|≤k−1

ε(γm + 1)

(γm + 1)γ!
Dγ+emφ

(

(1− ε)x
)

(εx)γ

= (1− ε) Tk[Dxmφ](x) + ε Tk−1[Dxmφ](x),
(2.15)

this gives (2.13) in the case |β| = 1. Now we proceed by induction for 2 ≤ |β| ≤
k. Let assume that (2.13) holds for every multi-index γ such that 1 ≤ |γ| <
|β| ≤ k. Given β, there exists m ∈ 1, . . . , N and γ ∈ NN such that β = γ + em;
then

DβTk[φ] =DxmDγTk[φ]
induction
(2.13)
=

|β|−1
∑

l=0

(
|β|− 1

l

)

εl (1 − ε)|β|−1−l DxmTk−l[D
γφ]

(2.15)
=

|β|−1
∑

l=0

(
|β|− 1

l

)

εl(1− ε)|β|−1−l
[

(1− ε) Tk−l[D
βφ] + ε Tk−l−1[D

βφ]
]

=

|β|
∑

l=0

(
|β|
l

)

εl (1− ε)|β|−l Tk−l[D
βφ]

where the last identity follows from Pascal’s rule
(
j−1
l

)

+
(
j−1
l−1

)

=
(
j
l

)

.
In order to prove (2.14) of item (iv), we fix a multi-index β and a integer l,

0 ≤ l ≤ |β| = j ≤ k. From the formula for the remainder of the multivariate
Taylor polynomial, we have

∥
∥Dβφ− Tk−l[D

βφ]
∥
∥
2

0,D

=

∫

D

∣
∣
∣
∣
∣
∣

∑

|α|=k−l+1

k − l + 1

α!
(xε)α

∫ 1

0
(1− t)k−l DαDβφ

(

(1 − ε+ tε)x
)

dt

∣
∣
∣
∣
∣
∣

2

dx

≤ Ck,N (hε)2(k−l+1)

∫ 1

0
(1− t)2(k−l)

∑

|α|=k−l+1

∫

D

∣
∣DαDβφ

(

(1− ε+ tε)x
)∣
∣
2
dxdt
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≤ Ck,N (hε)2(k−l+1)

∫ 1

0
(1 − t)2(k−l) |φ|2k−l+1+j,(1−ε+tε)D dt,

where the seminorm on the right-hand side is well defined, though φ belongs
only to Hk+1(D), because since it is harmonic, it is C∞ in the interior of D.
Thus,

∥
∥Dβφ− Tk−l[D

βφ]
∥
∥
2

0,D

(1.33)
≤ Ck,N (hε)2(k−l+1)

∫ 1

0
(1− t)2(k−l)d

(

(1− ε + tε)D, ∂D
)−2(j−l) |φ|2k+1,D dt

≤ Ck,N ρ−2j
0 (hε)2(k−j+1) |φ|2k+1,D ,

because (1 − ε + tε)D is star-shaped with respect to Bρ0h(1−ε+tε), d
(

(1 − ε +
tε)D, ∂D

)

≥ ρ0h(1−t)ε thanks to [32, Appendix A.3] and the remaining integral

is
∫ 1
0 (1− t)2(k−j) dt ≤ 1.
Finally we use the fact that the sum of the coefficients in (2.13) is equal to 1

and obtain

|φ− Tk[φ]|j,D ≤
∑

|β|=j

∥
∥Dβφ−DβTk[φ]

∥
∥
0,D

(2.13)
=

∑

|β|=j

∥
∥
∥
∥
∥

j
∑

l=0

(
j

l

)

εl (1− ε)j−l (Dβφ− Tk−l[D
βφ])

∥
∥
∥
∥
∥
0,D

≤
∑

|β|=j

j
∑

l=0

(
j

l

)

εl (1− ε)j−l
∥
∥Dβφ− Tk−l[D

βφ]
∥
∥
0,D

≤Ck,N ρ−j
0 (hε)k+1−j |φ|k+1,D .

This lemma allows to apply Theorem 2.1.8 to harmonic functions with given
Sobolev regularity in D, regardless of their possibilities of extension outside this
set. For L large enough, the obtained order of convergence is algebraic and
depends on the difference between the norms on the right- and left-hand side
(namely, k+1− j), and on a parameter λ that depends on the geometry of the
domain. The following theorem is the three-dimensional analogue of the two-
dimensional result given in Theorem 2.1.4. Without any further assumption on
D, we cannot expect to find a fully explicit speed of convergence. As mentioned
before, estimates of λ at least for convex domains are under study.

Theorem 2.1.10. Fix k ∈ N and let D ⊂ RN , N ≥ 2, be a domain as in
Assumption 1.1.1. Then there exist three constants:

C > 0 depending only on k, N and the shape of D,

q > 0, b > 1 depending only on the shape of D

such that

for every L ≥ max{k, 2q} and for every φ ∈ Hk+1(D) harmonic in D,
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there exists a harmonic polynomial P of degree L that satisfies

|φ− P |j,D ≤ C hk+1−j
(

L−λ(k+1−j) + b−L1−λq

Lλ(1+j+N
2 )
)

|φ|k+1,D

∀ 0 ≤ j ≤ k, ∀ λ ∈ (log 2/ logL, 1/q).

(2.16)

If the degreeL is large enough, 1−λq is positive, the second term on the right-
hand side is smaller than the first one and the convergence in L is algebraic with
order λ(k + 1− j). The coefficient λ depends only on the shape of D (through
the constant q of Theorem 2.1.8).

Proof of Theorem 2.1.10. Firstly, we fix three small positive constants ε1, ε2, ε3
in the interval (0, 1/2) and define ε∗ := 1− (1− ε1)(1− ε2)(1− ε3) < ε1 + ε2+ ε3.
For every domain Ω we can define

Ω′
ε :=

1

1− ε1
Ω, Ω′′

ε :=
1

1− ε2
Ω′

ε =
1

(1− ε1)(1− ε2)
Ω,

Ω′′′
ε :=

1

1− ε3
Ω′′

ε =
1

(1 − ε1)(1− ε2)(1− ε3)
Ω =

1

1− ε∗
Ω,

Ω̂ :=
1

h
Ω.

For every function f defined on Ω, we also define f̂(x̂) = f(hx̂) on Ω̂.
Thanks to Remark 2.1.6, we can apply Theorem 2.1.8: for every T ∈ Hj(D′′′

ε )
and harmonic, there exists a harmonic polynomial P̃L of degree at most L such
that

∣
∣
∣T − P̃L

∣
∣
∣
j,D

≤ CN,j h
N
2 −j

∣
∣
∣T̂ − ˆ̃PL

∣
∣
∣
j,D̂

(1.33)
(2.11)
≤ CN,j h

N
2 −j (ρ0ε1)

−j
∥
∥
∥T̂ − ˆ̃PL

∥
∥
∥
0,D̂′

ε

≤ CN,j h
N
2 −j |D̂′

ε|
1
2 (ρ0ε1)

−j
∥
∥
∥T̂ − ˆ̃PL

∥
∥
∥
L∞(D̂′

ε)

(2.9)
≤ CN,j,D̂ h

N
2 −j

(
1

1− ε1

)N
2

(ρ0ε1)
−jε−p

2 b−Lεq2

∥
∥
∥T̂

∥
∥
∥
L∞(D̂′′

ε )

(1.30)
≤ CN,j,D̂ h

N
2 −j (ρ0ε1)

−jε−p
2 b−Lεq2 ε

−N
2

3

∥
∥
∥T̂

∥
∥
∥
0,D̂′′′

ε

≤ CN,j,D̂ h−j ε−j
1 ε−p

2 b−Lεq2 ε
−N

2
3 ‖T ‖0,D′′′

ε
.

(2.17)
Now we define

φ̃ := φ−Qk+1φ,

where Qk+1φ is the averaged Taylor polynomial of φ from Definition 2.1.1. We
choose

T := Tk[φ̃]

from Lemma 2.1.9, using ε = ε∗. Let P̃L be the polynomial that approximate T
on D from Theorem 2.1.8 as above, so that (2.17) is satisfied. Finally we define

PL := P̃L +Qk+1φ
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that is a harmonic polynomial of degree at most L, because k ≤ L and thanks
to (2.4).

These definitions allow to gather all the approximation results proved so far
in the following estimate:

∣
∣φ− PL

∣
∣
j,D

=
∣
∣
∣φ̃+Qk+1φ− P̃L −Qk+1φ

∣
∣
∣
j,D

≤
∣
∣
∣φ̃− Tk[φ̃]

∣
∣
∣
j,D

+
∣
∣
∣Tk[φ̃]− P̃L

∣
∣
∣
j,D

(2.14)
(2.17)
≤ CN,k ρ

−j
0 (ε∗h)

k+1−j
∣
∣
∣φ̃
∣
∣
∣
k+1,D

+ CN,j,D̂ h−j ε
−j
1 ε−p

2 ε
−N

2
3

bLεq2

∥
∥
∥Tk[φ̃]

∥
∥
∥
0,D′′′

ε

(2.12)
≤ CN,j,k,D̂

(

(ε∗h)
k+1−j

∣
∣
∣φ̃
∣
∣
∣
k+1,D

+
ε−j
1 ε−p

2 ε
−N

2
3

bLεq2

k
∑

l=0

εl∗h
l−j

∣
∣
∣φ̃
∣
∣
∣
l,D

)

(2.5)
≤ CN,j,k,D̂

(

εk+1−j
∗ +

ε−j
1 ε−p

2 ε
−N

2
3

bLεq2

k
∑

l=0

εl∗

)

hk+1−j
∣
∣
∣φ̃
∣
∣
∣
k+1,D

≤ CN,j,k,D̂

(

εk+1−j
∗ +

ε−j
1 ε−p

2 ε
−N

2
3

bLεq2

)

hk+1−j |φ|k+1,D .

