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Abstract

In this paper we study interpolation of Hilbert spaces of differential forms using the real method

of interpolation. We show that the scale of fractional order Sobolev spaces of differential l-forms
in Hs with exterior derivative in Hs can be obtained by real interpolation. Our proof heavily relies

on the recent discovery of smoothed Poincaré lifting for differential forms [M. COSTABEL AND

A. MCINTOSH,On Bogovskii and regularized Poincare integral operators for de Rham complexes on

Lipschitz domains, Math. Z., (2009)]. They enable the construction of universal extension operators
for Sobolev spaces of differential forms, which, in turns, pave the way for a Fourier transform based

proof of equivalences ofK-functionals.

Key words. Differential forms, fractional Sobolev spaces, real interpolation, K-functional,

smoothed Poincaré lifting, universal extension

AMS subject classification 2000. 46B70, 47A57

1 Introduction

We consider a bounded Lipschitz domain Ω ⊂ Rd, d ∈ N and d ≥ 2. Let Λl represent the vec-

tor space of real-valued (or complex-valued), alternating, l-multilinear maps on Rd, which is of

dimension
(d

l

)
. A differential form of order l on Ω is a mapping Ω $→ Λl. Given an increasing l-

permutation I = (i1, . . . , il), 1 ≤ i1 < i2 < · · · < il ≤ d, 1 ≤ l ≤ d, we introduce the basis
l-form dxI = dxi1∧ · · ·∧dxil

, where dxi’s are the canonical coordinate forms in Rd. This basis

representation permits us to introduce the Hilbert spaces

Hs(Ω, Λl) :=
{

ω =
∑

I
ωIdxI : ωI ∈ Hs(Ω)

}
, s ∈ R

+
0 , (1.1)

where Hs(Ω) = W s,2(Ω) is the standard L2(Ω)-based Sobolev space (of equivalence claesses of
functionsΩ $→ R) of fractional order s. Throughout,ΣI means the summation over all the increasing

l-permutations I and R
+
0 := {s | s ≥ 0}. Recall that Λ0 can be identified with R and Hs(Ω, Λ0)

with Hs(Ω). It is known [8, Thm. B.8] that these fractional spaces form a scale of interpolation

spaces, namely

for 0 < θ < 1, s0, s1 ∈ R, s = (1 − θ)s0 + θs1 ⇒ Hs(Ω) = [Hs0(Ω), Hs1 (Ω)]θ , (1.2)

where [X, Y ]θ designates the space obtained by real interpolation between the Banach spacesX and

Y , see [11], [2, Ch. 3] and Section 2. As a consequence, the spacesHs(Ω, Λl) also form a scale of
interpolation spaces.

∗SAM, ETH Zurich, CH-8092 Zürich, Switzerland (hiptmair@sam.math.ethz.ch).
†Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (jzli@math.cuhk.edu.hk).
‡Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. The work of this author

was substantially supported by Hong Kong RGC grants (Projects 404606 and and 404407). (zou@math.cuhk.edu.hk)
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Writing d for the exterior derivative, the spaces

Hs(d, Ω, Λl) :=
{

ω ∈ Hs(Ω; Λl) | dω ∈ Hs(Ω; Λl+1)
}
, s ∈ R

+
0 , (1.3)

play a key role in the statement of second-order variational boundary value problems for differential

forms, cf. [9]. In this article we give a positive answer to the question, whether these Hilbert spaces

Hs(d, Ω, Λl), 0 ≤ l ≤ d, are related by real interpolation analogous to (1.2). More precisely, in
Section 4 we will prove the following main result:

Theorem 1.1. Let Ω be a bounded Lipschitz domain. For s0, s1 ∈ R
+
0 and 0 ≤ l ≤ d,

[
Hs0(d, Ω, Λl), Hs1(d, Ω, Λl)

]
θ

= Hs(d, Ω, Λl) (1.4)

with equivalent norms, where s = (1 − θ)s0 + θs1 for 0 < θ < 1.

