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Convergence Analysis of Finite Element Methods for

H(curl; Ω)-elliptic Interface Problems

Ralf Hiptmair∗ Jingzhi Li† Jun Zou‡
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Abstract

In this article we analyse a finite element method for solvingH(curl; Ω)-elliptic interface prob-
lems in general three-dimensional polyhedral domains with smooth material interfaces. The contin-

uous problems are discretized by means of the first family of lowest order Nédélec H(curl; Ω)-
conforming finite elements on a family of tetrahedral meshes which resolve the smooth interface

in the sense of sufficient approximation in terms of a parameter δ that quantifies the mismatch be-
tween the smooth interface and the triangulation. Optimal error estimates in the H(curl; Ω)-norm
are obtained for the first time. The analysis is based on a so-called δ-strip argument, a new extension
theorem forH1(curl)-functions across smooth interfaces, a novel non-standard interface-aware in-
terpolation operator, and a perturbation argument for degrees of freedom forH(curl; Ω)-conforming
finite elements. Numerical tests are presented to verify the theoretical predictions and confirm the op-

timal order convergence of the numerical solution.

Key words. H(curl; Ω)-elliptic interface problems, finite element methods, Nédélec’s edge el-
ements, convergence analysis.

AMS subject classification 2000. 65N12, 65N30, 35Q60

1 Introduction

Given a bounded polyhedral domain Ω ⊂ R3 with a Lipschitz boundary, we assume that the domain

Ω consists of two subdomains Ω1 and Ω2, where Ω1 ⊂⊂ Ω, Ω2 := Ω \ Ω1. The internal interface

Γ := ∂Ω1 is to be sufficiently smooth, namely, at least C2-smooth (see Figure 1 for an illustration of

the geometric setting). We are concerned with solving theH(curl; Ω)-elliptic interface problem

curlχ curl u + βu = f in Ω, (1.1)

with Dirichlet boundary condition

n× u = 0 on ∂Ω, (1.2)

and jump conditions on the interface

[n× u] = 0 on Γ, (1.3)

[χn× curl u] = 0 on Γ , (1.4)

∗SAM, ETH, Zürich, CH-8092 Zürich, Switzerland (hiptmair@sam.math.ethz.ch).
†Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (jzli@math.cuhk.edu.hk).
‡Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. The work of this author

was substantially supported by Hong Kong RGC grants (Project 404407 and 404606). (zou@math.cuhk.edu.hk).
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where f ∈ L
2(Ω), β is a strictly positive constant, and χ is a scalar function of the spatial variable

x ∈ Ω and there are two constants χ, χ with 0 < χ ≤ χ such that χ ≤ χ ≤ χ a.e. in Ω. Further, n
stands for a unit normal vector to the boundary ∂Ω1 pointing intoΩ2; and we denote by [v] := v1−v2

the jump of a vector-valued quantity v across the interface Γ (or by [v] := v1 − v2 the jump of a

scalar v). For ease of exposition, we assume that the coefficient function χ is piecewise constant, i.e.

χ(x) =

{
χ1, x ∈ Ω1;

χ2, x ∈ Ω2,

where χi (i = 1, 2) are positive constants. The more general case of piecewise smooth coefficient
can be treated similarly with no essential difficulty by using techniques like averaging in an element.

Ω

Ω1Ω2

n

Γ

Figure 1: An illustrative sketch of the setting of the problem.

H(curl; Ω)-elliptic interface problems like (1.1)–(1.4) have to be solved at each time step for
the eddy current model, which typically arises from Maxwell’s equations as a magneto-quasistatic

approximation by dropping the displacement current (see, e.g., [2, 5, 14]), and is frequently used

in low frequency, high-conductivity applications like electric machines. In this setting χ represents
the magnetic susceptibility, whereas β is related to the conductivity. The homogeneous Dirichlet

boundary condition (1.2) model perfectly conducting walls.

Due to the practical relevance of interface problems in many engineering and industrial appli-

cations, numerical solution methods for interface problems have been investigated widely. One may

refer to a recent monograph [23] and the references therein for a history of the development on

the topic. Numerous variants of finite element methods (FEMs) for classical elliptic interface prob-

lems in H1(Ω) have been extensively studied in the past few decades. Interested readers may refer
to [3, 7, 9, 11, 17, 21, 22,28].

Nevertheless, to the best knowledge of the authors, there seems to exist no corresponding

work on the convergence analysis of H(curl; Ω)-elliptic interface problems discretized by means
of interface-aligned edge elements. These H(curl; Ω)-conforming finite elements are the natural
choice for (1.1)–(1.4) and well capture the structure ofH(curl; Ω)-elliptic boundary value problem,
see [18]. Yet, most existing analytic tools forH1(Ω)-elliptic interface problems based on Lagrangian
nodal elements do not fit edge elements. Hence it is a non-trivial task to adapt some of these tech-

niques and tools for the convergence analysis to theH(curl; Ω)-setting.
The main contribution of the current work is to derive optimal order convergence in

the H(curl; Ω)-norm for H(curl; Ω)-elliptic interface problems using lowest order Nédélec
H(curl; Ω)-conforming finite elements. To that end, some novel analytical tools and techniques
have been developed, including a non-standard interface-aware finite element interpolant which will

be shown to be a quasi-optimal projection in the sense of the H(curl; Ω) norm, a δ-strip argument
for quantifying the relation of error estimate near the interface in terms of the mismatch parameter

δ, a new extension theorem forH1(curl; Ωi) functions across smooth interfaces for i = 1, 2, which
bridges the gap between standard and non-standard interpolation and thus is crucial for the argument

of convergence, and a perturbation argument for the degrees of freedom forH(curl; Ω)-conforming
finite elements.
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The remainder of the paper is organized as follows: In Section 2, we first introduce some nec-

essary notations and assumptions to be used later, then derive the variational formulation for the

H(curl; Ω)-elliptic interface problem, and present the finite element approximation using the low-
est order Nédélec’s H(curl; Ω)-conforming finite element spaces. In Section 3 we prepare some
important theoretical results, including a δ-strip argument for error estimation near the interface and
the construction of a new extension operator forH1(curl; Ωi) functions across smooth interfaces for
i = 1, 2. In Section 4, we prove the optimal order convergence in the sense ofH(curl; Ω)-norm for
H(curl; Ω)-elliptic interface problems. In Section 5, numerical experiments are presented to justify
the predictions of the convergence theory. Conclusions and future work are addressed in Section 6.

2 Finite element approximation

In the sequel, we adopt the convention that roman letters denote scalar functions, and their associated

spaces etc., while bold letters represent vector-valued functions, and their associated spaces etc. For

the convenience of presentation, we first introduce the following function spaces that will be used

throughout the paper:

H(curl; Ω) =
{

v ∈ L
2(Ω) | curl v ∈ L

2(Ω)
}

,

H
1(curl; Ω) =

{
v ∈ H

1(Ω) | curl v ∈ H
1(Ω)

}
,

H0(curl; Ω) = { v ∈ H(curl; Ω) | n × v = 0 on ∂Ω } .