Now, for every λ ∈ (log 2/ logL, 1/q) we can fix ε1 = ε2 = ε3 = L−λ < 1
2 . This

gives

∣
∣φ− PL

∣
∣
j,D

≤ CN,j,k,D̂

(

L−λ(k+1−j) +
Lλ(j+p+N

2 )

bL1−λq

)

hk+1−j |φ|k+1,D ,

and we obtain the thesis.

2.2 Approximation of Homogeneous Helmholtz

Solutions

Now we are able to bound the error in the approximation of solutions of the
homogeneous Helmholtz equation by generalized harmonics polynomials. These
estimates guarantee the convergence in the diameter h and in the degree L. We
only have to combine the results of Theorems 1.2.1, 2.1.2, 2.1.4 and 2.1.10.

Theorem 2.2.1. Let D ⊂ RN be a domain as in Assumption 1.1.1, k ∈ N and
u ∈ Hk+1(D) be a solution of the homogeneous Helmholtz equation (1.4) in D.
Then the following results hold.

(i) h-estimates:
For every N ≥ 2 and for every L ≤ k there exists a generalized harmonic
polynomial QL of degree at most L such that, for every j ≤ L+1, it holds

‖u−QL‖j,ω,D ≤ C (1 + L)
7
2N ej+L hL+1−j ‖u‖L+1,ω,D , (2.18)

where the constant C depends only on ωh, ρ, ρ0 and N , but is independent
of L, j and u. In particular, this holds when QL = V1

[

QL+1V2[u]
]

, where
QL+1V2[u] denote the averaged Taylor polynomial of degree L+1 of V2[u]
(see Definition 2.1.1 and Theorem 2.1.2).
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(ii) h-estimates, explicit in ωh:
If N = 2, 3, for every L ≤ k there exists a generalized harmonic polynomial
QL of degree at most L such that, for every j ≤ L+ 1, it holds

‖u−QL‖j,ω,D

≤ C (1 + L)4N− 1
2 ej+L

(

1 + (ωh)j+6
)

e
3
4 (1−ρ)ωh hL+1−j ‖u‖L+1,ω,D ,

(2.19)

where the constant C depends only on ρ, ρ0 and N , but is independent of
h, ω, L, j and u. Again, this holds when QL = V1

[

QL+1V2[u]
]

.

(iii) Explicit hp-estimates in two space dimensions:
If N = 2 and D satisfies the exterior cone condition with angle λπ (see
Definition 2.1.3), then for every L ≥ k there exist a generalized harmonic
polynomial Q′

L of degree at most L such that, for every j ≤ k+1, it holds

‖u−Q′
L‖j,ω,D

≤ C
(

1 + (ωh)j+6
)

e
3
4 (1−ρ)ωh

(
log(L+ 2)

L+ 2

)λ(k+1−j)

hk+1−j ‖u‖k+1,ω,D ,

(2.20)

where the constant C depends only on the shape of D, j and k, but is
independent of h, ω, L and u. This holds when Q′

L = V1[P ′L], where
P ′L is the harmonic polynomial approximating V2[u] provided by Theorem
2.1.4; notice that (2.20) holds also for k = −1.

(iv) hp-estimates in two and three space dimensions:
If N = 2, 3, for every L ≥ max{k, tD}, where tD is a threshold depending
only on the shape of D (see Theorem 2.1.10), there exist a generalized
harmonic polynomial Q′′

L of degree at most L such that, for every j ≤ k+1,
it holds

‖u−Q′′
L‖j,ω,D

≤ C
(

1 + (ωh)j+6
)

e
3
4 (1−ρ)ωh L−λ(k+1−j) hk+1−j ‖u‖k+1,ω,D ,

(2.21)

where λ > 0 depends only on the shape of D and the constant C depends
only on the shape of D, j, k and N , but is independent of h, ω, L and u.
In particular, this holds when Q′′

L = V1[P ′′L], where P ′′L is the harmonic
polynomial approximating V2[u] provided by Theorem 2.1.10.

Proof. In order to prove both items (i) and (ii), we choose the same QL =
V1

[

QL+1V2[u]
]

, and we use the continuity of the Vekua operators (1.12), (1.13),
(1.15) and the Bramble-Hilbert Theorem 2.1.2. For every N ≥ 2 we have

‖u−QL‖2j,ω,D

(1.12)
≤ C(1 + j)3N+1e2j(1 + (ωh)2)2

j
∑

l=0

ω2(j−l)
∣
∣V2[u]−QL+1V2[u]

∣
∣
2

l,D

(2.5)
≤ C(1 + j)3N+1e2j(1 + (ωh)2)2

44



·
j

∑

l=0

ω2(j−l)(1 + L)N−1 h2(L+1−l) |V2[u]|2L+1,D

≤ C(1 + j)4N+1e2j(1 + (ωh)j+2)2 h2(L+1−j) |V2[u]|2L+1,D

(1.13)
≤ Cωh,ρ (1 + j)4N+1e2j h2(L+1−j) (L+ 1)3N−1e2(L+1) ‖u‖2L+1,ω,D

≤ C(1 + L)7Ne2(j+L) h2(L+1−j) ‖u‖2L+1,ω,D ,

and for N = 2, 3 we obtain

‖u−QL‖2j,ω,D ≤ C(1 + j)4N+1e2j(1 + (ωh)j+2)2 h2(L+1−j) |V2[u]|2L+1,D

(1.15)
≤ C(1 + j)4N+1e2j(1 + (ωh)j+2+4)2 h2(L+1−j)

· (L+ 1)4N−2e2(L+1)e
3
2 (1−ρ)ωh ‖u‖2L+1,ω,D

≤ C(1 + L)8N−1e2(j+L)(1 + (ωh)j+6)2 h2(L+1−j) e
3
2 (1−ρ)ωh ‖u‖2L+1,ω,D .

Items (iii) and (iv) can be proved in a similar way by choosing Q′
L = V1[P ′L]

and Q′′
L = V1[P ′′L], with P ′L and P ′′L approximations to V2[u] provided by

Theorems 2.1.4 and 2.1.10, respectively. For N = 2 we have

‖u−Q′
L‖

2
j,ω,D

(1.12)
≤ C (1 + j)7e2j(1 + (ωh)2)2

j
∑

l=0

ω2(j−l)
∣
∣V2[u]− P ′L∣∣2

l,D

(2.8)
≤ Cj,k,D̂ (1 + (ωh)2)2

j
∑

l=0

ω2(j−l)h2(k+1−l)

·
(
log(L+ 2)

L+ 2

)2λ(k+1−l)

|V2[u]|2k+1,D

≤ Cj,k,D̂ (1 + (ωh)j+2)2
(
log(L+ 2)

L+ 2

)2λ(k+1−j)

h2(k+1−j) |V2[u]|2k+1,D

(1.15)
≤ Cj,k,D̂ (1 + (ωh)j+6)2e

3
2 (1−ρ)ωh

·
(
log(L+ 2)

L+ 2

)2λ(k+1−j)

h2(k+1−j) ‖u‖2k+1,ω,D ,

while for N = 2, 3 we obtain

‖u−Q′′
L‖

2
j,ω,D

(1.12)
≤ C (1 + j)3N+1e2j(1 + (ωh)2)2

j
∑

l=0

ω2(j−l)
∣
∣V2[u]− P ′′L∣∣2

l,D

(2.16)
≤ Cj,k,D̂,N (1 + (ωh)2)2

j
∑

l=0

ω2(j−l)h2(k+1−l) L−2λ(k+1−l) |V2[u]|2k+1,D

≤ Cj,k,D̂,N (1 + (ωh)j+2)2L−2λ(k+1−j) h2(k+1−j) |V2[u]|2k+1,D

(1.15)
≤ Cj,k,D̂,N (1 + (ωh)j+6)2e

3
2 (1−ρ)ωhL−2λ(k+1−j) h2(k+1−j) ‖u‖2k+1,ω,D .
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Chapter 3

Plane Wave Approximation

Estimates

In order to approximate a generic solution of the homogeneous Helmholtz equa-
tion by using a finite dimensional space of plane wave functions, we proceed in
two steps: first, we approximate the homogeneous Helmholtz solution by a gen-
eralized harmonic polynomial, then we approximate the generalized harmonic
polynomial by a linear combination of plane waves.

The first step has been dealt with in Chapter 2, and we study the second
one in Section 3.1. Since we have to link plane waves to circular and spherical
waves, the proof of the approximation estimates relies on the use of the Jacobi-
Anger expansion and on a careful bound of all the resulting terms. This proof
is closely related to the existence of a basis of the plane waves space that does
not degenerate for small wavenumbers.

For the two dimensional case, a stable basis was already introduced in [26].
Here, with the same technique based on the Jacobi-Anger expansion and the
definition of the generalized harmonic polynomials, we introduce new stable
bases both in two and three dimensions. By using these new stable bases, we
derive best approximation error estimates for generalized harmonic polynomials
in plane wave spaces. More precisely, in two space dimensions, we can prove
error estimate with sharp algebraic order of convergence in h, the diameter of
the domain, and a faster than exponential speed of convergence in p, the number
of plane waves used (see Lemma 3.1.3). In the three-dimensional case, we are
able to prove only h–estimates (see Lemma 3.1.6).

