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Abstract

Structured singular values and pseudospectra play an important role in assessing the properties of a linear system under structured

perturbations. This paper discusses computational aspects of structured pseudospectra for structures that admit an eigenvalue

minimization characterization, including the classes of real, skew-symmetric, Hermitian, and Hamiltonian perturbations. For all

these structures we develop algorithms that require O(n2) operations per grid point, combining the Schur decomposition with a

Lanczos method. These algorithms form the basis of a graphical Matlab interface for plotting structured pseudospectra.

Key words: Structured pseudospectrum, structured singular value, real perturbations, skew-symmetric perturbations, Hermitian

perturbations, Hamiltonian perturbations.

1. Introduction

Structured singular values and pseudospectra are useful tools

for analyzing the spectral behavior of matrices and dynamical

systems under uncertainties.

Given a class of perturbations ∆ ⊆ Cn×n, the structured sin-

gular value of a matrix B ∈ Cn×n is defined as

µ∆(B) = [inf{‖%‖ : % ∈ ∆ and det(I − %B) = 0}]
−1 . (1)

Here and in the following, ‖ · ‖ denotes the 2-norm (also called

spectral norm) of a matrix. If B is invertible, µ∆(B)
−1 is the

minimal norm among all perturbations that make B−1 singular.

In the unstructured case, ∆ = Cn×n and µ∆(B) = ‖B‖ coincides

with the largest singular value of B.

The structured pseudospectrum of a matrix A ∈ Cn×n with

respect to ∆ and a threshold ε > 0 is defined as

Λ∆(A; ε) :=
⋃

%∈∆,‖%‖<ε

Λ(A + %), (2)

where Λ(·) denotes the spectrum of a matrix. Structured pseu-

dospectra are closely tied to structured singular values, as seen

from the relation

Λ∆(A; ε) = {λ ∈ C : µ∆
(

(A − λI)−1
)

> 1/ε}. (3)

Note that in the unstructured case ∆ = Cn×n, we have µ∆
(

(A −

λI)−1
)

= ‖(A − λI)−1‖ = 1/σmin(A − λI), where σmin(·) denotes

the smallest singular value of a matrix.

Email addresses: karow@math.tu-berlin.de (Michael Karow),
effrosyni.kokiopoulou@sam.math.ethz.ch (Effrosyni Kokiopoulou),
daniel.kressner@sam.math.ethz.ch (Daniel Kressner)

The focus of this paper is on how to actually compute (3)

or, equivalently, how to evaluate µ∆
(

(A − λI)−1
)

for a fixed ma-

trix A and many different values of λ ∈ C. For ∆ = Cn×n, the

software package EigTool (Wright 2002) is routinely used for

plotting unstructured pseudospectra. The computational cost

of EigTool benefits from two tricks, described for example in

the book by Trefethen and Embree (2005, Chapter 39). First,

prior to any pseudospectral computation, A is replaced by its

Schur form, reducing the cost of multiplying (A − λI)−1 with a

vector from O(n3) to O(n2). It is crucial to note that this trick

works because the unstructured pseudospectrum is invariant un-

der unitary similarity transformations. (This property does in

general not hold for structured pseudospectra.) Second, a Lanc-

zos method (Bai et al. 2000; Golub and Van Loan 1996) is em-

ployed to estimate ‖(A−λI)−1‖ based on matrix-vector products

with (A − λI)−1 and its Hermitian transpose.

The difficulty of computing structured singular values and

pseudospectra heavily depends on the nature of ∆ and ranges

from trivial to NP-hard. In the following we provide a brief

survey of available results in the literature.

Computationally trivial classes ∆. For a surprisingly wide

range of linear structures ∆, it can be shown that µ∆((A −

λI)−1) ≡ ‖(A − λI)−1‖ for A ∈ ∆ and any λ ∈ C. In

these cases there is consequently no difference between struc-

tured and unstructured pseudospectra. This has been shown

by Rump (2006) for the classes of symmetric, persymmetric,

Toeplitz, symmetric Toeplitz, Hankel, persymmetric Hankel,

and circulant matrices. The basic idea of the proof is to con-

struct a structured mapping % ∈ ∆ such that %u = v for

v = α(A − λI)u, |α| = 1, and some vector u ∈ Cn with



‖u‖ = 1 and ‖(A − λI)u‖ = σmin(A − λI). Then the rela-

tion µ∆((A − λI)
−1) = ‖(A − λI)−1‖ readily follows from the

definition (1). A variety of such structured mappings can be

found in (Mackey et al. 2007; Rump 2003). Their connections

to structured pseudospectra/eigenvalue condition numbers have

also been investigated in (Graillat 2006; Karow 2007; Karow

et al. 2006a).

