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A SEMI-LAGRANGIAN METHOD FOR CONVECTION OF

DIFFERENTIAL FORMS

HOLGER HEUMANN, RALF HIPTMAIR, JINCHAO XU

Abstract. We propose a semi-Lagrangian discretization method for convec-
tion problems of differential forms. Our method approximates the material
derivative using the nodal interpolation operator of discrete differential forms.
Thereby the method is stable by construction. As application we derive a semi-
Lagrangian discretization for the electromagnetic part of MHD equations.

1. Introduction

The calculus of differential forms permits us to express general time dependent
convective partial differential equation as

−εd ∗ dω(·, t) + ∗∂tω(·, t) + ∗Lβω(·, t) = ϕ in Ω ⊂ R
n .(1)

This is an equation for an unknown l-form ω(·, t), 0 ≤ l ≤ n, on the domain Ω. The
symbol ∗ stands for the so-called Hodge operator mapping an l-form to an n − l-
form, and d denotes the exterior derivative. Together they define the principal part
d ∗ dω of the differential operator. Lβ is a convection operator for a given velocity
field β. Differential forms can be modelled by means of functions and vector fields
through so-called vector proxies [5, page 132]. For n = 3, in the case of ∗ induced
by the Euclidean metric on R3, the operator d ∗ dω becomes −∆, ∇× (∇× ·), and
∇·∇ in vector proxy notation, for l = 0, 1, 2, respectively. The convection operators
for vector proxies are β ·∇, ∇(β · ·)−β× (∇× ·) and β(∇ ·)−∇× (β× ·). We refer
to [10] for more details and an introduction to the calculus of differential forms.

Thinking in terms of differential forms offers considerable advantages as regards
the construction of structure preserving spatial finite element discretizations of
boundary value problems for d ∗ dω one can devise discrete counterparts of l-forms
defined on triangulations of Ω, which provide suitable piecewise polynomial finite
element spaces for the variational problems arising from d ∗ dω. In particular,
discrete differential forms respect the algebraic properties of the exterior derivative
like d2 = 0 and the DeRham exact sequence. More details are given in [2, 5, 11].
Discrete differential forms of any polynomial degree are available [1, 9]. In light of
the success of discrete differential forms, it is worth exploring their use for the more
general equation (1).

The convective part of the operator from (1) is formulated by means of the Lie
derivative Lβ, where β is a vector field on Ω. Thus, for l = 0 and in terms of vector
proxies, (1) becomes scalar convection diffusion. The Lie derivative operator itself
can be represented as a composition of the so called contraction operators iβ and
the exterior derivatives. This is the famous Cartan magic formula. The definition
of the contraction is based on the notion of extrusion of manifolds and the duality
pairing of forms and manifolds [3]. In [8] we started from this characterization to
derive upwind discretizations.

The equivalent definition of Lie derivatives as the limit value of a difference
quotient of a form and its pullback is the starting point of our semi-Lagrangian
methods. We first review the definition of Lie derivatives and material derivatives

1
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for differential forms. Next, we propose a semi-Lagrangian approximation proce-
dure for material derivatives of arbitrary discrete l-forms and discuss their stability.
Finally we apply this method to solve the convective eddy current equations arising
e.g. in magnetohydrodynamics. We will see, that the semi-Lagarangian discretiz-
tion technique will yield a solver-friendly algebraic system, meaning that the linear
systems that need to be solved, when evolving the inital data can be inverted fast
and efficiently [15]. A related work is [14].

1.1. Lie derivatives and material derivatives of forms. We introduce a space-
time domain QT := Ω × [t0, t1] where Ω ⊂ Rd and [t0, t1] ⊂ R. Given a vector
field β : QT '→ Rd and initial values (x, s) ∈ Q̄t we ask for solutions X(x, s, t) :
Ω̄ × [t0, t1]2 '→ Rd of:

d

dt
X(x, s, t) = β(X(x, s, t), t), t ∈ [t0, t1]

X(x, s, s) = x.(2)

For fixed (x, s) the solution X(x, s, ·) is called the characteristic curve through
(x, s). A unique solution of problem (2) exists, whenever β is continuous in Q̄T

and Lipschitz continuous in Ω̄ for fixed t ∈ [t0, t1]. In this case

X(X(x, s, t), t, s) = x, ∀x ∈ Ω(3)

hence X(·, t, s) is a inverse of X(·, s, t):