In Section 3.2, we combine these results with the ones obtained in Chapter 2
and get approximation estimates for solutions of the homogeneous Helmholtz
equation by using plane waves. We prove sharp h–estimates in two and three
dimensions and hp–estimates in two dimensions. All the speeds of convergence
are algebraic and the rates are given explicitly in terms of the Sobolev regularity
of the approximating function, the number of plane waves in the approxima-
tion space and the order of the Sobolev norm used to measure the error (see
Theorems 3.2.2 and 3.2.3).
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3.1 Approximation of Generalized Harmonic Po-

lynomials by Plane Waves

We fix p ∈ N, p ≥ 1, different directions {dk}k=1,...,p in SN−1 and define the
approximating plane wave space

PWω,p(R
N ) :=

{

u ∈ C∞(RN ) : u(x) =
p
∑

k=1

αk eiωx·dk , αk ∈ C

}

.

We will always choose

p = dimPWω,p(R
N ) =

q
∑

l=0

n(N, l)

= dim{N–dimensional harmonic polynomials of degree ≤ q}.

for some q ∈ N. This means

p =

{

2q + 1 in two dimensions ,

(q + 1)2 in three dimensions .

We will see that we need at least p plane waves in order to approximate all the
generalized harmonic polynomials of degree at most q.

We study only the interesting cases N = 2, 3, but it is clear that everything
can be extended to higher space dimensions.

3.1.1 Stable Bases

It is well-known that the plane waves Galerkin matrix associated with the L2(D)
inner product is very ill-conditioned when the wavenumber is low or when the
size of the domain is small. In fact the plane waves tend to be linearly dependent
in the limit ω → 0. In order to cope with this problem it is possible to introduce
a basis for the space PWω,p(RN ) that is stable with respect to this limit. For
the two dimensional case, a stable basis was already introduced in [26, Sec. 3.1].

In three dimensions, thanks to the Jacobi-Anger expansion and the definition
of the generalized harmonic polynomials, we can easily find a stable basis for
PWω,p(R3).

We fix q ∈ N, p = (q + 1)2 and the p directions {dl,m}l=0,...,q; |m|≤l that
define PWω,p(R3) such that the p× p matrix

M =
{

Ml,m;l′,m′

}

l=0,...,q, |m|≤l,
l′=0,...,q, |m′|≤l′

=
{

Yl,m(dl′,m′)
}

l=0,...,q, |m|≤l,
l′=0,...,q, |m′|≤l′

(3.1)

is invertible.
Since vector indices are often denoted by a pair of integers separated by a

comma (e.g., dl,m), here and in the following we use the semicolon to sepa-
rate the row and column indices of second order matrices (e.g., Ml,m;l′,m′). The
components of vectors and matrices will be denoted by round brackets with sub-
scripts, whenever their names are composite (e.g., (Md)l,m or (M−1)l,m;l′,m′).
The superscript −t will be used to denote the transpose of the inverse (i.e.,
M−t = (M−1)t).
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We define the p elements of PWω,p(R3)

bl,m(x) =
Γ
(

l + 3
2

)

2π
3
2

( 2

ω

)l ∑

l′=0,...,q,
|m′|≤l′

(M−t)l,m;l′,m′ eiωx·dl′,m′

l = 0, . . . , q, |m| ≤ l.

(3.2)

We can compute with (A.16):

bl,m(x) = 4π
Γ
(

l + 3
2

)

2π
3
2

( 2

ω

)l ∑

l̃∈N,
|m̃|≤l̃

il̃ jl̃(ω|x|) Yl̃,m̃

( x

|x|

)

·
∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,mYl̃,m̃(dl′,m′)

=
2 Γ

(

l + 3
2

)

√
π

( 2

ω

)l
[

il jl(ω|x|) Yl,m

( x

|x|

)

+
∑

l̃>q,
|m̃|≤l̃

il̃ jl̃(ω|x|) Yl̃,m̃

( x

|x|

) ∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,mYl̃,m̃(dl′,m′)

]

(1.54)
= V1

[

|x|l Yl,m

( x

|x|

)]

+O(ωq+1−l)ω→0,

thanks to to the asymptotic properties of the spherical Bessel functions (A.10)
and to

∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,mYl̃,m̃(dl′,m′) =
∑

l′=0,...,q,
|m′|≤l′

(M−1)l′,m′;l,m(M)l̃,m̃;l′,m′

= δl,l̃ δm,m̃, if |m̃| ≤ l̃ ≤ q.

The functions bl,m constitute a basis in PWω,p(R3); since

bl,m(x)
ω→0−→ |x|l Yl,m

( x

|x|

)

uniformly on compact sets, this basis does not degenerate for small positive ω
and its mass matrix is well conditioned.

In two dimensions, using this same technique, it is possible to define a stable
basis in a simpler way than in [26]:

bl(x) := (−i)l γl |l|!
(
2

ω

)|l| q
∑

l′=−q

(A−t)l;l′ e
iωx·dl′ l = −q, . . . , q, (3.3)

where γl = 1 if l ≥ 0 and γl = (−1)l if l < 0, the plane waves directions are

dl = (cos θl, sin θl) l = −q, . . . , q, dl /= dk ∀ l /= k,

and the matrix A is

A =
{

Al;l′
}

l=−q,...,q
l′=−q,...,q

=
{

e−ilθl′
}

l=−q,...,q
l′=−q,...,q

.
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With this definition, using the polar coordinates x = r(cosψ, sinψ), we can
easily prove that

bl(x) = (−i)l γl |l|!
(
2

ω

)|l| q
∑

l′=−q

(A−t)l;l′ e
iωr cos(ψ−θl′)

(A.15)
= (−i)l γl |l|!

(
2

ω

)|l| ∑

l̃∈Z

il̃ Jl̃(ωr) e
il̃ψ

q
∑

l′=−q

(A−t)l;l′ e
−il̃θl′

= (−i)l γl |l|!
(
2

ω

)|l|


il Jl(ωr) e
ilψ +

∑

|l̃|>q

il̃ Jl̃(ωr) e
il̃ψ

q
∑

l′=−q

(A−t)l;l′ e
−il̃θl′





1.52
(A.2)
= V1

[

r|l|eilψ
]

+O(ωq+1−|l|)ω→0.

The existence of a stable basis and the proof of the convergence of the plane
wave approximation require the matrices A and M to be invertible. This is the
case if and only if the sets of directions {dl} or {dl,m} (in two or three dimensions,
respectively) constitute a fundamental system for the harmonic polynomials of
degree at most q. In two dimensions, if the directions dl are all different from
each other, this is always true, as we will see in the proof of Lemma 3.1.3. In
three dimensions, we prove in the following two lemmas that there exist many
configurations of directions that make M invertible and provide an example.

Lemma 3.1.1. Let the matrix M be defined as in (3.1). The set of the con-
figuration of directions {dl,m}l=0,...,q, |m|≤l that makes M invertible is a dense
open subset of (S2)p.

Proof. The spherical harmonics Yl,m = Yl,m(sin θ cosϕ, sin θ sinϕ, cos θ) are po-
lynomial functions of sin θ, cos θ, sinϕ, cosϕ, and the same is the determinant
det(M) : (S2)p → C. This implies that it is continuous and then the pre-image
[det(M)]−1{C \ 0} is an open set.

The existence of at least one configuration of directions {dl,m}l=0,...,q; |m|≤l

such that M is invertible is guaranteed by a simple generalization (to non con-
stant degrees n) of Lemma 6 of [36], or by Lemma 3.1.2 below. Since a trigono-
metric polynomial is equal to zero in an open set of R2p if and only if it is zero
everywhere, then det(M) is zero only in a closed subset of (S2)p with empty
interior, which means that M is invertible on a dense set.

Lemma 3.1.2. Given q ∈ N, let the p = (q+1)2 directions on S2 be chosen as

dl,m =
(

sin θl cosϕl,m, sin θl sinϕl,m, cos θl
)

for all l = 0, . . . , q, |m| ≤ l, where the q+1 colatitude angles {θl}l=0,...,q ⊂ (0,π)
are all different from each other, and the azimuths {ϕl,m}l=0,...,q;|m|≤l ⊂ [0, 2π)
satisfy ϕl,m /= ϕl,m′ for every m /= m′.

Then the matrix M defined in (3.1) is invertible.

Proof. We define

cl = cos θl l = 0, . . . , q,
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Nl,m =

√

(2l+ 1)(l −m)!

4π (l +m)!
|m| ≤ l ≤ q.

We notice that the values cl are all different in (−1, 1) and, thanks to (A.14), it
is possible to write the elements of the matrix in the form

Ml,m;l′,m′ = Nl,m Pm
l (cl′) e

imϕl′,m′ ,

where Pm
l denote the Legendre function of orderm associated with the Legendre

polynomial of degree l (see (A.12)).
For every m ∈ {0, . . . , q}, we define the square matrix of dimension q−m+1

Sm =
{

Sm
j;l

}

j=m,...,q
l=m,...,q

=
{

DmPl(cj)
}

j=m,...,q
l=m,...,q

,

where DmPl are the mth derivatives of the Legendre polynomials of degree l
defined in (A.11) and constitute a basis of the space of the polynomials of degree
q − m. If the vector η ∈ Rq−m+1 belongs to the kernel of Sm, i.e., Smη = 0,
then we have

0 = (Smη)j =
q

∑

l=m

DmPl(cj) ηl ∀ j = m, . . . , q,

that means the polynomial
∑q

l=m DmPl(x)ηl of degree q − m has q − m + 1
distinct zeroes. This implies that η = 0 and hence the matrix Sm is invertible.