The policy of the proof of Theorem 1.1, which is elaborated in Section 4, is as follows: first

we show the assertion for Ω = Rd by means of Fourier techniques. Then the problem for general

bounded domains is reduced to that case by means of a universal extension theorem for the spaces

Hs(d, Ω, Λl). To that end, we rely on E. Stein’s classical extension operator. How this is done em-
ploying a smoothed Poincaré mapping is outlined in Section 3.

We remind that interpolation in function spaces is a powerful theoretical tool in functional anal-

ysis and numerical analysis, because estimates obtained for (simpler) special cases can instantly be

extended to a whole scale of spaces. The spaces Hs(d, Ω, Λl) of differential forms discussed in
this paper are isomorphic to the Sobolev spacesH(div; Ω), H(curl; Ω) for d = 3. These Sobolev
spaces play a key role in the variational statement of boundary value problems in fluid mechanics

and electromagnetics [4, 6]. An interpolation theory for theses spaces will have significance for the

mathematical and numerical analysis of these boundary value problems.

Despite the evident usefulness of Theorem 1.1 it seems not to be available in the literature. We

mention the abstract framework of [1], but verifying its assumptions for the concrete setting discussed

in this paper appears to be challenging.

Remark 1.2. To keep the presentation simple, we confine ourselves to the Hilbert space setting of

spaces based on L2(Ω). Extension to Lp(Ω)-settings, 1 ≤ p ≤ ∞ is likely possible by generalizing

our approach.

2 Real method of interpolation

Let us first recall the real method of interpolation (cf. [2, Ch. 3], [8, App. B], [3, Ch. 14] for details).

Assume a compatible pair of Hilbert spaces X 0 and X 1 with continuous embedding X 1 ⊂ X 0.

By the real method of interpolation, we can define for 0 < s < 1 a family of interpolation spaces
[ X 0, X 1 ]s with the following nesting property

X 1 ⊂ [ X 0, X 1 ]s ⊂ X 0 .

The [ X 0, X 1 ]s-norm is defined through Peetre’sK-functional by

‖v‖[ X0,X1 ]s
=

∫ ∞

0

(
t−sK(t,v)

)2 dt

t
, (2.1)

where

K(t,v)2 := inf
v=v0+v1

v0∈X0, v1∈X1

{
‖v0‖

2
X0

+ t2 ‖v1‖
2
X1

}
. (2.2)

For well-known properties of interpolation spaces and families of linear operators defined on them,

the reader is referred to [2, 11].

3 Universal extension

We start from a celebrated extension theorem for Sobolev spaces due to E. M. Stein, see [10, Theo-

rem 5, pp.181]:
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Theorem 3.1. For a bounded Lipschitz domain Ω ⊂ Rd (d ∈ N, d ≥ 2) there is an operator
E : C∞(Ω) $→ C∞(Rd) which satisfies

1. (extension property) E u(x) = u(x) for all x ∈ Ω, and

2. (continuity) for anym ∈ N0 there exists a constant C = C(m, Ω) such that

‖E u‖Hm(Rd) ≤ C ‖u‖Hm(Ω) ∀ u ∈ C∞(Ω) .

Thus, E can be extended to a continuous extension operator E : Hm(Ω) $→ Hm(Rd) for any
m ∈ N by a density argument. Furthermore, in light of of (1.2), by interpolation [8, Theorem B.2]

the operator E can be generalized to fractional Sobolev spaces, that is, E : Hs(Ω) $→ Hs(Rd) is
continuous for any s ∈ R

+
0 . due to the definition in (1.1), by componentwise application, we obtain

an extension operator still denoted by E : Hs(Ω, Λl) $→ Hs(Rd, Λl) for any s ∈ R
+
0 and 0 ≤ l ≤ d.

The operator E may be called “universal” for its one-formula-fits-all elegance.