The Hilbert spaces H(curl; Ω) and H
1(curl; Ω) are equipped with the canonical inner products

and the associated norms. For the properties of these function spaces used in this paper we refer

to [16, Chap. 1] or [25]. Similar notations will be used for Ω1 and Ω2, respectively.

For a scalar function u ∈ L2(Ω)we denote by ui its restriction toΩi, i.e., ui := u|Ωi , for i = 1, 2.
While for a vector-valued function u = (u1, u2, u3)T ∈ L

2(Ω) we denote by ui = (u1
i , u

2
i , u

3
i )

T its

restriction to Ωi, i.e., ui := u|Ωi , for i = 1, 2, where (·)T denotes the transpose operator.

2.1 Weak formulation

The weak formulation of (1.1)–(1.4) is straightforward and reads as follows:

Problem (P) Seek u ∈ H0(curl; Ω) such that

a(u,v) =

∫

Ω
f · v dx ∀ v ∈ H0(curl; Ω) , (2.1)

with the bilinear form defined by

a(u,v) :=
2∑

i=1

∫

Ωi

(χi curl ui · curl vi + βui · vi) dx . (2.2)

By the assumptions on χ and β in Sectioin 1, the bilinear forms a(·, ·) in (2.2) agrees with the
H(curl; Ω)-inner product of the Hilbert space H0(curl; Ω) up to the weights χi and β, and the
associated energy norm ‖u‖a = a(u,u)1/2 is equivalent to the H(curl; Ω)-norm in the following
sense

c ‖u‖
H(curl;Ω) ≤ ‖u‖a ≤ C ‖u‖

H(curl;Ω) , (2.3)

where c = min(χ1, χ2, β) and C = max(χ1, χ2, β). This ensures the existence and uniqueness of
the solution of (2.1) by the Lax-Milgram Lemma [12, Theorem 1.1.3].

As suggested by [13], we make the reasonable assumption that the solution of (2.1) belongs to

H0(curl; Ω)∩H
1(curl; Ω1)∩H

1(curl; Ω2). Theoretical results for more general setting, namely
H0(curl; Ω)∩H

s(curl; Ω1)∩H
s(curl; Ω2) for 0 ≤ s ≤ 1, will also be investigated at the end of

Section 4. They require suitable fractional Sobolev spaces defined by the method of real interpolation.

Interested readers may refer to a separate work [19] for more details.
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2.2 Triangulation

Let the polyhedral domain Ω ∈ R3 be equipped with a family of oriented unstructured tetrahedral

meshes (Th)h in the sense of [18, Def. 3], where h stands for the meshsize. There are no nestedness
requirement for the family of triangulations, which concerns a practical issue to be addressed in

Section 5. We denote by Fh, Eh and Nh the respective sets of faces, edges and nodes related to

the triangulation Th. The quality of Th can be gauged by means of its meshsize h, shape regularity
measure ρ(Th)and quasi-uniformity measure γ(Th) [10, Sect. 3] as follows

ρ(Th) := max
K∈Th

hK

rK
, h := max

K∈Th

hK , γ(Th) := max
K∈Th

h

hK
,

where

hK := max{|x − y| : x,y ∈ K} ,

rK := max{r > 0 : ∃x ∈ K; |x − y| < r ⇒ y ∈ K} .

Afterward, we will frequently denote by c and C generic positive constants which may depend on

the domain Ω, the coefficients χi’s, β and the shape-regularity measure ρ(Th), but must not depend
on the mesh size h and the related functions.

In the rest of this subsection, let us explain our assumptions on the meshes in turns. First of all, our

finite element discretization scheme relies heavily on the concept of interface-aligned triangulation,

which can be understood as follows.

Assumption 2.1. The triangulation Th is interface-aligned if for every K ∈ Th all its four vertices

are either in Ω1 or in Ω2, and this element K is assumed to intersect with the interface Γ in such a

way that at most three of its vertices are located on the interface Γ while all remaining vertices are

either in Ω1 or in Ω2.

From now on, a vertex in Nh located on the interface is called an interface vertex, an edge in Eh

with two end nodes on the interface an interface edge. Let us comment on Assumption 2.1 before

we proceed. To meet the requirement of Assumption 2.1, the triangulation Th should not be too

coarse with respect to the interface, i.e., it is not allowed to let all the four vertices of an element

K ∈ Th located on the interface Γ. This might be the case for a region with large curvature on the
interface. Nevertheless, we can always refine the mesh until all the elements in the mesh satisfies

Assumption 2.1 owing to the smoothness of the interface.

When an element K satisfies K ∩ Γ += ∅, it is called an interface element, otherwise a non-
interface element. The set of all interface elements is denoted by T∗ := { K ∈ Th |K ∩ Γ += ∅ }
and T i

∗ := { K ∈ T∗ | all nodes ofK are in Ωi } represents the set of all interface elements of Ωi,

for i = 1, 2. For some small δ > 0, we define the δ-strip regions around the interface in Ω and Ωi,

i = 1, 2, respectively, by

Sδ := { x ∈ Ω | dist(x, Γ) < δ }, Si
δ := { x ∈ Ωi | dist(x, Γ) < δ }, i = 1, 2.

It is obvious that Sδ = S1
δ ∪ S2

δ and these δ-strip regions will be used to bound the error near the
interface, which cannot be captured by standard interpolation error estimates.

Of course, the smooth interface Γ can only be approximately resolved by tetrahedral meshes. We
quantify the quality of the approximation of the smooth interface Γ by the triangulation Th in terms

of a parameter δ through the following definition.

Definition 2.2. The triangulation Th is said to resolve the interface Γ up to the error δ if it can be
decomposed as Th = T 1 ∪ T 2 ∪ T 1

∗ ∪ T 2
∗ , where

T i = { K ∈ Th ; K ⊂ Ωi \ Sδ } ,

andK ∈ T i
∗ if

max{ dist(x, Γ ∩ K) ; x ∈ K ∩ Ωi′ } ≤ δ ,

for i = 1, 2, and we define its dual i′ as follows: i′ = 1 if i = 2 and i′ = 2 if i = 1.
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Ω

Ω1Ω2

n

Γ
K1

K2

K3

K4

Figure 2: Sδ: the region of width 2δ between the two blue closed dashed lines
around the interface Γ in red. Interface elements: K3 ∈ T 1

∗ , K4 ∈ T 2
∗ . Non-

interface elements: K1 ∈ T 1,K2 ∈ T 2.

We may refer to Figure 2 for a 2D illustration of Definition 2.2. Note that although we assume that

all vertices of an elementK must belong to either subdomainΩ1 orΩ2. It is possible that the interface

may cut some elements into two parts lying in two different subdomains, see, for instance, triangle

K4 in Figure 2. By Definition 2.2 we easily see that any interface elementK can be embedded in the

union of the interface strip Sδ and one of the subdomains Ω1 and Ω2.

For a smooth interface Γ approximated by a union of triangular faces of the triangulation Th, we

may further quantify the parameter δ in terms of the meshsize h as given by the next assumption.

