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IDR EXPLAINED∗

MARTIN H. GUTKNECHT†

Dedicated to Richard S. Varga on the occasion of his 80th birthday.

Abstract. The Induced Dimension Reduction (IDR) method is a Krylov space method for
solving linear systems that was developed by Peter Sonneveld around 1979. It was only noticed
by few people, and mainly as the forerunner of Bi-CGSTAB, which was introduced a decade later.
In 2007 Sonneveld and van Gijzen reconsidered IDR and generalized it to IDR(s), claiming that
IDR(1) ≈ IDR is equally fast but preferable to the closely related Bi-CGSTAB, and that IDR(s)
with s > 1 may be much faster than Bi-CGSTAB. It also turned out that when s > 1, IDR(s) is
related to ML(s)BiCGSTAB of Yeung and Chan, and that there is quite some flexibility in the IDR
approach. This approach differs completely from traditional approaches to Krylov space methods,
and therefore it requires an extra effort to get familiar with it and to understand the connections
as well as the differences to better known Krylov space methods. This expository paper aims at
providing some help in this and to make the method understandable even to non-experts. After
presenting the history of IDR and related methods we summarize some of the basic facts on Krylov
space methods. Then we present the original IDR(s) in detail and put it into perspective with other
methods. Specifically, we analyze the differences between the IDR method published 1980, IDR(1)
and Bi-CGSTAB. At the end, we discuss a recently proposed ingenious variant of IDR(s) whose
residuals fulfill extra orthogonality conditions. There we dwell on details that have been left out in
the publications of van Gijzen and Sonneveld.

Key words. Krylov space method, iterative method, induced dimension reduction, IDR, CGS,
Bi-CGSTAB, ML(k)BiCGSTAB, large nonsymmetric linear system

1. History. The Induced Dimension Reduction (IDR) method was introduced
by Wesseling and Sonneveld from Delft University at a symposium of the International
Union of Theoretical and Applied Mechanics in September 1979. In the proceedings
it is covered on just 31

2 pages of a 20-page paper [38], and it is explicitly attributed to
the second author. It was labeled as a Lanczos-type method for nonsymmetric linear
systems which does not require AT. The term Lanczos-type method meant that the
new method was related to the biconjugate gradient (BiCG) method of Lanczos [17],
which had been revived and reformulated by Fletcher [4] four years before. Up to
that time there had been little interest in Lanczos’ approach, despite the fact that
it was very closely related to the widely used conjugate gradient method [16, 21].
Popular alternative Krylov space solvers for nonsymmetric systems were methods like
Vinsome’s OrthoMin1 [37] (now often referred to as GCR), its variants OrthoDir
and OrthoRes [40], as well as similar methods introduced by Axelsson [2]. GMRes
[22] was still five years away. Also popular were parameter-dependent Krylov space
methods, like Chebyshev iteration, and parameter-dependent iterative methods based
on matrix splitting, like SOR.

The IDR method received hardly any attention, probably because it was neither
presented at a conference of the core numerical analysis community nor published in

∗Version of March 31, 2009.
†Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland

(mhg@math.ethz.ch). Work done while the author was visiting the TU Berlin, supported by
the DFG Forschungszentrum MATHEON and the Mercator Visiting Professorship Program of the
DFG.

1We write the acronyms for the various methods in a unified way, which sometimes differs from
the one in the original publication.
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a widely read journal. Moreover, Sonneveld’s approach to designing a Krylov space
solver was very unusual and even for experts hard to fully understand. Although the
method was under certain regularity conditions clearly and uniquely defined in [38],
some of the details and in particular the proof of the connection to BiCG were left
for publication elsewhere. The basic result on this connection is that the IDR residual
polynomials are of the form

ρIDR
n (t) =

{
Ωj(t)ρj(t) if n = 2j ,

Ωj(t)ρ̂j+1(t) if n = 2j + 1 ,
(1.1)

where Ω0(t) :≡ 1, Ωj(t) :≡ (1−ω1t) · · · (1−ωjt), and where ρj denotes the jth BiCG
residual polynomial, which is often referred to as a Lanczos polynomial, scaled by
ρj(0) = 1, while ρ̂j+1 denotes another residual polynomial, which has degree j +1. A
new linear factor (1−ωj+1t) is appended to Ωj in every other step, and it was suggested
to choose it such that the norm of the new IDR residual is minimized among those
that lie on a certain straight line. This is a widely used type of minimization step.
For example, it is also found in the conjugate residual [33] method, but there it leads
to a global minimum solution (for a symmetric positive definite matrix). And it is a
key ingredient of BiCGStab. The publication [38] only mentioned that the first line
of (1.1) had been proven in the case where A is symmetric positive definite.

In 1984 Sonneveld introduced another Lanczos-type method: the Conjugate Gra-
dient Squared (CGS) method [29]. It is also based on residual polynomials that are
a product of polynomials, but here he used simply the square of the BiCG residual
polynomials:2

ρCGS
n (t) = ρ2

n(t) . (1.2)

Note that the indexing of the residual polynomials and residuals is different in IDR
and CGS: in the former the degree increases by one when the index grows by one, in
the latter the degree increases by two.

The CGS paper [29] was received by the SIAM Journal on Scientific and Statistical
Computing (SISSC) on April 24, 1984, but it took nearly five years to get published
in revised and extended form [30]. Nevertheless, the method was accepted quickly by
numerical analysts and engineers. In typical cases it converges nearly twice as fast as
BiCG, though often in a very erratic manner. Although its idea and derivation are
ingenious, they are easy to understand: starting from the standard recursions for the
BiCG residual polynomials one just derives recursions for their squares by defining
additional suitable products of pairs of polynomials.

Yet another similar method was presented at the Householder Symposium in
Tylosand in June 1990 by van der Vorst, then still also at Delft University. The title
of his talk and the corresponding paper coauthored by Sonneveld and submitted to
SISSC on May 21, 1990, was “CGSTAB: A more smoothly converging variant of CG-
S” [35]. As part of the revision process the title was later changed into “Bi-CGSTAB:
a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric

2Therefore the name Biconjugate Gradient Squared (BiCGS) method would also make sense.
However Sonneveld’s view was that CGS is derived from a CG-type algorithm for building up a
set of orthogonal (or formally orthogonal) polynomials [private communication]. Only after the
recursions are mapped into a Krylov space that is embedded into an inner product space the notion
of biorthogonality makes sense.
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linear systems”, and Sonneveld resigned as a coauthor [34]. In this paper, van der
Vorst started from the first formula in (1.1), now written as

ρ
BiCGSTAB

n (t) = Ωn(t)ρn(t) . (1.3)

So, he adopted the indexing from CGS, and he also adopted from CGS the derivation
based on directly finding recursion for these residual polynomials, that is, he abstained
from using the recursions imposed by the IDR approach.

In the following years, BiCGStab was generalized to BiCGStab2 [12] and
BiCGStab(#) [24, 27], where the polynomial Ωn is built up from factors of degree 2
and #, respectively, whose coefficients are determined by a two– or an #–dimensional
residual norm minimization, respectively. This allows a better approximation of com-
plex eigenvalues and yields typically faster convergence at the price of higher com-
plexity, but only slightly higher computational cost. Nevertheless, the simple original
BiCGStab became the method of choice for most users who apply a Lanczos-type
method for solving a nonsymmetric linear system.

Due to the structure of the residual polynomials, CGS and the methods of the
BiCGStab family are often referred to as Lanczos-type product methods (LTPMs)
[13] or as hybrid BiCG methods [26].3

A new dimension came into play when, in 1997, Yeung and Chan submitted the
paper ML(k)BiCGSTAB: a BiCGSTAB variant based on multiple Lanczos starting
vectors to the renamed SIAM Journal on Scientific Computing (SISC) [39]. In this
paper they first introduced with ML(k)BiCG a version of BiCG where the left Krylov
space (generated by AT from an arbitrary shadow residual r̃0), which is used for the
oblique projection of r0, is replaced by a block Krylov space generated from a matrix
R̃0 with k columns. Then they generalized the transition from BiCG to BiCG-
Stab to the new situation. This led to very complicated formulas, which were then
meticulously modified to get a simpler and efficient code. The method was shown to
converge amazingly well for a large number of fairly ill-conditioned examples, handled
mostly without preconditioning and with rather large k, 25 ≤ k ≤ 100, however, which
meant high memory consumption and considerable computational cost.4 Although
the essence of the paper is well explained and easy to understand, the complexity
of the formulas and, paradoxically, the treatment of all the details must have kept
people from reading the paper and applying the method — despite the very promising
numerical results. The authors were aware of the connection to nonsymmetric block
Lanczos methods [1, 3, 5, 6, 8, 19], but while these are based on generalizing the
Lanczos three-term recursions, Yeung and Chan generalized the two-term recursions
of BiCG, as was done before by Simoncini [23]. This was partly the reason for the
complex formulas.