X(·, t, s) ◦ X(·, s, t) = id.(4)

For simplicity we abbreviate Xs,t(·) = X(·, s, t). Before introducing the Lie de-
rivative we recall the definition of the directional derivative for scalar functions
f : Ω '→ R:

(β · ∇f)(x, t) := lim
τ→t

f(X(x, t, τ)) − f(x)

τ − t
.(5)

Now we write Dl for the space of l-forms on Ω. The scalar functions are 0–forms and
the Lie derivative Lβ of higher l-form ω ∈ Dl is the generalization of the directional
derivative for a scalar function. For differential forms ω ∈ Dl of order l, l > 0, we
replace the point evaluation of 0-forms with integration over l-dimensional oriented
sub-manifolds Ml of Ω. To emphasize the duality of differential l-forms ωl and
l-dimensional oriented manifolds we introduce the notation

ω(Ml) :=

∫

Ml

ω .(6)

Then the Lie derivative of a l-form ω is:

(Lβω)(Ml, t) := lim
τ→t

ω(Xt,τ (Ml)) − ω(Ml)

τ − t
.(7)

In terms of the pullback X∗

t,τ with

(X∗

t,τ (ω))(Ml) := ω(Xt,τ (Ml))(8)

we could also write

(9) (Lβω)(·, t) := lim
τ→t

X∗

t,τω(·) − ω(·)

τ − t
.

Following [3] the extrusion Extt,τ (β, Ml) = {Xt,s(x) : t ≤ s ≤ τ, x ∈ Ml} is the
union of flux lines emerging at Ml running from t to τ (Figure 1). We define an
orientation of the extrusion Extt,τ (β, Ml) such that the boundary is:

(10) ∂Extt,τ (β, Ml) = Xt,τ (Ml) − Ml − Extt,τ (β, ∂Ml).
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β Xt,τ (Ml)

Extt,τ (β, Ml)
Ml

Figure 1. Extrusion of line segment Ml with respect to velocity
field β.

Plugging this into the definition of the Lie derivative (9) we get by means of Stokes’
theorem

(Lβω)(Ml, t) = lim
τ→t

ω(∂Extt,τ (β, Ml)) + ω(Extt,τ (β, ∂Ml))

τ − t

= lim
τ→t

dω(Extt,τ (β, Ml)) + ω(Extt,τ (β, ∂Ml))

τ − t
.(11)

The contraction operator is defined as the limit of the dual of the extrusion:

(iβω)(Ml, t) := lim
τ→t

ω(Extt,τ (β, Ml))

τ − t
(12)

and we recover from (11) Cartan’s magic formula [12, page 142, prop. 5.3] for the
Lie derivative:

(Lβω)(Ml, t) = (iβdω)(Ml, t) + (diβω)(Ml, t).(13)

For 0-forms the second term vanishes, for top forms the first one.

Remark 1.1. For 1-forms with vector proxy A in R3 this gives a general convective
term

LβA ∼ β ×∇× A + ∇(β ·A) .(14)

For 2-forms with vector proxy B in R3 this gives a general convective term

LβB ∼ β(∇ ·B) −∇× β × B .(15)

We refer to [4] for vector proxy representations Lie derivatives of other forms on
two and tree dimensional manifolds.

What is the meaning of the limit value of (9) if we used time dependent differ-
ential forms ω(·, t):

(Dβω)(·, t) := lim
τ→t

X∗

t,τω(·, τ) − ω(·, t)

τ − t
?(16)

This derivative is the rate of change of the action of differential forms in moving
media, hence a material derivative [7, page 62]. We deduce:

(Dβω)(·, t) = lim
τ→t

X∗

t,τω(·, τ) − X∗

t,τω(·, t)

τ − t
(17)

+ lim
τ→t

X∗

t,τω(·, t) − ω(·, t)

τ − t
(18)

=
∂

∂t
ω(·, t) + (Lβω)(·, t).(19)
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Remark 1.2. For 2-forms with vector proxy B in R3 and ∇ · B = 0 we have:

DβB = ∂tB + LβB(20)

= ∂tB−∇× β × B .(21)

Remark 1.3. Since the exterior derivative and the Lie derivative commutate we
have:

Dβd = dDβ.(22)

As a consequence closed forms remain closed when they are advected by the mate-
rial derivative. If Dβω(·, t) = 0 and dω(·, 0) = 0 then this property is preserved:
dω(·, t) = 0, ∀t.