This fact also implies the invertibility of the matrices

{

Rm
j;l

}

j=m,...,q
l=m,...,q

= (−1)m diag
(

{(1− c2j)
m
2 }j=m,...,q

)

· Sm · diag
(

{Nl,m}l=m,...,q

)

=
{

(−1)m Nl,m (1− c2j )
m
2 DmPl(cj)

}

j=m,...,q
l=m,...,q

(A.12)
=

{

Nl,m Pm
l (cj)

}

j=m,...,q
l=m,...,q

m = 0, . . . , q,

where Pm
l are the associated Legendre functions. Similarly, also the matrices

{

R−m
j;l

}

j=m,...,q
l=m,...,q

= diag
(

{(1− c2j)
m
2 }j=m,...,q

)

· Sm

· diag

(
{
(l −m)!

(l +m)!
Nl,−m

}

l=m,...,q

)

=

{

Nl,−m
(l −m)!

(l +m)!
(1− c2j)

m
2 DmPl(cj)

}

j=m,...,q
l=m,...,q

(A.12)
=

{

Nl,−m P−m
l (cj)

}

j=m,...,q
l=m,...,q

m = 1, . . . , q,

are invertible.
We fix a vector ξ in Cp such that

(M tξ)l′,m′ =
∑

l=0,...,q
|m|≤l

Yl,m(dl′,m′) ξl,m = 0 ∀ l′ = 0 . . . , q, |m′| ≤ l′.
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If we show that ξl,m = 0 for all l = 0, . . . , q and m = −l, . . . , l, then M t (and
thus M) is invertible and the proof is complete.

We define the functions

am(θ) =
q

∑

l=|m|

ξl,m Nl,m Pm
l (cos θ) ∀ m = −q, . . . , q, θ ∈ (0,π), (3.4)

so that, owing to (A.14), we have

(M tξ)l′,m′ =
q

∑

m=−q

am(θl′) e
imϕl′,m′ = 0 ∀ l′ = 0, . . . , q, |m′| ≤ l′.

(3.5)
The last expression in the case l′ = q reads

q
∑

m=−q

am(θq) e
imϕq,m′ = 0 ∀ m′ = −q, . . . , q.

Thus, the function
∑q

m=−q am(θq) eimϕ is a trigonometric polynomial of degree
q in the variable ϕ with 2q + 1 zeroes, so its coefficients vanish:

am(θq) = 0 ∀ m = −q, . . . , q. (3.6)

Take m = q; thanks to (3.4) and (A.13), we have

0 = aq(θq) = ξq,q Nq,q P
q
q (cos θq) = ξq,q Nq,q (−1)q

(2q)!

2q q!
(1− cos2 θq)

q
2 ,

that implies ξq,q = 0 and also aq(θ) = 0 for every θ ∈ (0,π). Similarly we can
prove that ξq,−q = 0 and a−q(θ) = 0 for every θ ∈ (0,π).

Now we proceed by induction on the index m decreasing from q − 1 to 0:

induction hypotheses

{

ξl,m = 0 m < |m| ≤ l ≤ q, (A)

am(θj) = 0 |m| ≤ m < j ≤ q. (B)

We have already verified the induction hypotheses at the initial step m = q− 1:
ξq,±q = 0 and am(θq) = 0 for all |m| ≤ q (see (3.6)), and in particular for all
|m| ≤ q − 1.

Let us suppose that (A) and (B) hold for a fixed m ∈ {0, . . . , q − 1}. We
have to prove

induction assertions

{

ξl,m = 0 m = |m| ≤ l ≤ q, (A’)

am(θj) = 0 |m| ≤ m = j. (B’)

The equation (3.5) for l′ = m reads

m
∑

m=−m

am(θm) eimϕm,m′ = 0, ∀ |m′| ≤ m,

since, thanks to (A) and (3.4), am(θm) = 0 for |m| > m. This is a trigonometric
polynomial in ϕ of degree m having 2m+ 1 zeroes {ϕm,m′}m′=−m,...,m, so it is
identically zero and am(θm) = 0 for every |m| ≤ m, that is (B’).
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Thanks to (B) and (B’), for every j ∈ {m, . . . , q} holds

0 = am(θj)
(3.4)
=

q
∑

l=m

ξl,m Nl,m Pm
l (cos θj) =

q
∑

l=m

Rm
j,l ξl,m,

and the analogous is true with the index −m. Since R±m are invertible, we
have (A’) and the induction argument is complete.

We conclude that all the coefficient ξl,m are equal to zero, thus M is invert-
ible.

Figure 3.1: A graphical representation of the backward induction on the index
m in the proof of Lemma 3.1.2 with q = 8 and p = 81. At the step m = 4 the
coefficients in the grey squares are zero (hypothesis (A)). The induction step
shows that also the coefficients in the two boxes are equal to zero (assertion
(A’)).
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Lemma 3.1.2 provides a quite general class of configurations of plane wave
directions {dl,m}l=0,...,q; |m|≤l that renders the matrixM invertible. This implies
the existence of a stable basis in PWω,p(R3) and allows to prove the approxima-
tion estimates in Section 3.1.3. In order to fulfill the hypotheses of Lemma 3.1.2,
the directions have to satisfy only the following geometric requirement: there
exists q + 1 different heights zj ∈ (−1, 1) such that exactly 2j + 1 different
vectors dl,m belong to S2 ∩ {(x, y, z), z = zj}j=0,...,q.

An example of directions satisfying this condition with q = 3 is shown in
Figure 3.2.

3.1.2 The Two-Dimensional Case

In two space dimensions, thanks to the Jacobi-Anger expansion and the spe-
cial properties of the circular harmonics Yl(θ) = eilθ (see Section A.1 in the
Appendix), we are able to approximate a generalized harmonic polynomial in
PWω,p(R2), with approximation error estimates that converge both in h and in
p. The order of convergence with respect to h is sharp, as can be seen from
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Figure 3.2: A choice of directions {dl,m}l=0,...,q; |m|≤l that satisfies the hypoth-
esis of Lemma 3.1.2 with q = 3, p = 16. Notice that 1 direction belongs to level
0, 3 directions to level 1, 5 to level 2 and 7 to level 3.

d ,...,d3,-3 3,3

d0,0

d ,...,d2,-2 2,2

d ,d ,d1,-1 1,0 1,1

simple numerical experiments [12, 25, 26, 35]. The proof given below simplifies
the one given in [35], and also gives the convergence in p.

We prove a completely explicit estimate of the L∞–norm of the approxima-
tion error.

Lemma 3.1.3. Let D ⊂ R2 be a domain as in Assumption 1.1.1. Let P be a
harmonic polynomial of degree L and let

{dk = (cos θk, sin θk)}k=−q,...,q

be the different directions in the definition of PWω,p(R2), p = 2q + 1. We
assume that there exists 0 < δ ≤ 1 such that

min
j,k=−q,...,q

j +=k

∣
∣θj − θk

∣
∣ ≥

2π

p
δ . (3.7)

Let the conditions on the indices

0 ≤ K ≤ L ≤ q, L−K + 1 ≤
⌊
q + 1

2

⌋

, (3.8)

be satisfied. Then there exists a vector α ∈ Cp such that, for every R > 0,
∥
∥
∥
∥
∥
∥

V1[P ]−
q

∑

k=−q

αk eiωx·dk

∥
∥
∥
∥
∥
∥
L∞(BR)

≤ C(ω, δ, ρ, h, R, q,K, L) ‖P‖K,ω,D , (3.9)
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where we have set, for brevity,

C(ω, δ, ρ, h, R, q,K, L) =
e3

π
3
2 ρ2

q+1
2 3

(

e
5
2

2
√
2 δ2

)q
(

2L
√
L+ 1

)

e
ωR
2

· (ωR)q+1
(

1 + (ωh)−L
)

hK−1 1

(q + 1)
q+1
2

.

Proof. We write the polynomial

P (z) =
L
∑

l=−L

al r
|l| eilψ

with the usual identification R2 = C and z = reiψ . We have

V1[P ](z)−
q

∑

k=−q

αk eiω(r cosψ,r sinψ)·dk

(1.52)
=

L
∑

l=−L

al |l|!
(
2

ω

)|l|

eilψ J|l|(ωr)−
q
∑

k=−q

αk eiωr cos(ψ−θk)

(A.15)
=

L∑

l=−L

al |l|!
(
2

ω

)|l|

eilψ γl Jl(ωr)−
∑

l∈Z

il Jl(ωr) e
ilψ

q
∑

k=−q

αk e−ilθk ,

where γl = 1 if l ≥ 0 and γl = (−1)l if l < 0 thanks to (A.2). Define the p× p
matrix A by

A = {Al;k}l,k=−q,...,q = {e−ilθk}l,k=−q,...,q,

and the vector β ∈ Cp by

βl =









al |l|!
(
2

ω

)|l|

i−l γl l = −L, . . . , L,

0, l = −q, . . . ,−L− 1, L+ 1, . . . , q.

The matrix A is non-singular because it is the product of a Vandermonde matrix
and a diagonal matrix:

A = {e−ijθk} j=0,...,2q
k=−q,...,q

· diag
(

{eiqθk}k=−q,...,q

)

= VA ·DA.

