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CH-8092 Zürich, Switzerland

February 25, 2009

Abstract

This work presents a stochastic collocation method for solving elliptic PDEs

with random coefficients and forcing term which are assumed to depend on a
finite number of random variables.

The method consists of a hierarchic wavelet discretization in space and

a sequence of hierarchic collocation operators in the probability domain to
approximate the solution’s statistics. The selection of collocation points is
based on a Smolyak construction of zeros of orthogonal polynomials w.r.t

the probability density function of each random input variable. A sparse
composition of levels of spatial refinements and stochastic collocation points
is then proposed and analyzed, resulting in a substantial reduction of overall

degrees of freedom.
Like in the Monte Carlo approach, the algorithm results in solving a num-

ber of uncoupled, purely deterministic elliptic problems, which allows the

integration of existing fast solvers for elliptic PDEs.
Numerical examples on two-dimensional domains will then demonstrate

the superiority of this sparse composite collocation FEM compared to the

‘full composite’ collocation FEM and the Monte Carlo method.

Key words. Stochastic partial differential equations, stochastic collo-
cation methods, Smolyak approximation, multilevel approximations, sparse

tensor products

AMS subject classifications. 35R60, 60H15, 65C20, 65N12, 65N15,
65N35

1 Introduction

Many engineering models of physical phenomena are subject to significant data
uncertainties. We mention subsurface flow, soil mechanics, earthquake engineer-
ing, to name but a few. Neglecting model uncertainties we focus on PDEs with
inherent parameter uncertainties, often modeled as random fields [1, 25], resulting
in stochastic partial differential equations. Parametrizing those random fields by a
finite, but possibly large number M of random variables, leads to high dimensional

∗This work is partially supported by the Swiss National Science Foundation under Grant No.
200021-120290/1
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approximation problems on whose reduction of complexity a lot of recent works
were focused [5, 4, 6, 19, 18, 24, 29, 28, 10].

In this work we present a sparse composite collocation finite element algorithm
to compute the solution’s random behavior. The word sparse has a twofold mean-
ing here. First, we build a sequence of sparse collocation operators in the high-
dimensional random parameter space as also done e.g. in [5, 19, 18, 29] resulting in
a considerable reduction of the number of collocation points NΩ to be used. The
algorithms presented there, however, suffer from the fact that they are of complex-
ity O(NΩ · ND), ND being the number of spatial DoFs, which is very prohibitive
especially if a fine resolution of the spatial behavior is required e.g. due to short
correlation lengths. Therefore, second, and more important, we additionally com-
bine these collocation operators in a sparse fashion with a hierarchic wavelet basis
in space, resulting in an algorithm of O(NΩ log ND + ND log NΩ), and therefore
substantially better complexity. Hence, we propose a fully discrete sparse colloca-
tion scheme where the addition of collocation points on each level of refinement is
tailored to the level of resolution of the increment spaces of the hierarchic spatial
wavelet discretization. We note here that the same idea of a sparse tensorization
between stochastic and deterministic discretization spaces is also applicable to the
stochastic Galerkin finite element method, see [4] for details. Our analysis of the
sparse composite collocation method covers in particular also the case of Gaussian
random variables and is therefore not only restricted to bounded variables like the
above mentioned works.

By D ⊂ Rd we denote a bounded Lipschitz domain and by (Ω, Σ, P ) a complete
probability space with Ω denoting the outcomes, Σ the sigma-algebra of possible
events and P a probability measure.

Our model problem is a stochastic elliptic boundary value problem of the form
{

L(u) = f in D,
B(u) = g on ∂D

(1.1)

where L is an elliptic differential operator depending on one or more random coef-
ficients, e.g. a random diffusion coefficient a(ω,x), and B is a boundary operator.
Finally, the forcing term f(ω,x) ∈ L2(Ω;W(D)), where W(D) denotes a suitable
Banach space, can also assumed to be random.

Our goal is to compute the statistics of u rather than the random field itself,
since the latter is usually only of limited interest in practise.

The collocation approach presented here leads, like the Monte Carlo method, to
a sequence of uncoupled purely deterministic problems which can be solved by any
generic algorithm designed for solving problems of type (1.1) for a given realization
of a(ω, ·). Unlike the Monte Carlo method, however, and motivated by [4, 6], those
realizations are not chosen randomly but based on a hierarchic set of collocations
points where in each point we solve a purely deterministic problem by a wavelet
discretization adapted to the relative importance of the sample.

The outline of the paper is as follows: In Section 2 we will discuss the problem
setting and impose some necessary assumptions on (1.1). An example of a problem
meeting those criteria will be provided.

In Section 3 we will present the sparse composite collocation method, consisting
of a thorough discussion of the stochastic semidiscretization by collocation and the
wavelet discretization in space resulting in the formulation of the main result of this
paper by proving algebraic approximation rates of the fully discretized problem.

Numerical examples in D ⊂ R2 and details on the implementation are then
presented in Section 4. Examples concerning the hierarchical spatial and stochastic
discretization as well as a comparison between sparse and full composite stochastic
collocation FEM will be presented.

Appendix A contains the mathematical technicalities of our main results.
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2 Problem setting

The collocation method presented in this work relies on a number of assumptions im-
posed on the problem (1.1), which will be introduced next. The section is concluded
by giving an example of a problem satisfying all of the assumptions below which
will then, in a slightly simplified form, also serve as a model problem throughout
the rest of the paper.

The first assumption ensures that the problem is well posed in the sense of
unique solvability.

Assumption 2.1 (Well-posedness of the problem). The random coefficients
a and the forcing term f are such that the uniqueness and existence of a solution
u(ω,x) ∈ L2

P (Ω;W(D)) to (1.1) is guaranteed P -almost surely.

The next assumption restricts the model problem (1.1) to ones where the stochas-
tic behavior of the input parameters can be described by a finite-dimensional ran-
dom vector (Y1, . . . , YM ).

Assumption 2.2 (Finite-dimensional noise assumption). The stochastic pa-
rameters a and f depend only on a finite number M of random variables Ym : Ω →
R, i.e.

a(ω,x) = a(Y1, . . . , YM ,x) and f(ω,x) = f(Y1, . . . , YM ,x) (2.1)

This may seem very restricting at a first glance, since random fields are usually
only properly described by an infinite number of random variables. However, since
our goal is an approximation to the statistical moments of the solution we only
need to describe the random field to a sufficiently high accuracy which is usually
possible by only taking a finite number of random variables into account. This
can e.g. be seen if we expand the random field a, and similarly f , into a so called
Karhunen-Loève (KL) expansion:

a(ω,x) = Ea(x) +
∑

m≥1

√

λmϕm(x)Ym(ω). (2.2)

The KL expansion is guaranteed to exist if the random field has finite second mo-
ments [12]. In that case (λm, ϕm) are eigenpairs of the eigenvalue problem of finding
(λ, ϕ) ∈ R × L2(D) s.t.

∫

D
Va(x,x′)ϕ(x′) dx′ = λϕ(x) (2.3)

where Va(x,x′) denotes the 2-point covariance of the random field a. By reordering,
if necessary, we can assume that the λm’s are monotonically converging to zero if
m tends to infinity, i.e. λ1 ≥ λ2 ≥ 0 and λm −→ 0. The truncated KL expansion is
then given by

aM (ω,x) = Ea(x) +
M
∑

m=1

√

λmϕm(x)Ym(ω). (2.4)

Moreover, under certain regularity assumptions on the 2-point covariance Va such
as sufficiently high Sobolev regularity, see e.g. [4] Proposition 2.3, it can be shown
that ‖ϕm‖L∞(D) ≤ c|λm|−s/2 with 0 < s < 1, s depending on the smoothness of
Va(x,x′), i.e. we have a pointwise estimate on the KL eigenfunctions in terms of
the associated eigenvalues. Due to this fact and the decay of the eigenvalues the
random field can clearly be approximated to any prescribed accuracy by a finite
number of random variables:

‖a − aM‖L∞(Ω,W(D)) lesssim
∑

m>M

λ1−s
m (2.5)
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Hence, if the λm’s are such that the last sum in (2.5) is finite, we have a-priori
(pointwise) control over the truncation error of the random field. This summability
of eigenvalues is in turn ensured for a lot of common covariance kernels Va, such as
Gaussian or exponential ones [15, 21, 22, 16, 23].