Assumption 2.3. The interface Γ is at least C2-smooth. For the interface-aligned meshes, there

exists some δ of order h2 such thatK ∩Ω2 ⊂ S2
δ for all elementsK ∈ T 1

∗ , andK ∩Ω1 ⊂ S1
δ for all

elements K ∈ T 2
∗ .

A detailed proof of Assumption 2.3 of δ-approximation property for the interface-aligned trian-
gulation in two dimensions can be found in [11] and the same idea can be extended to 3D with no

essential changes.

For the subsequent error estimate, we have to resort to an important auxiliary concept for the

definition of the perturbed interpolation operator.

Definition 2.4 (Interface twin edge). For any interface edge e ∈ Eh, there exist two interface el-

ements K1 and K2, with non-interface vertices p1 and p2, respectively, which share the interface

edge e and another interface node q, such that there is a unique curve ẽ which is the intersection by
the interface and two triangular faces determined by p1 with e, and p2 with e, respectively. We call
ẽ the interface twin edge associated with the interface edge e (see Figure 3).

Basically, the interface edge e is a straight segment, and the interface twin edge ẽ is a piecewise
smooth curve as represented by the alternating red and blue smooth curves which shares two end

nodes and possibly some other points with the interface edge e. (see Figure 3).

Remark 2.5. Observe that face areas bounded by the interface edge e and its twin one ẽ are still
containedwithin the δ-region. Specifically, let us denote bySe,ee the piecewise planar surface bounded

by the curves e and ẽ as shown in Figure 3. It is readily seen by Assumption 2.3 that

Se,ee ⊂ Sδ. (2.4)

In the subsequent lemmas, theorems, and proofs, etc., two additional technical assumptions are

made. First, the triangulation Th is assumed to be quasi-uniform in the sense of [12], namely, γ(Th)
is bounded from above by some constant. It is obvious that the bound for γ(Th) implies a bound
of ρ(Th), which imposes a limitation on the number of tetrahedra sharing a vertex, an edge, and a
face [12]. Second, the triangulation Th is assumed to be sufficiently fine to allow the existence of

interface twin edges. For some interface with bizarre geometry the interface twin edges might not be

5



K1

K2

e

ẽ

q

p1

p2

Interface

Figure 3: Two typical interface elements K1 and K2 intersect with the interface Γ.
Interface edges are plotted by black straight lines on the interface. Interface twin

edges are visualized as the piecewise smooth curves composed of blue and read

curved segments.

well defined for certain coarse meshes. Nevertheless, the smoothness of the interface makes it look

flat from a local point of view. Thus we can always refine the mesh until a well-defined interface twin

edge is obtained.

2.3 Finite element discretization

A suitable trial space Eh ⊂ H0(curl; Ω) for the Galerkin discretization of (2.1) is supplied by the
lowest orderH(curl; Ω)-conforming edge elements of the first family due to Nédélec [18, 26], that
is,

Eh :=
{
vh ∈ H0(curl; Ω) | vh|K(x) = aK + bK × x, aK ,bK ∈ R3,x ∈ K ∀K ∈ Th

}
.

Writing Êh for the set of all interior edges of Th, the degrees of freedom of Eh are given by the path

integrals

vh .→
∫

e
vh · d's , e ∈ Êh .

It is well established that there exists a well-defined global finite element interpolation operator Ih :
H

1(curl; Ω) .→ Eh [25, Thm. 5.41, Sect. 5.4] which has the following approximation property.

Lemma 2.6. Let (Th)h be a family of quasi-uniform, oriented unstructured tetrahedral meshes on

Ω. Then the interpolant Ihu possesses the optimal approximation property:

‖u− Ihu‖H(curl;Ω) ≤ Ch‖u‖H1(curl;Ω) ∀ u ∈ H
1(curl; Ω) . (2.5)

Moreover, we recall that edge elements are an affine equivalent family of finite elements with

respect to the pullback transformation, see [18, 25],

v̂(x̂) := B
Tv(x) , x = Bx̂ + t , B ∈ R3,3, t ∈ R3 .

On a tetrahedronK with barycentric coordinates λ1, . . . , λ4, the local shape functions of Eh are

given by (see [18, Sect. 3.2])

λi gradλj − λj gradλi , 1 ≤ i < j ≤ 4 .

They can be assembled into a basis {be, e ∈ Êh} of Eh.

With the finite element function spaces presented above, the finite element approximation of (2.1)

can be stated as follows:
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Problem (Ph) Seek uh ∈ Eh such that

a(uh,vh) =

∫

Ω
f · vh dx ∀ vh ∈ Eh . (2.6)

The existence and uniqueness of the solution of (2.6) follows from the Lax-Milgram Lemma [12,

Theorem 1.1.3], similar to those of the continuous problem (P).

The practical evaluation of the stiffness matrix associated with the bilinear form a(·, ·) in (2.6)
can be very complicated on an interface element when it is cut through by the interface, especially in

three dimensions. A much more convenient formulation is obtained by replacing the original bilinear

form (2.2) with an approximate bilinear form ah(·, ·):

ah(u,v) =
∑

K∈T

∫

K
(χK curl u · curl v + βu · v) dx , (2.7)

where the coefficients χK are elementwise constant. In our present setting of piecewise constant

coefficient χ, for everyK ∈ T , χK is taken to be χi ifK ∈ T i or T i
∗ when i ∈ {1, 2}.

With the modified bilinear form in (2.7), we can now define a more practical finite element

method for the variational problem (P ).
Problem (P̃h) Find uh ∈ Eh such that

ah(uh,vh) =

∫

Ω
f · vh dx ∀vh ∈ Eh. (2.8)

It can be immediately seen that the bilinear form ah(·, ·) still preserves coercivity and continuity,
and thus the well-posedness of Problem (P̃h) is assured. Moreover, the two bilinear forms ah and a
are related to each other by

a(u,v) = ah(u,v) + a∆(u,v), (2.9)

where the bilinear form a∆(·, ·) satisfies

|a∆(u,v)| ≤ C‖u‖H(curl;Sδ)‖v‖H(curl;Sδ) (2.10)

with the constant C depending only on the coefficients χi’s and β.

2.4 Interface-aware interpolation operator

It is worth remarking that there are no ambiguities of the interpolation operator Ih when applied for

functions inH0(curl; Ω)∩H
1(curl; Ω1)∩H

1(curl; Ω2), but the corresponding interpolant is not
a good candidate for investigating best approximation estimates. Instead we shall define a problem-

specific interface-aware interpolation operator, which can be viewed as a perturbed version of Ih. The

crux here is to define a perturbed degree of freedom for each interface edge of an interface element

through a surrogate degree of freedom defined along the interface twin edge. To be more precise, we

elucidate the idea in the following definition.

Definition 2.7 (Interface-aware interpolation operators). Let Th be an oriented unstructured tetra-

hedral triangulation satisfying Assumptions 2.1 and 2.3 with mesh size h, and Eh the lowest order

Nédélec H(curl; Ω)-conforming edge element spaces of the first family on Th.