In [38] Wesseling and Sonneveld had announced a further publication on IDR to
be in preparation, but only in 2007 such a paper was submitted, again to SISC; see
[31] and, for the final version, [32]. In the sequel of an enquiry by Jens-Peter Zemke
[private communication] Sonneveld and van Gijzen reconsidered IDR and generalized
it to IDR(s), where the original method is included as the case s = 1 (except for a

3Note that many other authors have introduced other classes of “hybrid” iterative methods for
linear systems.

4For one example, the matrix ORSIRR1, the dependence on k was investigated for small k, where
dramatic improvements can be noticed for 2 ≤ k ≤ 10 already; see Fig. 3(b) of [39].
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small but interesting detail). They also clarify the relation of their method to BiCG-
Stab (when s = 1) and, in the final version, to ML(s)BiCGStab (when s > 1), which
they did not know when submitting the paper. It turns out that the even indexed
IDR(1) residuals are (up to roundoff effects) exactly the BiCGStab residuals and
that likewise every (s + 1)th IDR(s) residual is up to the possibly different choice of
the parameters ωj a ML(s)BiCGStab residual. However, the way these residuals are
constructed differs, and the “intermediate” residuals do not exist in BiCGStab and
differ in ML(s)BiCGStab, respectively. The paper also features numerical examples
that are relevant for practice and demonstrate the power of the method even for small
values of s where the cost per step in n is small.

In a follow-up publication, Sleijpen, Sonneveld, and van Gijzen [25] introduced
partly different notation and tried to explain IDR(s) and its connection to BiCGStab
from a somewhat different viewpoint, but this author prefers the presentation in [32].
They also introduce methods similar to ML(s)BiCG and ML(s)BiCGStab.

In the recent publication [36] van Gijzen and Sonneveld introduce yet another,
very ingenious algorithm that fits into the IDR framework and leads to an elegant code.
It uses recursions that are quite different from those of the original IDR(s) of [32] and
produces “intermediate residuals” satisfying additional orthogonality conditions that
lead to shorter recurrence relations for some n and an improved memory management.
The authors do not introduce a separate name for this new algorithm, but in some
of the figures they refer to it as IDR(s) Bi-ortho. We will discuss this IDR variant in
Section 5 and use the shorter acronym IDR(s)BiO here.

2. From BiCG to ML(k)BiCGStab. In this section we review some basic facts
on Krylov space solvers putting special emphasis on the biconjugate gradient (BiCG)
method, and then look at the transition from BiCG to BiCGStab. We also have a
quick look at Yeung and Chan’s [39] generalization of these methods to ML(k)BiCG
and ML(k)BiCGStab, respectively, which feature multiple initial left (or shadow)
residuals.

2.1. Krylov space solvers based on projection. Given a nonsingular linear
system Ax = b ∈ CN and an initial approximation x0 along with its residual r0 :≡
b−Ax0, a Krylov space solver constructs recursively approximate solutions xn (often
referred to as iterates) such that

xn ∈ x0 +Kn ,

where

Kn :≡ Kn(A, r0) :≡ span {r0,Ar0, . . . ,An−1r0} .

is the nth Krylov subspace generated by A from r0.5

Two of the basic theoretical facts on this setting are: (i) There is a minimal ν
such that Kν is invariant. (ii) For the solution x" holds that x" ∈ x0+Kν , and ν is the
minimal index for which this is true. So, if we choose xn well, the solver terminates
in ν steps. In particular, it suffices to choose the iterates so that the corresponding

5Kn(B,y) denotes in this paper a Krylov subspace generated by B from y, while Kn without an
argument is an abbreviation for Kn(A, r0).



5

residuals rn are linearly independent unless zero. In practice, ν is typically large (close
to N), and therefore this finite termination property is irrelevant.

The true aim is to find xn very close to x" in few (or at least not very many)
steps. Because of the limited computer memory, it is important to find solvers that
allow us to compute xn with short recursions. The restriction xn ∈ x0 + Kn implies
that

rn ∈ r0 + AKn ⊆ Kn+1 . (2.1)

Most methods produce residuals that have a component in the “new part of the
space”, that is rn &∈ r0 + AKn−1; in others there may occur exceptional situations
with rn ∈ r0 +AKn−1, which implies that the residuals are linearly dependent at this
moment.

We will refer to spaces of the form r0 +AKn or the form x0 +Kn as affine Krylov
subspaces.

Since the goal is a small rn, we need to approximate r0 by elements from AKn.
E.g., ‖rn‖ is minimum if we choose rn as the perpendicular from r0 to its orthogonal
projection into AKn. This is the basis of the conjugate residual (CR) method [33] for
Hermitian systems and its various generalizations for the non-Hermitian case, such as
GCR and GMRes. For these methods we have

rn ∈ r0 + AKn , rn ⊥ AKn .

Some Krylov space solvers are based on other orthogonal or oblique projections. In
particular, for the biconjugate gradient (BiCG) method [18, 4], which is of special
importance here, we have

rn ∈ r0 + AKn , rn ⊥ K̃n :≡ Kn(A", r̃0) . (2.2)

Here, the initial shadow residual r̃0 can be chosen arbitrarily; preferably, it should be
in arbitrary position with respect to an eigenbasis of AT.

The most often used recursions for BiCG are the coupled two-term or BiOMin
recursions, which can be written as follows:

αn := δn/δ′n , (2.3a)
rn+1 := rn −Avnαn , (2.3b)
r̃n+1 := r̃n −A"ṽnαn , (2.3c)
xn+1 := xn + vnαn , (2.3d)
δn+1 := 〈r̃n+1, rn+1〉, (2.3e)

βn := δn+1/δn , (2.3f)
vn+1 := rn+1 + vnβn , (2.3g)

ṽn+1 := r̃n+1 + ṽnβn , (2.3h)
δ′n+1 := 〈ṽn+1,Avn+1〉. (2.3i)

In addition to the residuals rn and iterates xn three other sets of vectors are con-
structed: shadow residuals (or left-hand side Lanczos vectors) r̃n ∈ r̃0 +A"K̃n, search
directions vn ∈ v0 + A"Kn, and shadow search directions ṽn ∈ ṽ0 + A"K̃n. All these
vectors are updated by coupled two-term recursions.
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2.2. Residual polynomials and Lanczos-type product methods. Let Pn

denote the space of polynomials of degree at most n, and let P◦
n :≡ {ρ ∈ Pn ; ρ(0) =

1}. The inclusion (2.1) implies that one can associate rn with a residual polynomial
ρn ∈ P◦

n such that rn = ρn(A)r0 . Roughly, ‖rn‖ is small if |ρn(t)| is small at those
eigenvalues of A that are “active” when r0 is written in terms of the eigenbasis of A.
(This statement needs to be modified when A has no eigenbasis or an ill-conditioned
one.) This observation motivates derivations of Krylov space methods via real (when
A is Hermitian) or complex (when A is non-Hermitian) approximation problems. It
must also have motivated Sonneveld’s CGS method [30], where, as noted in (1.2), the
residual polynomials are the squares of the BiCG residual polynomials ρn. Clearly,
whenever |ρn(t)|+ 1 at an eigenvalue, |ρ2

n(t)| is even much smaller there. But often
the residual norm of BiCG oscillates wildly as a function of n, and then the one of
CGS oscillates even more. Avoiding or at least damping this was the motivation for
van der Vorst [34] for the choice (1.3) in BiCGStab. Recall that there, at step n, ωn

is chosen to minimize the residual norm on a straight line.

