
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule

Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

Swiss Federal Institute of Technology Zurich

Reduction to condensed forms
for symmetric eigenvalue problems

on multi-core architectures

P. Bientinesi1, F.D. Igual2, D. Kressner and E.S. Quintana-Orti2

Research Report No. 2009-13
March 2009

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

1AICES, RWTH Aachen University, 52074 Aachen, Germany
2Depto. de Ingenieria y Ciencia de Computadores, Universidad Jaume I,

12071 Castellón, Spain



Reduction to Condensed Forms for

Symmetric Eigenvalue Problems on

Multi-core Architectures

Paolo Bientinesi1, Francisco D. Igual2, Daniel Kressner3, and
Enrique S. Quintana-Ort́ı2

1 AICES, RWTH Aachen University, 52074–Aachen, Germany;
pauldj@aices.rwth-aachen.de.

2 Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain; {figual,quintana}@icc.uji.es.

3 Seminar für angewandte Mathematik, ETH Zürich, Switzerland;
kressner@math.ethz.ch.

Abstract. We investigate the performance of the routines in LAPACK
and the Successive Band Reduction (SBR) toolbox for the reduction of
a dense matrix to tridiagonal form, a crucial preprocessing stage in the
solution of the symmetric eigenvalue problem. The target architecture
is a current general purpose multi-core processor, where parallelism is
extracted using a tuned multi-threaded implementation of BLAS. Also,
in response to the advances of hardware accelerators, we modify the code
in SBR to accelerate the computation by off-loading a significant part of
the operations to a graphics processor (GPU). Our results on a system
with two Intel QuadCore processors and a Tesla C1060 GPU illustrate
the performance and scalability delivered by these architectures.

1 Introduction

We consider the solution of the symmetric eigenvalue problem

AX = XΛ, (1)

where A ∈ Rn×n is a symmetric matrix, Λ = diag(λ1, λ2, . . . , λn) ∈ Rn×n

is a diagonal matrix containing the eigenvalues of A, and the jth column
of the orthogonal matrix X ∈ Rn×n is the eigenvector associated with
λj [9]. Given the matrix A, the objective is to compute its eigenvalues
or a subset thereof and, if requested, the associated eigenvectors as well.
Applications leading to eigenvalue problems are ubiquitous in science and
engineering, and large-scale eigenproblems of the form (1) appear, e.g.,
in computational quantum chemistry, finite element modeling, and multi-
variate statistics, to name only a few. Particularly challenging eigenvalue



problems arise in density functional theory, where a significant fraction of
the eigenvalues and eigenvectors of a potentially large symmetric matrix
need to be computed [10].

Efficient algorithms for the solution of (1) usually consist of the fol-
lowing three stages: the original matrix A is first reduced to a (symmet-
ric) tridiagonal matrix T ∈ Rn×n by a sequence of orthogonal similarity
transforms: QT AQ = T , where Q ∈ Rn×n is the matrix representing the
accumulation of these orthogonal transforms. The MR3 algorithm [7] or the
(parallel) PMR3 [4] algorithm is then applied to the tridiagonal matrix T to
accurately compute its eigenvalues and, optionally, the associated eigen-
vectors. Finally, when the eigenvectors of A are desired, we need to apply
a back-transform to the eigenvectors of T . In particular, if TXT = XT Λ,
with XT ∈ Rn×n representing the eigenvectors of T , then X = QXT .
Both the first and last stage cost O(n3) floating-point arithmetic oper-
ations (flops) while the second stage based on the MR

3 algorithm only
requires O(n2) flops. (Other algorithms for solving tridiagonal eigenvalue
problems, such as the QR algorithm, the Divide & Conquer method,
etc. [9] are not competitive as they require O(n3) flops for the second
stage.)

In this paper we re-evaluate the performance of the codes in LA-
PACK [1] and the Successive Band Reduction (SBR) toolbox [5, 6] for
the reduction of a full symmetric matrix A to tridiagonal form. The LA-
PACK routine sytrd employs a simple algorithm based on Householder
reflectors [9], enhanced with WY representations [8], to reduce A directly
to tridiagonal form. Unfortunately, only half of its operations can be per-
formed in terms of calls to BLAS-3 kernels, resulting in a poor use of
the memory hierarchy. To overcome such drawback of sytrd, the SBR
toolbox first reduces A to an intermediate band matrix B, and subse-
quently reduces B to tridiagonal form. The advantage of this two-step
procedure is that the first step can be carried out using BLAS-3 kernels,
while the cost of the second step becomes negligible provided a moderate
band width is chosen for B.