Computationally tractable classes ∆. Many structures admit

structured mappings %u = v with % ∈ ∆ only under certain

constraints on the vectors u, v. For example, a skew-symmetric

mapping % is possible if and only if u, v are orthogonal to each

other. In such cases, the evaluation of µ∆((A−λI)
−1) amounts to

the solution of a constrained optimization problem. For certain

structures, the latter can be rewritten as an unconstrained eigen-

value/singular value optimization problem that is computation-

ally tractable in the sense that the global optimum can be re-

liably computed/approximated in polynomial time. This holds

not only for the well-known case ∆ = Rn×n as shown by Qiu

et al. (1995), but also for complex skew-symmetric, Hermitian

and other linear structures induced by bilinear and sesquilinear

forms (Karow 2007). Solely concerned with such structures,

this paper focuses on the efficient solution of the eigenvalue

optimization problems associated with µ∆((A − λI)
−1), partic-

ularly aiming at the computation of structured pseudospectra.

Instances of computationally tractable classes ∆ not considered

in this paper include complex diagonal block structures with

less than 4 blocks (Doyle 1982), complex off-diagonal block

structures (Karow et al. 2006b), and structures related to higher

order systems (Pappas and Hinrichsen 1993; Soh et al. 1985;

Tisseur and Higham 2001).

Computationally intractable classes ∆. For many structures

computational methods for evaluating µ∆ are either pro-

hibitively expensive or not even known. In fact, for a number of

structures the evaluation of µ∆ has been proven to be NP-hard,

most prominently for diagonal (Demmel 1992) and real block

diagonal structures (Poljak and Rohn 1993). Despite these pes-

simistic results, reliable and somewhat efficient techniques for

obtaining usually tight lower and upper bounds on µ∆ for mixed

complex/real diagonal structures are available and form the ba-

sis of Matlab’s µ-Analysis and Synthesis Toolbox Balas et al.

(1993). However, a summary of these techniques is beyond the

scope of this paper; we refer to (Packard and Doyle 1993) for a

survey of early results in this direction.

Outline of the paper. The rest of this paper is organized as fol-

lows. Sections 2 and 3 are concerned with the computation of

real structured singular values and real structured pseudospec-

tra, respectively. In particular, an algorithm is developed that

computes the real pseudospectrum at a cost of O(n2) operations

per grid point. These results are extended to skew-symmetric,

Hermitian, and Hamiltonian pseudospectra in Sections 4, 5,

and 6, respectively. The algorithms presented in this paper form

the basis of Matlab graphical interface. This interface is briefly

described in Section 7, which also contains a few experiments

concerning computational efficiency.

(a) Smooth case (b) Non-smooth case

Figure 1: Shape of freal(γ).

2. Computing real structured singular values

In the case of real perturbations ∆ = Rn×n, a well-known

result (Qiu et al. 1995) shows that the corresponding structured

singular value µreal defined in (1) satisfies

µreal(B) = inf
γ∈(0,1]

σ2

([

RB −γ−1IB

γIB RB

])

,

where RB and IB denote the real and imaginary parts of B ∈

Cn×n, respectively, andσ2(·) denotes the second largest singular

value of a matrix. Hence, computing µreal(B) involves a singular

value optimization with respect to γ ∈ (0, 1]. To discuss this

optimization problem in more detail, let us define

C(γ) =

[

RB −γ−1IB

γIB RB

]

, (4)

with which

µreal(B) = inf
γ∈(0,1]

σ2(C(γ)). (5)

The objective function freal(γ) = σ2(C(γ)) in (5) is quasi-

convex (Qiu et al. 1995). A function f : X → R is called

quasi-convex if for each x, y ∈ X and ξ ∈ [0, 1], it holds that

f (ξx + (1 − ξ)y) ≤ max{ f (x), f (y)}. (6)

Any quasi-convex function has convex level sets. Quasicon-

vexity also implies that a local minimizer will be a global mini-

mizer. Figure 1(a) illustrates how the objective function freal(γ)

typically looks like.

2.1. Solving the optimization problem

We now discuss the solution of the optimization problem (5).