The case of lognormal random coefficients, which play an important role in
practical applications, can be treated similarly. If e.g. a is lognormally distributed,
then its logarithm can be expanded in a Karhunen-Loève series as before, hence we
have

ln a(ω,x) = ϕ0(x) +
∑

m≥1

√

λmϕm(x)Ym(ω) (2.6)

with Ym ∼ N (0, 1). Following the same arguments as above, we can obtain an
approximation of a to any prescribed accuracy in terms of finitely many random
variables Ym.

Assumption 2.3 (Independence).

i) The family (Ym)m≥1 : Ω → R is independent,

ii) with each Ym(ω) is associated a probability space (Ωm, Σm, Pm), m ∈ N with
the following properties:

a) the probability measure Pm admits a probability density function ρm :
Ran(Ym) := Γm −→ [0,∞) such that dPm(ω) = ρm(ym)dym, m ∈ N,
ym ∈ Γm and

b) the sigma algebras Σm are subsets of the Borel sets of the interval Γm,
i.e. Σm ⊆ Σ(Γm).

Remark 2.4. The random variables Ym will in general not be independent, unless for
Gaussian variables in a KL-expansion. One possible remedy has been proposed in
[2] by introducing auxiliary probability density functions ρ̃m with ‖ρm/ρ̃m‖L∞ < ∞
such that the random variables Ym are independent with respect to ρ̃ =

∏

m≥1 ρ̃m.

Due to the independency in Assumption 2.3 we can consider the Ym’s as dif-
ferent coordinates in probability space and hence parametrize Ω by the vector
y = (y1, . . . , yM ) ∈ Γ := Γ1 × · · ·× ΓM rather than (Y1(ω), . . . , YM (ω)).

We emphasize here that the parameter domains Γm may be bounded or un-
bounded. This includes in particular the case of Gaussian or exponential random
variables Ym. However, if we consider unbounded domains Γm, the growth at in-
finity has to be controlled. Following [2] we define, for a Banach space W(D) the
function space

C0
σ(Γ,W(D)) :=

{

v : Γ −→ W(D) : v cont. in y, sup
y∈Γ

‖σ(y)v(y)‖W(D) < ∞
}

,

(2.7)

where σ(y) =
∏M

m=1 σm(ym) ≤ 1 and

σm(ym) =

{

1 if Γm bounded
e−αm|ym| for some αm > 0 if Γm unbounded

(2.8)

The associated norm is then given by ‖v‖C0
σ

:= supy∈Γ ‖σ(y)v(y)‖W(D)

Assumption 2.5 (Growth at infinity). i) u ∈ C0
σ(Γ,W(D)), and

ii) the joint probability density ρ satisfies

ρ(y) ≤ Cρe
−

PM
m=1(δmym)2 ∀y ∈ Γ (2.9)

for a constant Cρ > 0 and δm strictly positive if Γm is unbounded and zero
otherwise.
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Finally we need to make some regularity assumption on the stochastic behavior
of the solution. To simplify the notation we denote by y∗

m the (M − 1)-dimensional
vector y∗

m = (y1, . . . , ym−1, ym+1, . . . , yM ) ∈ Γ∗
m :=

∏

j &=m Γj .

Assumption 2.6 (Stochastic regularity assumption). For each m ∈ {1, . . . , M}
there exists τm > 0 such that the solution u(ym, y∗

m,x) as a function of ym ∈ Γm

admits an analytic extension to the region of the complex plane

Σ(Γm, τm) = {z ∈ C : dist(z, Γm) ≤ τm}, (2.10)

To conclude this section, we will present one example where the above assump-
tions hold true. This example, in a simplified form, will serve as our model problem
throughout the rest of the paper.

Example We consider the following stochastic diffusion-reaction problem
{

−div(a(ω,x)∇u(ω,x)) + c(ω,x)u(ω,x) = f(ω,x) D,
u(ω,x)|x∈∂D = 0,

P−a.e. ω ∈ Ω (2.11)

where a and c are random fields denoting the diffusivity and reaction rate, respec-
tively and f is a stochastic source term.

This problem can be reformulated in variational form as: Find u ∈ L2
P (Ω,W(D))

s.t. ∀ v ∈ L2
P (Ω,W(D)) it holds

b(u, v) = l(v) (2.12)

with

b(u, v) = E

[
∫

D
a∇u∇v + cuv dx

]

l(v) = E

[
∫

D
fv dx

]

(2.13)

where we suppress the dependence of the coefficients and functions on (ω,x) ∈ Ω×D
for illustrative reasons.

The first Assumption 2.1 holds true for W(D) = H1
0 (D) if for the coefficients

a, c, f it holds

i) a ∈ L2(Ω × D) is positive and bounded away from zero almost surely, i.e.
there exist a∗ > 0 such that

P

{

ω ∈ Ω : a∗ ≤ ess inf
x∈D

a(ω,x)

}

= 1 (2.14)

ii) c ∈ L2(Ω × D) is positive, i.e.

P

{

ω ∈ Ω : 0 ≤ ess inf
x∈D

c(ω,x)

}

= 1 (2.15)

iii) f is square-integrable with respect to P , i.e.

E[‖f‖2
L2(D)] < ∞ (2.16)

Indeed, by introducing the Hilbert space

Ha,c := {v ∈ L2
P (Ω, H1

0 (D)) : E[

∫

D
a|∇v|2 + cv2 dx] < ∞} (2.17)

with the norm ‖v‖2
Ha,c

:= E[
∫

D a|∇v|2 +cv2 dx] it follows from an application of the
Lax-Milgram Lemma the existence and uniqueness of a solution u ∈ Ha,c to (2.12).
Precisely, consider the bilinear form b(u, v) given in (2.13). It follows

b(u, v) ≤ ‖u‖Ha,c‖v‖Ha,c and b(u, u) ≥ ‖u‖Ha,c (2.18)

5



i.e. b(·, ·) is continuous and coercive with continuity and coercivity constant equal
to one. It remains to show that l(·) (2.13) is continuous w.r.t. Ha,c:

l(v) = E

[
∫

D
f(ω,x)v(ω,x) dx

]

≤ E
[

‖f(ω, ·)‖L2(D)‖v(ω, ·)‖L2(D)

]

≤ CP√
a∗

E

[

‖f(ω, ·)‖L2(D)‖
√

a(ω, ·)∇v(ω, ·)‖L2(D)

]

≤ CP√
a∗

‖f‖L2
P (Ω,L2(D))‖v‖Ha,c

where CP denotes the Poincaré constant. Hence, by Lax-Milgram, the existence of
a unique solution u ∈ Ha,c to (2.12) is guaranteed P -almost surely. Furthermore,
since

‖u‖L2
P (Ω,H1

0 (D)) ≤
CP√
a∗

‖u‖Ha,c (2.19)

the space Ha,c is continuously embedded in L2
P (Ω, H1

0 (D)) and it follows the exis-
tence of a solution u ∈ L2

P (Ω, H1
0 (D)) to (2.12).