Our interest in this study is motivated by the increase in the number
of cores in general-purpose processors and by the recent advances in more
specific hardware accelerators such as graphics processors (GPUs). In par-
ticular, we aim at evaluating how the presence of multiple cores in these
new architectures affects the performance of the codes in LAPACK and
SBR for tridiagonal reduction. Note that, because of the efficient formu-
lation and practical implementation of the MR

3 algorithm, the reduction



to tridiagonal form and the back-transform are currently the most time-
consuming stages in the solution of the symmetric eigenvalue problem.

The rest of the paper is organized as follows. In Sections 2 and 3 we
review the routines in LAPACK and SBR for the reduction of a dense
matrix to tridiagonal form. In the latter section, we also propose a mod-
ification of the code in SBR to accelerate the initial reduction to band
form using a GPU. Section 4 offers experimental results of these imple-
mentations on a workstation with two Intel Xeon QuadCore processors (8
cores) and an NVIDIA Tesla C1060 GPU. Finally, Section 5 summarizes
the conclusions of our study.

2 The LAPACK Routine sytrd

The LAPACK routine sytrd is based on the classical approach of reduc-
ing A to tridiagonal form by a series of Householder reflectors H1, H2,
. . ., Hn−2. Each Householder reflector is an orthogonal matrix of the form
Hj = I −βjujuT

j , where βj ∈ R, uj ∈ Rn with the first j entries zero, and
I denotes hereafter the square identity matrix of the appropriate order.
The purpose of each Hj is to annihilate the entries below the subdiagonal
in the jth column of Aj−1 = HT

j−1 · · ·H
T
2 HT

1 AH1H2 · · ·Hj−1.

The routine sytrd proceeds as follows. Let b denote the algorithmic
block size and assume that the we have already computed the first j − 1
columns/rows of T . Consider the following partitioning

HT
j−1 · · ·H

T
2 HT

1 AH1H2 · · ·Hj−1 =





T00 T T
10 0

T10 A11 AT
21

0 A21 A22



 ,

where T00 ∈ Rj−1×j−1 is in tridiagonal form and A11 ∈ Rb×b. With this
partitioning, all entries of T10 are zero except for its top right corner.
Then, the following operations are computed during the current iteration
of sytrd:

1. The current panel

(

A11

A21

)

is reduced to tridiagonal form by a sequence

of b orthogonal transforms Hj , Hj+1, . . . , Hj+b−1. Simultaneously, two



matrices U, W ∈ R(n−j−b+1)×b are built such that

HT
j+b−1 · · ·H

T
j+1H

T
j





T00 T T
10 0

T10 A11 AT
21

0 A21 A22



HjHj+1 · · ·Hj+b−1

=





T00 T T
10 0

T10 T11 T T
21

0 T21 A22 − UW T − WUT



 ,

where T11 is in tridiagonal form and all entries of T21 are zero except
for its top right corner.

2. The submatrix A22 is updated as A22 := A22 − UW T − WUT where,
in order to exploit the symmetry, only the lower (or the upper) half
of this matrix is updated.

The simultaneous computation of U and W along with the reduc-
tion in Step 1 is needed to determine the first column of the unre-
duced part, which defines the Householder reflector. While U simply
contains the vectors uj , uj+1, . . . , uj+b−1 of the Householder reflectors
Hj , Hj+1, . . . , Hj+b−1, more work is needed to determine W . In fact, the
bulk of the computation in Step 1 lays in the formation of W . For each
reduced column in the panel a new column of W is generated. This re-
quires four panel-vector multiplications and one symmetric matrix-vector
multiplication with the submatrix A22 as operand. The latter operation,
computed with the BLAS-2 symv kernel, is the most expensive one, re-
quiring roughly 2(n−j)2b flops. Step 2 also requires 2(n−j)2b flops, but is
entirely performed by the BLAS-3 kernel syr2k for the symmetric rank-
2b update. The overall cost of sytrd is therefore 4n3/3 flops provided
that b # n.