The optimal solution can be obtained by localizing the point γ∗

where the derivative ḟreal(γ) changes sign. In order to compute

γ∗ we have chosen to use bisection as a simple and robust root

bracketing method. At iteration k, bisection employs an inter-

val [ak, bk] that contains the optimum, and divides this interval

into two sub-intervals of equal length. In particular, it picks the

midpoint point γk+1 =
ak+bk
2
and then selects one of [ak, γk+1] or

[γk+1, bk], depending on the sign of ḟreal(γk+1). The method is

stopped when the length of the interval |bk−ak | becomes smaller

than a given tolerance.
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Algorithm 1: The Lanczos algorithm

1: Input: Matrix C̃, residual tolerance tol

starting vector r.

2: Output: Qk: Lanczos basis, coefficients αk and βk
3: Initialization: β0 = ‖r‖2.

4: for k = 1, 2, . . . do

5: qk = r/βk−1.

6: r = matvec(C̃, qk).

7: r = r − qk−1βk−1.

8: αk = 〈qk, r〉.

9: {Full reorthogonalization}

10: for l = 1, . . . , k − 1 do

11: r = r − 〈r, ql〉ql
12: end for

13: βk = ‖r‖2.

14: {Check for convergence}

15: Compute the eigenpair of interest Tkw = θw.

16: Compute the residual res(k) = |βkwk |.

17: if res(k) ≤ tol then

18: Set Qk = [q1, . . . , qk] and break.

19: end if

20: end for

At each step of bisection, we need to evaluate the derivative

of freal(γ) = σ2(C(γ)). If the second largest singular value is

simple then σ2(·) is differentiable and

σ̇2(C(γ)) = Re
[

u∗2Ċ(γ)v2
]

, (7)

where u2 and v2 are left and right singular vectors of C(γ) cor-

responding to σ2(C(γ)). With C(γ) defined as in (4),

Ċ(γ) =

[

0 1/γ2IB

IB 0

]

.

If the second largest singular value fails to be simple then (7)

yields an element of the subdifferential, see Lewis and Sendov

(2005), which can equally be used in the bisection method. We

conclude that at each step k of bisection we need to compute a

singular triplet (singular value, right and left singular vectors)

to determine ḟreal(γk). However, it is important to stress that

this computation is not required to be very accurate except for

the last few iterations, since only the sign of σ̇2(C(γ)) is of in-

terest. In the next section, when we discuss the computation

of real structured pseudospectra, it will be shown how to take

advantage of this observation.

We have also experimented with a regula falsi method, com-

bining bisection with the secant method. This somewhat de-

creases the number of iterations but requires higher accuracy

for σ̇2(C(γ)). In effect, the improvement of the overall execu-

tion time was modest at best.

3. Computing real structured pseudospectra

By (3), the real structured pseudospectra of A are the level

sets of µreal((A − λI)
−1), λ ∈ C. For plotting the real struc-

tured pseudospectrum of A, we introduce a two-dimensional

grid G on the complex plane and evaluate µreal((A − λI)
−1) at

each grid point λ ∈ G. In light of our discussion in the pre-

vious section, observe that we need to apply bisection in order

to solve an eigenvalue optimization problem for each grid point

λ ∈ G. Each step of bisection in turn involves the computa-

tion of a singular triplet of the matrix C(γ) defined in (4) with

B = (A − λI)−1. Since computing a singular value decomposi-

tion for each iteration becomes rather expensive for larger n, we

propose below an efficient approach for computing real struc-

tured pseudospectra, based on the Lanczos method combined

with the Schur decomposition of A.

3.1. The Lanczos method

Let us recall that we only need to determine the second

largest singular value σ2 and singular vectors u2, v2 of C(γ),

see (7). Equivalently, σ2
2
is the second largest eigenvalue of

the Hermitian matrix C̃ = C(γ)∗C(γ) and v2 is a corresponding

eigenvector. Moreover, u2 =
1
σ2
C(γ)v2.

To approximate the eigenvalues of C̃ we apply the Lanc-

zos method to C̃ (Bai et al. 2000; Golub and Van Loan 1996),

see also Algorithm 1. Each step of the Lanczos method in-

volves one matrix-vector multiplication with C(γ) followed by

a matrix-vector multiplication with C(γ)∗. The version shown

in Algorithm 1 applies full reorthogonalization to retain numer-

ical accuracy. After k steps of Lanczos, we obtain a decompo-

sition of the form

C̃Qk = QkTk + re
∗
k, (8)

where Q∗
k
r = 0 and Tk is a tridiagonal symmetric matrix

Tk =









































α1 β1

β1 α2
. . .