There are now two different approaches to discretize material derivatives. We
either use the formulation (19) in terms of partial time derivative of forms and
Lie derivative or we approximate the difference quotient (16) directly. The first
approach, referred to as Eulerian, reduces to a methods of lines approach with the
spatial discretization of Lie derivatives from [8]. Regarding the stability properties
the second semi-Lagrangian approach is much more attractive.

2. Direct and adjoint semi-Lagrange-Galerkin formulation

We focus first on the transport part of problem (1) and assume in the following
that on the boundary of Ω the tangential components of the vector field β vanish,
hence X(Ω, ·, ·) = Ω. This is a crucial but very common assumption for semi-
Lagrangian methods. Only a few semi-Lagrangian methods like ELLAM [6] can
handle a non-vanishing velocity field on the boundary.

If we use simple backward Euler there are two equivalent variational formulations
for the transport problem: Given some φ(·, t) ∈ Dl find ω(·, t) ∈ Dl, such that

Dβω = φ.(23)

The direct variational formulation reads as: Given some φ(·, t) ∈ Dl find ω(·, t) ∈
Dl, such that

∫

Ω
lim
τ→t

X∗

t,τω(·, τ) − ω(·, t)

τ − t
∧ η =

∫

Ω
φ(·, t) ∧ η ∀η ∈ Dn−l.(24)

The adjoint variational formulation reads as: Given some φ(·, t) ∈ Dl find ω(·, t) ∈
Dl, such that

∫

Ω
lim
τ→t

ω(·, τ) ∧ X∗

τ,tη − ω(·, t) ∧ η

τ − t
=

∫

Ω
φ(·, t) ∧ η ∀η ∈ Dn−l.(25)

Lemma 2.1. The direct (24) and the adjoint (25) variational formulations are
equivalent.

Proof. Since Xt,s(Ω) = Ω and Xτ,t(Xt,τ (·)) = id:
∫

Ω
X∗

t,τω(·, τ) ∧ η =

∫

Xτ,t(Ω)
X∗

t,τω(·, τ) ∧ η(26)

=

∫

Ω
ω(·, τ) ∧ X∗

τ,tη(27)

and the equivalence follows directly. !

Corollary 2.2. The adjoint of a Lie derivative of a l–form is the negative Lie
derivative of a n − l–form:

∫

Ω
Lβω(·) ∧ η = −

∫

Ω
ω(·) ∧ Lβη.
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Replacing the limit values in (24) and (25) with a finite difference quotient,
yields semi-discrete time stepping schemes: Given φ(·, t) ∈ Dl and ω(·, τ) ∈ Dl find
ω(·, t) ∈ Dl, such that

∫

Ω

X∗

t,τω(·, τ) − ω(·, t)

τ − t
∧ η =

∫

Ω
φ(·, t) ∧ η ∀η ∈ Dn−l(28)

and given φ(·, t) ∈ Dl and ω(·, τ) ∈ Dl find ω(·, t) ∈ Dl, such that
∫

Ω

ω(·, τ) ∧ X∗

τ,tη − ω(·, t) ∧ η

τ − t
=

∫

Ω
φ(·, t) ∧ η ∀η ∈ Dn−l.(29)

Writing W l ⊂ Dl for some space of discrete l-forms on a triangulation of Ω [11]
and restricting the semi discrete formulation to these spaces, we end up with the
following direct and adjoint schemes: Given φ(·, t) ∈ Dl and ω(·, τ) ∈ Dl find
ωh(·, t) ∈ W l, such that

∫

Ω

X∗

t,τωh(·, τ) − ωh(·, t)

τ − t
∧ ηh =

∫

Ω
φ(·, t) ∧ ηh ∀ηh ∈ Wn−l,(30)

and find ωh(·, t) ∈ W l, such that
∫

Ω

ωh(·, τ) ∧ X∗

τ,tηh − ωh(·, t) ∧ ηh

τ − t
=

∫

Ω
φ(·, t) ∧ ηh ∀ηh ∈ Wn−l.(31)

In general X∗

t,τωh(·, τ) /∈ W l and X∗

τ,tηh /∈ Wn−l and the integrals can not be
evaluated exactly. Since simple quadrature could cause serious problems concerning
stability [13] we propose to use the nodal interpolation operators of discrete forms
[11] to map the transported discrete forms X∗

t,τωh(·, τ) and X∗

τ,tηh onto the space
of discrete forms.