Remark 2.7. As pointed out in [2] it is possible to relax the condition (2.14) above
to a lower bound which is itself again a random variable, i.e. there exists a a∗(ω)
s.t.

P{ω ∈ Ω : 0 < a∗(ω) < ess inf
x∈D

a(ω,x)} = 1 (2.20)

This case is of particular interest since it covers the case of lognormal random
coefficients a (2.6).The well-posedness and hence the existence of a solution in Ha,c

can then be shown in essentially the same way as above, except that we need
stronger regularity assumptions on f :

l(v) = E

[
∫

D
f(ω,x)v(ω,x) dx

]

≤ E
[

‖f(ω, ·)‖L2(D)‖v(ω, ·)‖L2(D)

]

≤ CP E

[

‖f(ω, ·)‖L2(D)
√

a∗(ω)
‖
√

a(ω, ·)∇v(ω, ·)‖L2(D)

]

≤ CP ‖f‖1/2p

L2p
P (Γ,H1

0 (D))
‖1/

√
a∗‖1/2q

L2q
P (Γ)

‖v‖Ha,c

where we twice used Hölder in the last line and 1/p + 1/q = 1, p, q ≥ 1. Hence,
if 1/

√
a∗ ∈ L2q(Γ) for some q ≥ 1 then we must require f ∈ L2p(Γ, H1

0 (D)) for
p = (1 − 1/q)−1.

Assumption 2.2 is fulfilled if we consider e.g. a truncated Karhunen-Loève ex-
pansion of a (or ln a) as indicated above whereas the independency in Assumption
2.3 and the growth at infinity in Assumption 2.5 have either to be given or ensured
by introducing an auxiliary density, if possible, as indicated in Remark 2.4, see also
[2] for further details.

Finally, the analytic regularity of the solution u(y,x), as required in Assumption
2.6 is ensured by the following

Lemma 2.8. Assume that for every (ym, y∗
m) there exists γm < ∞ satisfying

∥

∥

∥

∥

∥

∂k
ym

a(y)

a(y)

∥

∥

∥

∥

∥

L∞(D)

≤ γk
mk!,

‖∂k
ym

c(y)‖L∞(D)

‖c(y)‖L∞(D)
≤ γk

mk!,
‖∂k

ym
f(y)‖L2(D)

1 + ‖f‖L2
≤ γk

mk!

(2.21)
Assume further there exists p, q ≥ 1 with 1/p + 1/q = 1 such that there holds
c ∈ C0

σ1/p(Γ, L∞(D)) and f ∈ C0
σ1/q (Γ, L2(D)). Then the solution u(ym, y∗

m, x) to
(2.11) as a function of ym u : Γm → C0

σ∗
m

(Γ∗
m, H1

0 (D)) admits an analytic extension

into the region Σ(Γm, τm) ⊂ C with 0 < τm < 1
2γm

, uniformly for all y∗
m ∈ Γ∗

m.
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We note here that this assertion is a slight generalization of Lemma 3.2 in [2]
where the case c ≡ 0 has been studied. The proof follows closely the one given there
and is omitted in this paper. Instead we refer to [3].

The conditions in (2.21) are satisfied if the coefficients can be represented by a
(truncated) KL expansion, see [2] Examples 3 & 4. In fact, it is shown there, that γm

can be chosen as γm ∼
√

λm which in turn implies that the sizes of the analyticity
regions are increasing if m → ∞.

3 Sparse composite collocation FEM

Stochastic collocation methods for sPDEs have first been proposed in [29, 2] by using
numerical quadrature for the approximate evaluation of the stochastic integrals. [29]
already proposed the usage of Smolyak grids to reduce the number of collocation
points. This idea was further developed and analyzed in [19] and [18]. The work
[5], contrary to the other works, follows a slightly different approach by using a
Hoeffding ANOVA [14] based construction of collocation points to approximate the
solution’s random behavior.

In this work we will follow the idea of Smolyak sparse grids in the stochastic
parameter space and, in addition, also propose a sparse composition of the levels of
spatial refinement and of the stages of the Smolyak cubature formula.

To simplify the presentation and discussion of the sparse composite collocation
method we restrict ourselves to the model problem

{

−div(a(ω,x)∇u(ω,x)) = f(x) D,
u(ω,x)|x∈∂D = 0,

P−a.e. ω ∈ Ω (3.1)

where the diffusion coefficient is represented by a (truncated) Karhunen-Loève ex-
pansion. Hence, we choose W(D) = H1

0 (D) as the Banach space of solutions. How-
ever, it is emphasized here that any elliptic problem (1.1) satisfying Assumptions
2.1 – 2.6 could, in principle, be considered instead of (3.1).

In the following subsections we will first discuss the sparse hierarchic semidis-
cretization in random parameter space Γ followed by the hierarchic wavelet dis-
cretization in D. Following the idea of sparse tensor products we then show by
numerical analysis how to combine the increment spaces of the two hierarchic (semi-
) discretizations in order to obtain a fully discrete sparse composite collocation
scheme.

3.1 Smolyak collocation algorithm

In this section we will construct a hierarchic sequence of collocation operators. Due
to the high dimensionality M of the random parameter space Γ, those collocation
operators are based on a Smolyak construction of collocation points as also done in
[18, 19, 29, 28, 10]. However, contrary to the other works, we will focus on Gaussian
quadrature rules as the underlying univariate numerical integration schemes since
their approximation properties allow us to avoid the introduction of a Lebesgue
constant in each subspace Γm, resulting in an overall constant which would depend
exponentially on M . Moreover, by renouncing nestedness, we gain the flexibility to
increase the number of collocation points in each direction linearly w.r.t. the level
of refinement instead of doubling it in each step.

3.1.1 Smolyak construction of collocation points

We choose on each level l1 ∈ N0 a discrete, finite set of collocation points Yl1 ⊂ Γ
and a set of multiindices Λl1 ⊂ NM such that the sequence is nested with increasing
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l1, i.e.
Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λl1 ⊂ Λl1+1 ⊂ · · ·NM . (3.2)

and such that the interpolation problem for the points Yl is well-posed in V Γ
l1

:=
span{yα : α ∈ Λl1}. Naturally, the V Γ

l1
are also nested and we define the interpo-

lation operators
IΓ

l1 : C0
σ(Γ, H1

0 ) −→ V Γ
l1 (3.3)

and the difference operators

∆Γ
0 := IΓ

0 ∆Γ
l1 := IΓ

l1 − IΓ
l1−1 (3.4)

We now solve the semidiscretized problem (3.33) for each point y ∈ Yl. The ran-
dom solution u ∈ L2

ρ(Γ)⊗V D
l is then recovered by interpolating over the collocated

solutions by means of (3.3).
One way to do so is by using a full tensor Lagrange interpolation operator: Given

a set of abscissae {ym,0, . . . , ym,µm} ⊂ Γm for each 1 ≤ m ≤ M , we denote by

X full
µ := {yk = (y1,k1 , . . . , yM,kM ) : 0 ≤ km ≤ µm} (3.5)

the tensorized grid of collocation points. The full tensor Lagrange interpolation
operator is then defined as

Ifull =
∑

yk∈X full
µ

u(yk,x)lk(y) (3.6)

where u(yk, ·) ∈ V D
l is the solution to (3.33) at the point yk and lk(y) the tensorized

Lagrange interpolation polynomial at the point yk. The application of this inter-
polation formula, however, requires

∏M
m=1 µm deterministic problems to be solved.