By choosing the p–dimensional vector α as the solution of the linear system

A α = β,

we have

V1[P ](z)−
q
∑

k=−q

αk eiω(r cosψ,r sinψ)·dk = −
∑

|l|>q

il Jl(ωr) e
ilψ

q
∑

k=−q

αk e−ilθk ,

and thus the L∞–norm of the error is controlled by
∥
∥
∥
∥
∥
∥

V1[P ]−
q
∑

k=−q

αk eiωx·dk

∥
∥
∥
∥
∥
∥
L∞(BR)

≤ sup
t∈[0,ωR]

2
∑

l>q

|Jl(t)|
∥
∥A−1

∥
∥
1
‖β‖1 . (3.10)
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We have to bound each of the three factors on the right-hand side of (3.10).
The first factor is the easiest one:

sup
t∈[0,ωR]

∑

l>q

|Jl(t)|
(A.4)
≤ sup

t∈[0,ωR]

∑

l>q

(
t

2

)l 1

l!

≤ sup
t∈[0,ωR]

(
t

2

)q+1 1

(q + 1)!

∑

j≥0

(
t

2

)j 1

(j)!

=

(
ωR

2

)q+1 e
ωR
2

(q + 1)!
.

(3.11)

For
∥
∥A−1

∥
∥
1
, we observe that the 1-norm of the inverse of the diagonal matrix

DA is one, while the norm of the inverse of the Vandermonde matrix VA can be
bounded using Theorem 1 of [22]:

∥
∥A−1

∥
∥
1
≤

∥
∥V −1

A

∥
∥
1

∥
∥D−1

A

∥
∥
1
≤ p

∥
∥V −1

A

∥
∥
∞ · 1

≤ p max
k=−q,...,q

∏

s=−q,...,q
s+=k

1 +
∣
∣e−iθs

∣
∣

|e−iθs − e−iθk |
.

With simple geometric considerations, it is easy to see that, under the con-
straint (3.7), the product on the right-hand side is bounded by its value when

θ∗s = θ∗0 +
2π

p
δ s s = −q, . . . , q,

and the maximum is obtained for k = 0. A simple trigonometric calculation
gives

|e−iθ∗

s − e−iθ∗

0 | =
√
2
√

1− cos(θ∗s − θ∗0) ≥
√
2

√
2

π
|θ∗s − θ∗0 | =

4

p
δ |s|,

because 1− cos t ≥ 2
π2 t2 for every t ∈ [−π,π]. This leads to the bound

∥
∥A−1

∥
∥
1
≤ p

∏

s=−q,...,q
s+=k

2p

4 δ |s|
≤

pp

(2δ)2q (q!)2
. (3.12)

In order to bound ‖β‖1, we need to bound from below the Sobolev seminorm
of order m of P for every m = 0, . . . , L. Recalling that Bρh ⊆ D and taking
into account the expression of P , we have

|P |2m,D ≥
∥
∥
∥
∥

∂m

∂rm
P

∥
∥
∥
∥

2

0,Bρh

=

∥
∥
∥
∥
∥
∥

L
∑

|j|=m

aj
|j|!

(|j|−K)!
r|j|−Keijψ

∥
∥
∥
∥
∥
∥

2

0,Bρh

=

∫ ρh

0

L
∑

|j|,|j′|=m

ajaj′ |j|! |j′|!
(|j|−m)! (|j′|−m)!

r|j|+|j′|−2m

∫ 2π

0
ei(j−j′)ψ dψ r dr

= 2π
L
∑

|j|=m

|aj |2
(|j|!)2

(

(|j|−m)!
)2

(ρh)2(|j|−m+1)

2(|j|−m+ 1)
, (3.13)
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where in the last step we have used the identity

∫ 2π

0
ei(j−j′)ψ dψ = 2π δjj′ .

All the terms in the sum on the right-hand side of the previous bound (3.13)
are non-negative, so we can invert the estimate. Thus, considering (3.13) for
m = |l| < K and m = K, we obtain, respectively,

|al| ≤
1√
π

1

|l|! (ρh)
|P ||l|,D if |l| < K ,

|al| ≤
1√
π

(|l|−K)!
√

|l|−K + 1

|l|! (ρh)|l|−K+1
|P |K,D if K ≤ |l| ≤ L .

We plug these bounds into the definition of the coefficients of β, with K ≤ L:

‖β‖1 =
L
∑

l=−L

|al|
( 2

ω

)|l|
|l|!

≤
K
∑

l=−K

1√
π ρh

( 2

ω

)|l|
|P ||l|,D

+
L
∑

|l|=K+1

1√
π

(
2

ω

)|l| (|l|−K)!
√

|l|−K + 1

(ρh)|l|−K+1
|P |K,D

≤
√
2K + 1√

πρ

(
1

ωh

)K

2K+ 1
2 hK−1 ‖P‖K,ω,D

+
2√
π

2LhK−1

ρL−K+1

(
L
∑

l=K+1

(l −K)!
√
l−K + 1

(ωh)l

)

|P |K,D

≤
{

2L+1

√
πρL−K+1

hK−1
(

1 + (ωh)−L
)

·
(√

K + 1 + (L−K)(L−K)!
√
L−K + 1

)
}

‖P‖K,ω,D .

(3.14)

Now we can combine the bound of the sum of the Bessel functions (3.11)
with the one of

∥
∥A−1

∥
∥
1
given by (3.12) and the one of ‖β‖1 given by (3.14);

inserting everything inside (3.10) gives

∥
∥
∥
∥
∥
∥

V1[P ]−
q

∑

k=−q

αk eiωx·dk

∥
∥
∥
∥
∥
∥
L∞(BR)

≤ 2

{
(
ωR

2

)q+1 e
ωR
2

(q + 1)!

}

·
{

pp

(2δ)2q (q!)2

}

·
{

2L+1

√
πρL−K+1

hK−1
(

1 + (ωh)−L
)√

L+ 1 (L−K + 1)!

}

‖P‖K,ω,D

≤
{(

1

8δ2

)q

(ωR)q+1e
ωR
2

pp

(q!)2(q + 1)!

}

·
{

2L+1

√
πρL−K+1

hK−1
(

1 + (ωh)−L
)√

L+ 1 (L−K + 1)!

}

‖P‖K,ω,D
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(3.8)
≤

2
√
πρ2

q+1
2 3

(
1

8δ2

)q (

2L
√
L+ 1

)

e
ωR
2 (ωR)q+1

·
(

1 + (ωh)−L
)

hK−1 pp
⌊ q+1

2

⌋

!

(q!)2(q + 1)!
‖P‖K,ω,D .

The Stirling formula says that

√
2π

√
n nne−ne

1
12n+1 < n! <

√
2π

√
n nne−ne

1
12n , n ≥ 1.

We use it to bound

pp
⌊ q+1

2

⌋

!

(q!)2(q + 1)!
≤

(2q + 2)2q+1
⌊ q+1

2

⌋

!
(

(q + 1)!
)3 (q + 1)2

<
22q+1

2π

(q + 1)2q+3
( q+1

2

)( q+1
2 )+ 1

2

(q + 1)3(q+1)+ 3
2

e3(q+1)− q
2 e−

3
12(q+1)+1+

1
6q .

For q ≥ 3, since the exponent in the last factor on the right-hand side of the
last inequality is negative, we get

pp
⌊ q+1

2

⌋

!

(q!)2(q + 1)!
≤

e3

2π

(

2
√
2 e

5
2

)q
(q + 1)−

q+1
2 .

For q = 1, 2, one can see directly that the same bound holds true, thus we can
use it for any q ≥ 1 and obtain
∥
∥
∥
∥
∥
∥

V1[P ]−
q

∑

k=−q

αk eiωx·dk

∥
∥
∥
∥
∥
∥
L∞(BR)

≤
e3

π
3
2 ρ2

q+1
2 3

(

e
5
2

2
√
2 δ2

)q
(

2L
√
L+ 1

)

e
ωR
2

· (ωR)q+1
(

1 + (ωh)−L
)

hK−1 1

(q + 1)
q+1
2

‖P‖K,ω,D ;

this concludes the proof.

Notice that, thanks to the properties of the polynomials, the assertion of
Lemma 3.1.3 holds for every R > 0, which is not related to the size of D.

Lemma 3.1.3 provides the order of convergence of the approximation error
both in h and p. We will see in Section 3.2 how to link this bound to the general
Sobolev norm of the error and to the Theorem 2.2.1.

Remark 3.1.4. When δ = 1 in (3.7), we have uniformly spaced directions

θj = θ0 +
2π
p j in S1. In this case, we see that

∥
∥A−1

∥
∥
1
=
∥
∥
∥
1
pA

t
∥
∥
∥
1
= 1:

(AA
t
)l;k =

q
∑

j=−q

e−ilθjeikθj =
q

∑

j=−q

e−i(l−k)(θ0+ 2π
p j)

=









e−i(l−k)θ0ei(l−k) 2π
p q 1− e−i(l−k) 2π

p p

1− e−i(l−k) 2π
p

= 0 l /= k,

p l = k.
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In this case, the bounding constant in Lemma 3.1.3 becomes slightly smaller, but
the orders of convergence remain unchanged:
∥
∥
∥
∥
∥
∥

V1[P ]−
q

∑

k=−q

αk eiωx·dk

∥
∥
∥
∥
∥
∥
L∞(BR)

≤
e

7
6

√
πρ2

q+1
2 3

(

e
1
2

2
√
2

)q

·
(

2L
√
L+ 1

)

e
ωR
2 (ωR)q+1

(

1 + (ωh)−L
)

hK−1 1

(q + 1)
q+1
2

‖P‖K,ω,D ,

using
2 q+1

2 3!
(q+1)! ≤ e

1
6

(
e
2

) q
2+1

(q+1)−
q+1
2 . The constant has been reduced by a factor

e
11
6 +2q/π 6 2e2q.