Let ρn denote the polynomial obtained from ρn by complex conjugation of the
coefficients. Then, in BiCG, we have rn = ρn(A)r0 and r̃n = ρn(A")r̃0. In addition,
the search direction polynomials σn ∈ Pn\Pn−1 associated with the search directions
vn play an important role: since v0 = r0 and ṽ0 = r̃0 we have vn = σn(A)r0 and
ṽn = σn(A")r̃0. Hence, associated with the recursions (2.3b), (2.3c), (2.3g), and
(2.3h) there are the underlying coupled polynomial recursions

ρn+1(t) := ρn(t)− αntσn(t) , σn+1(t) := ρn+1(t) + βnσn(t) . (2.4)

They are fundamental for deriving CGS and BiCGStab, and also, as we will see in
Section 4, for understanding the difference between IDR(1) and BiCGStab.

For CGS it is easy to derive from (2.4) four coupled recursions for the polynomials
ρCGS

n :≡ ρ2
n, σ2

n, ρnσn, and ρnσn−1, which can then be translated into recursions
for elements of Kν . Likewise, for BiCGStab one combines (2.4) with the trivial
recursion Ωn+1(t) = (1− ωn t)Ωn(t) to derive three recursions for the three products
ρ

BiCGSTAB

n :≡ ρnΩn, ρnΩn−1, and σnΩn. In both cases alternative recursions exist too.6

2.3. Multiple initial shadow residuals. Yeung and Chan [39] generalized
BiCG by replacing the left Krylov subspaces K̃n by block Krylov subspaces, which
are a sum of Krylov spaces for the same matrix A" but with several different initial
shadow residuals, stored as the columns of an N × s matrix R̃0. Yeung and Chan
called the resulting method the ML(s)BiCG method (except that they used k instead
of s). The residuals whose index is a multiple of s satisfy

rsj ∈ r0 + AKsj , rsj ⊥ Kj(A", R̃0) :≡
s∑

i=1

Kj(A", r̃(i)
0 ) . (2.5)

6In [11] four sets of equivalent recursions for CGS derived from the BiORes and BiODir recur-
sions of BiCG are given; however, they are all more complicated than the original CGS recursions,
and therefore more costly in work and storage.
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For the others, with index n = sj + #, where 1 < # < s, we have analogously

rn ∈ r0 + AKn ,

rn ⊥ Kj;#(A", R̃0) :≡
#∑

i=1

Kj+1(A", r̃(i)
0 ) +

s∑

i=#+1

Kj(A", r̃(i)
0 ) .

(2.6)

These residuals could also be constructed by using a variant of the nonsymmetric block
Lanczos method, where the block size of the left block Krylov space is s, while the
one of the right (block) Krylov space is just one, that is, the right space is an ordinary
Krylov space; see [1, 3, 5, 6, 8, 19] for ways to construct bases for these spaces with
short recursions. Yeung and Chan rather generalize block BiCG, described before
by O’Leary [20] and Simoncini [23], but the latter authors assumed the same block
size in the left-hand and the right-hand side Krylov spaces. Unfortunately, in theory
and practice there can (and ultimately do) occur problems that must be addressed
by block size reduction (deflation). Moreover there may occur Lanczos breakdowns
and pivot breakdowns; see, e.g., [13] for a discussion of the breakdowns of BiCG.
Deflation and breakdowns have not been addressed in [39].

Yeung and Chan [39] continued by applying to ML(s)BiCG the same transforma-
tion that turns BiCG into BiCGStab. Unfortunately, this lead to rather complicated
formulas, which they were able to simplify and economize somewhat by algebraic ma-
nipulations. The resulting algorithm, called ML(s)BiCGStab, was shown to be very
effective for a large number of rather ill-conditioned test matrices.

Under the titles Bi-CG and Bi-CGSTAB Sleijpen, Sonneveld, and van Gijzen [25]
sketched two methods that are in spirit the same as ML(s)BiCG and ML(s)BiCG-
Stab, but in detail differ considerably. Firstly, they are not using the equivalent of
Lanczos’ coupled two-term recursions; secondly, their “intermediate” residuals satisfy
only a block biorthogonality not the stricter requirement of (2.6) that determines the
residuals of ML(s)BiCG uniquely.

3. IDR basics. In this section we review the basic facts on the IDR(s) method,
following essentially the presentation in [32]. One aspect that we stress more explicitly
than Sonneveld and van Gijzen is that IDR(s) is a Krylov space method, and therefore
the residuals lie in an affine space that is embedded in a Krylov subspace. We also
try to give more realistic figures, although we will see that they still do not reflect the
whole truth.

3.1. The IDR Theorem. The IDR approach is based on a finite series of nested
linear subspaces Gj of diminishing dimension with the property that for some increas-
ing index sequence {nj} the residuals rn with n ≥ nj all lie in Gj . Of course, all
residuals lie in the invariant Krylov space Kν :≡ Kν(A, r0); therefore, we can start
with n0 :≡ 0 and G0 :≡ Kν . The other spaces Gj are defined by the recursion

Gj :≡ (I− ωjA)(Gj−1 ∩ S) , . (3.1)

Here, S is a prescribed linear subspace of codimension s + N , and the constants
ωj &= 0 will be suitably chosen to boost convergence. Let us denote the dimension
of Gj by dj . Clearly, Gj−1 ∩ S can be represented by N − dj−1 + s linear equations,
and it is likely that these are linearly independent. However, as pointed out in [32],
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G0 = R3

G0 ∩ S = S

I − ω1A

G1

G 1
∩
S

G2 ∩ S = {0}

G2

I− ω2A

Fig. 3.1. Case s = 1: The spaces R3 = K3 = G0 ! G1 " G2.

we cannot conclude easily that linear independence is here a generic property (valid
for almost all problems if data are chosen randomly) since Gj−1 actually depends on
S. But, typically, Gj−1 ∩ S and its image Gj have dimension dj = dj−1 − s. We will
mostly take it for granted that this and other regularity assumptions are satisfied,
and we will refer to this then as the regular case.7 One can see, however, by analogy
to the behavior of the related ML(s)BiCG and ML(s)BiCGStab methods, that we
cannot expect that dj = dj−1 − s remains true for j up to N/s if s > 1.

The IDR Theorem given next says that the spaces Gj are nested and, under mild
assumptions on S, the inclusion is strict: Gj ! Gj−1, two properties that are not
apparent. For an illustration see Fig. 3.1.

Theorem 1 (IDR Theorem [38, 32]). Assume that S∩G0 contains no eigenvector
of A. Then

Gj ! Gj−1 unless Gj−1 = {o} .

For the proof see [38, 32]. As a consequence of the strict inclusions, Gj = {o} for some
j ≤ N , say, j ≡: J . However, the bound J ≤ N that follows from the IDR Theorem
leads to a strong overestimation of the finite termination index, for the simple reason
that termination is characterized by dJ = 0, which we can expect for J of the size
N/s.

Sonneveld and van Gijzen [32] also provide the Extended IDR Theorem, whose
main result is that the difference dj − dj+1 is monotonically non-increasing:

0 ≤ dj − dj+1 ≤ dj+1 − dj ≤ s .

Alternatively, this result could also be concluded from the connection to ML(s)BiCG.

Of course, neither G0 nor the other spaces Gj are known in advance, in the sense
that we know a basis for them. In theory, the IDR algorithm would provide these

7The authors of [32] refer to it as the generic case, although this may not be fully consistent
with the common usage of the word generic.
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G0 = R3

r2 = (I − ω1A)v1

r0

r1

v1

G0 ∩ S = S

I − ω1A

v2

r3

G1

G 1
∩
S

Fig. 3.2. Case s = 1: The first two steps: construction of r2 and r3 (for details see §4.1).

bases if we continued it until the exact solution of Ax = b is found, that is, rν = o is
attained; but this is not feasible unless ν is very small, so that the linear system can
be solved exactly in a few steps.

IDR constructs typically only s + 1 residuals in Gj before turning to the next
subspace Gj+1 ! Gj . To accommodate exceptional situations we introduce a mono-
tonically growing index sequence {nj} defined implicitly by8

rn ∈ Gj ∩ (r0 + AKn) , n ≥ nj . (3.2)

In the normal case, nj = (s + 1)j, so nj+1 − nj = s + 1 for reasons we will see in a
moment, but nj+1 − nj > s + 1 may occur in exceptional situations. In the simplest
case s = 1, which is when IDR is closely related to BiCGStab, two new residuals are
computed for each j. This is depicted in Figure 3.2. The details of the construction
are discussed next.