In cases where M is large, this can be very prohibitive (curse of dimension).
Hence, to keep the number of collocation points moderate, like in [19, 18, 29],

we use a Smolyak-type construction but based on Gauss quadrature points. For
any 1 ≤ m ≤ M , any real number γ and a level lm let {ym,0, . . . , ym,µm} ⊂ Γm be
the abscissae of the Gauss quadrature rule of order µm(γlm) with respect to the
probability density ρm, where

µm(γlm) =

{

2γlm3 Γm bounded
2(γlm)23 Γm unbounded

(3.7)

The one-dimensional interpolation operators I(m)
lm

(v) are then given by

I(m)
lm

(v) =

µm(γlm)
∑

km=0

v(ym,km)+km(ym) (3.8)

where +km denotes the Lagrange interpolation polynomial of degree µm(lm) in the
point ym,km defined by

+m,km(ym) ∈ Pµm(Γm), +m,km(ym,jm) = δkmjm , 0 ≤ km, jm ≤ µm. (3.9)

Remark 3.1. Standard probability density functions, such as Gaussian or uniform
ones, lead to well-known abscissae which are tabulated to full accuracy. For non-
standard densities we refer to [11], Theorem 3.1 where an algorithm for the deriva-
tion of associated Gauss nodes and weights is described.
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Figure 3.1: Number of collocations points in a full tensor approach (3.5) compared
to the number of collocation points in the Smolyak approach (3.11) for dimensions
M = 10, 20, 40

Next, we define the univariate differences

∆(m)
lm

:= I(m)
lm

− I(m)
lm−1, ∆(m)

0 = I(m)
0 (3.10)

Using the multiindex notation l = (l1, . . . , lM ) the (isotropic) M -dimensional Smol-
yak interpolation operator is then defined by

IΓ
L :=

∑

0≤|l|≤L

(∆(1)
l1

⊗ · · ·⊗ ∆(M)
lM

). (3.11)

Figure 3.1 illustrates the number of collocation points of the Smolyak approach
(3.11) compared to the number of collocation points in a full tensor approach (3.5).

3.1.2 Error analysis of the Smolyak collocation

For the error analysis of the Smolyak collocation algorithm described above, we
assume for now that for each point yk the associated elliptic problem (3.33) can be
solved exactly. The approximate solution of these problems and their interaction
with the Smolyak collocation method is subject of the subsequent sections.

We first provide a result on the approximation properties of the univariate in-
terpolation operators (3.8):

Proposition 3.2. If v solves (1.1) and satisfies the Assumptions 2.1–2.6 then the
interpolation error admits the following coordinate-wise bound:

‖v − I(m)
lm

(v)‖L2
ρm

(Γm,H1
0 (D)) ≤ C(rm)βm(lm)e−rmlm‖v‖C0

σm
(Σ(Γm,τ),L2

ρ∗(Γ∗
m,H1

0(D)))

(3.12)
where ‖v‖C0

σm
(Σ(Γm,τ),V ) = σ(Rez)‖v‖V denotes the complex extension of the norm

and

9



• if Γm is bounded



















βm ≡ 1,

rm = log

(

2τm
|Γm| +

√

1 +
(

2τm
|Γm|

)2
)

C(rm) = C1
1

erm−1

• if Γm is unbounded







βm = lm,
rm = τmδm

C(rm) = C1
(1+rm)

r2
m

where C1 is independent of m, lm, rm and with τm defined as in Lemma 2.8 and δm

given by Assumption 2.5.

We note here that a very similar result has already been proposed in [2] but the
present result provides sharper estimates on the constants C(rm). In particular we
see in the above proposition that in both cases the constants are decaying to zero
since the size of the analyticity regions rm is growing to infinity if m → ∞, see also
Lemma 2.8. The proof will be provided in Appendix A.

Following the lines of [26, 20] we will now estimate the interpolation error of the
Smolyak operator (3.11). First we note that

IΓ
L =

∑

0≤|l∗|≤L

∆(1)
l1

⊗ · · ·⊗ ∆(M−1)
lM−1

⊗
L−|l∗|
∑

lM=0

∆(M)
lM

=
∑

0≤|l∗|≤L

∆(1)
l1

⊗ · · ·⊗ ∆(M−1)
lM−1

⊗ I(M)
L−|l∗| (3.13)

where l∗ = (l1, . . . , lM−1). In the following denote by Id(m) the identity operator

on Γm and IdM =
∏M

m=1 Id(m). The interpolation error can be written as

IdM −IΓ
L = (IdM−1−IΓ∗

M
L )⊗Id(M) +

∑

0≤|l∗|≤L

∆(1)
l1

⊗ · · ·⊗∆(M−1)
lM−1

⊗(Id(M)−I(M)
L−|l∗|)

(3.14)
where Γ∗

M = Γ1 × . . . × ΓM−1. In the following, unless otherwise stated, denote by
‖ · ‖ the L2

ρ(Γ, H1
0 (D))-norm or its associated operator norm. From

‖∆(m)
lm

‖ ≤ ‖Id(m) − I(m)
lm

‖ + ‖Id(m) − I(m)
lm−1‖ ≤ 2Cmβm(γlm)e−rmγlm , (3.15)

where Cm = C(rm) as in Proposition 3.2,it follows together with (3.14)

‖IdM − IΓ
L‖ ≤ ‖IdM−1 − IΓ∗

M
L ‖ +

∑

0≤|l∗|≤L

‖∆(1)
l1

‖ · · · ‖∆(M−1)
lM−1

‖‖Id(M) − I(M)
L−|l∗|‖

≤ ‖IdM−1 − IΓ∗
M

L ‖

+
∑

0≤|l∗|≤L

M−1
∏

m=1

2Cmβm(γlm)e−rmlm · CMβM (γlM )e−rM γlM

= ‖IdM−1 − IΓ∗
M

L ‖ +
∑

0≤|l∗|≤L

M
∏

m=1

2Cmβm(γlm)e−rmγlm (3.16)

Setting rmin = min{r1, . . . , rM} we arrive at the following recursive formula

‖IdM − IΓ
L‖ ≤ ‖IdM−1 − IΓ∗

M
L ‖ + (

M
∏

m=1

2Cm)e−rminγL

(

M + L

M

)

(3.17)
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where the βm(γlm) have been absorbed in the exponent by possibly increasing the
constants Cm. We observe from Proposition 3.2 that Cm → 0 if m → ∞, hence
the product in (3.17) can be bounded from above by a generic constant C̄ which is
independent of M . Using (3.16) repeatedly we arrive at

‖IdM − IΓ
L‖ ≤ ‖Id1 − I1(L)‖ +

1

2

M
∑

m=2

C̄e−rminγL

(

m + L

m

)

≤ C̄e−rminγL

(

M + L

M

)

(3.18)

Next, we want to estimate the number of collocation points used. In order to do
this we distinguish the cases where the domains Γm are bounded and unbounded.
We first begin with the case where the random variables are bounded:

Lemma 3.3.

NΓ,b =
∑

|l|≤L

M
∏

m=1

(1 + γlm) =

(

γL + 2M

2M

)

(3.19)

Proof We first note that

NΓ,b =
∑

|l|≤γL+M

M
∏

m=1

lm (3.20)

Now define αk =
∑

|l|=k

∏M
m=1 lm and observe that

∞
∑

k=0

αkxk = (x + 2x2 + 3x3 + . . .)M (3.21)

The generating function of the series ak = k for k ≥ 1 is x
(1−x)2 , see [27], hence

∞
∑

k=0

αkxk =

(

x

(1 − x)2

)M

. (3.22)

This in turn means that αk is the (k − M)-th coefficient of the power series of
1

(1−x)2M , which, by [27], Section 2.5 is equal to
(k+M−1

2M−1

)

. Summing the αk’s there-
fore leads to

∑

|l|≤γL+M

M
∏

m=1

lm =
γL+M
∑

k=0

αk =

(

γL + 2M

2M

)

(3.23)

which completes the proof. !