For a function u ∈ H0(curl; Ω) ∩ H
1(curl; Ω1) ∩ H

1(curl; Ω2), we define a perturbed Eh

Interface-aware interpolation operator

Ĩh : H0(curl; Ω) ∩ H
1(curl; Ω1) ∩ H

1(curl; Ω2) .→ Eh

and its interpolant Ĩhu as follows:

1. For any non-interface edge e ∈ Êh, we set the degree of freedom associated with the basis

function be along the edge e to be
∫
e Ĩhu · d's :=

∫
e u · d's .

2. For any interface edge e ∈ Êh with the corresponding interface twin edge ẽ, we set the degree
of freedom associated with the basis function be along the edge e to be

∫
e Ĩhu ·d's :=

∫
ee u ·d's .

We remark that the interface-aware interpolation operator Ĩh is introduced only for the subsequent

error estimates, and it is not needed in the numerical implementation of the finite element method

(P̃h).
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3 Theoretical tools

In this section, we supply some technical results which are indispensable tools for the convergence

analysis of finite element methods forH(curl; Ω)-elliptic interface problems.

3.1 δ-strip argument

We first present a δ-strip argument which is used for the error estimate in the region near the interface
and first appeared in [22, Lemma 3.4].

Lemma 3.1. Let i ∈ {1, 2}. Then it holds for any zi ∈ H1(Ωi) that

‖zi‖L2(Si
δ
) ≤ C

√
δ‖zi‖H1(Ωi),

provided that δ is sufficiently small. Here the constantC depends only on the curvature of the smooth

interface and the domain Ω.

There is a straightforward corollary to Lemma 3.1 which can be viewed as its vectorized version

inH
1(curl) spaces by simply using the Cauchy-Schwarz inequality.

Corollary 3.2. Let i ∈ {1, 2}. Then it holds for any zi ∈ H
1(curl; Ωi) that

‖zi‖H(curl;Si
δ) ≤ C

√
δ‖zi‖H1(curl;Ωi)

provided that δ is sufficiently small. The constant C depends only on the curvature of the smooth

interface and the domain Ω.

3.2 A new extension theorem

Motivated by the construction of extension operators for functions in Sobolev spaces Hk(Ω) [1,
15], in this subsection we propose a new extension for functions in the space H

1(curl). This new
extension will play a crucial role in the subsequent error estimate on interface elements.

The following extension theorem can be found in [15, Theorem 1, Sec. 5.4].

Theorem 3.3 (H2-extension theorem). Assuming that U is a simply connected bounded domain in

R3 with C2-smooth boundary ∂U . Choose a bounded open set V such that U ⊂⊂ V . Then there
exists a bounded linear extension operator

E : H2(U) → H2(R3)

such that for any scalar function u ∈ H2(U):

1. Eu = u a.e. in U .

2. Eu has support within V .

3. ‖Eu‖H2(R3) ≤ C‖u‖H2(U) with the constant C depending only on U and V .

Comparedwith the extension of scalar functions, vector fields must be extended in a more delicate

way to conserve their properties. Consider a vector field u ∈ H
1(curl; U). We wish to extend u to a

global ũ ∈ H
1(curl; R3). Since for a scalar function p ∈ H2(U) we have grad p ∈ H

1(curl; U),
it looks promising to define anH

1(curl)-extension operatorEcurl based on the commuting diagram

property [18]:

Ecurl(grad p) = grad(Ep). (3.1)

It is obvious that the operator Ecurl defined in the form (3.1) preserves the curl-free property of a
grad field in U . While for general vector fields, we can exploit the structure of (3.1) to construct a
universal extension operator Ecurl taking the cue from (3.1).

With the motivation above, now we can establish the H
1(curl)-extension theorem across the

C2-smooth boundary.
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Theorem 3.4. Assuming that U is a connected bounded domain in R3 with C2-smooth boundary

∂U . Choose a bounded open set V such that U ⊂⊂ V . Then there exists a bounded linear extension
operator:

Ecurl : H
1(curl; U) → H

1(curl; R3), (3.2)

such that for each u ∈ H
1(curl; U):

1. Ecurlu = u a.e. in U .

2. ‖Ecurlu‖H1(curl;R3) ≤ C ‖u‖
H1(curl;U), with the constant C depending only on U and V .

Proof. We first construct a special extension from within a half ball. For a fixed x0 ∈ ∂U , we first
suppose that ∂U is flat near x0 which is lying in the plane {x ∈ R3 | x3 = 0}. Let us assume that
there exists an open ball B = {x ∈ R3; |x − x0| < r} with center x0 and radius r > 0 such that

{
B+ := B ∩ {x3 ≥ 0} ⊂ U,
B− := B ∩ {x3 < 0} ⊂ Ω \ U.

Suppose p ∈ C∞(U). A second-order reflection of p fromB+ toB− can be obtained as follows:

p̃(x) :=






p(x), if x ∈ B+;
∑3

j=1
λjp(x1, x2,−

x3

j
), if x ∈ B−,

where (λ1, λ2, λ3) = (6,−32, 27) is the unique solution of the 3 × 3 system of linear equations

3∑

j=1

(−1

j
)kλj = 1, k = 0, 1, 2 . (3.3)

With this special choice of λ’s, it is straightforward to check that p̃ ∈ C2(B).
Now we define a reflection of grad p from B+ to B− based on (3.1), that is,

g̃rad p :=

{
grad p, if x ∈ B+;

grad p̃, if x ∈ B−,
(3.4)

or written in the vector form,

g̃rad p(x) =









px1

px2

px3



 , if x ∈ B+;





∑3

j=1
λjpx1

(x1, x2,−
x3

j
)

∑3

j=1
λjpx2

(x1, x2,−
x3

j
)

∑3

j=1
−λj

j
px3

(x1, x2,−
x3

j
)




, if x ∈ B−.

(3.5)

Comparing the components of g̃rad p in (3.5) in the B+ and B−, we can construct a tentative

extension formula for a general vector field w(x) = (w1(x), w2(x), w3(x))T ∈ C
∞(B+) in the

following form,

w̃(x) =




w̃1(x)

w̃2(x)

w̃3(x)



 :=






w(x), if x ∈ B+;



∑3

j=1
λjw

1(x1, x2,−
x3

j
)

∑3

j=1
λjw

2(x1, x2,−
x3

j
)

∑3

j=1
−λj

j
w3(x1, x2,−

x3

j
)




, if x ∈ B−,

(3.6)

9



where (λ1, λ2, λ3) are as above. We claim w̃ ∈ C
1(B) and, thus, curl w̃ ∈ C

0(B). A detailed
computation confirms this by observing the relations (3.3), (3.6) and the following agreement of

limits from both sides

lim
x3→0+

w̃i(x) = lim
x3→0−

w̃i(x) i = 1, 2, 3,

lim
x3→0+

w̃i
xj (x) = lim

x3→0−
w̃i

xj (x) i, j = 1, 2, 3.