. . .
. . . βk−1
βk−1 αk









































(9)

composed of the coefficients generated in the course of the

method. Well-known convergence results (Bai et al. 2000) im-

ply that the second largest eigenvalue of Tk provides a good

approximation to σ2
2
for sufficiently large k. If w denotes the

corresponding eigenvector of Tk then Vkw provides an approxi-

mation to u2.

It is important to observe that the main computational kernel

of the Lanczos method is the matrix-vector multiplication of C̃

with qk (Line 6). Hence, we only need the action of the matrix

C̃ on a vector and can avoid the explicit formation of C̃.

3.2. Efficient computation of matrix-vector products

To multiply C̃ with a vector x we first need to multiply with

C(γ) and then with C∗(γ). Let us consider the multiplication

with C(γ):
[

y1
y2

]

=

[

RB −γ−1IB

γIB RB

] [

x1
x2

]

=

[

RBx1 − γ
−1IBx2

γIBx1 + RBx2

]

. (10)

3



Observe that

(y1 + iγ
−1y2) = (RB + iIB)(x1 + iγ

−1x2), (11)

which implies that y1, y2 can be computed by performing one

complex matrix-vector multiplication with B = RB + iIB and

scaling the imaginary parts. A similar statement holds for the

matrix-vector multiplication with C(γ)∗:

[

y1
y2

]

=

[

RB- γIB-

−γ−1IB- RB-

] [

x1
x2

]

=

[

RB-x1 + γIB
-x2

−γ−1IB-x1 + RB
-x2

]

, (12)

which can be written as

(y1 + iγy2) = (RB
- − iIB-)(x1 + iγx2), (13)

reducing the computation to a matrix-vector multiplication with

B∗.

In summary, one step of Lanczos applied to C(γ)∗C(γ) re-

quires two matrix-vector multiplications with B and B∗, respec-

tively. In order to make this computation more efficient, we

propose to perform a Schur decomposition of A off-line, before

the pseudospectrum computation starts. Then, using the fact

that A = URU∗, where U is unitary and R is upper triangular, it

holds that

B = (A − λI)−1 = (URU∗ − λI)−1 = U(R − λI)−1U∗. (14)

A matrix-vector multiplication with B (or B∗) now requires a

matrix-vector multiplication with U∗, followed by a linear sys-

tem solution with an upper (lower) triangular matrix R (R∗) and,

finally, a matrix-vector multiplication with U. This not only

avoids the explicit formation of B but also reduces the cost of

matrix-vector multiplications with B or B∗ to O(n2).

3.3. Stopping criterion and accuracy

As we have already mentioned in Section 2, each step of bi-

section only requires the sign of σ̇2(C(γ)). This suggests that

one can significantly relax the residual tolerance used in Lanc-

zos (see Algorithm 1, Line 17) and still be able to estimate the

sign correctly. Numerical experience suggests that a tolerance

of 10−5 suffices. This limits the number of matrix-vector mul-

tiplications required by the Lanczos method and therefore the

total computational cost of bisection itself. Nevertheless, it is

important to stress that once the optimal solution γ∗ has been

localized, we require high accuracy in the final approximation

of µreal((A − λI)
−1) = σ2(C(γ

∗)), so we set the tolerance to

10−15 in the Lanczos method (only) at this final step. Algo-

rithm 2 summarizes the main steps of bisection for computing

µreal((A−λI)
−1). The matrix-vector multiplication needed in the

Lanczos method called in lines 6 and 15 (with the two different

tolerances) is performed in O(n2) operations with the trick de-

scribed in Section 3.2.

Algorithm 2: The bisection algorithm

1: Input: URU∗: Schur decomposition of A, λ: shift,

tolh, toll: high and low tolerance, [a0, b0]: initial interval.

2: Output: γ∗, µreal((A − λI)
−1).

3: k = 0

4: while |bk − ak | > tolh do

5: γk+1 =
ak+bk
2

6: Approximate ḟreal(γk+1) using Lanczos(toll).