For the unbounded case we have that

Lemma 3.4.

NΓ,u =
∑

|l|≤L

M
∏

m=1

(1 + (γlm)2) ≤ C
2M

√

π2M/23

(

γL + 3M + 1

3M + 1

)

(3.24)

Proof We proceed similarly to the bounded case and first note that

NΓ,u ≤
∑

|l|≤γL+M

M
∏

m=1

l2m

11



Defining αk =
∑

|l|=k

∏M
m=1 l2m we observe

∞
∑

k=0

αkxk = (x + 4x2 + 9x3 + . . .)M =

(

x(x + 1)

(1 − x)3

)M

where the last equation follows from the fact that the generating function of the
series ak = k2 is x(x+1)

(1−x)3 [27]. From the binomial theorem we have that

(x + 1)M =
∞
∑

k=0

(

M

k

)

xk and (1 − x)−3d =
∞
∑

k=0

(

k + 3M − 1

3M − 1

)

xk.

Hence,

∞
∑

k=0

αkxk = xM

( ∞
∑

k=0

(

M

k

)

xk

)( ∞
∑

k=0

(

k + 3M − 1

3M − 1

)

xk

)

= xM
∞
∑

k=0

(

k
∑

l=0

(

l + 3M − 1

3M − 1

)(

M

k − l

)

)

xk

and therefore αk =
∑k−M

l=0

(l+3M−1
3M−1

)( M
k−M−l

)

. To estimate αk we use the fact that
(M

k

)

attains its maximum value at k = 2M
2 3.

αk ≤
(

M

2M/23

) k−M
∑

l=0

(

l + 3M − 1

3M − 1

)

=

(

M

2M/23

)(

k + 2M

3M

)

Finally we use Stirling’s approximation and obtain

∑

|l|≤γL+M

M
∏

m=1

l2m =
γL+M
∑

k=0

αk ≤ C
2M

√

π2M/23

(

γL + 3M + 1

3M + 1

)

which proves (3.24). !

Inserting the estimates for NΓ,b and NΓ,u into (3.18) we obtain

Lemma 3.5. Let u be the solution to (3.1). Then the collocation error admits the
following bounds with respect to the level L and the number of collocation points:

‖u − IΓ
Lu‖L2

ρ(Γ,H1
0 (D)) ≤ Ce−rminγL

(

M + L

M

)

‖u‖C0
σ(Σ(Γ,τ),H1

0(D)) (3.25)

and

‖u − IΓ
Lu‖L2

ρ(Γ,H1
0 (D)) ≤ C

√

NΓ,b exp(−rmin(N1/(2M)
Γ,b − 1)

2M

1 + ln 2M
)‖u‖ (3.26)

in the case where the Γm’s are bounded or

‖u−IΓ
Lu‖L2

ρ(Γ,H1
0 (D)) ≤ C 3

√

NΓ,u exp(−rmin(
1
3
√

2
N1/(3M+1)

Γ,u −1)
3M + 1

1 + ln(3M + 1)
)‖u‖

(3.27)
in the unbounded case, where NΓ,b and NΓ,u, as in Lemma 3.3 and 3.4, refer to the
number of collocation points in each case and C > 0 is independent of M and NΓ,b

or NΓ,u, respectively.
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Proof From (3.19) and using the inequality between geometric and arithmetic
mean we have

NΓ,b ≤
(

γL + 2M

2M

)

=
(γL + 2M)(γL + 2M − 1) · · · (γL + 1)

(2M)!

= (1 +
γL

2M
)(1 +

γL

2M − 1
) · · · (1 +

γL

1
)

≤
(

2M + γL
∑2M

k=1 1/k

2M

)2M

≤
(

1 +
γL(1 + ln 2M)

2M

)2M

(3.28)

Hence,L ≥ (N1/2M
Γ,b −1) 2M

γ(1+ln 2M) from which (3.26) follows. The case of unbounded

variables is treated in exactly the same way, see [3] for further details. !

Remark 3.6. As it can be seen in Lemma 3.5 the convergence rates with respect
to the number of collocation points are exponential but depending on M . Since M
can possibly be very large in applications, it is of interest to examine this case in
some more detail. From (3.28) we have for large M

NΓ,b ≤ eγL(1+ln2M) (3.29)

which, inserted into (3.25) and noting that
(M+L

M

)

≤ eM+L, gives

‖u − IΓ
Lu‖L2

ρ(Γ,H1
0 (D)) ≤ CN−(rmin−1)/(1+ln 2M)

Γ,b ‖u‖C0
σ(Σ(Γ,τ),H1

0(D))

A similar result can be derived in the unbounded case, namely

‖u − IΓ
Lu‖L2

ρ(Γ,H1
0 (D)) ≤ CN−(rmin−1)/(1+ln(3M+1))

Γ,b ‖u‖C0
σ(Σ(Γ,τ),H1

0(D))

Hence, for M 4 1, the exponential convergence rates in Lemma 3.5 behave pre-
asymptotically, i.e. for small L, like algebraic ones.

3.2 Wavelet discretization in space

Next we discretize our model problem in space. The (parametric) variational for-
mulation of (3.1) is given by: Find u ∈ L2

ρ(Γ) ⊗ H1
0 (D) such that ∀ v ∈ H1

0 (D) it
holds

b(y; u, v) :=

∫

D
a(y,x)∇u(y,x)∇v(x) dx =

∫

D
f(x)v(x) dx (3.30)

where b(y; ·, ·) emphasizes the dependence of the bilinear form on y ∈ Γ. Let

V D
0 ⊂ V D

1 ⊂ ... ⊂ V D
l2 ⊂ V D

l2+1 ⊂ ... ⊂ H1
0 (D) (3.31)

be a dense, hierarchic sequence of finite dimensional subspaces given by e.g. a
piecewise linear finite element wavelet discretization on a nested sequence {Tl2}l2 of
triangulations of D as described below and define the detail spaces WD

l2
such that

WD
0 := V D

0 and V D
l2 = V D

l2−1 ⊕ WD
l2 for l2 ≥ 1 (3.32)

Hence, the FE-space V D
L admits a multilevel decomposition V D

L :=
⊕L

l=0 WD
l . The

semidiscrete problem on level L then reads: Find uL ∈ L2
ρ(Γ) ⊗ V D

L such that
∀ v ∈ V D

L it holds

b(y; uL, v) :=

∫

D
a(y,x)∇uL(y,x)∇v(x) dx =

∫

D
f(x)v(x) dx (3.33)
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Figure 3.2: The function θi
l2

on the reference element [−1, 1]d for d = 1 (left) and
d = 2 (right)

As a hierarchical basis for the spatial discretization we choose linear finite el-
ement wavelet bases. In the following we will briefly present a construction of
such bases and recapitulate basic approximation results. For a more detailed intro-
duction into wavelets we refer to [7, 8]. The construction presented here is based
on [17] which, in principle, allows us to construct wavelets on a regular simplicial
triangulation of D ⊂ Rd. Here, we will treat the case of d = 1 and d = 2 explicitly.