A similar operator for the spacesHs(d, Ω, Λl) will be a key technical tool in our approach to in-
terpolation spaces. It will be based on some so-called smoothed Poincaré liftings recently introduced

by M. Costabel and A. McIntosh in [5], where they used it to prove the following theorem [5, Theo-

rem 4.6]:

Theorem 3.2. Let Ω ⊂ Rd be a bounded Lipschitz domain, then for l = 0, 1, . . . , d, there exist
pseudodifferential operatorsRl andKl with the following properties:

1. For any s ∈ R, Rl maps fromHs(Ω, Λl) intoHs+1(Ω, Λl−1) continuously andKl maps from

Hs(Ω, Λl) into Ht(Ω, Λl) continuously for any t ∈ R.

2. For any ω ∈ Hs(d, Ω, Λl), there holds the identity

dRlω + Rl+1dω + Klω = ω in Ω . (3.1)

This theorem paves the way for harnessing the classical Stein extension operator E from The-

orem 3.1 to build universal extension operators Cl : Hs(d, Ω, Λl) $→ Hs(d, Rd, Λl) for s ∈ R
+
0 ,

according to

Cl :=

{
d ◦ E ◦ Rl + E ◦ Rl+1 ◦ d + E ◦ Kl, l = 0, 1, . . . , d − 1;
d ◦ E ◦ Rl + E ◦ Kl . l = d.

(3.2)

Now we can show a universal extension theorem for the Sobolev spaces of differential forms

Hs(d, Ω, Λl).

Theorem 3.3. For a bounded Lipschitz domain Ω ⊂ Rd (d ∈ N, d ≥ 2) there is an operator
Cl : Hs(d, Ω, Λl) $→ Hs(d, Rd, Λl), s ∈ R

+
0 , which satisfies

1. (extension property) Clω(x) = ω(x) a.e. in Ω, and

2. (continuity) for any 0 ≤ l ≤ d there exists a constant C = C(Ω, s) such that

‖Cω‖
Hs(d,Rd,Λl) ≤ C ‖ω‖

Hs(d,Ω,Λl) ∀ ω ∈ Hs(d, Ω, Λl) .

Proof. Let ω ∈ Hs(d, Ω, Λl), namely ω ∈ Hs(Ω, Λl) and dω ∈ Hs(Ω, Λl+1). Note that l = d
is a degenerate case, since then dω = 0, and the assertion of the theorem becomes trivial. Hence,
we restrict ourselves to 0 ≤ l < d. Thanks to Theorem 3.2, there exists some η = Rl+1dω ∈
Hs+1(Ω, Λl) with

‖η‖
Hs+1(Ω,Λl) ≤ C ‖dω‖

Hs(Ω,Λl+1) ,

and some ρ = Rlω ∈ Hs+1(Ω, Λl−1) such that

‖ρ‖
Hs+1(Ω,Λl−1) ≤ C ‖ω‖

Hs(Ω,Λl) ,

with both constants C independent of ω. Moreover, in view of (3.1), we have

dρ + η + Klω = ω in Ω .
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By applying the Stein extension componentwise, we can obtain η̃ ∈ Hs+1(Rd, Λl), ρ̃ ∈
Hs+1(Rd, Λl−1), and ν̃ ∈ Hs+1(Rd, Λl) such that

η̃|Ω = η, ‖η̃‖
Hs+1(Rd,Λl) ≤ C ‖η‖

Hs+1(Ω,Λl) ,

ρ̃|Ω = ρ, ‖ρ̃‖
Hs+1(Rd,Λl−1) ≤ C ‖ρ‖

Hs+1(Ω,Λl−1) ,

ν̃ |Ω = Klω, ‖ν̃‖
Hs+1(Rd,Λl) ≤ C ‖Klω‖

Hs+1(Ω,Λl) .

Noticing thatKl mapsHs(Ω, Λl) continuously toHs+1(Ω, Λl) by Theorem 3.2, we see

‖Klω‖
Hs+1(Ω,Λl) ≤ C ‖ω‖

Hs(Ω,Λl) .