3.2. Recursions. The recursion for the residuals builds upon the recursion (3.1)
for the spaces Gj :

rn+1 := (I− ωjA)vn , vn ∈ Gj−1 ∩ S ∩ (r0 + AKn) , (3.3)

We suppose here that, for all n, vn lies in the affine Krylov subspace spanned by
r1, . . . , rn and shifted by r0. This means that vn and thus also rn+1 have “maximum
degree” in the sense that vn &∈ r0 + AKn−1 and vn &∈ r0 + AKn. There may be
situations where the latter assumptions do not hold, and, according to [32], there are
in the IDR framework ways to recover from such situations, but we will not treat
that here. There is some vague analogy to look-ahead Lanczos [7] or look-ahead block
Lanczos [1] in such recovery procedures.

8It is conceivable that the inclusion in (3.2) holds by chance for some n < nj too, but for n ≥ nj

the inclusion will be forced by construction.
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To construct vectors or “points” rn+1 ∈ Gj we need vectors vn ∈ Gj−1 ∩ S,
and the first time we construct a point in Gj we can choose ωj . To construct vn in
Gj−1 ∩ S we need to intersect an s-dimensional affine subspace of Gj−1 (in theory it
could be represented by N − s inhomogeneous linear equations) with the subspace S
represented by s homogeneous linear equations that we may write as P"vn = o with
an N × s matrix P whose columns form a basis of S⊥. In theory we would end up
with N inhomogeneous linear equation for vn that will usually have a unique solution,
but this is of course not feasible in practice. Instead we represent the s-dimensional
affine subspace of Gj−1 directly by an affine combination (a linear combination whose
coefficients sum up to one) of s + 1 points in Gj−1. The natural choice for these
s + 1 points are the last computed residuals rn−s, . . . , rn. Here we see why we need
nj+1 − nj ≥ s + 1. A neat way to take the condition of an affine combination
into account is to introduce the differences of the residual vectors, and that is what
Sonneveld and van Gijzen do:

vn := rn −
ι(n)∑

i=1

γ(n)
i ∆rn−i = rn −∆Rn cn , (3.4)

where

s ≤ ι(n) ≤ n− nj−1 ,

∆rn :≡ rn+1 − rn ,

∆Rn :≡
[

∆rn−1 . . . ∆rn−ι(n)

]
,

cn :≡
[

γ(n)
1 . . . γ(n)

ι(n)

]T
.

The restriction ι(n) ≤ n − nj−1 ensures that ∆rn−i ∈ Gj−1. Usually, ι(n) = s,
but, again, there may be exceptional situations not covered here, where one needs to
choose a bigger ι(n). Note that using the differences of the residuals leads to a vn

whose polynomial representation automatically inherits from rn the value 1 at zero.
Therefore, indeed vn ∈ r0 + AKn, and we may view vn as a residual, so there is
x′n∈ x0 +Kn such that vn = b−Ax′n.

To enforce vn ∈ S we enforce9 vn ⊥ S⊥ = R(P), that is, P"vn = o. This means
that the term ∆Rn cn in (3.4) must be the oblique projection of rn into R(∆Rn)
along S. In order that this projection is uniquely defined, we need P" ∆Rn to be
nonsingular, in particular ι(n) = s to make the matrix square. Then,

cn :≡ (P" ∆Rn)−1 P"rn , vn := rn −∆Rn cn . (3.5)

Otherwise, when ι(n) > s, we might choose cn as the minimum norm solution of an
underdetermined least squares problem.

For the initial phase, that is, for constructing r1, . . . , rs, we may apply a fairly
arbitrary starting procedure, e.g., GMRes.

We need not just one point rn+1 ∈ Gj , but we need at least s + 1 of them before
we can continue to the next space Gj+1. At first one might expect to need 2s + 1
points in Gj−1 to repeat the above construction s + 1 times. However, this is not the

9R(P) denotes the range of P.
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case. Because Gj ⊂ Gj−1, the just constructed rn+1 ∈ Gj also qualifies as a point of
Gj−1 and can be used when we replace n by n + 1 in the above construction.10 So,
s + 1 points in Gj−1\Gj will usually be enough. However, we cannot fully exclude
degenerate situations, where the last s + 1 points constructed in Gj−1 do not span
an s-dimensional affine space and therefore ∆Rn is singular (or nearly so). A careful
implementation of the method will need to address such situations, which are also
reflected by a zero (or absolutely small) coefficient in the tn term of the polynomial
representation of some of the vectors vn.

For the case s = 1, the first two steps, from given r0 and r1 to r2 and r3, are
shown in Figure 3.2. Then the construction is continued till v5 = r6 = o in Figure 3.3.
However, our figures show actually one of the “exceptional situations” we just referred
to: the constructed residuals are not all linearly independent. In fact, since the figures
show a construction in R3 (i.e., N = 3), linearly independent residuals would mean
convergence in at most 3 steps, that is, r3 = o.

We could avoid using vn by inserting (3.4) in (3.3):

rn+1 := rn −∆Rn cn − ωjA(rn −∆Rn cn) (3.6)

This formula manifests that IDR(s) differs considerably from most commonly used
Krylov space solvers such as CG, BiCG, or GCR. The difference is that in (3.6) not
only rn is multiplied by A but also rn−s, . . . , rn−1. This means that in the terminology
of [10] IDR(s) is a (s + 1, s + 1)-step method, while, e.g., CG, BiCG are (2, 1)-step
methods, and OrthoMin(k) is a (k, 1)-step method, while the untruncated GCR is
a (∞, 1)-step method.

As mentioned before, ωj can only be chosen when we construct the first point in
Gj , that is, rn+1 with n + 1 = nj . The formula rn+1 = (I− ωjA)vn suggest that we

10The IDR(s) variant of Section 5 will differ in the choice of points used in (3.4).

G0 = R3

r2 = (I − ω1A)v1

r0

r1

v1

G0 ∩ S = S

I − ω1A

v2

r3

G1

v3

G 1
∩
S

G2 ∩ S = {0} = {v5}

G2

I − ω2A

v4

r4

r5

Fig. 3.3. Case s = 1: Construction of r4 and r5. Termination with v5 = o (for details see §4.1).
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choose ωj so that ‖rn+1‖ is minimal among all r of the form r = (I− ωjA)vn, that
is, we choose it such that rn+1 ⊥ Avn:

ωj :≡ 〈Avn,vn〉
‖Avn‖2

. (3.7)

Note that this value of ωj may turn out to be zero or close to zero. As in BiCGStab
this is a source of breakdown or instability, but it is easily cured by choosing another
value that does not minimize the residual locally.

Finally we need to address the fact that it does not suffice to construct residuals
rn and vn, but that we also need the corresponding approximate solution xn and
x′n ∈ x0 +Kn. It is readily verified that

vn := rn −∆Rn cn ⇐⇒ x′n := xn −∆Xn cn , (3.8)
rn+1 := (I− ωjA)vn ⇐⇒ xn+1 := ωjvn + x′n . (3.9)

There are several ways to rearrange these four recursions and to combine them with
the iterate-residual relationships; see [25]. Also in the “prototype algorithm” of [32]
a different, but equivalent set of recursions is used. It includes the analog of (3.6) for
xn+1,

xn+1 := xn −∆Xn cn + ωj(rn −∆Rn cn) (3.10)

and the relation ∆rn = −A∆xn.

Note that here, as in any competitive set of recursions, the major cost of comput-
ing xn ∈ x0 +Kn consists in n + 1 matrix-vector products (MVs) with A. Regarding
memory, one needs just to store s columns of each P, ∆Xn, and ∆Rn, plus a few
single N -vectors.