Let {Tl2}l2 be a nested sequence of regular simplicial triangulations of D and
denote by I(Tl2) the index set of vertices of the mesh Tl2 , denoted by V(Tl2), and
by Î(Tl2+1) the index set of vertices of the mesh Tl2+1 which do not belong to Tl2 .
We define

V D
l2 := S1(D, Tl2) =

{

u ∈ H1(D) : u|T ∈ P1(T ) for T ∈ Tl2

}

, (3.34)

i.e. the space of continuous piecewise linear functions on the triangulation Tl2 .
Clearly, the spaces V D

l2
are hierarchic in the sense of (3.31). Denote by φk

l2
(x),

k ∈ I(Tl2 ) the standard hat functions on the mesh Tl2 , i.e. the piecewise linear
polynomials with value 1 at the vertex k and zero at the other nodes. Now we
want to find a basis for the detail spaces WD

l2
where l2 = 0, 1, 2, . . .. On the level

l2 = 0 those are called scaling functions and are defined as the hat functions on
the coarsest mesh T0, i.e. ψ0k = φk

0 and ∇0 = I(T0). On higher levels l2 > 0 those
basis functions are called wavelets and their construction is based on the meshes Tl2

and Tl2−1 as presented in the following. First, we construct a family of functions
θi

l2
(x) ∈ S1(D, Tl2), i ∈ I(Tl2−1) satisfying (θi

l2
, φk

l2−1)L2(D) 6 δik. Such functions
are given in d = 1 by

θi
l2(v) =







3 v = vi ∈ V(Tl2−1)
− 1

2 v ∈ V(Tl2) is neighbor of vi

0 any other v ∈ V(Tl2)
(3.35)

and in d = 2 by

θi
l2(v) =







14 v = vi ∈ V(Tl2−1)
−1 v ∈ V(Tl2) is neighbor of vi

0 any other v ∈ V(Tl2)
(3.36)

See Figure 3.2 for an example of such a θi
l2

in one and two dimensions.

The ensemble of functions {θi
l2

: i ∈ I(Tl2−1)} ∪ {φi
l2

: i ∈ Î(Tl2)} forms a L2-
Riesz basis of V D

l2
satisfying (θi

l2
, φk

l2−1)L2(D) = 0 if i 8= k. The wavelets on level l2
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Figure 3.3: A piecewise linear finite element wavelet on a triangular mesh in 2-d

are then obtained by the formula

ψi
l2(x) = φi

l2(x) −
∑

k∈I(Tl2−1)

(φi
l2

, φk
l2−1)L2(D)

(θk
l2

, φk
l2−1)L2(D)

θk
l2(x), i ∈ Î(Tl2) (3.37)

An example of such a wavelet on a triangular mesh in D ⊂ R2 can be seen in Figure
3.2

The functions ψl2i, i ∈ ∇l2 := Î(Tl2) form a uniform L2-Riesz basis for WD
l2

,

see [17], Proposition 3.2.10. Scaling the wavelets with a factor 2−l2 i.e. defining
ψ̃l2i(x) = 2−l2ψl2i(x) then forms a Riesz basis for H1(D). In case of homogeneous
Dirichlet boundary conditions, the above construction can be modified as follows:
For vi ∈ V(Tl2), the corresponding φi

l2−1, φ
i
l2

and θi
l2

are excluded from the ensem-

bles and the resulting wavelets ψ̃l2j then form a uniform Riesz bases for H1
0 (D).

Denote the H1-projection PD
l2

: H1(D) −→ V D
l2

. For functions u ∈ H1+t(D)
t ∈ [0, 1] and l2 ≥ 0 the following approximation property is proved in [17], Lemma
2.3.1:

‖u − PD
l2 u‖H1(D) ! 2−l2t‖u‖H1+t(D), t ∈ [0, 1] (3.38)

Noting that ND
l2

:= dim(V D
l2

) 6 2l2d we then obtain the following convergence rates
with respect to the number of degrees of freedom:

‖u − PD
l2 u‖H1(D) ! (ND

l2 )−t/d‖u‖H1+t(D), t ∈ [0, 1]. (3.39)

3.3 Formulation of the sparse composite collocation method

Having specified the hierarchic sequence of interpolation operators {IΓ
l1
}l1≥0 (3.3)

and finite element spaces {V D
l2
}l2≥0 (3.31) we can describe the (full) tensor colloca-

tion approximation to the solution u of (3.30) as

uL := IΓ
L(PD

L u) =
∑

0≤l1,l2≤L

∆Γ
l1((P

D
l2 − PD

l2−1)u) (3.40)

Consequently, this approach uses a total number of Ntot(L) = ND(L)·NΓ(L) degrees
of freedom where ND(L) denotes the number of spatial basis functions and NΓ(L)
the number of collocation points in the random parameter space, each at level L.
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To reduce this number we will consider a sparse tensor approximation instead of
(3.40):

ûL :=
∑

0≤l1+l2≤L

∆Γ
l1((P

D
l2 − PD

l2−1)u) (3.41)

Under the assumption that the dimension of the detail spaces WD
l2

and the
number of collocation points do not grow faster than exponential with respect to
the level, we can prove the following estimate on the number of total degrees of
freedom

Lemma 3.7. Assume that the number of collocation points between each level l1
and the dimension of the detail space WD

l2
do not grow faster than exponential

with respect to the levels l1, l2, i.e. there exist two geometric sequences bl1
Γ and bl2

D,
l1, l2 = 1, 2, 3, ..., with bΓ > 1 and bD > 1, such that

(|Yl1 |− |Yl1−1|) ! bl1
Γ and dim(WD

l2 ) ! bl2
D

Then the sparse tensor approximation of the solution u to (3.30) by means of (3.41)
uses

Ntot ! Lθ max{bΓ, bD}L+1 (3.42)

degrees of freedom where θ = 1 if bΓ = bD and zero otherwise.

Proof A straightforward calculation, see also [4], Lemma 3.4. !

3.4 Analysis of the sparse composite collocation method

The main focus of this section aims at proving convergence rates for the sparse
tensor collocation method in both, the case of bounded and unbounded domains
Γm.

Proposition 3.8. Let u be the solution to (3.1) and denote by ûL its sparse tensor
approximation given by (3.41). In the case where the Γm are bounded we obtain the
convergence rates

‖u − ûL‖L2
ρ(Γ,H1

0 ) ≤ CN−βb
tot ‖u‖C0

σ(Σ(Γ,τ),H1+t∩H1
0 (D)) (3.43)

in terms of the total number of degrees of freedom Ntot where as in the unbounded
case we obtain

‖u − ûL‖L2
ρ(Γ,H1

0 ) ≤ CN−βu
tot ‖u‖C0

σ(Σ(Γ,τ),H1+t∩H1
0 (D)) (3.44)

with

βb(M) = min{ rmin − 1

1 + ln 2M
,
t ln 2

d
} βu(M) = min{ rmin − 1

(1 + ln(3M + 1)) + M
,
t ln 2

d
}

(3.45)

In other words, by the sparse composition of stochastic interpolation operators
and a multilevel basis in space we retrieve the smaller of the two convergence rates
provided by the spatial discretization (cf. (3.39)) and stochastic interpolation (cf.
Remark 3.6).

Remark 3.9 (Full tensor composition). The main motivation for the sparse tensor
composition (3.41) of stochastic interpolation operators and spatial Galerkin pro-
jectors lies in the reduction of degrees of freedom to O(Lθ max{NΓ(L), ND(L)}) as
shown in Lemma 3.7 opposed to O(NΩ(L) ·ND(L)) in the full composite approach
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(3.40). Using the approximation results (3.38) and (3.25) we can easily derive the
full composite convergence rates

‖u − IΓ
L(PD

L u)‖L2(Γ,H1
0 (D)) ≤ (NL)−β̄‖u‖C0

σ(Σ(Γ,τ),H1+t∩H1
0 (D)) (3.46)

with β̄ = (d/t + (1 + ln 2M)(rmin − 1))−1 in the case of bounded Γ and likewise in
the case of unbounded stochastic domains.