Define Cω = dρ̃ + η̃ + ν̃, then it is immediate to see that (C ω)|Ω = ω and Cω ∈ Hs(d, Rd, Λl)
by the following estimate:

‖Cω‖
Hs(d,Rd,Λl) ≤ ‖dρ̃ + η̃‖

Hs(Rd,Λl) + ‖dη̃‖
Hs(Rd,Λl) + ‖ν̃‖

Hs(d,Rd,Λl)

≤ C
(
‖ρ̃‖

Hs+1(Rd,Λl−1) + ‖η̃‖
Hs+1(Rd,Λl) + ‖ν̃‖

Hs+1(Rd,Λl)

)

≤ C
(
‖ρ‖

Hs+1(Ω,Λl−1) + ‖η‖
Hs+1(Ω,Λl) + ‖Klω‖

Hs+1(Ω,Λl)

)

≤ C
(
‖ω‖

Hs(Ω,Λl) + ‖dω‖
Hs(Ω,Λl+1)

)

≤ C ‖ω‖
Hs(d,Ω,Λl) . (3.3)

This completes the proof.

4 Interpolation inHs(d, Ω, Λl)

In this section, we establish the equivalence between the interpolation spaces and fractional order

Sobolev spacesHs(d, Ω, Λl) of differential forms.
In the first step, we establish the interpolation theorem about the equivalence between fractional

Sobolev spaces Hs(d, Rd, Λl) and interpolation spaces for the domain Rd . For 0 < θ < 1,
s0, s1 ∈ R with s0 < s1, and s = (1 − θ)s0 + θs1, let us recall the definition of the[
Hs0(d, Rd, Λl), Hs1(d, Rd, Λl)

]
θ
-norm of the interpolation space via the K-functional:

‖ω‖2
[Hs0(d,Rd,Λl),Hs1(d,Rd,Λl) ]θ

:=

∫ ∞

0

(
t−sK(t,u)

)2 dt

t
, (4.1)

where

K(t, ω)2 := inf
ω=ω0+ω1

ω0∈H
s0 (d,Rd,Λl)

ω1∈H
s1 (d,Rd,Λl)

{
‖ω‖2

Hs0(d,Rd,Λl) + t2 ‖ω‖2
Hs1(d,Rd,Λl)

}
. (4.2)

On the other hand, for any ω ∈ Hs(d, Rd, Λl), the Hs(d, Rd, Λl)-norm of the fractional order
Sobolev spaces is defined by

‖ω‖2
Hs(Rd,Λl) :=

∫

Rd

(1 + |ξ|2)s|ω̂(ξ)|2 dξ , (4.3)

where ω̂ is the Fourier transform ofω, and |ω̂(ξ)|2 :=
∑

I |ω̂I(ξ)|2. Here the Fourier transform of a
differential l-form ω =

∑
I ωIdxI ∈ L2(Rd; Λl), still denoted byF , is defined componentwise by

ω̂(ξ) := F (ω)(ξ) =
∑

I

ω̂I(ξ)dξI ,

where

ω̂I(ξ) := F (ωI)(ξ) =
1

(2π)d/2

∫

Rd

exp(−ıξ · x)ωI(x) dx ,

and ı is the imaginary unit, ξ = (ξ1, · · · , ξd)T is the vectorial angular frequency in Rd and

dξI = dξi1∧ · · ·∧dξil
, with I being an increasing l-permutation. Note that (4.3) corresponds to

a componentwise definition of the norm for Sobolev spaces of differential forms by means of the

Fourier transform method (cf. [8, Ch. 3]).

It is easy to see that the Fourier transform converts the exterior derivative into an exterior product:
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Lemma 4.1. For any ω ∈ H(d, Ω, Λl), we have

F (dω) = ıξ̂ ∧ F (ω), (4.4)

where ξ̂ is the differential 1-form in the frequency domain, namely ξ̂ = ξ1dξ1 + ξ2dξ2 + · · ·+ ξddξd.

Thus by Lemma 4.1, we may write

‖ω‖2
Hs(d,Rd,Λl) = ‖ω‖2

Hs(Rd,Λl) + ‖dω‖2
Hs(Rd,Λl)

=

∫

Rd

(1 + |ξ|2)s
(
|ω̂(ξ)|2 + |ξ̂ ∧ ω̂(ξ)|2

)
dξ . (4.5)

To show the equivalence, we need a technical lemma [8, Ex. B.4].