Remark 3.1.5. We can modify the condition (3.8) with L−K +1 ≤ α(q+1),
α ∈ (0, 1). This allows to choose higher order generalized harmonic polynomials
in the final p-estimate and modify the constants in Theorem 3.2.3 and in Remark
3.2.4. However, this does not affect the general order of convergence of the
approximation by generalized harmonic polynomials.

3.1.3 The Three-Dimensional Case

Now we would like to prove an approximation estimate similar to Lemma 3.1.3 in
a three-dimensional setting. In two dimensions we were able to prove the order
of convergence with respect to q using a sharp bound on the norm of the inverse
of the matrix A, since this is of Vandermonde type. In three dimensions the
corresponding matrix is M , defined in (3.1), we can guarantee its invertibility
(Lemmas 3.1.1 and 3.1.2) but not bound the norm of M−1 with a reasonable
dependence on q. This is the reason why here we have only h and not p estimate.

Lemma 3.1.6. Let D ⊂ R3 be a domain that satisfies Assumption 1.1.1, P be a
harmonic polynomial of degree L ≤ q, p = (q+1)2 and {dl,m}l=0,...,q; |m|≤l ⊂ S2

be different directions of the basis plane waves of PWω,p(D) such that M is
invertible. Then there exists a vector α ∈ Cp such that

∥
∥
∥
∥
∥
∥
∥
∥

V1[P ]−
∑

l=0,...,q;
|m|≤l

αl,m eiωx·dl,m

∥
∥
∥
∥
∥
∥
∥
∥
L∞(BR)

≤
√
3

2πρ
3
2

(L + 1)
3
2

2q−L q!
e

ωR
2 (ωR)q+1−L RL

h
3
2

∥
∥M−1

∥
∥
1
‖P‖L,ω,D ,

(3.15)
for every R > 0.

Proof. As in two dimensions we write the polynomial

P (x) =
L
∑

l=0

l
∑

m=−l

al,m |x|l Yl,m

( x

|x|

)

,
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and we use the Jacobi-Anger expansion:

V1[P ](x)−
∑

l′=0,...,q;
|m′|≤l′

αl′,m′ eiωx·dl′,m′

(1.54),
(A.16)
=

L
∑

l=0

l
∑

m=−l

al,m

(
1

2ω

)l (2l+ 1)!

l!
Yl,m

( x

|x|

)

jl(ω|x|)

− 4π
∑

l≥0

il jl(ω|x|)
l

∑

m=−l

Yl,m

( x

|x|

) ∑

l′=0,...,q;
|m′|≤l′

αl′,m′ Yl,m(dl′,m′)

= −4π
∑

l≥q+1

il jl(ω|x|)
l

∑

m=−l

Yl,m

( x

|x|

) ∑

l′=0,...,q;
|m′|≤l′

αl′,m′ Yl,m(dl′,m′),

(3.16)

where the vector α ∈ Cp is the solution of the linear system M · α = β with

βl,m =









1

4π

(
1

2iω

)l (2l + 1)!

l!
al,m, l = 0, . . . , L; |m| ≤ l,

0, l = L+ 1, . . . , q; |m| ≤ l.

(3.17)

Now we can bound the coefficients al,m with the norms of the polynomial
P , denoting r = |x|:

|P |2K,D ≥
∥
∥
∥
∥

∂K

∂rK
P

∥
∥
∥
∥

2

0,Bρh

=

∥
∥
∥
∥
∥

L
∑

l=K

l
∑

m=−l

al,m
l!

(l −K)!
rl−KYl,m

( x

|x|

)
∥
∥
∥
∥
∥

2

0,Bρh

=

∫ ρh

0

L
∑

l=K

l
∑

m=−l

L
∑

l′=K

l′
∑

m′=−l′

al,mal′,m′

l! l′!

(l −K)! (l′ −K)!
rl+l′−2K

·
∫

S2

Yl,m(d)Yl′,m′(d) dd r2 dr

=
L
∑

l=K

l
∑

m=−l

|al,m|2
(l!)2

(

(l −K)!
)2

(ρh)2(l−K)+3

2(l −K) + 3

thanks to the orthonormality of the spherical harmonics. This gives:

|al,m| ≤
(l −K)!

√

2(l −K) + 3

l! (ρh)l−K+ 3
2

|P |K,D , 0 ≤ K ≤ l ≤ L. (3.18)
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Now, for every dl′,m′ and for every x ∈ D we have

∣
∣
∣
∣
∣
∣

4π
∑

l≥q+1

il jl(ω|x|)
l

∑

m=−l

Yl,m

( x

|x|

)

Yl,m(dl′,m′)

∣
∣
∣
∣
∣
∣

(A.8)
≤ 4π

∑

l≥q+1

√
π

2ω|x|
∣
∣Jl+ 1

2
(ω|x|)

∣
∣

√
√
√
√

l
∑

m=−l

∣
∣
∣
∣
Yl,m

( x

|x|

)
∣
∣
∣
∣

2
√
√
√
√

l
∑

m=−l

|Yl,m(dl′,m′)|2

(A.4)
≤ 4π

√
π

2ω|x|
∑

l≥q+1

(ω|x|)l+ 1
2

Γ
(

l + 3
2

)

2l+
1
2

2l+ 1

4π

j=l−q−1
≤

√
π

2

(ωx

2

)q+1 ∞
∑

j=0

(
ω|x|
2

)j
2
(

q + j + 1 + 1
2

)

Γ(q + j + 1 + 3
2 )

≤
√
π

Γ(q + 3
2 )

(ωx

2

)q+1 ∞
∑

j=0

(
ω|x|
2

)j

Γ(j + 1)

≤
q! 2q

(2q + 1)!
(ωR)q+1 e

ωR
2 ,

(3.19)
where we have bounded the sum of the spherical harmonics with (2.4.105) of [37]
and used

(q + j + 3
2 )

Γ(q + j + 1 + 3
2 )

=
1

Γ(q + j + 3
2 )

≤
1

Γ(q + 3
2 )Γ(j + 1)

=
q! 22q+1

√
π(2q + 1)! Γ(j + 1)

.

Now we plug (3.19) in (3.16) with the definition of β and the bound (3.18)
on the coefficients al,m with K = l:

∥
∥
∥
∥
∥
∥
∥
∥

V1[P ]−
∑

l=0,...,q;
|m|≤l

αl,m eiωx·dl,m

∥
∥
∥
∥
∥
∥
∥
∥

L∞(BR)

≤ sup
x∈BR

l′=0,...,q,
m′=−l′,...,l′

∣
∣
∣
∣
∣
∣

4π
∑

l≥q+1

il jl(ω|x|)
l

∑

m=−l

Yl,m

( x

|x|

)

Yl,m(dl′,m′)

∣
∣
∣
∣
∣
∣

· ‖α‖1

≤
q! 2q

(2q + 1)!
(ωR)q+1 e

ωR
2

∥
∥M−1

∥
∥
1
‖β‖1

(3.17)
(3.18)
≤

q! 2q

(2q + 1)!
(ωR)q+1 e

ωR
2

L
∑

l=0

l
∑

m=−l

(2l + 1)!

4πl!

(
1

2ω

)l √
3

l! (ρh)
3
2

|P |l,D
∥
∥M−1

∥
∥
1

≤
√
3

4πρ
3
2

q! 2q

(2q + 1)!

(2L+ 1)!

2L L! L!
e

ωR
2 (ωR)q+1−LRL

h
3
2

L
∑

l=0

(2l + 1)ωL−l |P |l,D
∥
∥M−1

∥
∥
1

≤
√
3

4πρ
3
2

q! 2q

(2q + 1)!

(2L+ 1)!

2L L! L!
(2L+ 1)

√
L+ 1 e

ωR
2 (ωR)q+1−LRL

h
3
2

‖P‖L,ω,D

∥
∥M−1

∥
∥
1
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≤
√
3

2πρ
3
2

(L+ 1)
3
2 2L

q! 2q

(2L+1)!
4L L! L!
(2q+1)!
4q q! q!

e
ωR
2 (ωR)q+1−LRL

h
3
2

∥
∥M−1

∥
∥
1
‖P‖L,ω,D

≤
√
3

2πρ
3
2

(L+ 1)
3
2

2q−L q!
e

ωR
2 (ωR)q+1−LRL

h
3
2

∥
∥M−1

∥
∥
1
‖P‖L,ω,D ,

where we have used the monotonicity of the sequences l 7→ (2l+1)!
2l l! l! and l 7→

(2l+1)!
4l l! l! .

In the last chain of inequalities we have bounded each coefficient al of P
using the seminorm of the same order |P |l,D, that means we have used (3.18)
with K = l. This makes the proof simpler but ties together the order of the
norm on the right-hand side and the degree of the polynomial. In the case of the
h-estimate this fact does not affect the final result; when a bound on

∥
∥M−1

∥
∥

will be available, in order to obtain an useful p-estimate, this proof has to be
modified following the line of Lemma 3.1.3.