With this tentative extension w̃ on hand, it is necessary to show the resulting extension from

H
1(curl; B+) toH

1(curl; B) is continuous. It is rather straightforward to show that ‖w̃‖
H1(B) ≤

C ‖w‖
H1(B+) by collecting coefficients and using the mirror reflection, that is,

∫

B
|w̃(x)|2 dx +

∫

B
|grad w̃(x)|2 dx

=

∫

B+

|w(x)|2 dx +

∫

B+

|gradw(x)|2 dx +

∫

B−

|
∑3

j=1
λjw

1(x1, x2,−
x3

j
)|2 dx

+

∫

B−

|
∑3

j=1
λjw

2(x1, x2,−
x3

j
)|2 dx +

∫

B−

|
∑3

j=1

λj

−j
w3(x1, x2,−

x3

j
)|2 dx

+
3∑

i=1

3∑

k=1

∫

B+

|wi
xk

(x)|2 dx +
3∑

k=1

∫

B−

|
∑3

j=1
λjw

1
xk

(x1, x2,−
x3

j
)|2 dx

+
3∑

k=1

∫

B−

|
∑3

j=1
λjw

2
xk

(x1, x2,−
x3

j
)|2 dx

+
3∑

k=1

∫

B−

|
∑3

j=1

λj

−j
w3

xk
(x1, x2,−

x3

j
)|2 dx

≤ C

(∫

B+

|w(x)|2 dx +

∫

B+

|gradw(x)|2 dx

)
.

(3.7)

To show that ‖curl w̃‖
H1(B) ≤ C ‖curlw‖

H1(B+), we exploit the amazing symmetry in the

following equality,
∫

B
| curl w̃(x)|2 dx

=

∫

B+

|w3
x2

(x) − w2
x3

(x)|2 dx +

∫

B+

|w1
x3

(x) − w3
x1

(x)|2 dx +

∫

B+

|w2
x1

(x) − w1
x2

(x)|2 dx

+

∫

B−

|
∑3

j=1

λj

−j
w3

x2
(x1, x2,−

x3

j
) −

∑3

j=1

λj

−j
w2

x3
(x1, x2,−

x3

j
)|2 dx

+

∫

B−

|
∑3

j=1

λj

−j
w1

x3
(x1, x2,−

x3

j
) −

∑3

j=1

λj

−j
w3

x1
(x1, x2,−

x3

j
)|2 dx

+

∫

B−

|
∑3

j=1
λjw

2
x1

(x1, x2,−
x3

j
) −

∑3

j=1
λjw

1
x2

(x1, x2,−
x3

j
)|2 dx .

We see that the coefficients within the square terms of those integrations over B− can be extracted

as scaling factors. Then the same procedure of collecting coefficients and using the mirror reflection

yields
∫

B
| curl w̃(x)|2 dx +

∫

B
|grad curl w̃(x)|2 dx

≤ C

(∫

B+

|grad curlw(x)|2 dx +

∫

B+

| curlw(x)|2 dx

)
,

which, together with (3.7), implies the continuity

‖w̃‖
H1(curl;B) ≤ C ‖w‖

H1(curl;B+) , (3.8)

where the constant C in (3.8) is a polynomial of at most second order in terms of λ1, λ2 and λ3.

In case of ∂U being not necessarily flat near x0 we apply the usual flattening technique and

partition of unity localization in order to reduce the situation to the one discussed above.
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For our purpose, a tailored version of Theorem 3.4 is the following corollary.

Corollary 3.5. There exist two bounded linear operators for i = 1, 2, respectively

Ei
curl : H

1(curl; Ωi) → H
1(curl; Ω) (3.9)

such that for each u ∈ H
1(curl; Ωi):

1. Ei
curl

u = u a.e. in Ωi.

2.
∥∥Ei

curl
u
∥∥

H1(curl;Ω)
≤ C ‖u‖

H1(curl;Ωi)
, with the constant C depending only on Ω.

Proof. Noticing the fact that the interface Γ is at least C2-smooth and some slight modifications of

the proof of Theorem 3.4 yield the desired result.

For the later use, we will need the following variant of the well-known trace inequality in a

pyramid. The crucial fact is that the estimate in this inequality can be applied to a pyramid with

slender bottom face.

Lemma 3.6. Let P be a pyramid with F being its quadrilateral bottom face and O its apex (see

Figure 4). Then we have

‖u‖2
L2(F ) ≤

3

d
‖u‖L2(P )(hP ‖gradu‖L2(P ) + ‖u‖L2(P )) ∀u ∈ H1(P ) ,

where d := dist(O, F ), hP := max{|x− y| : x,y ∈ P}. Moreover, if d ∼ O(hP ) and hP < 1, we
have

‖u‖2
L2(F ) ≤ C

(
1

hP
‖u‖2

L2(P ) + ‖gradu‖2
L2(P )

)
∀u ∈ H1(P ) , (3.10)

with C > 0 independent of hP .

d

F

O

Figure 4: Sketch of the pyramid from Lemma 3.6.

Proof. Without loss of generality, we may assume that the apex O, possibly through simple transla-
tion, is the origin. Then it is obvious to see that

F ⊂ {x | x · nF = d},
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where nF is the outward unit normal vector on the bottom side F . Making use of the fact that x · n
vanishes on all the other sides of the pyramid except the bottom one, divergence law and Cauchy-

Schwarz inequality yield

∫

F
u2dS =

1

d

∫

∂P
u2x · n dS =

1

d

∫

P
div(u2x)dx

=
1

d

∫

P

(
2u gradu · x + 3u2

)
dx

≤ 3

d
‖u‖L2(P )

(
hP ‖gradu‖L2(P ) + ‖u‖L2(P )

)
,

where n is the unit outward normal vector on ∂P .
If d ∼ O(hP ) and hP < 1, by the Cauchy-Schwarz inequality we have

∫

F
u2dS ≤ C

(
‖u‖L2(P )‖gradu‖L2(P ) +

1

hP
‖u‖2

L2(P )

)

≤ C

(
‖gradu‖2

L2(P ) +
1

hP
‖u‖2

L2(P )

)
.

This completes the proof.

4 Convergence analysis

In this section, we show the optimal convergence for the H(curl)-elliptic interface problem (1.1)–
(1.4) using the lowest order H(curl; Ω)-conforming finite element approximation. We will make
use of a perturbation argument combined with the technical tools provided in Section 3.

First we show a technical lemma to be used for the main theorem on optimal convergence.

Lemma 4.1. If u ∈ H0(curl; Ω) ∩ H
1(curl; Ω1) ∩ H

1(curl; Ω2), then we have

∑

K∈T 1
∗

‖E1
curlu1‖2

H(curl;K∩Ω2)
≤ ‖E1

curlu1‖2
H(curl;S2

δ ) ≤ Cδ‖u1‖2
H1(curl;Ω1), (4.1)

∑

K∈T 1
∗

‖u2‖2
H(curl;K∩Ω2) ≤ ‖u2‖2

H(curl;S2
δ
) ≤ Cδ‖u2‖2

H1(curl;Ω2) . (4.2)

Analogously:

∑

K∈T 2
∗

‖E2
curlu2‖2

H(curl;K∩Ω1) ≤ ‖E2
curlu2‖2

H(curl;S1
δ ) ≤ Cδ‖u2‖2

H1(curl;Ω2), (4.3)

∑

K∈T 2
∗

‖u1‖2
H(curl;K∩Ω1) ≤ ‖u1‖2

H(curl;S1
δ
) ≤ Cδ‖u1‖2

H1(curl;Ω1) . (4.4)

with the constant C depending only on the domain Ω, but independent of u.