3.3. Characterization by orthogonality. Clearly, the dimension of Gj gets
reduced due to taking the intersection with the (N − s)–dimensional space S. This
dimension reduction is viewed as the basic force behind IDR and gave the method its
name. However, dimension reduction in Krylov space solvers is not at all a unique
feature of IDR. In fact, projection based methods can be understood in a similar way.
For example, the characterization (2.2) of the BiCG residuals could be written as

rn ∈ L⊥n ∩ (r0 + AKn) ,

where Ln = K̃n = Kn(A", r̃0), and for CR, GCR, and GMRes the same is true with
Ln = AKn. What is different in IDR is that Gj is not an orthogonal complement of
a Krylov subspace. However, due to the form of the recursion for {Gj}, Gj turns out
to be the image of an orthogonal complement of a Krylov subspace. This result is
implicit in Subsection 5.1 of [32] and has been explicitly formulated in [25]:

Gj =
{

Ωj(A)w
∣∣ w ⊥ Kj(A",P)

}
= Ωj(A) [Kj(A",P)]⊥ . (3.11)

Here, as before, Ωj(t) :≡ (1− ω1t) · · · (1− ωjt) ∈ P◦
j , and Kj(A",P) is the jth block

Krylov subspace generated by A" from the s columns of P, which are assumed to be
a basis of S⊥. Note that when we choose R̃0 = P this block Krylov subspace is the
same as in ML(k)BiCG, see (2.5).
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Note also that the larger s, the larger is Kj(A",P), and thus the smaller is Gj .

To prove (3.11) let us repeat here the argument from [32] that is linked to the
recursions that we have just discussed and provides further insight. (The induction
proof of (3.11) in [25] is different.) We start from (3.3) and the observation that
vn ∈ Gj−1 must likewise be of the form

vn = (I− ωj−1A)v′n , v′n ∈ Gj−2 ∩ S ∩ (r0 + AKn−1) ,

v′n = (I− ωj−2A)v′′n , v′′n ∈ Gj−3 ∩ S ∩ (r0 + AKn−2) ,

...
...

v(j−2)
n = (I− ω1A)wn+1 , wn+1 ∈ G0 ∩ S ∩ (r0 + AKn−j+1) .

Starting at the bottom, we can also write (with Ω0 ≡ 1):

wn+1 = Ω0(A)wn+1 ∈ G0 ∩ S ,

v(j−2)
n = Ω1(A)wn+1 ∈ G1 ∩ S ,

...
v′n = Ωj−2(A)wn+1 ∈ Gj−2 ∩ S ,

vn = Ωj−1(A)wn+1 ∈ Gj−1 ∩ S ,

rn+1 = Ωj(A)wn+1 ∈ Gj .

Since {Ωk}j−1
k=0 is a basis of Pj−1 we see that

Ω(A)wn+1 ∈ S (∀Ω ∈ Pj−1) ,

that is, P"Ω(A)wn+1 = o ∈ Cs or, in other words, wn+1 ⊥ Ω(A")P, ∀Ω ∈ Pj−1, or,
wn+1 ⊥ Kj(A",P). In summary, we conclude that any rn+1 ∈ Gj is of the form

rn+1 = Ωj(A)wn+1 , wn+1 ∈ G0 ∩ S ∩ (r0 + AKn−j+1) , wn+1 ⊥ Kj(A",P) .
(3.12)

This proves (3.11). For simplicity, we may replace n+1 by n here and, for our records,
write any rn ∈ Gj (n = nj , . . . , nj+1 − 1) as

rn = Ωj(A)wn , wn ∈ G0 ∩ S ∩ (r0 + AKn−j) , wn ⊥ Kj(A",P) . (3.13)

Note that for n = nj − 1 and n = nj , the polynomials associated with wn have
the same degree: wn ∈ r0 + AKnj−j . (That is why we chose n as index for wn,
although this is not the degree of the associated polynomial.)

In the generic case, for fixed j, we will construct nj+1 − nj = s + 1 linearly
independent vectors wn that provide s + 1 linearly independent vectors rn (with
nj ≤ n < nj+1). So, as long as we stay in the generic case, nj = j (s + 1).

Moreover, generically, for n = nj = j (s + 1) where wn ∈ r0 + AKjs and wn ⊥
Kj(A",P) with dim Kj(A",P) = js = dim AKjs, there is a unique wn satisfying
(3.13), since it can be characterized as the solution of a linear system with a js× js
matrix that can be assumed to be nonsingular in the generic case:

Theorem 2 ([32]). Assume nj = j (s+1), j = 1, 2, . . . , J , and assume the iterates
xn and residuals rn of IDR(s) are for n ≤ nJ uniquely constructible by the recursions
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(3.3) and (3.4) with the choice ι(n) = s and the coefficients cn from (3.5). Then, for
j ≤ J , the residuals wnj and rnj are uniquely characterized by the conditions (3.13).

Corollary 3. Under the assumptions of Theorem 2, and if the same parameters
ωj, (1 ≤ j ≤ J) have been chosen, the IDR(s) iterates xnj and residuals rnj are identi-
cal with the iterates xj and residuals rj of BiCGStab (if s = 1) or ML(s)BiCGStab
(if s = 1), respectively.

But the s other vectors wn (with nj < n < nj+1), and thus also the corresponding
residuals rn are not uniquely determined by (3.13). We cannot expect that they
appear in BiCGStab or ML(s)BiCGStab, and, in fact, they usually do not.

4. The case s = 1 and the comparison with BiCGStab. If s = 1, the
subspace S is a hyperplane determined by a single vector p ⊥ S. So the matrix P
consists of the single column p now. By Corollary 3, when s = 1, every other set of
vectors {wn, rn,vn−1,xn, . . . } (with n even) is uniquely determined up to the choice
of the parameters ωj . If the latter are chosen as in BiCGStab (and they usually are),
and if r̃0 := p in BiCGStab, then

r2j = r
BiCGSTAB

j , x2j = x
BiCGSTAB

j , w2j = r
BICG

j . (4.1)

So there remains the question whether and how BiCGStab and IDR(1) differ.
In order to answer this question we will look at the polynomial recursions that mirror
the recursions for the Krylov space vectors generated by the two methods.

4.1. Recursions and orthogonality properties of IDR(1). When s = 1 the
recursions (3.8) and (3.9) of IDR(s) simplify to

vn := rn − γn(rn − rn−1) , x′n := xn − γn(xn − xn−1) ,

rn+1 := (I− ωjA)vn , xn+1 := x′n + ωjvn ,
(4.2)

where n ≥ 1, j = 4(n + 1)/25. The first line can be written

vn := (1− γn)rn + γnrn−1 , x′n := (1− γn)xn + γnxn−1 ,

to manifest that the point represented by vn lies on the straight line through rn and
rn−1, and likewise, x′n lies on the line through xn and xn−1. By (3.5), γn :≡ γ(n)

1 =
〈p, rn〉 / 〈p, ∆rn−1〉 is chosen such that vn ∈ S, that is, vn ⊥ p. This is illustrated
in the Figures 3.2 and 3.3. The parameter ωj is usually chosen to make r2j as short
as possible; this means that r2j is orthogonal to Av2j−1; see (3.7). (This property is
not taken into account in the figures.)

From (4.1) and (3.13) we know that

w2j = r
BICG

j = ρj(A)r0 ⊥ K̃j , (4.3)

where ρj is still the jth Lanczos polynomial, and where now K̃j :≡ Kj(A",p). Ac-
cording to (3.13) w2j+1 is represented by a polynomial ρ̂j+1 ∈ P◦

j+1 and

w2j+1 = ρ̂j+1(A)r0 ⊥ K̃j . (4.4)
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So, since rn = (I− ωjA)vn−1 = Ωj(A)wn, we have

rn = Ωj(A)wn =

{
Ωj(A)ρj(A)r0 if n = 2j ,

Ωj(A)ρ̂j+1(A)r0 if n = 2j + 1 ,

vn = Ωj−1(A)wn+1 =

{
Ωj−1(A)ρj(A)r0 if n = 2j − 1 ,

Ωj−1(A)ρ̂j+1(A)r0 if n = 2j .