Lemma 4.2. For any two constants c0 > 0 and c1 > 0, and a complex number z ∈ C, it holds that

min
z=z0+z1

(
c0|z0|

2 + c1|z1|
2
)

=
c0c1

c0 + c1
|z|2, (4.6)

and the minimum is achieved when c0z0 = c1z1 = c0c1z/(c0 + c1).

Proof. Let z = a + bi and zj = aj + bj i for j = 0, 1. We may rewrite (4.6) as:

minimize c0(a
2
0 + b2

0) + c1(a
2
1 + b2

1),

subject to

a = a0 + a1, b = b0 + b1.

This problem can be solved by the Lagrangian multiplier method by defining the Lagrangian as

follows:

min
(
c0(a

2
0 + b2

0) + c1(a
2
1 + b2

1)
)

+ µ(a − a0 − a1) + λ(b − b0 − b1) .

Necessary minimality conditions yield that

2c0a0 − µ = 0, 2c1a1 − µ= 0,

2c0b0 − λ = 0, 2c1b1 − λ= 0.

We find a solution aj = µ/(2cj) and bj = λ/(2cj) for j = 0, 1, µ = 2c0c1a/(c0 + c1) and
λ = 2c0c1b/(c0 + c1). Thus we see that cjzj = c0c1z/(c0 + c1) for j = 0, 1 at the critical point.
It can be easily checked that the unique minimal value c0c1

c0+c1
|z|2 is indeed attained at this critical

point.

Now we can establish the equivalence of the fractional Sobolev spaces of differential forms

Hs(d, Rd, Λl) and the interpolation spaces
[
Hs0(d, Rd, Λl), Hs1(d, Rd, Λl)

]
s
.

Lemma 4.3. For s0, s1 ∈ R with s0 < s1, and l ∈ N0 with 0 ≤ l ≤ d, it holds that
[
Hs0(d, Rd, Λl), Hs1(d, Rd, Λl)

]
θ

= Hs(d, Rd, Λl) , (4.7)

with equivalent norms, where s = (1 − θ)s0 + θs1 for 0 < θ < 1.

Proof. We take the cue from the proof of the interpolation theorem for standard Sobolev spaces on

Rd [8, Thm B.7]. For any ω ∈ Hs(d, Rd, Λl), let ω = ω0 + ω1 with ωj ∈ Hsj (d, Rd, Λl) for
j = 0, 1. We observe that

K(t, ω)2 = inf
ω=ω0+ω1

ω0∈H
s0 (d,Rd,Λl)

ω1∈H
s1 (d,Rd,Λl)

‖ω0‖
2
Hs0 (d,Rd,Λl) + t2 ‖ω0‖

2
Hs1(d,Rd,Λl)

= inf
bω=bω0+bω1

∫

Rd

[
(1 + |ξ|2)s0

(
|ω̂0(ξ)|2 + |ξ̂ ∧ ω̂0(ξ)|2

)
+ t2(1 + |ξ|2)s1

(
|ω̂1(ξ)|2 + |ξ̂ ∧ ω̂1(ξ)|2

) ]
dξ

≥ inf
bω=bω0+bω1

∫

Rd

[
(1 + |ξ|2)s0

(
|ω̂0(ξ)|2

)
dξ + t2(1 + |ξ|2)s1

(
|ω̂1(ξ)|2

) ]

+ inf
bω=bω0+bω1

∫

Rd

[
(1 + |ξ|2)s0

(
|ξ̂ ∧ ω̂0(ξ)|2

)
+ t2(1 + |ξ|2)s1

(
|ξ̂ ∧ ω̂1(ξ)|2

) ]
dξ

:= S + T

5



where ω̂j(ξ) is the Fourier transform of ωj for j = 0, 1 and ω̂(ξ) = ω̂0(ξ) + ω̂1(ξ) by the linearity
of the Fourier transform. By Lemma 4.2, we see that for each ξ the integrand in S is minimized

when

(1 + |ξ|2)s0ω̂0(ξ) = t2(1 + |ξ|2)s1 ω̂1(ξ) =
t2(1 + |ξ|2)s0+s1

(1 + |ξ|2)s0 + t2(1 + |ξ|2)s1
ω̂(ξ). (4.8)