Proof. We only prove (4.1)–(4.2) since the estimates (4.3)–(4.4) are obtained from (4.1)–(4.2) by

interchanging the subscripts 1 and 2. To see (4.1), we note ∪K∈T 1
∗
K ∩ Ω2 ⊂ S2

δ ; furthermore, since

all elements of Th are pairwise disjoint, the first inequality in (4.1) follows immediately. For the

second estimate, using the Corollary 3.2 and the continuity property of the extension operator E1
curl

yields:

‖E1
curlu1‖2

H(curl;S2
δ ) ≤ Cδ‖E1

curlu1‖2
H1(curl;Ω2) ≤ Cδ‖u1‖2

H1(curl;Ω1)
.

The estimate (4.2) is obtained analogously by noting the fact that ∪K∈T 1
∗
K ∩ Ω2 ⊂ S2

δ .

To obtain the convergence result, we need to show an appropriate interpolation error estimate for

the interface-aware interpolation operator Ĩh in Def. 2.7.
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Lemma 4.2. Assume u ∈ H0(curl; Ω)∩H
1(curl; Ω1)∩H

1(curl; Ω2), Then we have the follow-
ing error estimate under Assumptions 2.1 and 2.3:

∥∥∥u − Ĩhu
∥∥∥

H(curl;Ω)
≤ C(h +

√
δ +

δ√
h

)
(
‖u‖

H1(curl;Ω1)
+ ‖u‖

H1(curl;Ω2)

)
(4.5)

with the constant C depending only on the domain Ω, but independent of u and the meshsize h.

Proof. Take any interface element K ∈ T 1
∗ . We observe a crucial identity following from Defini-

tion 2.7 of the perturbed interpolation operator

Ĩhu
∣∣∣
K

= ĨhE
1
curlu

∣∣∣
K

.

Thus we can always decompose the differenceu− Ĩhu over this interface elementK into three parts:

(
u− Ĩhu

)∣∣∣
K

=
(
u − E1

curlu
)∣∣

K
+

(
E1

curlu− IhE
1
curlu

)∣∣
K

+
(
IhE

1
curlu − ĨhE

1
curlu

)∣∣∣
K

.
(4.6)

Noting that u = E1
curl

u onK ∩Ω1, then employing Lemma 4.1 and the continuity ofE
1
curl

lead

to the error estimate for the first term in (4.6):

∑

K∈T 1
∗

∥∥u − E1
curlu

∥∥2

H(curl;K)
≤

∑

K∈T 1
∗

‖u‖2
H(curl;K∩Ω2)

+
∑

K∈T 1
∗

∥∥E1
curlu

∥∥2

H(curl;K∩Ω2)

≤ Cδ
(
‖u‖2

H1(curl;Ω1)
+ ‖u‖2

H1(curl;Ω2)

)
.

(4.7)

A classical interpolation result (cf. [25, Theorem 5.41]) of the standard interpolation operator Ih

in view of Lemma 2.6 and the continuous property of E1
curl

give

∑

K∈T 1
∗

∥∥E1
curlu − IhE

1
curlu

∥∥2

H(curl;K)
≤ C

∑

K∈T 1
∗

h2
∥∥E1

curlu
∥∥2

H1(curl;K)

≤ Ch2
∥∥E1

curlu
∥∥2

H1(curl;Ω)
≤ Ch2 ‖u‖2

H1(curl;Ω1) .

(4.8)

For the third term on the right hand side of (4.6), we observe that the only difference between

IhE
1
curl

u and ĨhE
1
curl

u comes from their degrees of freedom endowed with the interface edges
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which are immersed within the interface buffer region Sδ. We have

∥∥∥IhE
1
curlu− ĨhE

1
curlu

∥∥∥
2

H(curl;K)

≤ C
∑

e∈Eh∩K∩Sδ

(∥∥∥∥

(∫

e
E1

curlu · d's −
∫

ee
E1

curlu · d's

)
be

∥∥∥∥
2

+

∥∥∥∥

(∫

e
E1

curlu · d's −
∫

ee
E1

curlu · d's

)
curl be

∥∥∥∥
2
)

≤ C
∑

e∈Eh∩K∩Sδ

(
‖be‖2 + ‖curl be‖2

)(∫

e
E1

curlu · d's −
∫

ee
E1

curlu · d's

)2

≤ C
∑

e∈Eh∩K∩Sδ

(h +
1

h
)

(∫

e
E1

curlu · d's −
∫

ee
E1

curlu · d's

)2

≤ C
∑

e∈Eh∩K∩Sδ

1

h

(∫

Se,ee

curlE1
curlu · d'S

)2

≤ C
∑

e∈Eh∩K∩Sδ

1

h
|Se,ee|

(∫

Se,ee

| curlE1
curlu|2dS

)

≤ C
∑

e∈Eh∩K∩Sδ

δ

(∫

Se,ee

| curlE1
curlu|2dS

)

,

(4.9)

where we have employed estimates for edge element basis functions in the third inequality (cf. [25,

Lemma. 5.43]), the Stokes theorem in the fourth inequality, and the Cauchy-Schwarz inequality in

the fifth inequality. In the last inequality, |Se,ee| stands for the area of Se,ee, which is of the order hδ in
view of Assumption 2.3 and Remark 2.5.

We continue by estimating the last term in (4.9). For each piecewise planar surface Se,ee, it can be

embedded into a narrow region between the slim bottom sides of two pyramid-type elements P e
1 and

P e
2 which share the same apex q and lie in two adjacent interface elementsKe

1 andKe
2 , respectively,

sharing the common interface edge e (see Figure 5). These pyramids P e
1 and P e

2 are taken to be so

slender that they lie completely inside Sδ.

Ke
1

Ke
2p1

q p2

Se,ee

Figure 5: Piecewise planar surface Se,ee imbedded in pyramid-type elements P e
1 and

P e
2 in two adjacent interface elements Ke

1 and Ke
2 .

Now by enlarging the area of the surface integral from Se,ee to be the two slender bottom sides of
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those two pyramids P e
1 and P e

2 , observing that the height to the bottom sides of P e
1 and P e

2 are still

of the order h, and applying Lemma 3.6, we arrive at
∫

Se,ee

| curlE1
curlu|2dS ≤ C

(
1

h

∥∥curlE1
curlu

∥∥2

L2(P e
1 ∪P e

2 )

+
∥∥grad curlE1

curlu
∥∥2

L2(P e
1 ∪P e

2 )

)
.