Note that there is no need to construct the orthogonal factor Q =
H1H2 · · ·Hn−2 explicitly. Instead, the vectors uj defining the Householder
reflectors Hj are stored in the annihilated entries of A. Additional work-
space is needed to store the scalars βj , but this requires only O(n) en-
tries and is thus negligible. If the eigenvectors are requested, the back-
transform QXT is computed using this data in 2n3 flops. With the com-
pact WY representation [9] this operation can be performed almost en-
tirely in terms of calls to BLAS-3 kernels.

3 The SBR Toolbox

The SBR toolbox is a software package for symmetric band reduction via
orthogonal transforms. SBR includes routines for the reduction of dense



w
j

j

0

b

k

w!b k=n!(j+w)+1

0 1 2A A A

Fig. 1. Partitioning of the matrix during one iteration of routine syrdb for the reduc-
tion to band form.

symmetric matrices to banded form (syrdb) and the reduction of banded
matrices to narrower banded (sbrdb) or tridiagonal form (sbrdt). Accu-
mulation of the orthogonal transforms and repacking routines for storage
rearrangement are also provided in the toolbox.

In this section we describe the routines syrdb and sbrdt which,
invoked in that order, produce the same result as the reduction of a
dense matrix to tridiagonal form using the LAPACK routine sytrd. For
the SBR routine syrdb, we also describe how to off-load the bulk of the
computations to the GPU.

3.1 Reduction to band form

Suppose that the first j − 1 columns of the matrix A have already been
reduced to band form with bandwidth w. Let b denote the algorithmic
block size, and assume for simplicity that j +w+b−1 ≤ n and b ≤ w; see
Figure 1. Then, during the current iteration of routine syrdb, the next
b columns of the band matrix are obtained as follows:



1. Compute the QR factorization of A0 ∈ Rk×b, k = n − (j + b) + 1:

A0 = Q0R0, (2)

where R0 ∈ Rb×b is upper triangular and the orthogonal factor Q0

is implicitly stored as a sequence of b Householder vectors using the
annihilated entries of A0 plus b entries of a vector of length n. The
cost of this first step is 2b2(k − b/3) flops.

2. Construct the factors of the compact WY representation [9] of the
orthogonal matrix Q0 = Ik + WTW T , with W ∈ Rk×b and T ∈ Rk×k

upper triangular. The cost of this step is about kb2 flops.
3. Apply the orthogonal matrix to A1 ∈ Rk×w−b from the left:

A1 := QT
0 A1 = (Ik + WTW T )T A1 = A1 + W ((AT

1 W )T T )T . (3)

By performing the operations in the order specified in the rightmost
expression of (3), the cost of this step becomes 4kb(w − b) flops. In
case the bandwidth equals the block size (w = b), A1 comprises no
columns and, therefore, no operation is performed in this step.

4. Apply the orthogonal matrix to A2 ∈ Rk×k from both the left and
right:

A2 := QT
0 A2Q0 = (Ik + WY T )T A2(I + WY T ) (4)

= A2 + Y W T A2 + A2WY T + Y W T A2WY T , (5)

with Y = WT . In particular, during this step only the lower (or the
upper) triangular part of A2 is updated. In order to do so, (5) is
computed as the following sequence of (BLAS) operations:

(symm) X1 := A2W, (6)

(gemm) X2 :=
1

2
XT

1 W, (7)

(gemm) X3 := X1 + Y X2, (8)

(syr2k) A2 := A2 + X3Y
T + Y XT

3 . (9)

The major cost of this step is in the computation of the symmet-
ric matrix product (6) and the symmetric rank-2k update (9), each
with a cost of 2k2b flops. On the other hand, the matrix products (7)
and (8) only require 2kb2 flops each. Therefore, the overall cost of
Step 4 is approximately 4k2b + 4kb2, which is higher than the cost of
the remaining Steps 1, 2, and 3, which require O(kb2), O(kb2), and
O(max(kb2, kbw)) flops, respectively.



In summary, provided that b and w are both small compared with n,
the global cost of the reduction of a full matrix to band form is 4n3/3 flops.
Furthermore, the bulk of the computation is performed in terms of BLAS-
3 operations symm and syr2k in (6) and (9), so that high performance
can be expected from routine syrdb in case a tuned implementation of
BLAS is used.

The orthogonal matrix QB ∈ Rn×n for the reduction QT
BAQB = B

where B ∈ Rn×n is the (symmetric) band matrix can be explicitly con-
structed by accumulating the involved Householder reflectors at a cost
of 4n3/3 flops. Once again, compact WY representations help in casting
this computation almost entirely in terms of calls to BLAS-3 kernels.