Definition 2.3 (Semi-Lagrangian time stepping). Let W l ⊂ Dl be the space of the
lowest order Whitney l-form on a triangulation of Ω and Πl the nodal interpolation
operator. The direct semi-Lagrangian time stepping scheme is: Given ωh(·, τ), φh ∈
W l, find ωh(·, t) ∈ W l, such that

(32)

∫

Ω
ωh(·, t) ∧ ηh =

∫

Ω
ΠlX

∗

t,τωh(·, τ) ∧ ηh − (τ − t)φ(·, t) ∧ ηh ∀ηh ∈ Wn−l.

The adjoint semi-Lagrangian time stepping scheme is: Given ωh(·, τ), φh ∈ W l,
find ωh(·, t) ∈ W l, such that

(33)

∫

Ω
ωh(·, t) ∧ ηh =

∫

Ω
ωh(·, τ) ∧ Πn−lX

∗

τ,tηh − (τ − t)φ(·, t) ∧ ηh ∀ηh ∈ Wn−l.

If a continuous form ω(·, t) is closed at some point t0 and Dβω(·, t) = 0 then
dω(·, t) = 0, ∀t (see remark (1.3)). This property is important in many physical
applications and the adjoint semi-Lagrangian time-stepping full fills this in a weak
sense.

Remark 2.4. A form ω ∈ Dl is weakly closed if
∫
Ω ω ∧ dψ = 0, ∀ψ ∈ Dn−l−1.

The discrete adjoint semi-Lagrangian time stepping scheme (33) with φ = 0 and
ηh = dψh is:

∫

Ω
ωh(·, t) ∧ dψh =

∫

Ω
ωh(·, τ) ∧ Πn−lX

∗

τ,tdψh ∀ψh ∈ Wn−l−1.(34)
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But since both exterior derivative and pullback and nodal interpolation and exterior
derivative commutate we get:

∫

Ω
ωh(·, t) ∧ dψh =

∫

Ω
ωh(·, τ) ∧ dψ̃h,(35)

with ψ̃h = Πn−l−1X∗

τ,tψh. Hence ωh(·, t) is weakly closed if ωh(·, τ) is weakly closed.

Remark 2.5. The stability of the discrete semi-Lagrangian time-stepping schemes
(32) and (33) hinges on the boundedness of the interpolation operator. Replacing
e.g. in the homogeneous case of (32) ηh with ∗ωh(·, t) we see that:

‖ωh(·, t)‖2
L2(Ω) =

∫

Ω
ΠlX

∗

t,τωh(·, τ) ∧ ∗ωh(·, t)(36)

≤ ‖ΠlX
∗

t,τωh(·, τ)‖L2(Ω)‖ωh(·, t)‖L2(Ω).(37)

3. Nodal interpolation of transported forms

An efficient implementation of the time-stepping schemes (32) and (33) depends
on the treatment of the nodal interpolation operators. We cover here algorithmic
details for the interpolation operators of 0–forms and 1–forms. Given a triangula-
tion of the domain V is the set of vertices and E is the set of edges. The usual nodal
hat functions λi connected to vertices ai for piecewise linear Lagrangian elements
are a basis for discrete 0–forms. The functions be = λe1

∇λe2
− λe2

∇λe1
connected

to edges e = (e1, e2) are a basis for discrete 1–forms.

3.1. 0–forms. To determine the interpolation coefficients for a discrete transported
0-form ωh(Xt,τ (y), t) it is by linearity enough to consider the basis functions. Since
Π0ω(ai) = ω(ai) for all vertices ai and 0–forms ω the matrix operator P0

t,τ with
entries

p0
ij := λj(Xt,τ (ai))(38)

maps the expansions coefficients of ωh(·, τ) to the coefficients of Π0X∗

t,τωh(·, τ).
This means that in each time step we need to determine the points Xt,τ (ai) on
trajectories Xt,·(ai) solution to the ordinary differential equation (2). We not only
need to find the position but also the location within the mesh. To find the element,
in which Xt,τ (ai) is located we trace the path of the trajectory from one element
to the next. Based on this data the matrix entries (38) can be assembled element
by element (see fig. 2).