7: if ḟreal(γk+1) > 0 then

8: ak+1 = ak+1, bk+1 = γk+1
9: else

10: ak+1 = γk+1, bk+1 = bk+1
11: end if

12: k = k + 1

13: end while

14: γ∗ = γk+1
15: Compute µreal((A − λI)

−1) = σ2(C(γ
∗)) (see (5)) using

Lanczos(tolh).

3.4. Numerical example

Let us illustrate the real structured pseudospectrum for the

following matrix by Demmel (1987):

A =





















−1 −100 −10000

0 −1 −100

0 0 −1





















. (15)

We used a grid of 100 points in each direction. Figures 2(a)

and 2(b) show the unstructured and real structured pseudospec-

trum, respectively, and reveal striking differences between both.

On the first sight, the eigenvalue −1 appears to become much

less sensitive if the perturbations are restricted to be real. This

would contradict first-order sensitivity results in (Kressner et al.

2009), which state that the Hölder condition number of an

eigenvalue remains almost the same under real perturbations.

Indeed, a closer inspection of the real pseudospectrum reveals

that for smaller ε the eigenvalue −1 is still moved to almost

the same extent but its movement is mainly confined to the six

spikes at −1. This observation agrees well with the fact that the

shape of the real pseudospectra for Jordan blocks converges to

spikes as ε → 0 (Karow 2008; Chaitin-Chatelin and Frayssé

1996).

4. Skew-symmetric pseudospectra

The techniques described above for accelerating the com-

putation of real structured pseudospectra can be extended to

other structures. We first illustrate this for the class ∆ of (com-

plex) skew-symmetric perturbations. In this case, it can be

shown (Karow 2007) that the corresponding structured singular

value µskew(B) satisfies the following eigenvalue optimization

problem:

µskew(B) =

√

inf
γ≥0
λ2

([

B∗B γ(B̄ + B∗)

γ(B + B-) B-B̄

])

, (16)
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(a) Unstructured pseudospectrum
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(b) Real pseudospectrum

Figure 2: Unstructured (top) and real pseudospectrum (bottom) of the Demmel

matrix (15)

where λ2 denotes the second largest eigenvalue of a Hermitian

matrix. By the definition, the skew-symmetric pseudospectrum

is the level set of µskew(B), with B = (A−λI)
−1 as usual. Observe

that
[

B∗B γ(B̄ + B∗)

γ(B + B-) B-B̄

]

=

[

B γI

γI B̄

]∗ [
B γI

γI B̄

]

− γ2I,

(17)

which implies that the objective function is identical to

fskew(γ) = σ
2
2

([

B γI

γI B̄

])

− γ2. (18)

Hence, the optimization problem becomes

µskew(B) =
√

inf
γ≥0

fskew(γ). (19)

Again we employ bisection for solving this optimization prob-

lem. Recall that each step of bisection requires the sign of the

derivative of fskew(γ) with respect to γ. Differentiating (18) we

obtain

ḟskew(γ) = 2σ2

([

B γI

γI B̄

])

σ̇2

([

B γI

γI B̄

])

− 2γ, (20)

where

σ̇2

([

B γI

γI B̄

])

= Re

[

u∗2

[

0 I

I 0

]

v2

]

. (21)
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(a) Unstructured pseudospectrum
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(b) Skew-symmetric pseudospectrum

Figure 3: Unstructured (top) and skew-symmetric pseudospectrum (bottom) of

matrix (22)

Therefore, at each step of bisection we need the second singular

triplet of C(γ) =

[

B γI

γI B̄

]

.We apply the Lanczos algorithm

to C(γ)∗C(γ), which requires one matrix-vector multiplication

with C(γ) followed by another one with C(γ)∗. This in turn

requires matrix-vector multiplications with B or B̄. Similarly

to the real structured pseudospectrum, we propose to use the

Schur decomposition of A (see (14)), which reduces the cost of

matrix-vector multiplication with B (or B̄) to O(n2) without the

need of actually forming or factorizing B = (A − λI)−1.