3.2 Reduction to band form on the GPU

Recent work on the implementation of BLAS and the major factorization
routines for the solution of linear systems [2, 3, 11] has demonstrated the
potential of GPUs to yield high performance on dense linear algebra op-
erations which can be cast in terms of matrix-matrix products. In this
subsection we describe how to exploit the GPU in the reduction of a full
matrix to band form, orchestrating the computations carefully to reduce
the number of data transfers between the memories of the host and the
GPU.

During the reduction to band form, the operations in Step 4 are nat-
ural candidates for being computed on the GPU while, due to the kernels
involved in Steps 1 and 2 (mainly narrow matrix-vector products), these
operations are better suited for the CPU. The operations in Step 3 can
be performed either on the CPU or the GPU but, in general, w−b will be
small so that this computation is likely better suited for the CPU. Now,
assume that the entire matrix resides on the GPU memory initially. We
can then proceed to compute the reduced form by repeating the following
three steps for each column block:

1. Transfer A0 and A1 back from GPU memory to main memory. Com-
pute Steps 1, 2, and 3 on the CPU.

2. Transfer W and Y from main memory to the GPU.
3. Compute Step 4 on the GPU.

Proceeding in this manner, at the completion of the algorithm most of
the band matrix and the Householder reflectors are available in the main
memory. Specifically, only the diagonal b × b blocks in A remain to be
transferred to the main memory.



3.3 Reduction to tridiagonal form

The routine sbrdt in SBR is responsible for reducing the banded ma-
trix B to tridiagonal form by means of Householder reflectors. Let QT

denote the orthogonal transforms which produce this reduction, that is
QT

T BQT = T . On exit, the routine returns the tridiagonal matrix T
and, upon request, accumulates these transforms, forming the matrix
Q = QBQT ∈ Rn×n so that QT AQ = QT

T (QT
BAQB)QT = QT

T BQT = T .
The matrix T is constructed in routine sbrdt one column at the time:

at each iteration those elements below the first subdiagonal of the current
column are annihilated using a Householder reflector; the reflector is then
applied to both sides of the matrix, and the resulting bulge is chased down
along the band. The computation is cast in terms of BLAS-2 operations
at best (symv and syr2 for two-sided updates, and gemv and ger for
one-sided updates) and the total cost is 6n2w + 8nw2 flops.

If the eigenvectors are desired, then the orthogonal matrix QB pro-
duced in the first stage (reduction from full to banded form) needs to
be updated by the orthogonal transforms computed during the reduction
from banded to tridiagonal form (i.e., QT ). This update requires O(n3)
flops and can be reformulated almost entirely in terms of calls to level-3
BLAS kernels, even though this reformulation is less trivial than for the
first stage [6]. However, the matrix Q = QBQT still need to be applied as
part of the back-transform step, adding 2n3 flops to the cost of building
the matrix containing the eigenvectors.

We do not propose to off-load the reduction of the band matrix to
tridiagonal form on the GPU as this is a fine-grained computation which
do not lend itself to an easy implementation on this architecture.

4 Experimental Results

The target platform used in the experiments is a workstation with two
Intel Xeon QuadCore CPUs consisting of 8 cores running at 2.33 GHz,
with 8 GB DDR2 RAM, and offering a theoretical peak performance
of 37.28/18.64 GFLOPS in single/double precision (1 GFLOPS = 109

flops/second). The workstation is also equipped with an NVIDIA Tesla
C1060 board with 240 single-precision and 30 double precision streaming
processor cores running at 1.3 GHz, 4 GB DDR3 RAM, and a theoreti-
cal peak performance of 933/78 GFLOPS in single/double precision. The
Intel chipset E5410 and the Tesla board are connected via a PCI-Express
Gen2 interface with a peak bandwidth of 48 Gbits/second. MKL 10.1
was employed for all computations performed on the Intel cores. NVIDIA



CUBLAS (version 2.0) built on top of the CUDA application program-
ming interface (version 2.0) together with NVIDIA driver (177.73) were
used in our tests. Single precision was employed in all experiments, though
double precision is the standard in eigenvalue computations. We believe
that an experimental analysis of the analogous double precision routines
would offer a similar balance between the benefits of the LAPACK rou-
tine versus the SBR toolbox two-stage alternative on the CPU. The GPU
is not competitive in double precision, partly due to the much smaller
number of cores dedicated to this and to the lack of an optimized im-
plementation of BLAS. Investigating the possibility of refinement from
single to double precision in the context of eigenvalue problems, so that
this architecture becomes a practical alternative, is among our future
work.