3.2. 1–forms. The interpolation of a transported discrete 1–form X∗

t,τωh is again
determined through the interpolation of transported basis forms and the condition
(Π1X∗

t,τωh − X∗

t,τωh)(e) = 0, ∀e ∈ E . This defines a matrix P1
t,τ , mapping the

expansion coefficients of ωh(·) to those of X∗

t,τωh. The matrix entries

p1
ee

′ := X∗

t,τbe′(e)(39)

are line integrals along the path from Xt,τ (ae1
) to Xt,τ (ae2

) (see fig. 3). In general
the calculation of these line integrals can not be done exact. First the solution of the
characteristic ODE (2) that gives the location Xt,τ (e) of the transported edge can be
determined only approximately. Second we solve this ODE only for a finite number
of points of the edge e and end up with a piecewise polynomial approximation of
the transported edge. For simplicity we use here linear interpolation

Xt,τ (e) ∼= [Xt,τ (ae1
), Xt,τ (ae2

)](40)

between the transported end points Xt,τ (ae1
) and Xt,τ (ae2

). To determine the
entries of the e-th row, we trace the path from Xt,τ (ae1

) to Xt,τ (ae2
) and calculate
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ai = Xt,t(ai)

ak

al

am

T1

T2

T3

T4Xt,τ (ai)

Figure 2. To determine the location of Xt,τ (ai) we move along
the trajectory −Xt,·(ai) starting from ai and identify the crossed
elements T1, T2, T3 and T4. In this case p0

ik, p0
il and p0

im are the
only non-zero entries in the i–th row of P0

t,τ .

ai

aj

T1 T2

T3
Xt,τ (ai)Xt,τ (aj)

Figure 3. The transported edge X∗

t,τe (black curved line) is ap-
proximated by a straight line (black dashed line). In the case de-
picted here all basis function associated with edges e′ of elements
T1, T2 and T3 yield a nonzero entry p1

e,e′

for each crossed element the line integrals for the attached basis functions. If e.g.
the line crosses an element with edge e′ from point a to point b (see fig. (4)), then
the element contribution to p1

e,e′ is:
∫

Xt,τ (e)∩T

be′ =

∫

[a,b]
be′(41)

=
1

2

(
be′(a) + be′(b)

)
· (b − a)(42)

= λe′

1
(a)λe′

2
(b) − λe′

2
(a)λe′

1
(b).(43)

In the following we will denote with P̃1
t,τ an approximation to P1

t,τ .

4. MHD model

In this section we will apply both the direct and the adjoint semi-Lagrangian
method to the electromagnetic part of magnetohydrodynamics models. A frequent
approach in MHD neglects the displacement current in the full Maxwell’s equation.
This reduced model, called eddy current model, is a system of equations for the
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a b

e′1T

e′2

e

Figure 4. The line [a, b] is the intersection of the approximation
of the transported edge with element T .

magnetic field h ∈ D1, the electric field e ∈ D1, the magnetic field density b ∈ D2

and the current density j ∈ D2:

de = −∂tb in Ω,(44)

dh = j in Ω,(45)

j = ∗σ(e + iβb) in Ω,(46)

∗µh = b in Ω.(47)

To rewrite this system in terms of a material derivative we substitute e = ẽ + iβb
and add −iβdb to Faraday’s law (44). This leaves the solution unchanged, since
db = 0. Hence we end up with the system:

dẽ = −Dtb in Ω,(48)

dh = j in Ω,(49)

j = ∗σẽ in Ω,(50)

∗µh = b in Ω.(51)

Next we state two different variational formulations, that require either the direct
or the adjoint semi-Lagrangian methods. They rely on a quite general perception
of material laws like (50) and (51). Given two smooth convex energy dissipation
functionals

Eσ : D1 '→ R(52)

and

Eµ : D1 '→ R(53)

the derivatives DEσ(ẽ), DEµ(h) ∈ (D1)′ are linear forms on the space of 1-forms.
But since by L2-duality we also have (D1)′ ∼= (D2) we prefer to treat the material
laws (50) and (51) as equalities on the dual space (D1)′:

< DEσ(ẽ), e′ > =

∫

Ω
j ∧ e′ ∀e′ ∈ D1,(54)

< DEµ(h), h′ > =

∫

Ω
b ∧ h′ ∀h′ ∈ D1.(55)

Likewise energy dissipation functionals:

Eσ−1 : D2 '→ R(56)

and

Eµ−1 : D2 '→ R(57)
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define the material laws:

< DEσ−1 (j), j′ > =

∫

Ω
ẽ ∧ j′ ∀j′ ∈ D2,(58)

< DEµ−1 (b), b′ > =

∫

Ω
h ∧ b′ ∀b′ ∈ D2.(59)

4.1. h-based variational formulation. For simplicity we impose homogeneous
electric boundary conditions on ∂Ω. Testing (48) with h′ ∈ D1, integration by parts
yields:

∫

Ω
ẽ ∧ dh′ +

∫

Ω
Dtb ∧ h′ = 0.(60)

We eliminate ẽ using the material law (58) for j = dh and end up with the following
variational formulation: Seek h ∈ D1, b ∈ D2 such that:

∫

Ω
Dtb ∧ h′+ < DEσ−1(dh), dh′ > = 0 ∀h′ ∈ D1,(61)

< DEµ(h), h′′ > −

∫

Ω
b ∧ h′′ = 0 ∀h′′ ∈ D1.(62)

In order to eliminate b as well we switch to discrete time and get according to (29)
an adjoint semi-Lagrangian scheme:

∫

Ω
b(·, τ) ∧ X∗

τ,th
′ − b(·, t) ∧ h′ + (τ − t) < DEσ−1(dh(·, t)), dh′ > = 0 ∀h′ ∈ D1.

(63)

Hence the variational time-discrete h-based variational formulation for general ma-
terial laws reads as: Given h(·, τ) ∈ D1 find h(·, t) ∈ D1 such that:

(64) < DEµ(h(·, τ)), X∗

τ,th
′ > − < DEµ(h(·, t)), h′ >

+ (τ − t) < DEσ−1(dh(·, t)), dh′ >= 0 ∀h′ ∈ D1.

The variational time-discrete h-based variational formulation for linear scalar ma-
terial laws is: Given h(·, τ) ∈ D1 find h(·, t) ∈ D1 such that:

(65)

∫

Ω
µ h(·, τ) ∧ X∗

τ,th
′ − µ h(·, t) ∧ h′

+ (τ − t)

∫

Ω
σ−1dh(·, t) ∧ dh′ = 0 ∀h′ ∈ D1.

h(·, t) is the solution of an elliptic PDE with a source term depending on h(·, τ).
An additional spatial discretization with h(·, t), h′ ∈ W1 yields a system of linear
equations for the coefficient vector ht of hh(·, t) ∈ W1:

(Mµ + (t − τ)Cσ−1 )ht = (P̃1
τ,t)

T Mµh
τ .(66)

The right-hand side is linear in hh(·, τ) and the matrix P̃1
τ,t depends on solutions

of the ODE (2). To calculate the evolution of some initial data h0 we need to
solve a linear system and a number of ODEs. Just recently Xu proposed a similar
approach [16], that additionally amounts the solution of ODEs for the deformation
gradient F (s, t) = ∇Xs,t(x). The main benefit of his, but also of our discretization
approach is the fact, that the resulting algebraic systems can be inverted fast and
efficiently. Adopting the parlance of [15], the semi-Lagrange technique is a solver-
friendly discretization.
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Remark 4.1. The same arguments as in remark (2.4) show that the solution
µ h(·, t) of the variational formulation is (65) is weakly closed if the initial data
µ h(·, τ) is weakly closed. This will not be true for the fully discrete system (66)
since the mapping Π1X∗

τ,t : W1 '→ W1 requires further approximations as discussed
in section (3.2).

4.2. a-based variational formulation. Here we assume for simplicity homoge-
neous magnetic boundary conditions on ∂Ω. The ansatz ẽ = −Dta and b = da
solves Faraday’s law(48). We then multiply Ampere’s law with a test form a′ ∈ D1

and integrate by parts:
∫

Ω
h ∧ da′ −

∫

Ω
j ∧ a′ = 0 ∀a′ ∈ D1.(67)

The material laws (54) and (59) eliminate j and h and we get the a-based variational
formulation: Find a ∈ D1 such that:

< DEµ−1(da), da′ > + < DEσ(Dta), a′ >= 0 ∀a′ ∈ D1.(68)

The time discrete case for scalar linear material laws is: Given a(·, τ) ∈ D1 find
a(·, t) ∈ D1 such that:

(τ − t)