3.2 Approximation of Homogeneous Helmholtz

Solutions by Plane Waves

In order to use Lemma 3.1.3 and Lemma 3.1.6 to approximate a solution of the
homogeneous Helmholtz equation in PWω,p(RN ), we need to link the Sobolev
norms to the L∞–norm of the error. This is done in the following lemma, that
generalizes the usual Cauchy estimates for harmonic functions to the Helmholtz
case. The result is a simple consequence of the continuity of the Vekua trans-
form.

Lemma 3.2.1. Let φ be a harmonic function in Hj(Bh), j ∈ N, ω > 0, N ≥ 2
and D a domain as in Assumption 1.1.1. Then we have

‖V1[φ]‖j,ω,D ≤ CN,j ρ
1−N

2 −j
(

1 + (ωh)j+4
)

e
1
2ωh h

N
2 −j ‖V1[φ]‖L∞(Bh)

. (3.20)

where the constant C depends only on N and j.

Proof. Remark 1.1.2 implies that d(D, ∂Bh) ≥ ρh. Using the Cauchy estimates
for harmonic functions and the continuity of the Vekua operators we have

‖V1[φ]‖j,ω,D

(1.12)
≤ CN ρ

1−N
2 (1 + j)

3
2N+ 1

2 ej
(

1 + (ωh)2
)

‖φ‖j,ω,D

≤ CN,j ρ
1−N

2
(

1 + (ωh)2
)

j
∑

l=0

ωj−l |φ|l,D

≤ CN,j ρ
1−N

2
(

1 + (ωh)2
)

j
∑

l=0

ωj−l h
N
2 |φ|W l,∞(D)

(1.32)
≤ CN,j ρ

1−N
2

(

1 + (ωh)2
)

j
∑

l=0

ωj−l h
N
2 (ρh)−l ‖φ‖L∞(Bh)

≤ CN,j ρ
1−N

2 −j (1 + (ωh)j+2) h
N
2 −j ‖φ‖L∞(Bh)
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(1.16) on Bh

≤ CN,j ρ
1−N

2 −j (1 + (ωh)j+4) e
1
2ωh h

N
2 −j ‖V1[φ]‖L∞(Bh)

,

where in the last step, the exponential has coefficient 1/2 because ball Bh has
diameter 2h and shape parameter ρ(Bh) = 1/2.

Now we can state the two final results: the approximation estimates for
homogeneous Helmholtz solutions in Hj

ω(D) with plane waves in PWω,p(D),
with respect to h for N = 2, 3 and with respect to both h and p for N = 2 only.

Theorem 3.2.2 (h-estimates, N = 2, 3). Let u ∈ HK+1(D) be a solution of
the homogeneous Helmholtz equation in a domain D ⊂ RN , N = 2, 3, satisfying
Assumption 1.1.1. Fix q ≥ 1, set

p =

{

2q + 1 if N = 2,

(q + 1)2 if N = 3,

and let the directions {dk}k=1,...,p ⊂ SN−1 be such that the matrix

{Yl,m(dk)}l≥0, m=1,...,n(N,l)
k=1,...,p

is invertible. Then for every 1 ≤ L ≤ min(q,K), there exists α ∈ Cp such that,
for every j ≤ L,
∥
∥
∥
∥
∥
u−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D

≤ C
(

1 + (ωh)j+q+8
)

e(
7
4−

3
4ρ)ωh hL+1−j ‖u‖L+1,ω,D ,

(3.21)
where the constant C > 0 depends only on q, j, L, N , ρ, ρ0 and the directions
{dk}, but is independent of ω, h and u.

Proof. Let Q be the generalized harmonic polynomial of degree at most L equal
to QL from Theorem 2.2.1, item (ii). V2(Q) is the averaged Taylor polynomial
of V2[u], as in Theorem 2.1.2. From Lemmas 3.1.3 and 3.1.6 with R = h, we
know that there exists vector α ∈ Cp such that
∥
∥
∥
∥
∥
Q−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
L∞(Bh)

(3.9),
(3.15)
≤ C(N,ρ,L,q,{dk}) e

ωh
2
(

(ωh)q−L + (ωh)q
)

hL+1−N
2 ω ‖V2[Q]‖L,ω,D

≤ C(N,ρ,L,q,{dk}) e
ωh
2

(

(ωh)q−L + (ωh)q
)

hL+1−N
2 ‖V2[Q]‖L+1,ω,D

≤ C(N,ρ,L,q,{dk}) e
ωh
2

(

1 + (ωh)q
)

hL+1−N
2

·
[

‖V2[u]‖L+1,ω,D + ‖V2[u]− V2[Q]‖L+1,ω,D

]

(2.5)
≤ C(N,ρ,L,q,{dk},ρ0) e

ωh
2
(

1 + (ωh)q
)

hL+1−N
2 ‖V2[u]‖L+1,ω,D

(1.15)
≤ C(N,ρ,L,q,{dk},ρ0) e

( 1
2+

3
4 (1−ρ))ωh (1 + (ωh)q+4) hL+1−N

2 ‖u‖L+1,ω,D .
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Now we use the triangle inequality and the approximation results from Theo-
rem 2.2.1 and from Lemma 3.2.1 with φ = V2[Q−

∑p
k=1 αkeiωx·dk ]:

∥
∥
∥
∥
∥
u−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D

≤ ‖u−Q‖j,ω,D +

∥
∥
∥
∥
∥
Q−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D

(2.19),
(3.20)
≤ C (1 + (ωh)j+6) e

3
4 (1−ρ)ωh hL+1−j ‖u‖L+1,ω,D

+ C (1 + (ωh)j+4) e
1
2ωh h

N
2 −j

∥
∥
∥
∥
∥
Q−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
L∞(Bh)

≤ C (1 + (ωh)j+q+8) e(
7
4−

3
4ρ)ωh hL+1−j ‖u‖L+1,ω,D .

Theorem 3.2.3 (hp-estimates, N = 2). Let u ∈ HK+1(D) be a solution of
the homogeneous Helmholtz equation in a domain D ⊂ R2 satisfying Assump-
tion 1.1.1 and the exterior cone condition with angle λπ (see Definition 2.1.3).
Fix q ≥ 1, set p = 2q + 1 and let the directions {dk = (cos θk, sin θk)}k=−q,...,q

satisfy the condition (3.7).
Then for every L satisfying

0 ≤ K ≤ L ≤ q, L−K + 1 ≤
⌊
q + 1

2

⌋

,

there exists α ∈ Cp such that, for every 0 ≤ j ≤ K,
∥
∥
∥
∥
∥
u−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D

≤ C e(
7
4−

3
4ρ)ωh

(

1 + (ωh)j+8
)

hK+1−j

·

{
(
log(L+ 2)

L+ 2

)λ(K+1−j)

+ 2L

√

L+ 1

q + 1

(

e
5
2

2
√
2δ2ρ

1
2

(1 + ωh)√
q + 1

)q}

‖u‖K+1,ω,D ,

(3.22)
where the constant C > 0 depends only on j, K and the shape of D, but is
independent of q, L, δ, ω, h and u.

Proof. Let Q be the generalized harmonic polynomial of degree at most L equal
to Q′

L from Theorem 2.2.1, item (iii).
Since V2[Q] approximates V2[u] as in Theorem 2.1.4, we notice that, for

K ≥ 1,

‖V2[Q]‖K,ω,D ≤ ‖V2[u]‖K,ω,D + ‖V2[u]− V2[Q]‖K,ω,D

(2.8), j=k+1=K
≤ (1 + C) ‖V2[u]‖K,ω,D

(1.15)
≤ C

(

1 + (ωh)4
)

e
3
4 (1−ρ)ωh ‖u‖K,ω,D ,

(3.23)

where C depends only on K and the shape of D.
Finally, we combine all the ingredients, in the case K ≥ 1:

∥
∥
∥
∥
∥
u−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D

≤ ‖u−Q‖j,ω,D +

∥
∥
∥
∥
∥
Q−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D
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(2.20),
(3.20)
≤ C(K,j,D̂) (1 + (ωh)j+6) e

3
4 (1−ρ)ωh

(
log(L + 2)

L+ 2

)λ(K+1−j)

· hK+1−j ‖u‖K+1,ω,D

+ C(j,ρ) (1 + (ωh)j+4) e
1
2ωh h1−j

∥
∥
∥
∥
∥
Q−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
L∞(Bh)

(3.9),
R=h
≤ C(K,j,D̂) (1 + (ωh)j+6) e

3
4 (1−ρ)ωh

(
log(L+ 2)

L+ 2

)λ(K+1−j)

· hK+1−j ‖u‖K+1,ω,D

+ C(j,ρ)

(

e
5
2

2
√
2δ2 ρ

1
2

)q

(2L
√
L+ 1)(1 + (ωh)q+j+4) eωh hK+1−j

·
1

(q + 1)
q+1
2

ω ‖V2[Q]‖K,ω,D

(3.23)
≤ C(K,D̂,j) e

(1+ 3
4 (1−ρ))ωh (1 + (ωh)j+8) hK+1−j

·

{
(
log(L+ 2)

L+ 2

)λ(K+1−j)

+ 2L

√

L+ 1

q + 1

(

e
5
2

2
√
2δ2 ρ

1
2

(1 + ωh)√
q + 1

)q}

‖u‖K+1,ω,D .

If K = j = 0, in (3.23) we have to use (1.14) instead of (1.15), so that (3.23)
becomes

‖V2[Q]‖0,D ≤ C(1 + (ωh)4)e
1
2 (1−ρ)ωh(‖u‖0,D + h |u|1,D).