When reporting the rate of computation, we consider the cost of the
reduction to tridiagonal form (either using LAPACK sytrd or SBR
syrdb+sbrdb) to be 4n3/3 flops for square matrices of order n. Note
that, depending on w, this count may be considerably smaller than the
actual number of flops performed by syrdb+sbrdb. We do not build
the orthogonal factors/compute the eigenvectors in our experiments. The
GFLOPS rate is computed as 4n3/3 divided by t × 10−9, where t equals
the elapsed time in seconds. The cost of all data transfers between main
memory and GPU memory is included in the timings.

Our first experiment evaluates the performance of the major BLAS-3
kernels involved in the reduction to tridiagonal form using the LAPACK
and SBR routines: symm and syr2k. For reference, we also evaluate the
performance of the general matrix-product kernel, gemm. Tables 1 and 2
report results on 1, 4 and 8 cores of the Intel Xeon processors and 1
GPU. For the latter architecture, we employ the kernels in CUBLAS and
also our own implementations (column labeled as “Own CUBLAS”). The
matrix dimensions of symm and syr2k are chosen so that they match
the structure of the blocks encountered during the reduction. The matrix
dimensions of gemm mimic the sizes of the operands in symm or syr2k.
The results show the higher performance yield by the GPU for most
matrix operations and the benefits of using block sizes that are integer
multiple of 32 in this hardware. Although our own implementations of the
symmetric kernels in CUBLAS deliver a higher GFLOPS rate than that of
NVIDIA BLAS, they are still quite below the performance of the matrix-
matrix product kernel. In particular, the results in Table 2 illustrate that,
depending on the value of k, on the GPU it may be more efficient to call
twice the gemm kernel (updating the whole matrix in Step 4 of routine



symm. C := AB + C; A ∈ R
m×m symmetric, B, C ∈ R

m×n

m n 1 Core 4 Cores 8 Cores CUBLAS Own CUBLAS

2048
24 6.6 6.5 8.2 68.6 67.1
32 8.0 8.8 6.9 89.7 106.5
64 10.9 16.0 13.8 97.1 183.4

6144
24 6.6 6.0 4.3 71, 6 73.1
32 7.8 7.7 6.0 94.1 129.6
64 10.7 14.1 11.6 99.1 188.4

10240
24 6.6 5.9 3.7 57.4 68.1
32 7.8 7.8 6.1 76.0 113.5
64 10.7 14.2 11.7 76.5 175.8

gemm. C := AB + C; A ∈ R
m×k, B ∈ R

k×n, C ∈ R
m×n

m = k n 1 Core 4 Cores 8 Cores CUBLAS

2048
24 5.6 18.1 25.1 101.0
32 6.8 23.5 32.7 177.5
64 9.8 34.2 51.8 279.0

6144
24 5.9 21.1 30.9 134.9
32 7.0 26.0 38.7 327.5
64 9.9 37.4 60.1 339.3

10240
24 5.9 21.6 30.7 139.7
32 7.0 26.3 34.9 321.9
64 9.9 38.1 56.1 346.9

Table 1. Performance of the BLAS kernel symm involved in the reduction to band
form and the corresponding matrix product (for reference).

syrdb) instead of the syr2k one (updating only one of the triangles),
even that this implies doubling the number flops. Besides, in case both
the upper and the lower triangular parts of A2 in 9 are updated, then one
can replace the call to symm by a call to gemm. These are strategies that
we employ in our implementation of syrdb for the GPU.