Likewise, by linearity of the operator ξ ∧ ·, the integrand in T is minimized when

(1 + |ξ|2)s0 ξ̂ ∧ ω̂0(ξ) = t2(1 + |ξ|2)s1 ξ̂ ∧ ω̂1(ξ) =
t2(1 + |ξ|2)s0+s1

(1 + |ξ|2)s0 + t2(1 + |ξ|2)s1
ξ̂ ∧ ω̂(ξ).

Thanks to the special choice of splitting as given in (4.8), we have

K(t, ω)2 ≥ S + T

=

∫

Rd

t2(1 + |ξ|2)s0+s1

(1 + |ξ|2)s0 + t2(1 + |ξ|2)s1
|ω̂(ξ)|2 dξ +

∫

Rd

t2(1 + |ξ|2)s0+s1

(1 + |ξ|2)s0 + t2(1 + |ξ|2)s1
|ξ ∧ ω̂(ξ)|2 dξ

≥ inf
bω=bω0+bω1

∫

Rd

[
(1 + |ξ|2)s0

(
|ω̂0(ξ)|2 + |ξ̂ ∧ ω̂0(ξ)|2

)
+ t2(1 + |ξ|2)s1

(
|ω̂1(ξ)|2 + |ξ̂ ∧ ω̂1(ξ)|2

) ]

= K(t, ω)2 .

Hence we see that when (4.8) holds,

K(t, ω)2 =

∫

Rd

t2(1 + |ξ|2)s0+s1

(1 + |ξ|2)s0 + t2(1 + |ξ|2)s1

(
|ω̂(ξ)|2 + |ξ̂ ∧ ω̂(ξ)|2

)
dξ

=

∫

Rd

(1 + |ξ|2)s0f(a(ξ)t)2
(
|ω̂(ξ)|2 + |ξ̂ ∧ ω̂(ξ)|2

)
dξ,

where a(ξ) = (1 + |ξ|2)(s1−s0)/2 and f(t) = t√
1+t2

. Therefore we derive for 0 < θ < 1,

‖ω‖2
[ Hs0 (d,Rd,Λl),Hs1(d,Rd,Λl) ]s

=

∫

Rd

(1 + |ξ|2)s0a(ξ)2θ

( ∫ ∞

0

t1−2θ

1 + t2
dt

)(
|ω̂(ξ)|2 + |ξ̂ ∧ ω̂(ξ)|2

)
dξ

=
π

2 sinπθ

∫

Rd

(1 + |ξ|2)s
(
|ω̂(ξ)|2 + |ξ̂ ∧ ω̂(ξ)|2

)
dξ =

π

2 sin πθ
‖ω‖2

Hs(d,R3,Λl) .

This completes the proof.

Then, we define the
[
Hs0(d, Ω, Λl), Hs1(d, Ω, Λl)

]
θ
-norm, for 0 < θ < 1, s0, s1 ∈ R

+
0 with

s0 < s1 and s = (1 − θ)s0 + θs1, via the K-functional for a bounded Lipschitz domain Ω ⊂ Rd:

‖ω‖2
[ Hs0(d,Ω,Λl),Hs1(d,Ω,Λl) ]θ

:=

∫ ∞

0

(
t−sK̃(t,u)

)2 dt

t
, (4.9)

where

K̃(t, ω)2 := inf
ω=ω0+ω1

ω0∈H
s0 (d,Ω,Λl)

ω1∈H
s1 (d,Ω,Λl)

{
‖ω‖2

Hs0(d,Ω,Λl) + t2 ‖ω‖2
Hs1 (d,Ω,Λl)

}
. (4.10)

Now we are in a position to prove our main result Theorem 1.1 about the equivalence of interpo-

lation spaces in bounded Lipschitz domains.