(4.5)

Inserting these formulas into vn = (1 − γn)rn + γnrn−1 we get, after a short
calculation, for n = 2j + 1 and n = 2j, respectively,

ρj+1(t) := (1− γ2j+1) ρ̂j+1(t) + γ2j+1 ρj(t) (j = 0, 1, 2, . . . ) ,

ρ̂j+1(t) := (1− γ2j) (1− ωjt) ρj(t) + γ2j ρ̂j(t) (j = 1, 2, . . . ) .
(4.6)

4.2. Comparison with the recursions and orthogonality properties of
BiCGStab. The Lanczos (residual) polynomials ρj and the BiCG search direction
polynomials σj are formal orthogonal polynomials (FOPs) in the sense that, for i &= j,

ρi⊥ρj ⇐⇒ 〈ρi(A
")r̃0 , ρj(A)r0〉 = 0 ⇐⇒

〈
r̃

BICG

i , r
BICG

j

〉
= 0 ,

σi⊥tσj ⇐⇒ 〈σi(A")r̃0,Aσj(A)r0〉 = 0 ⇐⇒
〈
ṽ

BICG

i ,Av
BICG

j

〉
= 0 ,

where v
BICG

j and ṽ
BICG

i are the search directions and the “shadow” search directions,
respectively, which appeared in the recursions (2.3a)–(2.3i). Since {ρ0, . . . , ρj−1} and
{σ0, . . . , σj−1} both span Pj−1, we actually have

ρj ⊥ Pj−1 , σj ⊥t Pj−1 , ⇐⇒ r
BICG

j ⊥ K̃j , v
BICG

j ⊥A K̃j .

Here, 〈., .〉A denotes a formal A–inner product. In summary, the basic BiCG recur-
sions (2.3b), (2.3c), (2.3g), and (2.3h) upon which BiCGStab builds too, are mirrored
by the following recursions for ρj and σj :

ρj+1(t)︸ ︷︷ ︸
⊥Pj

:= ρj(t)︸ ︷︷ ︸
⊥Pj−1

−αj tσj(t)︸ ︷︷ ︸
⊥Pj−1

, σj+1(t)︸ ︷︷ ︸
⊥tPj

:= ρj+1(t)︸ ︷︷ ︸
⊥Pj

+βj σj(t)︸ ︷︷ ︸
⊥tPj−1

. (4.7)

Here, both αj and βj are chosen so that the new polynomials ρj+1 and σj+1 feature
the indicated orthogonality properties, by which they are uniquely determined up to
a scalar multiple.

In contrast, in IDR(1), by (4.6), (4.3), and (4.4),

ρ̂j+1(t)︸ ︷︷ ︸
⊥Pj−1

:= (1− γ2j) (1− ωjt) ρj(t)︸ ︷︷ ︸
⊥Pj−2

+γ2j ρ̂j(t)︸ ︷︷ ︸
⊥Pj−2

,

ρj+1(t)︸ ︷︷ ︸
⊥Pj

:= (1− γ2j+1) ρ̂j+1(t)︸ ︷︷ ︸
⊥Pj−1

+γ2j+1 ρj(t)︸ ︷︷ ︸
⊥Pj−1

.
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ρ̂j+1

ρj

tσj

−αj tσj

ρj+1

−α′

j tσj

Fig. 4.1. Case s = 1: The connection between BiCGStab and IDR(1).

Comparing these recursions for (ρj , ρ̂j) with (4.7) we easily see that

(1− γ2j+1) (ρ̂j+1(t)− ρj(t)) = −αj t σj(t) .

So,

ρ̂j+1(t) = ρj(t)−
αj

1− γ2j+1
tσj(t) , (4.8)

or, after multiplication by Ωj(t) and translation into the Krylov space,

r2j+1 = r2j −
αj

(1− γ2j+1)
As

BiCGSTAB

j , where s
BiCGSTAB

j :≡ Ωj(A)v
BICG

j . (4.9)

This formula expresses the odd indexed IDR(1) residuals r2j+1 in terms of quantities
from BiCGStab and the IDR coefficient γ2j+1. We illustrate the connection in Fig-
ure 4.1. While BiCGStab implicitly constructs ρj+1 by enforcing a biorthogonality
condition on a polynomial that lies on the line determined by ρj and t σj , IDR(1) first
generates by the second recursion in (4.6) the polynomial ρ̂j+1 that lies on that line
and then also enforces this condition.

Let us finally note that the parameter ωj , which is in (3.7) chosen to make r2j

orthogonal to Av2j−1, is indeed the same in IDR(1) and BiCGStab, since v2j−1 is
the same in both methods.

4.3. How does the original IDR differ from IDR(1)?. In contrast to IDR(1)
of [32], where (4.2) holds for all n > 1, the original IDR of [38] used for n odd the
recursions

vn := rn − γ′n(rn−1 − rn−2) , x′n := xn − γ′n(xn−1 − xn−2) ,
rn+1 := (I− ωjA)vn , xn+1 := x′n + ωjvn ,

(4.10)

with γ′n :≡ 〈p, rn〉 / 〈p, ∆rn−2〉 . So, here, when computing the “intermediate iterate”
x′n one modifies xn by a step in the same direction as has been used in the previous
step for modifying xn−1.

Moreover, in discrepancy of what we have stated here, the new IDR(s) of [32]
computes the residual differences actually as ∆rn = −A∆xn. This couples the re-
cursions for xn and rn more tightly and thus reduces the gap between the recursively
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computed residual and the true residual. This gap is known to be closely linked to the
attainable accuracy that can be achieved with a Krylov space solver; see [9, 15, 27].

The IDR Theorem still applies, and still x2j = x
BiCGSTAB

j . This follows from the
fact that the arguments of Subsection 3.3 are still applicable.

5. IDR(s) with locally biorthogonal residuals. Recently, van Gijzen and
Sonneveld [36] came up with a new version of IRD(s), in which, in the regular case
assumed throughout this section, each of s consecutive “intermediate” residuals rnj+k

is orthogonal to a growing subset of the s prescribed columns pk of P:

rnj+k ⊥ {p1, . . . ,pk} , k = 1, . . . , s . (5.1)

For distinction we will call this algorithm IDR(s)BiO here.11

IDR(s)BiO still fits into the IDR framework in the sense that the IDR Theo-
rem 1 and the orthogonality result of Theorem 2 as well as its Corollary 3 still apply.
One important aspect where it differs from the original IDR(s) is in the ansatz for
recursively constructing rnj+k from previous residuals: while the original version uses
in the formula (3.4) for vn the latest s residual differences (i.e., the choice ι(n) = s)
for all n, in IDR(s)BiO that sum involves the s residual differences

∆rnj−1 ≡ ∆rnj−s−1 ∈ Gj−1 ∩AKnj−1+1 ,

...
∆rnj−1+s−1 ≡ ∆rnj−2 ∈ Gj−1 ∩AKnj−1 ,

none of which relates to a residual that lies in Gj already. So, in the case s = 1, there
is an analogy to the original IDR of Sonneveld [38]; see (4.10). Additionally, these
residual differences are actually replaced by another set of s vectors

gnj−1 ≡ gnj−s−1 ∈ Gj−1 ∩AKnj−1+1 ,

...
gnj−1+s−1 ≡ gnj−2 ∈ Gj−1 ∩AKnj−1 ,

that are multiples of the residual differences and thus also orthogonal to a growing
subset of the s prescribed columns pk:

gnj−1+k ⊥ {p1, . . . ,pk} , k = 0, . . . , s− 1 . (5.2)

However, these residual differences are not defined as before, but undergo a linear
transformation to impose (5.2). Note that in (5.2) the range of the index k is shifted
by 1; so for k = 0 the orthogonality condition is empty.

To construct preliminary vectors in Gj , we now define, for n = nj + k (k =
0, . . . , s), vectors vn ∈ S by the ansatz

vn := rn −
s∑

i=1

γ(n)
i gnj−1+i−1 = rn −Gj−1cn , (5.3)

11Actually, the sets {rnj+k} and {pi} are not biorthogonal, but by a triangular linear transfor-

mation we could replace the basis {pi} of S⊥ by {p′i} so that {rnj+k} and {p′i} are biorthogonal.
However, the transformation would depend on j.
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where

Gj−1 :≡
[

gnj−1 . . . gnj−1

]
, cn :≡

[
γ(n)
1 . . . γ(n)

s

]
.

cn is determined by the condition vn ⊥ R(P). So we have, as in (3.5),

cn := (P" Gj−1)
−1 P"rn , vn := rn −Gj−1 cn . (5.4)

Here, the projection along S is on R(Gj−1), that is, on a space that only depends
on j − 1 and therefore is the same for s + 1 values of n. Consequently, the matrix
P" Gj−1 in the s + 1 linear systems for cn is also the same. (However, the systems
cannot be solved at once, because the vector rn in the right-hand side P"rn results
from the previous system.)