Proof First, we will estimate the approximation error in terms of the refinement
level L. To simplify the notation we will drop the subscript in the norms, hence
‖ · ‖ = ‖ · ‖L2(Γ,H1

0 ) unless otherwise indicated. Using (3.41) we obtain

‖u − ûL‖ ≤ ‖
L
∑

l1=0

∞
∑

l2=L−l1+1

∆l1(P
D
l2 − PD

l2−1)u‖

+‖
∞
∑

l1=L+1

∞
∑

l2=0

∆l1(P
D
l2 − PD

l2−1)u‖

= ‖
L
∑

l1=0

∆l1(Id
D − PD

L−l1)u‖ + ‖(IdΓ − IΓ
L)IdDu‖

≤
L
∑

l1=0

‖(IdΓ − IΓ
l1)(Id

D − PD
L−l1)u‖

+
L
∑

l1=0

‖(IdΓ − IΓ
l1−1)(Id

D − PD
L−l1)u‖ + ‖(IdΓ − IΓ

L)IdDu‖

!

(

L
∑

l1=0

C

(

M + l1
M

)

e−rminγl1e− ln 2t(L−l1)

+C

(

M + L

M

)

e−rminγL

)

‖u‖C0
σ(Σ(Γ,τ),H1+t∩H1

0 (D))

where we used the estimates (3.38) and (3.25) in the last line. Absorbing now the
binomial factor into the exponent by

(L+M
M

)

≤ eL+M and choosing γ = t ln 2
rmin−1 we

arrive at

‖u − ûL‖L2(Γ,H1(D)) ! Ce−t(ln 2)L‖u‖C0
σ(Σ(Γ,τ),H1+t∩H1

0 (D)) (3.47)

Next we estimate the total number of degrees of freedom. Again we treat the cases
of bounded and unbounded domains Γm separately. In the bounded case we have
from (3.29) that NΓ,b ≤ exp( t ln 2

rmin−1 (1 + ln 2M)L), which satisfies the assumptions
of Lemma 3.7 and we obtain

Ntot ≤ max{2d, 2t(1+ln 2M)/(rmin−1)}L (3.48)

Similarly, using (3.24), we get an estimate in the case of unbounded domains:

Ntot ≤ max{2d, 2t(1+ln(3M+1))+M/(rmin−1)}L (3.49)

The proof is completed by combining (3.48) and (3.49), respectively together
with (3.47). !

4 Implementation and Numerical examples

In the following we present the implementation of the different components of the
sparse composite collocation method and give numerical examples. The main com-
ponents of the sparse composite collocation method are
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• hierarchic wavelet discretization in space

• hierarchic sequence of Smolyak interpolation operators in random parameter
space

• sparse composition of wavelets and interpolation operators

In the following subsections we address each of the above points in some more
detail from a computational point of view. We emphasize that all computations
have been performed on a single processor AMD64 desktop and hence without any
parallelization involved. All examples are computed in a two-dimensional domain
D ⊂ R2.

4.1 Wavelet discretization

As described in Subsection 3.2 we perform a Galerkin discretization with piecewise
linear continuous wavelets in space by constructing the wavelets from hat basis
functions on repeatedly refined, and hence nested, meshes Tl2 . To build the linear
system arising from the wavelet discretization of the elliptic PDE under considera-
tion, there are two different strategies. The first and most obvious one is to rewrite
the assembly routines for the stiffness and mass matrices and the load vector. How-
ever, since usually efficient and fast assembly routines based on hat basis functions
are already present, we will follow a different approach incorporating these. Denote
by Φ the vector of hat functions φi

L on the finest level L and by Ψ the corresponding
vector of wavelets ψi

l2
, 0 ≤ l2 ≤ L, i ∈ ∇l2 . Furthermore let T be the transformation

matrix, such that
Ψ = TΦ

It is then well-known that the system Ax = l can equivalently be written in wavelet
basis as

TAT*x̂ = T l (4.1)

where x̂ denotes the vectors of wavelet coefficients. We note here that we never
compute the triple matrix product TAT*. Instead, since we are using a conjugate
gradient algorithm we compute two additional matrix-vector products in each CG-
step. We also note here, that the condition number of the system (4.1) is uniformly
bounded in L, see e.g. [7], meaning that the number of CG-steps does not increase
when the mesh is refined. This can clearly be seen in Figure 4.2 below.

We consider the following model problem

−div(ex1∇u(x1, x2)) = ex1π cos

(

3π

2
x2

)(

cos(πx1) −
13π

4
sin(πx1)

)

(4.2)

on D = [−1, 1]2. The solution to (4.2) is u(x1, x2) = sin(πx1) cos
(

3π
2 x2

)

. The
initial mesh T0 consists of 200 congruent triangular elements. Figure 4.1 shows the
solution obtained after refining the initial mesh twice, i.e. on T2.

Figure 4.2 shows the convergence rate of the wavelet discretization computed
up to level l = 6, in agreement with (3.39), as well as a comparison of the number
of CG-iterations used on each level by a hat function and wavelet discretization,
respectively.

4.2 Smolyak interpolation

This subsection is concerned with the Smolyak interpolation operator given in
(3.11). From an implementational point of view the following reformulation (see
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[26]) is more convenient:

IΓ
L =

∑

0≤|l|≤L

(−1)L−|l|
(

M − 1

L − |l|

)

(I(1)
l1

⊗ · · ·⊗ I(M)
lM

) (4.3)

Since the goal of our computations is the approximation of the mean value and
possibly higher order moments of the solution u we have to compute expected
values of the form

E
[

IΓ
Lu

]

=
∑

0≤|l|≤L(−1)L−|l|(M−1
L−|l|

)

E

[

I(1)
l1

⊗ · · ·⊗ I(M)
lM

u
]

E
[

IΓ
Lu2

]

=
∑

0≤|l|≤L(−1)L−|l|(M−1
L−|l|

)

E

[

I(1)
l1

⊗ · · ·⊗ I(M)
lM

u2
]

etc., where, according to (3.8)

E[I(m)
lm

u] =

µm(lm)
∑

km=0

u(ym,km)

∫

Γm

+km(ym)ρm(ym) dym =

µm(lm)
∑

km=0

u(ym,km)wkm

where wkm denotes the weights of the Gaussian quadrature formula of order µm(lm).
Motivated by the zero-dimensional problem, i.e. (3.1) without dependence on

the spatial variable x (see also [9, 5]),

a(y)u(y) = 1 (4.4)

with a = γ0 +
∑M

m=1 γmym and γm ∈ R, we consider the example of computing the
expectation E[u] of the solution to (4.4), i.e. the integral

I =

∫

Γ

ρ(y)dy

γ0 +
∑M

m=1 γmym

(4.5)

by a Smolyak cubature based on Legendre abscissae. Here, we choose M = 20
and for m ≥ 1 we set γm =

√
λm‖ϕm‖L∞(D) where (λm, ϕm) are the largest M

eigenpairs associated to the Gaussian 2-point covariance Ca(x,x′) = e−‖x−x′‖2
, see

(2.3). Furthermore we set Γm = [−1, 1] and ρ to be the product of the uniform
probability densities on Γm.

The expected rate of convergence, as shown Lemma 3.5 and Remark 3.6, is
strongly dependent on the smallest region of analyticity Σ(Γm, rm). Therefore, in
our case, raising the constant γ0 enlarges the domains of analyticity and should
provide better convergence rates. This can also be seen in Figure 4.3 where we
considered various choices of γ0 and where we can see a superalgebraic convergence
in all cases.