(4.10)

Plugging (4.10) into (4.9), and summing over allK in T 1
∗ give us

∑

K∈T 1
∗

∥∥∥IhE
1
curlu− ĨhE

1
curlu

∥∥∥
2

H(curl;K)

≤ C
∑

K∈T 1
∗

∑

e∈Eh∩K∩Sδ

(
δ

h

∥∥curl E1
curlu

∥∥2

L2(P e
1 ∪P e

2 )
+ δ

∥∥grad curlE1
curlu

∥∥2

L2(P e
1 ∪P e

2 )

)

≤ C

(
δ

h

∥∥curlE1
curlu

∥∥2

L2(Sδ)
+ δ

∥∥grad curl E1
curlu

∥∥2

L2(Sδ)

)

≤ C(
δ2

h
+ δ)

∥∥curlE1
curlu

∥∥2

H1(Ω)

≤ C(
δ2

h
+ δ) ‖u‖2

H1(curl;Ω1) .

(4.11)

In the second inequality we have used the fact that

⋃

K∈T 1
∗

⋃

e∈Eh∩K∩Sδ

(P e
1 ∪ P e

2 ) ⊂ Sδ ,

and that, thanks to the quasi-uniformity assumption on the triangulation, there is only finite over-

lap among those slim pyramids sharing a common interface edges. In the third inequality we have

employed Lemma 3.1 for the first term, and the continuity of E1
curl

in the last inequality.

In the next step, for any non-interface K ∈ T 1, we see that Ĩhu and Ihu are identical for u ∈
H

1(curl; K). Thus a classical interpolation approximation (cf. [25, Theorem 5.41]) yields

∑

K∈T 1

∥∥∥u − Ĩhu
∥∥∥

2

H(curl;K)
=

∑

K∈T 1

‖u− Ihu‖2
H(curl;K)

≤ C
∑

K∈T 1

h2 ‖u‖2
H1(curl;K) ≤ Ch2 ‖u‖2

H1(curl;Ω1) .
(4.12)

Combining (4.6), (4.7), (4.8), (4.11), and (4.12) yields

∑

K∈T 1∪T 1
∗

∥∥∥u− Ĩhu
∥∥∥

2

H(curl;K)
≤ C(

δ2

h
+ δ + h2)

(
‖u‖2

H1(curl;Ω1) + ‖u‖2
H1(curl;Ω2)

)
.

(4.13)

In a completely analogous manner, we can repeat the previous arguments by interchanging the

indices from 1 to 2 and arrive at

∑

K∈T 2∪T 2
∗

∥∥∥u− Ĩhu
∥∥∥

2

H(curl;K)
≤ C(

δ2

h
+ δ + h2)

(
‖u‖2

H1(curl;Ω1) + ‖u‖2
H1(curl;Ω2)

)
.

(4.14)

Combining (4.13) and (4.14) yields the desired approximation property and thus completes the

proof.

Now we are in a position to state our main theorem about the optimal convergence of edge

element Galerkin solutions ofH(curl)-elliptic interface problems.
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Theorem 4.3. Let u and uh be the solutions to problems (P) and (P̃h), respectively, and assume
u ∈ H0(curl; Ω) ∩ H

1(curl; Ω1) ∩ H
1(curl; Ω2). Then we have the following error estimate

under Assumptions 2.1 and 2.3:

‖u − uh‖H(curl;Ω) ≤ Ch(‖u‖
H1(curl;Ω1) + ‖u‖

H1(curl;Ω2)
) (4.15)

with the constant C > 0 independent of u and the meshsize h.

Proof. By the first Strang lemma (see, e.g., [12], Theorem 4.1.1) appliedd to (2.6) and (2.8)

‖u−uh‖H(curl;Ω) ≤ C inf
wh∈Eh

{
‖u−wh‖H(curl;Ω)+ sup

vh∈Eh

|a(wh,vh) − ah(wh,vh)|
‖vh‖H(curl;Ω)

}
. (4.16)

In particular, we choosewh = Ĩhu. By Lemma 4.2 we have

‖u− Ĩhu‖H(curl;Ω) ≤ C(
δ√
h

+ h +
√

δ)
(
‖u‖

H1(curl;Ω1)
+ ‖u‖

H1(curl;Ω2)

)
. (4.17)

Next, for any vh ∈ Eh we can derive by using Lemma 4.1 and Corollary 3.2 that

|a∆(̃Ihu,vh)| ≤ C ‖Ĩhu‖H(curl;Sδ)‖vh‖H(curl;Sδ)

≤ C
(
‖u‖H(curl;Sδ) + ‖u− Ĩhu‖H(curl;Sδ)

)
‖vh‖H(curl;Sδ)

≤ C (
√

δ + h +
δ√
h

)
(
‖u‖

H1(curl;Ω1)
+ ‖u‖

H1(curl;Ω2)

)
‖vh‖H(curl;Ω) ,

which implies that

sup
v∈Sp,1(T )

|a∆(̃Ihu,vh)|
‖vh‖H(curl;Ω)

≤ C(
√

δ + h +
δ√
h

)
(
‖u‖

H1(curl;Ω1) + ‖u‖
H1(curl;Ω2)

)
. (4.18)

The desired estimate now follows from Assumption 2.3 by substituting δ ∼ O(h2) into wherever δ
occurs in (4.16)-(4.18) and plugging (4.17)-(4.18) into (4.16).

In addition, it is possible to relax the regularity of the global solution u in Theorem 4.3 and

require only u ∈ H0(curl; Ω) ∩ H
s(curl; Ω1) ∩ H

s(curl; Ω2) for 0 ≤ s ≤ 1. The interpolation
arguments yield the following optimal s-order of convergencewith techniques of interpolation spaces
(see, e.g., [4] or [24, Theorem B.2]).

Theorem 4.4. Let u and uh be the solutions to problems (P) and (P̃h), respectively, and assume
u ∈ H0(curl; Ω) ∩ H

s(curl; Ω1) ∩ H
s(curl; Ω2) for 0 ≤ s ≤ 1. Then we have the following

error estimate under Assumptions 2.1 and 2.3:

‖u− uh‖H(curl;Ω) ≤ Chs(‖u‖
Hs(curl;Ω1)

+ ‖u‖
Hs(curl;Ω2)

). (4.19)

with the constant C > 0 independent of u and the meshsize h.

Proof. Utilizing the following stability result from the Galerkin projection

‖u − uh‖H(curl;Ω) ≤ C ‖u‖
H(curl;Ω) , (4.20)

the convergence result (4.15) in Theorem 4.3, and the characterization ofHs(curl; Ω) as interpola-
tion space

[
H(curl; Ω), H1(curl; Ω)

]
s
, see [19], we can achieve the desired result by interpola-

tion.
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5 Numerical experiments

In this section, we present two numerical examples to verify the theoretical prediction of the con-

vergence analysis developed in previous sections. Our numerical experiments are implemented using

MATLAB combined with the commercial package FEMLAB. We will test the first family of Nédélec

elements of the lowest order. Note that after each step of mesh refinement, some regularly refined

interface elements have to be slightly adjusted to meet the interface-aligned condition1. In the sequel,

we will test the convergence rates for the relative error in theH(curl; Ω)-norm which is defined by

Relative error :=
‖u− uh‖H(curl;Ω)

‖u‖
H(curl;Ω)

, (5.1)

and relative error in the energy norm, namely,

Relative energy error :=
‖u− uh‖a

‖u‖a
. (5.2)

Note that bothH(curl; Ω) and energy norms are numerically computed using a fourth order quadra-
ture rule.