The elegance of IDR(s)BiO comes from special features that result from the
imposed orthogonality conditions (5.1) and (5.2). Due to (5.2) the matrix

Mj−1 ≡ {µ(j−1)
i,k′ }s

i,k′=1 ≡
[

mnj−1 . . . mnj−1+s−1

]
:≡ P" Gj−1 (5.5)

is lower triangular, and due (5.1) the matrix with the s right-hand sides P"rn (n =
nj , . . . , nj + s− 1),

Fj ≡ {φ(j)
i,k′}

s
i,k=1 ≡

[
fnj . . . fnj+s−1

]
:≡ P"

[
rnj . . . rnj+s−1

]
(5.6)

is lower triangular too. Consequently, the matrix with the s solutions cn of Mjcn = fn
for n = nj , . . . , nj + s− 1,

Cj ≡ {γ(nj+k′−1)
i }s

i,k′=1 ≡
[

cnj . . . cnj+s−1

]
:≡ M−1

j Fj (5.7)

is also lower triangular. So its k′th column cnj+k′−1 only depends on the (s−k′+1)th
trailing principal submatrix (of order s − k′ + 1) of Mj−1, whereas its first k′ − 1
entries are zero. In other words, the possibly nonzero entries of cnj+k′−1 result from
a (s− k′)× (s− k′) linear system. This means in particular that the recursion (5.3)
becomes shorter while k increases: for12 n = nj + k, k = 0, . . . , s− 1,

vn := rn −
s∑

i=k+1

γ(n)
i gnj−1+i−1 = rn −Gj−1cn . (5.8)

This not only reduces the computational cost, but it allows us to overwrite Gj−1 by
Gj and Mj by Mj+1 inside the loop over k; for details see the pseudocode in [36].

We still need to explain how we find s + 1 residuals rnj+k ∈ Gj (k = 0, . . . , s)
so that (5.1) holds for the last s of them, and how we construct a new set of s
vectors gnj+k ∈ Gj (k = 0, . . . , s− 1) satisfying (5.2). We may use the orthogonality
conditions (5.1) with j replaced by j − 1 and (5.2) as induction assumption. For the
initialization (j = 0) such sets can be constructed by a one-sided Lanczos process that
combines the generation of a basis for Ks+1 with orthogonalization with respect to
the columns of P. Of course, at the same time, approximate solutions x1, . . .xs need
to be constructed too, but they are obtained using essentially the same recursions.

12Note that in the presentation of this and other formulas in [36] the notation vn+k with n =
nj+1 − 1 (k = 1, . . . , s) is used, while here n = nj + k (k = 0, . . . , s− 1) and k′ = k + 1.
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Among the s+1 residuals in Gj−1 satisfying the orthogonality condition, the last
one, rnj−1 is orthogonal to all columns of P, whence rnj−1 ∈ S. So, in accordance
with (5.8) for k = s, where the sum is empty, we can choose vnj−1 = rnj−1 and thus

rnj := (I− ωjA) rnj−1 . (5.9)

Next, for n = nj + k > nj , any vn obtained from (5.8) lies in Gj−1 ∩ S ∩ (r0 + AKn).
So, by the recursive definition of Gj ,

r̃n+1 := (I− ωjA)vn = rn −Gj−1cn − ωjAvn

is a tentative residual in Gj ∩ (r0 + AKn+1). Since rn ∈ Gj ∩ (r0 + AKn),

g̃n :≡ rn − r̃n+1 = Gj−1cn + ωjAvn ∈ Gj ∩AKn+1 (5.10)

too, but in order to serve as a column of Gj it needs to be replaced by gn satisfying
the orthogonality condition

gn ⊥ {p1, . . . ,pk} , n = nj + k , k = 0, . . . , s− 1 . (5.11)

This can be achieved by applying a Gram-Schmidt-like process: recursively, the pro-
jection of g̃n ≡ g̃nj+k on the span of gnj , . . . , gn−1 along the span of p1, . . . ,
pk is subtracted from g̃n to yield gn ≡ gnj+k ∈ Gj ∩ AKn+1. This can be ex-
pressed as follows: for k = 0 the condition (5.11) is empty, so gnj := g̃nj ; then, for
n = nj + k, k = 0, . . . , s− 1,

gn := g̃n −
k∑

i=1

α(j)
i,kgnj+i−1 = g̃n −

[
gnj . . . gn−1

]
a(j)

k , (5.12)

where

a(j)
k :≡

([
p1 . . .pk

]" [
gnj . . . gn−1

])−1 [
p1 . . .pk

]" g̃n ∈ Ck . (5.13)

Here, the k×k matrix
[

p1 . . .pk

]" [
gnj . . . gn−1

]
is the kth leading principal

submatrix of P"Gj = Mj , and thus it is lower triangular. Therefore, a(j)
k can be found

by forward substitution. Of course, the diagonal elements µ(j)
i,i = p"

i gnj−1+i need to
be nonzero. Otherwise the process breaks down and the orthogonality condition (5.11)
cannot be satisfied for some n. For the whole block this step is summarized by

G̃j :≡
[

g̃nj . . . g̃nj+s−1

]
= GjA!

j (5.14)

with A!
j unit upper triangular and P"Gj = Mj lower triangular. Above the diagonal

A!
j contains the s − 1 coefficients vectors a(j)

1 (in column 2) to a(j)
s−1 (in the last

column). Hence, MjA!
j = (P"Gj)A!

j is an LU decomposition of M̃j :≡ P"G̃j .

Amazingly, when we replace here this classical Gram-Schmidt-like process by a
modified Gram-Schmidt-like process as it was suggested in [36], there is no need to
solve triangular linear systems.



20

In matrix notation the first sweep of the modified Gram-Schmidt-like process can
be summarized as

G(1)
j :≡ G̃jB

(1)
j ,

where the upper triangular matrix B(1)
j is given by

B(1)
j :≡





1 −β(j)
12 −β(j)

13 . . . −β(j)
1s

1 0 . . . 0
. . .

...
1 0

1




, β(j)

1,k+1 :≡
〈
p1, g̃nj+k

〉
〈
p1, g̃nj

〉

(with k = 1, . . . , s− 1), and has the effect that, by subtracting a multiple of the first
column g̃nj of G̃j the columns 2 to s of G̃j are transformed into columns of G(1)

j
that are orthogonal to p1. Then, for # = 2, . . . , s− 1, in further analogous sweeps, by
subtracting a multiple of the #th column g(#−1)

nj+#−1 of G(#−1)
j the columns # + 1 to s of

G(#−1)
j are transformed into columns of G(#)

j that are additionally orthogonal to p#:

G(#)
j :≡ G(#−1)

j B(#)
j , # = 2, . . . , s− 1 ,

where B(#)
j is now for # = 2, . . . , s− 1 given by

B(#)
j :≡





1 0 . . . . . . . . . . . . 0
. . .

1 −β(j)
#,#+1 . . . . . . −β(j)

#,s

1 0 . . . 0
. . .

...
1 0

1





, β(j)
#,k+1 :≡

〈
p#,g

(#−1)
nj+k

〉

〈
p#,g

(#−1)
nj+#−1

〉

(with k = #, . . . , s− 1). Ultimately, the columns of

Gj :≡ G(s)
j = G̃jB

(1)
j B(2)

j · · ·B(s−1)
j (5.15)

satisfy the orthogonality condition (5.11) and thus are identical to those obtained by
(5.12). Moreover, the comparison with (5.14) reveals that

A!
j =

(
B(1)

j B(2)
j · · ·B(s−1)

j

)−1
= B̂(s−1)

j B̂(s−2)
j · · · B̂(1)

j , (5.16)

where B̂(#)
j :≡ (B(#)

j )−1 is obtained by replacing in B(#)
j the coefficients −β(j)

#,k+1 by
+β(j)

#,k+1. In view of the special structure of the matrices B̂(#)
j one can conclude from

(5.16) that β(j)
#,k+1 = α(j)

#,k. Of course, the matrices G̃j ,G
(1)
j , . . . ,G(1)

j ,Gj can all be
stored in the same place.
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Finally, since by induction (within a block) both rn and gn are orthogonal to
p1, . . . ,pk, and moreover, rn ∈ r0+AKn and gn ∈ AKn+1, we get rn+1 ∈ r0+AKn+1

satisfying (5.1) according to

rn+1 := rn −
φ(j)

k+1,k+1

µ(j)
k+1,k+1

gn (n = nj + k; k = 0, . . . , s− 1) , (5.17)

where φ(j)
k,k and µ(j)

k,k are diagonal elements of Fj and Mj , which are enforcing that
rn+1 ⊥ pk+1, as can be checked easily.