4.1. Numerical example

As an illustrative example, we use the complex skew-

symmetric matrix

A =





















0 1 − φ 0

−1 + φ 0 i

0 −i 0





















, φ = 0.01, (22)

from (Rump 2006). Figures 3(a) and 3(b) show the unstructured

and skew-symmetric pseudospectrum of A, respectively, use a

grid of 100 points in each direction.
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5. Hermitian pseudospectra

This section is concerned with the class ∆ of Hermitian per-

turbations. Letting λ1 denote the largest eigenvalue of a Hermi-

tian matrix, it can been shown (Karow 2007) that the Hermitian

structured singular value satisfies

µHermitian(B) =
√

inf
γ∈R
λ1 (B∗B + γi(B − B∗)), (23)

provided that the matrix Bh = i(B − B
∗) is not definite. Assum-

ing for the moment that this indefiniteness condition is true, we

observe that

B∗B + γi(B − B∗) = (B − γiI)∗(B − γiI) − γ2I, (24)

which implies that the objective function is equivalent to

fHermitian(γ) = σ
2
1(B − γiI) − γ

2. (25)

Hence, the optimization problem (23) becomes

µHermitian(B) =
√

inf
γ∈R

fHermitian(γ). (26)

Once again, we apply bisection in order to solve this optimiza-

tion problem, requiring the sign of the derivative of fHermitian(γ)

in each iteration. Differentiating (25) with respect to γ gives

fHermitian(γ) = 2σ1(B − γiI)σ̇1(B − γiI) − 2γ, (27)

where

σ̇1(B − γiI) = Re[−iu
∗
1v1] = Im[u

∗
1v1]. (28)

Therefore, each step of bisection needs the largest singular

triplet of C(γ) = (B − γiI). Apply Lanczos to C(γ)∗C(γ) re-

quires matrix-vector multiplications withC(γ) andC(γ)∗. As in

Section 4, exploiting the Schur decomposition of A (see (14))

reduces the complexity of each matrix-vector multiplications to

O(n2) without the need of forming B = (A − λI)−1.

Let us come back to our initial assumption that Bh = i(B −

B∗) = i((A − λI)−1 − (A − λI)−∗) is not definite. If this condi-

tion is violated, there is no Hermitian perturbation % such that

A + % has the eigenvalue λ and consequently it is reasonable to

define µHermitian((A − λI)
−1) = 0. This can be seen as follows.

Assuming that Bh is definite, a basic linear algebra result (Horn

and Johnson 1985) implies that also i((A − λI) − (A − λI)∗) is

definite. If there was a Hermitian perturbation % such that λ

becomes an eigenvalue with eigenvector x ! 0 of A + H then

(A+H)x = λx implies 0 = x∗(A−λI+H)x. Taking the imaginary

part of the last expression gives ix∗((A − λI) − (A − λI)∗)x = 0,

which contradicts the definiteness assumption.

In practice, we test the definiteness of Bh by applying a few

steps of the Lanczos method to Bh. This will quickly yield good

approximations to the extremal (real) eigenvalues of Bh. Then,

we check whether the signs of the smallest and largest eigen-

value approximations of Bh agree. If this is the case then Bh
is considered definite and a zero structured singular value is re-

turned. Otherwise, the computation is continued by solving the

optimization problem (26) using bisection.

5.1. Numerical example

As an example, consider the non-Hermitian matrix

A = diag

(

0, 1, 2,

(

3 −1

1 3

))

, (29)

having the eigenvalues {0, 1, 2, 3 + i, 3 − i}. Figures 4(a) and

4(b) show the unstructured and Hermitian pseudospectrum of

A, respectively, using a grid of 100 points in each direction.

Notice that above the imaginary line 1 and below the imaginary

line −1 the pseudospectrum is void due to fact that for a given

complex shift λ ∈ C, with |Im(λ)| > 1, the matrix Bh becomes

definite.

!1 0 1 2 3 4
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!1

0

1

2

!1

!0.75

!0.5

!0.25

0

0.25

(a) Unstructured pseudospectrum

!1 0 1 2 3 4
!2

!1

0

1

2

!1

!0.75

!0.5

!0.25

0

0.25

(b) Hermitian pseudospectrum

Figure 4: Unstructured (top panel) and Hermitian pseudospectrum (middle and

bottom panel) of matrix (29)

6. Hamiltonian pseudospectra

Following the discussion in (Karow et al. 2006a; Karow

2007), linear structures induced by bilinear and sesquilinear

forms can be handled by structured pseudospectra computation

for symmetric, skew-symmetric, and Hermitian perturbations.

In the following, this will be demonstrated for the practically

relevant case of Hamiltonian perturbations.

A matrix H is called Hamiltonian if it takes the form

H =

[

A B

C −A∗

]

∈ C
2n×2n, B = B∗, C = C∗.