The rest of the proof continues as in the case K ≥ 1 until the last but one step.
For the last step, since

ω ‖V2[Q]‖0,D ≤ C(1 + (ωh)4)e
1
2 (1−ρ)ωhω(‖u‖0,D + h |u|1,D)

≤ C(1 + (ωh)4)e
1
2 (1−ρ)ωh(1 + ωh) ‖u‖1,ω,D

≤ C(1 + (ωh)4)e
3
4 (1−ρ)ωh ‖u‖1,ω,D ,

we get exactly the same conclusion as in the case K ≥ 1.

Remark 3.2.4. In the two-dimensional case, if

K ≤ q + 1−
⌊
q + 1

2

⌋

=

⌈
q + 1

2

⌉

we can choose

L = K − 1 +

⌊
q + 1

2

⌋

and we get the simpler estimate
∥
∥
∥
∥
∥
u−

p
∑

k=1

αke
iωx·dk

∥
∥
∥
∥
∥
j,ω,D

≤ C(K,D̂,j) e
( 7
4−

3
4ρ)ωh

(

1 + (ωh)j+8
)

hK+1−j
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·







(

log(K + 1 +
⌊ q+1

2

⌋

)

K + 1 +
⌊ q+1

2

⌋

)λ(K+1−j)

+

(

e
5
2

2δ2 ρ
1
2

(1 + ωh)√
q + 1

)q





‖u‖K+1,ω,D .

The second term within the curly brackets converges to zero in q faster than
exponentially, the first one only algebraically.
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Appendix A

Special Functions

A.1 Bessel Functions

We denote the usual Bessel functions of the first kind by Jν(z) and the spherical
Bessel functions of the first kind by jν(z). The first ones are defined, for every
ν, z ∈ C, as

Jν(z) =
∞∑

t=0

(−1)t

t! Γ(t+ ν + 1)

(z

2

)2t+ν
, (A.1)

where Γ is the gamma function. When ν /∈ Z and z belongs to the segment
[−∞, 0], Jν(z) is not single-valued. When ν ∈ Z, Jν is an entire function.

We list some properties of these functions (references can be found in [31,44]):

J−k(z) = (−1)kJk(z) ∀ k ∈ Z, (A.2)

Im
(

Jk(t)
)

= 0, Re
(

Jk(it)
)

= 0 ∀ k ∈ Z, t ∈ R,

|Jk(t)| ≤ 1 ∀ k ∈ Z, t ∈ R, (A.3)

|Jν(z)| ≤
e| Im z|

Γ(ν + 1)

(
|z|
2

)ν

∀ ν > −
1

2
, z ∈ C, (A.4)

J0(0) = 1, Jk(0) = 0 ∀ k ∈ Z \ {0},
∂

∂z
Jν(z) =

1

2
(Jν−1(z)− Jν+1(z)) , (A.5)

∂

∂z

(

zkJk(z)
)

= zkJk−1(z),

∂

∂z
J0(z) = −J1(z),

∂

∂z
(zJ1(z)) = zJ0(z), (A.6)

∂l

∂zl
Jk(z) =

1

2l

l∑

m=0

(−1)m
(

l

m

)

J2m−l+k(z). (A.7)

The last equality can be easily proved by induction from (A.5).
The spherical Bessel functions are defined as

jν(z) =

√

π

2z
Jν+ 1

2
(z). (A.8)
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These functions are a particular case of the so-called hyperspherical Bessel func-
tions (see [3] p. 52):

jNk (z) =
∞
∑

t=0

(−1)t z2t+k

(2t)!! (N + 2t+ 2k − 2)!!
=

Γ
(

N
2 − 1

)

2
N
2 −2

(N − 4)!!

Jk+N
2 −1(z)

z
N
2 −1

, (A.9)

Jk(z) = j2k(z), jk(z) = j3k(z).

The asymptotic forms of the Bessel functions for small arguments are:

Jk(z) ≈
1

k!

(z

2

)k
, jk(z) ≈

2k k!

(2k + 1)!
zk |z| << 1, k ∈ Z. (A.10)

A.2 Legendre Functions and Spherical Harmo-

nics

For every natural l the Legendre polynomial of degree l is defined as

Pl(t) =
1

2l l!

∂l

∂tl
[

(t2 − 1)l
]

. (A.11)

The associate Legendre function are

Pm
l (t) = (−1)m (1− t2)

m
2

∂m

∂tm
Pl(t) =

(−1)m

2l l!
(1− t2)

m
2

∂l+m

∂tl+m

[

(t2 − 1)l
]

,

P−m
l (t) = (−1)m

(l −m)!

(l +m)!
Pm
l (t) 0 ≤ m ≤ l.

(A.12)
From these follows

P l
l (t) = (−1)l

(2l)!

2l l!
(1− t2)

l
2 , P−l

l (t) =
1

2l l!
(1− t2)

l
2 ∀ l ∈ N. (A.13)

For every N ∈ N, N ≥ 2, the N -dimensional spherical harmonics are a set of
complex functions {Yl,m}l≥0,m=1,...,n(N,l) defined on SN−1 that constitutes an
orthonormal basis of L2(SN−1). The set {|x|lYl,m( x

|x|)}m=1,...,n(N,l) is a basis of
the space of the homogeneous N–dimensional harmonic polynomials of degree
l.

If N = 2, the number n(2, l) of linearly independent spherical harmonics of
degree l is 1, if l = 0, and 2, if l ≥ 1; we will use only one index l running over
Z and define

Yl(e
iθ) = eilθ ∀l ∈ Z.

If N = 3, the number of linearly independent spherical harmonics of degree l is
n(3, l) = 2l+ 1, so we use m ∈ {−l, . . . , l}:

Yl,m(d) =

√

(2l+ 1)(l−m)!

4π(l +m)!
Pm
l (cos θ) eimϕ (A.14)

l ∈ N, m = −l, . . . , l, d = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ S2,
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where Pm
l is an associated Legendre function.

Other useful identities are the Jacobi-Anger expansions, combined with the
addition theorem for spherical harmonics, see [3, 17, 36]:

eiz cos θ =
∑

l∈Z

ilJl(z) e
ilθ, (A.15)

eirξ·η =
∑

l≥0

(2l+ 1) il jl(r) Pl(ξ · η) (A.16)

= 4π
∑

l≥0

il jl(r)
l∑

m=−l

Yl,m(ξ)Yl,m(η) ∀ ξ, η ∈ S2, r ≥ 0,

eirξ·η = (N − 2)!! |SN−1|
∑

l≥0

il jNl (r)

n(N,l)
∑

m=1

Yl,m(ξ)Yl,m(η) (A.17)

∀ ξ, η ∈ SN−1, r ≥ 0, N ≥ 3.
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[9] S. Bergmann, Über die Entwicklung der harmonischen Funktionen der
Ebene und des Raumes nach Orthogonalfunktionen, Math. Ann., 86 (1922),
pp. 238–271.

[10] T. Betcke, Numerical computation of eigenfunctions of planar regions,
PhD thesis, University of Oxford, 2005.

[11] S. Brenner and R. Scott, Mathematical theory of finite element meth-
ods, Texts in Applied Mathematics, Springer–Verlag, New York, 3rd ed.,
2007.

[12] A. Buffa and P. Monk, Error estimates for the ultra weak variational
formulation of the Helmholtz equation, Mathematical Modelling and Nu-
merical Analysis, 42 (2008), pp. 925–940.

69



[13] O. Cessenat and B. Després, Application of an ultra weak variational
formulation of elliptic PDEs to the two-dimensional Helmholtz equation,
SIAM Journal of Numerical Analysis, 35 (1998), pp. 255–299.

[14] D. Colton, Bergman operators for elliptic equations in three independent
variables, Bull. Amer. Math. Soc., 77 (1971), pp. 752–756.

[15] , Integral operators for elliptic equations in three independent vari-
ables. I, Applicable Anal., 4 (1974/75), pp. 77–95.

[16] , Integral operators for elliptic equations in three independent vari-
ables. II, Applicable Anal., 4 (1974/75), pp. 283–295.

[17] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scatter-
ing Theory, vol. 93 of Applied Mathematical Sciences, Springer, Heidelberg,
2nd ed., 1998.

[18] R. Courant and D. Hilbert, Methods of mathematical physics. Volume
II: partial differential equations, Interscience Publishers, 1962.

[19] S. C. Eisenstat, On the rate of convergence of the Bergman-Vekua method
for the numerical solution of elliptic boundary value problems, SIAM J.
Numer. Anal., 11 (1974), pp. 654–680.

[20] L. Evans, Partial Differential Equations, Graduate Studies in Mathemat-
ics, American Mathematical Society, Providence, 3rd ed., 2002.

[21] C. Farhat, I.Harari, and L. Franca, The discontinuous enrichment
method, Computer Methods in Applied Mechanics and Engineering, 190
(2001), pp. 6455–6479.

[22] W. Gautschi, On inverses of Vandermonde and confluents Vandermonde
determinants, Numerische Mathematik, 4 (1962), pp. 117–123.

[23] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations
of Second Order, Classics in Mathematics, Springer-Verlag, 2nd ed., 1983.

[24] R. P. Gilbert and C. Y. Lo, On the approximation of solutions of
elliptic partial differential equations in two and three dimensions, SIAM J.
Math. Anal., 2 (1971), pp. 17–30.

[25] C. Gittelson, Plane wave discontinuous Galerkin methods, master’s the-
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