As has been noted in [36] and can be seen by premultiplying (5.17) with P" the
columns of Fj can be updated in an elegant way too:

fn+1 := fn −
φ(j)

k+1,k+1

µ(j)
k+1,k+1

mn+1 (n = nj + k, k = 0, . . . , s− 1) . (5.18)

Sofar, we have concentrated on the possibility of constructing efficiently residuals
satisfying the orthogonality properties (5.1), but we still need to give formulas for
the recursive computation of the approximate solutions xn, and due to the relation
∆rn = −A∆xn, these formulas will lead to other options for updating the residuals.

In general, update formulas for xn are fairly easily obtained from those for rn,
and here this is true also. Let us define

ũn :≡ A−1g̃n ,

un :≡ A−1gn ,

Uj−1 :≡
[

unj−1 . . . unj−1

]
= A−1Gj−1 .

Then, from (5.10) we get

ũn := Uj−1cn + ωjvn ∈ Kn+1 , (5.19)

which allows us to replace (5.10) by

g̃n := Aũn . (5.20)

This helps to couple the updates of xn and rn and thus to avoid a fast growth of the
residual gap mentioned before. Moreover, (5.12) translates into

un := ũn −
k∑

i=1

α(j)
i,kunj+i−1 (n = nj + k, k = 1, . . . , s− 1) . (5.21)

Finally, from (5.17) we get

xn+1 := xn +
φ(j)

k+1,k+1

µ(j)
k+1,k+1

un (n = nj + k, k = 0, . . . , s− 1) . (5.22)

These are the formulas the IDR pseudocode in [36] is based on. But what makes it
so ingenious is the fact that it minimizes memory usage by systematically overwriting
data that is no longer used. On the other hand, this makes the code harder to
understand.
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6. Comments and conclusions. The various IDR algorithms may still be not
as well understood as other algorithms that are directly derived from the Lanczos
process (be it symmetric or non-symmetric), but their close relationship to Lanczos
based algorithms certainly helps us to understand them.

6.1. The case s = 1. This case is easy, because in exact arithmetic the even in-
dexed IDR(1) iterates and residuals are exactly the BiCGStab iterates and residuals.
However, as we have seen, the recursions are not the same, and therefore, it is possible
that IDR(1) is more stable than BiCGStab or vice versa. The odd numbered IDR(1)
iterates and residuals have no counterpart in the original BiCGStab algorithm.

For sure is that the existence of all BiCGStab iterates, i.e., all even IDR(1)
iterates, requires that all BiCG residuals exists, and that therefore any serious Lanczos
breakdown and any so-called pivot breakdown cause BiCGStab and IDR(1) to break
down unless extra precautions against such breakdowns have been implemented. This
follows from the fact that the BiOMin version and the BiORes version of BiCG break
down at the same times: the existence of the residuals implies the existence of the
coupled two-term recursions [13]. Additionally, the choice of the parameters ωj is the
same in BiCGStab and IDR(1), so a breakdown due to ωj = 0 will occur at the same
time in both methods; but in both it is also easy to fix.

It is conceivable that there are further causes for breakdown in IDR(1). On
the other hand, the recovery procedure in case of a breakdown seems to be much
simpler in IDR(1); but so far it seems to be less understood and documented than for
BiCGStab [14].

While IDR(1) and BiCGStab produce in exact arithmetic essentially the same
results based on a common mathematical background, they are clearly different algo-
rithms obtained by different approaches.13

6.2. The case s > 1. The relation BiCG ! BiCGStab∼ IDR(1) is matched by
the relation ML(s)BiCG ! ML(s)BiCGStab ∼ IDR(s), but the similarity between
ML(s)BiCGStab and IDR(s) is weaker than between BiCGStab and IDR(1). In
IDR(s) there is some freedom in choosing the s “intermediate” iterates and residuals
because, unlike in ML(s)BiCGStab, the vectors wn in (3.13) need not satisfy the
strict condition (2.6) of an “intermediate” ML(s)BiCG residual, but only the weaker
block orthogonality condition wn ⊥ Kj(A",P) of (3.13). With the IDR approach,
such vectors can be obtained with much simpler recursions, which, in addition, allow
considerable flexibility that may enable us to overcome breakdowns.

The many published numerical examples on IDR(s) [25, 32, 36] manifest the fast
convergence of this method and the superiority of the choice s > 1. Due to the careful
choice of the numerical examples and the restriction on small values of s, where the
method is less costly than for large s, the numerical results are more relevant than
those of Yeung and Chan [39], who applied their ML(s)BiCGStab with large s and
mostly without preconditioning to rather ill-conditioned test matrices. Heuristically
it is plausible that these methods are particularly effective for such examples. In
BiCG the construction of a basis of K̃n is prone to roundoff errors, which can be
expected to be larger when A is ill-conditioned and n is large. When constructing

13From Proposition 5.1 in [25] one may get the impression that BiCGStab and IDR(1) are nearly
identical. But they do not compare the original BiCGStab recursions with the original IDR(1)
recursions.
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in ML(s)BiCG a basis of the block Krylov subspace Kj(A", R̃0) we can start with s
orthonormal basis vectors and work with the dimension j of order n/s of each single
Krylov subspace. Then, for the same value of n, we can expect the basis of the block
Krylov subspace to be better conditioned. A similar improvement of the condition
of the basis can be expected when we compare BiCGStab to ML(s)BiCGStab or
IDR(s), and it seems to be relevant also in preconditioned problems that are not
extremely ill-conditioned.

The effectiveness of this improvement due to changing the dual (“left”) space
and using a better conditioned basis is quite surprising. The discovery of this effect
is due to Yeung and Chan [39], but the equally strong improvement of IDR(s) over
IDR(1), which seems to rely partly on the same effect, was discovered independently
a decade later by Sonneveld and van Gijzen. Additionally, the left-hand side block
Krylov space that is implicitly used by both ML(s)BiCGStab and IDR(s) seems to
be more effective in capturing the spectrum. By choosing in IDR(s) this space (i.e.,
the matrix P) appropriately — and perhaps even adaptively — depending on some
knowledge on the spectrum of A one may be able to further speed up convergence.

The other fundamental fact is that in the framework of Lanczos-type product
methods, multiple left projections can reduce the MV count. By the reduction of
the MV count we understand a smaller ratio between the search space dimension n
(nj ≤ n < nj+1) and the number js of orthogonality conditions satisfied by wn.
For n = nj = j(s + 1) this ratio is 1 + 1

s while for CGS and BiCGStab it is 2.
This also applies both to ML(s)BiCGStab and IDR(s), but not to ML(s)BiCG,
where building up the left block Krylov space costs s MVs per value of j, while
ML(s)BiCGStab and IDR(s) achieve the same effect with just one MV. Therefore,
ML(s)BiCG is not competitive with ML(s)BiCGStab or IDR(s), except perhaps
in situations where the Lanczos-type product methods fail due to roundoff problems.
(It is well known, that the recursion coefficients produced by BiCGStab are usually
less accurate than the same coefficients produced by BiCG, and there are problems
where BiCGStab fails to converge, while BiCG succeeds.) For this reason, Yeung
and Chan [39] introduced ML(s)BiCG only as a tool for deriving ML(s)BiCGStab.

IDR(s) inherits from BiCGStab also the disadvantage that for a problem with
real-valued data the parameters ωj are all real-valued (when chosen in the standard
way), and therefore the zeros ω−1

i of Ωj cannot approximate complex eigenvalues of
A well. This problem has been addressed by BiCGStab2 [12] and later by BiCG-
Stab(#) [24, 27] by building up Ωj from polynomial factors of degree 2 and #, respec-
tively. Unfortunately, an adaptation of IDR(s) to include this idea in an efficient way
is not straightforward and requires to change the framework. This topic is addressed
in [28].
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