The second experiment compares the LAPACK and SBR codes for
the reduction to tridiagonal form using 1, 4 and 8 cores of the CPU or
the GPU plus one of the cores of the CPU. Figure 2 reports the GFLOPS
for these alternatives. Only the results corresponding to the best block
size (b) and bandwidth (w) are reported in the figure. Note that, as we are
using the same flop count for the two approaches, a higher GFLOPS rate
implies a smaller execution time. The performance behaviour of sytrd

is typical for a routine based on BLAS-2: when the matrix is too large
to fit into the cache of the processor, the performance rapidly drops. The
GFLOPS rate attained by the SBR does in the CPU is more consistent
and shows a good scalability for four cores. However, when the number
of cores is increased to 8, there is no performance gain. Finally, the SBR



syr2k. C := ABT + BAT + C; A, B ∈ R
n×k, C ∈ R

n×n symmetric
n k 1 Core 4 Cores 8 Cores CUBLAS Own CUBLAS

2048
24 10.7 24.2 36.0 36.1 36.8
32 11.7 29.9 42.9 53.2 53.2
64 13.6 40.6 57.8 74.4 159.2

6144
24 10.6 24.2 34.9 40.3 40.3
32 11.9 29.9 43.2 55.9 56.0
64 13.6 43.8 64.0 78.4 124.2

10240
24 10.0 20.6 24.5 41.2 41.4
32 10.8 26.6 31.5 56.4 56.4
64 13.2 43.0 56.5 79.2 114.2

gemm. C := ABT + C; A ∈ R
m×k, B ∈ R

n×k, C ∈ R
m×n

m = n k 1 Core 4 Cores 8 Cores CUBLAS

2048
24 14.7 44.0 86.5 70.7
32 15.6 50.4 95.3 157.2
64 16.8 59.4 112.9 185.5

6144
24 15.0 27.7 27.9 71.4
32 15.9 36.6 36.9 161.0
64 17.0 59.3 73.1 185.0

10240
24 15.0 27.3 27.7 71.9
32 15.8 36.0 36.8 159.3
64 16.9 58.2 73.3 182.2

Table 2. Performance of the BLAS kernel syr2k involved in the reduction to band
form and the corresponding matrix product (for reference).

code modified to off-load the bulk of the computation to the GPU clearly
outperforms all the executions on the general-purpose CPU. Comparing
the SBR routines using 4 cores and the GPU, the speed-up observed for
second when solving the larger problem size is 3.7x (18.53 GFLOPS with
optimal w = 96 on the CPU vs. 68.39 GFLOPS with optimal w = 32 on
the GPU). This in practice reduces the cost of the first stage in SBR to
that of the second stage, as shown in Table 3. The results in that table
also show that the acceleration attained by off-loading the computation
of the first stage to the GPU is a factor of 12x for the largest problem
size and w = 32.

5 Concluding Remarks

We have evaluated the performance of existing codes for the reduction of
a full dense matrix to tridiagonal form, in the context of the symmetric
eigenvalue problem. Our experimental results confirm that the two-stage
approach proposed in the SBR toolbox delivers a higher parallel scala-



0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000

G
F

L
O

P
S

Matrix rows/columns

Reduction from full to tridiagonal form using LAPACK/SBR

SBR - 1 GPU/1 CORE
SBR - 8 Intel cores
SBR - 4 Intel cores
SBR - 1 Intel core

LAPACK - 1 CORE

Fig. 2. Performance of the reduction of a dense matrix to tridiagonal form using the
routines in LAPACK and the SBR toolbox on a Intel Xeon and a Tesla C1060.

bility than the LAPACK-based alternative. We have also modified the
codes in SBR to compute the most-expensive operations during the re-
duction to band form on a GPU. To increase the performance we employ
the highly tuned implementation of the matrix product kernel in CUDA
to compute symmetric matrix products and symmetric rank-2k updates.
Although this increases the cost of the stage by 33%, we found in our ex-
periments that this is clearly compensated by the higher performance of
that particular kernel. In summary, the GPU variant reduces significantly
the cost of this initial stage, making it comparable to that of the second
stage (reduction of the band matrix to tridiagonal form).

The back-transform stage has not been included in this experimental
study. On the one hand, it is only necessary when the eigenvectors are
requested; on the other, it can be expressed in terms of efficient BLAS-3
kernels which we expect to deliver high performance and scalability on
both a general-purpose processor or a hardware accelerator like a GPU.
Future work will certainly consider this stage as well as the refinement of
single-precision results to double-precision.



1st stage: Full→ Band 2nd stage: Band→ Tridiagonal
n w 1 Core 4 Cores 8 Cores CUBLAS 1 core

2048
32 1.1 0.8 0.8 0.2 0.4
96 0.9 0.5 0.5 0.2 0.8

6144
32 33.5 23.8 28.5 2.5 3.7
96 25.3 11.6 11.7 2.7 7.5

10240
32 155.8 110.4 129.5 10.1 10.3
96 116.6 51.2 51.6 10.6 25.6

Table 3. Execution time (in seconds) for the two-stage SBR routines.