∫

Ω
µ−1 da(·, t) ∧ da′ +

∫

Ω
σ(X∗

t,τa(·, τ) − a(·, t)) ∧ a′ = 0 ∀a′ ∈ D1.(69)

This is according to (28) a direct semi-Lagrangian method. The spatial discretiza-
tion with a(·, t), a′ ∈ W1 yields the linear system:

((t − τ)Cµ−1 + Mσ)at = MσP̃
1
t,τa

τ .(70)

5. Numerical experiments

To illustrate the favourable stability properties of the semi-Lagrangian method,
we augment the h-based variational formulation (65) with a non-zero right-hand
side source term f . In the vector proxy notation this reads as:

(71)

∫

Ω
µh(·, τ)X∗

τ,th
′ − µh(·, t)h′

+ (τ − t)

∫

Ω
σ−1∇× h(·, t)∇× h′ = (τ − t)

∫

Ω
f h′ ∀h′ ∈ D1.

The domain Ω will be the square [−1, 1]2 and the velocity

β = (1 − x2)(1 − y2)

(
0.66
1

)
(72)

vanishes on the boundary of Ω. If we then take

h = cos(2πt)

(
sin(πx) sin(πy)
(1 − x2)(1 − y2)

)
(73)

(see fig. 5) and constant material laws µ ≡ 1 and σ ≡ 1 the right-hand side f

calculates as:

f := ∂th + β(∇ · h) −∇× β × h + ∇×∇× h.(74)

For simplicity we approximate the solutions of the characteristic ODE (2) with
implicit Euler. In figures (6) and (7) we monitor the error for semi-Lagrangian
time stepping (66) for different CFL-numbers and mesh sizes. We find stability
even for CFL-numbers larger than one. These experiments suggest further that
the convergence is of first order (Table (1)).
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Figure 5. Solution h (see (73)) at t = 0 (left) and t = 1.66
computed with CFL-number 1.
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h=0.088 ! t=0.031 CFL=0.500

Figure 6. Evolution of L2-error for problem (71) and small CFL-number.

We even observe stability for the pure transport problem, e.g. in the direct
formulation: ∫

Ω
Xt,τh(·, τ)h′ − µh(·, t)h′ = 0 ∀h′ ∈ D1,(75)

where now Xt,τ is the characteristic curve for the velocity field:

β = χ[−0.9,0.9]2

(
1

0.66

)
.(76)
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Figure 7. Evolution of L2-error for problem (71) and large CFL-number.

h ∆t L2-error
0.707 0.250 0.7543
0.354 0.125 0.4184
0.177 0.062 0.2441
0.088 0.031 0.1355

h ∆t L2-error
0.707 0.500 1.1830
0.354 0.250 0.5302
0.177 0.125 0.2962
0.088 0.062 0.1581

Table 1. Error measured in L2-norm at T = 1.5 for the experi-
ments in figure (6) (left) and figure (7).

The inital data (fig. (8)) has compact support [−0.8, 0.2]2, hence the solution is
not effected by the discontinuity of β. Figure (9) and (10) show the computed
solution of the transport problem on a structured mesh for different CFL-numbers.
The pulse like initial shape of the field strength is smoothed and the amplitude
decreases. This phenomena is less strong for higher CFL-numbers. Figure (11)
shows further that the discrete L2-norm decreases monotone.

The semi-Lagrangian time stepping scheme is stable even in the case of a vanish-
ing curl-curl-operator. This stability is a feature of the semi-Lagrangian framework
and not due to the definition of Lie derivatives. If we use the spatial discretization
of Lie derivatives [8] based on the finite difference quotient (9) we only need to
integrate a system of ODEs. The implicit Euler scheme then reads as

(Mµ + (t − τ)Cσ−1 − (t − τ)LT Mµ)ht = Mµhτ ,(77)

where L is the discretization of the Lie derivative of 1-forms. A second scheme,
that resembles more the semi-Lagrangian scheme, is a splitting method that treats
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Figure 8. Field strength (left) and orientation of initial data for
transport problem (75).
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Figure 9. Transport of initial data, depicted in figure (8) at T =
0.5 for CFL-number 0.5 on a mesh with mesh size h = 0.0884.