The eigenvalues of H are symmetric with respect to the imagi-

nary axis, and so is its Hamiltonian pseudospectrum. Defining
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(a) Unstructured pseudospectrum
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(b) Hamiltonian pseudospectrum

Figure 5: Pseudospectra of the matrix (30)

J =

[

0 I

−I 0

]

it is easy to see that H is Hamiltonian if and

only if JH is Hermitian. For a general matrix B ∈ C2n×2n we

therefore obtain

µHamiltonian(B) = µHermitian(JB).

and hence the Hamiltonian pseudospectrum can be computed

by solving the optimization problem (26) for each grid point

with B replaced by JB.

6.1. Numerical examples

The following two examples illustrate the use of Hamilto-

nian pseudospectra to provide insight into the movement of

purely imaginary eigenvalues under Hamiltonian perturbations.

In both examples we use a grid of 100 points in each direction.

First, consider the matrix

A =

[

0 diag(0, 1, 1)

diag(0,−1,−1) 0

]

(30)

with eigenvalues {0, i,−i}, each having algebraic multiplicity

two. Figure 5(a) and 5(b) show the unstructured and Hamilto-

nian pseudospectrum of A, respectively. The latter reveals that

the eigenvalues ±i stay on the imaginary axis under Hamilto-

nian perturbations up to the point when they meet the perturbed

zero eigenvalue, which allows them to leave the imaginary axis.

Next, consider the following matrix A

A =

[

0 diag(0,−1, 1)

diag(0, 1,−1) 0

]

, (31)

where we have simply switched the signs of the ones. This ma-

trix has the same eigenvalues {0, i,−i} as (30). Figures 6(a) and

6(b) show the unstructured and Hamiltonian pseudospectrum of

A respectively. In remarkable contrast to Figure 5, there is vir-

tually no difference between both pseudospectra. In particular,
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0

0.5
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1.5
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(a) Unstructured pseudospectrum

!1 0 1
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2
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!0.75

!0.5

!0.25

0

(b) Hamiltonian pseudospectrum

Figure 6: Pseudospectra of the matrix (31)

Real Skew-symmetric

σ2

([

RB −γ−1IB

γIB RB

])

σ2

([

B γI

γI B̄

])

Hermitian Hamiltonian

σmax(B − γiI) σmax(JB − γiI)

Table 1: SVD calculations involved in structured pseudospectra.

the eigenvalues ±i may leave the imaginary axis for arbitrar-

ily small Hamiltonian perturbations. A theoretical explanation

for this effect of the sign change can be found, for example,

in (Grivet-Talocia 2004; Mehrmann and Xu 2008).

7. AMatlab interface for plotting structured pseudospectra

The algorithms described in this paper have been imple-

mented into a software package for computing structured pseu-

dospectra.1 For convenience, Table 1 summarizes the SVD cal-

culations required in the computation of structured pseudospec-

trum, depending on the perturbation class ∆.

Our software inherits the complete interface of

EigTool (Wright 2002), with a few modifications to allow

the specification of the perturbation structure, see Figure 7. In

its present state, this software should be understood as research

code with potential for further improvements. In particular,

all computations are currently implemented as Matlab code.

Significant speedup could be obtained by outsourcing low-

level computations (e.g., the Lanczos method) to a low-level

programming language, as done in EigTool. Moreover, in view

of the non-smooth boundaries of structured pseudospectra, it

would be advantageous to use an adaptive grid, see (Breda

et al. 2009) for work in this direction.

1See http://www.sam.math.ethz.ch/NLAgroup/software.html.
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Figure 7: Matlab interface for computing structured pseudospectra . The plot

shows the real structured pseudospectra of the 100 × 100 Frank matrix (Tre-

fethen and Embree 2005).

To give an impression of the performance of the current im-

plementation: On a single core of a 2.2GHz Intel 2 Core proces-

sor, computing the real structured pseudospectra displayed in

Figure 7 requires about 7 minutes with the algorithms described

in the paper. In comparison, a naive implementation based on

full SVD computations instead of the Lanczos method requires

about 79 minutes. However, it should also be mentioned that

computing the unstructured pseudospectra of the same matrix

requires only a few seconds.

Finally, we mention that our software also provides the pos-

sibility – inherited by EigTool – to display 3D plots of the µ

values. In certain situations this might provide more intuitive

visualization than contour plots. For example, Figure 8 displays

such a 3D plot for the Hamiltonian pseudospectrum shown in

Figure 5(b).
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