Acknowledgments

The second and fourth authors were supported by projects CICYT TIN2005-
09037-C02-02, TIN2008-06570-C04-01 and FEDER, and P1B-2007-19 of
the Fundación Caixa-Castellón/Bancaixa and UJI.

References

1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, 1992.

2. S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Ort́ı. Evalu-
ation and tuning of the level 3 CUBLAS for graphics processors. In Proceedings of
the 10th IEEE Workshop on Parallel and Distributed Scientific and Engineering
Computing, PDSEC 2008, pages CD–ROM, 2008.

3. S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Ort́ı. Solv-
ing dense linear systems on graphics processors. In E. Luque, T. Margalef, and
D. Beńıtez, editors, Proceedings of the 14th international Euro-Par conference on
Parallel Processing, Lecture Notes in Computer Science, 5168, pages 739–748.
Springer, 2008.

4. P. Bientinesi, I. S. Dhillon, and R. van de Geijn. A parallel eigensolver for dense
symmetric matrices based on multiple relatively robust representations. SIAM J.
Sci. Comput., 27(1):43–66, 2005.

5. Christian H. Bischof, Bruno Lang, and Xiaobai Sun. Algorithm 807: The SBR
Toolbox—software for successive band reduction. ACM Trans. Math. Soft.,
26(4):602–616, Dec. 2000.

6. Christian H. Bischof, Bruno Lang, and Xiaobai Sun. A framework for symmetric
band reduction. ACM Trans. Math. Soft., 26(4):581–601, Dec. 2000.

7. Inderjit S. Dhillon, Beresford N. Parlett, and Christof Vomel. The design and
implementation of the MRRR algorithm. ACM Trans. Math. Soft., 32(4):533–560,
Dec. 2006.

8. Jack J. Dongarra, Sven J. Hammarling, and Danny C. Sorensen. Block reduction
of matrices to condensed forms for eigenvalue computations. LAPACK Working
Note 2, Technical Report MCS-TM-99, Argonne National Laboratory, Sept. 1987.



9. Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, 3rd edition, 1996.

10. R. M. Martin. Electronic Structure: Basic Tehory and Practical Methods. Cam-
bridge University Press, Cambridge, UK, 2008.

11. Vasily Volkov and James Demmel. LU, QR and Cholesky factorizations using
vector capabilities of GPUs. Technical Report UCB/EECS-2008-49, EECS De-
partment, University of California, Berkeley, May 2008.



Research Reports

No. Authors/Title

09-13 P. Bientinesi, F.D. Igual, D. Kressner, E.S. Quintana-Orti
Reduction to condensed forms for symmetric eigenvalue problems on
multi-core architectures

09-12 M. Stadelmann
Matrixfunktionen - Analyse und Implementierung

09-11 G. Widmer
An efficient sparse finite element solver for the radiative transfer equation

09-10 P. Benner, D. Kressner, V. Sima, A. Varga
Die SLICOT-Toolboxen für Matlab

09-09 H. Heumann, R. Hiptmair
A semi-Lagrangian method for convection of differential forms

09-08 M. Bieri
A sparse composite collocation finite element method for elliptic sPDEs

09-07 M. Bieri, R. Andreev, C. Schwab
Sparse tensor discretization of elliptic sPDEs

09-06 A. Moiola
Approximation properties of plane wave spaces and application to the
analysis of the plane wave discontinuous Galerkin method

09-05 D. Kressner
A block Newton method for nonlinear eigenvalue problems

09-04 R. Hiptmair, J. Li, J. Zou
Convergence analysis of Finite Element Methods for H(curl;Ω)-elliptic
interface problems

09-03 A. Chernov, T. von Petersdorff, C. Schwab
Exponential convergence of hp quadrature for integral operators with
Gevrey kernels

09-02 A. Cohen, R. DeVore, C. Schwab
Convergence rates of best N -term Galerkin approximations for a class of
elliptic sPDEs

09-01 B. Adhikari, R. Alam, D. Kressner
Structured eigenvalue condition numbers and linearizations for matrix
polynomials

08-32 R. Sperb
Optimal bounds in reaction diffusion problems with variable diffusion
coefficient