!1 !0.5 0 0.5 1

!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

 

 

0

2

4

6

8

10

12

!0.2 0 0.2 0.4 0.6

!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 10. Transport of initial data, depicted in figure (8) at
T = 0.5 for CFL-number 1 on a mesh with mesh size h = 0.0884.

the convective term explicitly:

(Mµ + (t − τ)Cσ−1 )ht = (Mµ − (t − τ)LT Mµ)hτ .(78)

Figure (12) shows that the scheme based on operator splitting is unstable for van-
ishing curl-curl operator. The semi-Lagrangian scheme is as stable as the Eulerian
one using implicit Euler.

The formulation of the eddy current model in terms of material derivatives hinges
on ∇ ·b = 0 (see section (4)). We know that the solution of the continuous problem
fulfills this constraint, when ever it is true for the initial data. Here we study this
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Figure 11. Monotone decrease of discrete L2-norm for pure trans-
port (75).
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Figure 12. L2-error for different time step sizes for non homoge-
neous problem (71) with exact solution (73) on a mesh with mesh
size h = 0.177. With moderate curl-curl-term (σ = 1, µ = 1) all
three methods yield similar results (left). For small curl-curl term
(σ = 104, µ = 1) the solution of the splitting scheme blows up.

conservation property for the eddy current model in h-formulation (see section
(4.1)), with σ = µ = 1 and β = (1 − x2)(1 − y2)(0.66, 1)T . In figure (13) we
monitor this conservation property on a regular and a distorted mesh. All three
schemes, the semi-Lagrangian scheme (66), the implicit Euler scheme (77) and the
splitting scheme (78) preserve the weak divergence. The approximation described
in (3.2) does not destroy this conservation property.

References

[1] Mark Ainsworth and Joe Coyle. Hierarchic finite element bases on unstructured tetrahedral
meshes. International Journal for Numerical Methods in Engineering, 58:2103–2130, 2003.



A SEMI-LAGRANGIAN METHOD FOR CONVECTION OF DIFFERENTIAL FORMS 15

!1 !0.5 0 0.5 1

!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

 # Vertices  :  289,      # Elements  :  512,      # Edges  :  800
0 0.5 1 1.5 2

10
!16

10
!15

10
!14

 t, h=0.177 ! t=0.071 CFL=0.484

 w
e

a
k

 d
iv

e
rg

e
n

c
e

 

 

Semi!Lagrangian

Explizit Euler

Operator Splitting

!1 !0.5 0 0.5 1

!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

 # Vertices  :  289,      # Elements  :  512,      # Edges  :  800
0 0.5 1 1.5 2

10
!10

10
!9

10
!8

 t, h=0.219 ! t=0.091 CFL=0.497

 w
e

a
k

 d
iv

e
rg

e
n

c
e

 

 

Semi!Lagrangian

Explizit Euler

Operator Splitting

Figure 13. The semi-Lagrangian time stepping (66) aswell as im-
plicit Euler scheme (77) and the splitting scheme (78) do preserve
the weak divergence. Blue and red lines indicate the fixed FEM
mesh and the transported mesh.

[2] D.N. Arnold, R.S. Falk, and R. Winther. Finite element exterior calculus, homological tech-
niques, and applications. Acta Numerica, 15:1–155, 2006.

[3] Alain Bossavit. Extrusion, contraction: their discretization via Whitney forms. The Interna-

tional Journal for Computation and Mathematics in the Electrical and Electronic Engineer-

ing, 22(2):470–480, 2003.
[4] Alain Bossavit. Applied differential geometry. http://www.em.tut.fi/ bossavit/BackupICM

/Compendium.pdf, 2005.
[5] Alain Bossavit. Discretization of electromagnetic problems: The “generalized finite differ-

ences”. In W.H.A. Schilders and W.J.W. ter Maten, editors, Numerical Methods in Electro-

magnetics, volume XIII of Handbook of numerical analysis, pages 443–522. Elsevier, Amster-
dam, 2005.

[6] M.A. Celia, T.F. Russell, I. Herrera, and R.Ewing. An Eulerian-Lagrangian localized adjoint
method for the advection–diffusion equation. Adv. Wat. Resour., 13:187–206, 1990.

[7] Morton E. Gurtin. An introduction to continuum mechnaics. Academic Press.
[8] Holger Heumann and Ralf Hiptmair. Extrusion contraction upwind schemes for convection-

diffusion problems. Technical Report 2008-30, Seminar for Applied Mathematics, ETH Zürich,
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