Proof. (of Theorem 1.1) It suffices to show the norm equivalence of the two spaces under study.

(i) Let ω ∈ Hs(d, Ω, Λl), namely ω ∈ Hs(Ω, Λl) and dω ∈ Hs(Ω, Λl+1). Thanks to Theo-
rem 3.3, we can extend ω to Clω ∈ Hs(d, Rd, Λl) such that Clω|Ω = ω.

Take any splittingClω = η0+η1 with ηj ∈ Hsj (d, Rd, Λl) for j = 0, 1. We defineωj = ηj |Ωj ,

then ωj ∈ Hsj (d, Ω, Λl) for j = 0, 1. Therefore we have

K̃(t, ω) ≤ ‖ω0‖Hs0(d,Ω,Λl) + t2 ‖ω1‖Hs1(d,Ω,Λl)

≤ ‖η0‖Hs0 (d,Rd,Λl) + t2 ‖η1‖Hs1(d,Rd,Λl) .
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As the splitting of Clω was arbitrary, we have

K̃(t, ω) ≤ K(t, Clω), (4.11)

Combining (3.3), (4.11) with Lemma 4.3 implies

‖ω‖[Hs0(d,Ω,Λl),Hs1(d,Ω,Λl) ]θ
≤ ‖Clω‖[ Hs0 (d,Rd,Λl),Hs1(d,Rd,Λl) ]θ

≤ C ‖Clω‖
Hs(d,Rd,Λl) ≤ C ‖ω‖

Hs(d,Ω,Λl) ,

Which proves ω ∈
[
Hs0(d, Ω, Λl), Hs1(d, Ω, Λl)

]
θ
.

(ii) For the opposite inclusion, take any ω ∈
[
Hs0(d, Ω, Λl), Hs1(d, Ω, Λl)

]
θ
and any splitting

ω = ω0 + ω1 with ω0 ∈ Hs0(d, Ω, Λl) and ω1 ∈ Hs1(d, Ω, Λl). Now we may apply Theorem 3.3
forHsi(d, Ω, Λl) to define Clωi ∈ Hsi(d, Rd, Λl) such that Clωi = ωi in Ω and

‖Clωi‖Hsi (d,Rd,Λl) ≤ C ‖ωi‖Hsi (d,Ω,Λl) for i = 0, 1.

Let η = Clω0 + Clω1. By Theorem 3.3, we see that ω = η on Ω and

K(t, η) ≤ ‖Cω0‖
2
Hs0 (d,Rd,Λl) + t2 ‖C ω1‖

2
Hs1(d,Rd,Λl) ≤ C

(
‖ω0‖

2
Hs0(d,Ω,Λl) + t2 ‖ω1‖

2
Hs1 (d,Ω,Λl)

)
.

Since the splitting ω = ω0 + ω1 is arbitrary, taking the infimum on the rightmost terms of the

inequality above over all possible splittings we conclude

K(t, η) ≤ CK̃(t, ω) ,

which together with Lemma 4.3 yields

‖ω‖
Hs(d,Ω,Λl) ≤ ‖η‖

Hs(d,Rd,Λl) ≤ C‖η‖[ Hs0 (d,Rd,Λl),Hs1(d,Rd,Λl) ]θ

≤ C‖ω‖[ Hs0 (d,Ω,Λl),Hs1(d,Ω,Λl) ]θ
.

This completes the proof.

Remark 4.1. In three-dimensional Euclidean space R3, we can interpret Theorem1.1 for the vector

fields modeling differential forms, see, e.g., [7, Table 2.1]. In particular for the cases l = 1, 2, special
cases of the theorem can be stated as follows:

Lemma 4.4. For k, m ∈ N with k < m, the following spaces agree

[
Hk(curl; Ω), Hm(curl; Ω)

]

θ
= Hs(curl; Ω) ,

[
Hk(div; Ω), Hm(div; Ω)

]

θ
= Hs(div; Ω) ,

with equivalent norms, where s = (1 − θ)k + θm for 0 < θ < 1.
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