As a second example for the Smolyak procedure we have a look at the case
of Gaussian random variables, hence the Smolyak algorithm is based on the zeros
of Hermite polynomials while the order of the one-dimensional integration rules
is increased quadratically in each step, see (3.7). Motivated again by the zero-

dimensional problem (4.4) with the log-normal coefficient a = exp(
∑M

m=1 γmym)
we compute the integral

I =

∫

Γ

ρ(y)dy

e
PM

m=1 γmym
(4.6)

where Γ = (−∞,∞)M and ρ(y) denotes the tensorized Gaussian probability den-
sity function. Since the integrand is an entire function, we expect exponential
convergence which can also clearly be seen in Figure 4.4 for different choices of the
dimension M as indicated.
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4.3 Sparse composite collocation method

In this paragraph is subject to the implementational aspects of the sparse compo-
sition of the wavelet discretization and the Smolyak interpolation as described in
Section 3.3. Again, analogous to (4.3), we rewrite (3.41) into a more suitable form
for implementation as follows:

ûL =
∑

l∈N
M+1

0≤|l|≤L

(−1)L−|l|
(

M

L − |l|

)

(I(1)
l1

⊗ · · ·⊗ I(M)
lM

)(PD
lM+1

u) (4.7)

We consider the following example problem

{

−div(a(y,x)∇u(y,x)) = f(x) D,
u(ω,x)|x∈∂D = 0,

P−a.e. y ∈ Γ

where D = [−1, 1]2 and the ym are uniformly distributed on Γm = [−1, 1]. The
diffusion coefficient a is given as a truncated Karhunen-Loève expansion

a(y,x) = aM (y,x) = Ea(x) +
M
∑

m=0

√

λmϕm(x)ym

with Ea(x) = 8 + sin(π(x + y)) and (λm, ϕm) being the largest M computed eigen-
pairs of the eigenvalue problem (2.3) defined by the 2-point covariance Ca(x,x′) =
e−‖x−x′‖. Finally, we set the source term f(x) = 2ex+2y. Figure 4.5 shows the
obtained solution for M = 20 and on level L = 2 of the refinement.

In Figure 4.6 we compare the number of total degrees of freedom and the conver-
gence of the mean E[u] in the sparse composite collocation method (3.41) with the
expected respective results obtained in the full composite method (3.40) for various
choices of M as indicated.
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A Proof of Proposition 3.2

It has already been proven in [2] (cf. Lemma 4.3) that the L2
ρm

interpolation error
based on Gaussian abscissae can be bounded from above by a best-approximation
error, i.e.

Lemma A.1. For every function v ∈ C0
σm

(Γm,W(D)), the interpolation error
satisfies

‖v − I(m)
p (v)‖L2

ρm
(Γm,W(D)) ≤ C inf

w∈Pp(Γm)⊗W(D)
‖v − w‖C0

σm
(Γm,W(D)) (A.1)

where C > 0 is independent of p and I(m)
p is given by (3.8) based on the zeros of

orthogonal polynomials w.r.t. ρm.

It therefore remains to bound the best approximation error. To this end we
distinguish the cases where Γm is bounded or unbounded. For the bounded case we
refer to [2], Lemma 4.4

Lemma A.2. Let Γm = [−1, 1]. For every function v ∈ C0(Γm,W(D)) which
admits an analytic extension in the region Σ(Γm, τm) ⊂ C (2.10) for some τm > 0
it holds that

inf
w∈Pp(Γm)⊗W(D)

‖v − w‖C0(Γm,W(D)) ≤
2

erm − 1
e−prm max

zm∈Σ(Γm,τm)
‖v(z)‖W(D)

(A.2)

Proposition 3.2 therefore follows in the bounded case by combining Lemma A.1
and A.2 with p = 2γlm3.

In the unbounded case we will, as in [2] first refer a result from [13] but then pro-
ceed in a slightly different way to obtain the result stated in Proposition 3.2. Denote
by Hn(ym) the L2

g-normalized Hermite polynomial of order n, where g(ym) = e−y2
m :

Hn(ym) =
√

π
1
2 2nn!(−1)ney2

m
∂n

∂yn
m

e−y2
m

Furthermore we define by hn(ym) = e−y2
m/2Hn(ym) the Hermite functions. The

following Lemma from [13] (cf. Theorem 1) then provides us with a necessary
and sufficient condition for Fourier-Hermite series to converge in a complex domain
containing R.
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Lemma A.3 (Hille 1940). Let f : Σ(R, τm) → C be analytic. A necessary and
sufficient condition in order that the Fourier-Hermite series

∞
∑

k=0

fkhk(zm), fk =

∫

R

f(ym)hk(ym)dym

exists and converges to the sum f(zm) in Σ(R, τm) is that for every βm ∈ [0, τm)
there exists a finite constant C(βm) > 0 such that

|f(ym + iwm)| ≤ C(βm)e−|ym|
√

β2
m−w2

m , ym ∈ R, wm ∈ [−βm, +βm] (A.3)

Moreover, the following bound for the Fourier coefficients holds:

|fk| ≤ Ce−τm
√

2k+1 (A.4)

Recall the measure σm(ym) = e−α|ym| from (2.8) and furthermore define the

Gaussian measure Gm(ym) = e−(δmym)2/4 for δm as in Assumption 2.5. Note that
Lemma A.1 holds for both of them, see [2] for details. By a change of variables
tm = δmym/

√
2 we denote ṽ(tm) = v(ym(t)). Expanding ṽ in Hermite polynomials

we obtain

ṽ(tm) =
∞
∑

k=0

vkHk(tm), where vk ∈ W(D), vk =

∫

R

ṽ(tm)Hk(tm)e−t2m dtm

Next we define f(zm) = ṽ(zm)e−
z2

m
2 and observe that

fk =

∫

R

f(tm)hk(tm) dtm =

∫

R

ṽ(tm)Hk(tm)e−t2m dtm = vk (A.5)

f is clearly analytic in the strip Σ(R, τmδm√
2

) as it is a product of analytic functions.

Furthermore we have that

‖f(tm + iwm)‖W(D) = |e−
(tm+iwm)2

2 |‖ṽ(zm)‖W(D)

≤ e−
t2m−w2

m
2 e

√
2 α

δm
|tm|‖v‖C0

σm
(Σ(R,τm),W(D))

The function f thus satisfies the hypotheses of Lemma A.3 by setting

C(βm) = max
tm∈R

wm∈[−βm,βm]

exp

{

− t2m − w2
m

2
+
√

2
α

δm
|tm| + |tm|

√

β2
m − w2

m

}

.

Hence the Hermite series of ṽ is converging in Σm(R, τmδm√
2

) and the Fourier coeffi-

cients vk satisfy, due to (A.5) the bound

‖vk‖W(D) ≤ Ce−τm
√

2k+1 (A.6)

Therefore we can estimate the best approximation error in Lemma A.1 by

Ep(v) := inf
w∈Pp⊗W(D)

‖v − w‖C0
G(Γm,W(D)) ≤ max

tm∈R
‖

∞
∑

k=p+1

vkhk(tm)‖W(D)

Since |hk(tm)| < 1 for all tm ∈ R, k ∈ N0 and using (A.6) the truncated Hermite
series can be bounded by

Ep(v) ≤
∞
∑

k=p+1

‖vk‖W(D) ≤ C
∞
∑

k=p+1

e−
τmδm√

2

√
2k+1 ≤ C

∞
∑

k=p+1

e−τmδm

√
k
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It remains to bound the last series. To this end we use the integral criteria for series

and the formula
∫∞

p e−r
√

t dt =
2(1+r

√
p)

r2 e−r
√

p to obtain

Ep(v) ≤ C
1 + τmδm

√
p

(τmδm)2
e−τmδm

√
p

The claim now follows from (A) and Lemma A.1. !

References

[1] Robert J. Adler. The geometry of random fields. Wiley series in probability
and mathematical statistics. John Wiley, Chinchester, 1981.

[2] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for
elliptic partial differential equations with random input data. SIAM J. Num.
Anal., 45(3):1005–1034, 2007.

[3] M. Bieri. Sparse deterministic-stochastic discretizations for elliptic sPDEs.
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