Example 5.1. Although the first example is two-dimensional, we remark that this 2D model problem

using surface curl and planar curl operators fully captures all essential features of the 3D problem.

The computational domain is a circular disk Ω = {(x, y); x2 + y2 ≤ r2}, and the interface Γ is the
unit circle {(x, y); x2 + y2 = r1}. The exact solution u(x, y) is given by

u(x, y) =










x − n1(r1 − x2 − y2)y

χ1
−n1(r1 − x2 − y2)x + y

χ1



 , if x2 + y2 ≤ r1;





x − n2(r2 − x2 − y2)(r1 − x2 − y2)y

χ2
−n2(r2 − x2 − y2)(r1 − x2 − y2)x + y

χ2



 , if r1 < x2 + y2 ≤ r2 .

(5.3)

The solution has vanishing boundary condition and interface jump conditions. Here we choose β = 1,
χ1 = 1, χ2 = 10, r1 = 0.6, r2 = 1, n2 = 20, n1 = n2(r2

2 − r2
1) and define the source functions

f through the equation (1.1) using the exact solution defined in (5.3). Numerical convergence tests
have been conducted to analyze the rates of the error decay.

In Figure 6 (a), the exact solution using scaled arrow flow is plotted for illustration. To the right,

we can clearly see that the first family of edge elements of lowest order yields the optimal first order

convergence in theH(curl; Ω) norm from Figure 6 (b), which verifies what the theory predicted. For
further verification, we increase the relative jump of the coefficients χ2/χ1 to 1000 and then decrease

it to be 0.001, respectively, it is clear from Figure 6 (c) and Figure 6 (d) that the convergence rates

are not affected by the extremely large or small relative jump.

Next we numerically investigate the relation between the relative error in the H(curl; Ω)-norm
and relative jump of the coefficients χ2/χ1 as we refine the meshes. From Table 1, we can see that

the relative error increases mildly as the magnitude of the relative jump do on the finer levels of

triangulation.

Furthermore, we test the relation between the relative error in the energy norm and relative jump

of the coefficients χ2/χ1. On a typical fine mesh with meshsize h = 0.005, we increase the relative
jump of coefficients from 10−8 to 108 and plot the corresponding relative energy error in Figure 7, It

can be seen that the curve of the relative energy error does not blow up except a small bump in case

that the interior and outer coefficients matches each other in magnitude. This shows an advantage of

our finite element method that it is quite robust with respect to the jump ratios of coefficients in terms

of the energy norm, which sounds a good news for engineering and industrial practice.

1A simple way is done automatically by calling functions like initmesh and refinemesh in MATLAB’s PDE toolbox

or using the routines distmesh2d and distmeshnd developed by P.-O. Persson [27].
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Figure 6: (a): The exact solution in Example 5.1 when χ1 = 1, χ2 = 10; (b): The
convergence rate when χ1 = 1, χ2 = 10; (c): The convergence rate when χ1 = 1,
χ2 = 1000; (d): The convergence rate when χ1 = 1, χ2 = 0.001; (e): A sample
triangulation of interface-aligned mesh for Example 1 in 2D.
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Level of refinement

χ2/χ1 1 2 3 4 5 6 7

10−3 0.6591 0.4541 0.2380 0.1200 0.0601 0.0301 0.0150

10−2 0.6196 0.4337 0.2338 0.1194 0.0600 0.0301 0.0150

10−1 0.6050 0.4318 0.2336 0.1194 0.0601 0.0301 0.0150

100 0.6293 0.4458 0.2410 0.1231 0.0619 0.0310 0.0155

101 0.8485 0.5384 0.2865 0.1456 0.0731 0.0366 0.0183

102 0.8739 0.5464 0.2900 0.1473 0.0740 0.0370 0.0185

103 0.8755 0.5467 0.2901 0.1474 0.0740 0.0370 0.0185

Table 1: Relative error in theH(curl;Ω)-norm versus relative jump of coefficients
at different levels of refinement.
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Figure 7: Relative error in the energy norm versus relative jump of coefficients for

a fine triangulation with meshsize h = 0.005.
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Example 5.2. The second example is a three-dimensional one. The computational domain is taken to

be a ballΩ = {(x, y, z); x2+y2+z2 ≤ r2}, and the interface Γ is a spherical surface {(x, y, z); x2+
y2 + z2 = r1}. The exact solution u(x, y, z) is given by

u(x, y, z) =






1

χ1
u1(x, y, z), if x2 + y2 + z2 ≤ r1 ;

1

χ2
u2(x, y, z), if r1 < x2 + y2 + z2 ≤ r2 ,

(5.4)

where u1(x, y, z) is given by



x − n1(r1 − x2 − y2)y + n1(r1 − x2 − y2)z
−n1(r1 − x2 − y2)x + y − n1(r1 − x2 − y2)z
n1(r1 − x2 − y2)x − n1(r1 − x2 − y2)y + z





and u2(x, y, z) by



x − n2(r1 − x2 − y2)(r2 − x2 − y2)y + n2(r1 − x2 − y2)(r2 − x2 − y2)z
−n2(r1 − x2 − y2)(r2 − x2 − y2)x + y + n2(r1 − x2 − y2)(r2 − x2 − y2)z
n2(r1 − x2 − y2)(r2 − x2 − y2)x − n2(r1 − x2 − y2)(r2 − x2 − y2)y + z





For this example, we choose β = 1, χ1 = 1, χ2 = 0.1, r1 = 1, r2 = 2, n2 = 20, n1 =
n2(r2

2 − r2
1) and derive the source functions f through the equation (1.1) using the exact solution

(5.4) which satisfies the homogeneous boundary condition and jump conditions on the interface.

Numerical convergence tests are carried out to analyze the rates of the error decay using lowest order

edge elements of the first family.We start our tests on a rather coarse mesh with mesh size h = 1.2968
and then refine the mesh in a regular and uniform way which subdivides a coarse element into eight

smaller ones. The refinement process will be done for four consecutive times which amounts to

around 2.5 million degrees of freedom at the finest mesh with mesh size h = 0.0811.

The exact solution are shown in Figure 8 (a). In Figure 8 (b), it can be clearly seen that as the

mesh gets finer and finer, the line of the convergence rate tends to be parallel to the reference line

of first order convergence in terms of the maximum meshsize. More precisely, in the asymptotic

sense, edge elements indeed yield the optimal first order convergence in the H(curl; Ω) norm as

predicted by theory. Next, as previously tested in Example 5.1 we adjust the relative jump of the

coefficients χ2/χ1 to be 1000 and 0.001, respectively, and also plot the corresponding convergence

rates in Figure 8 (c) and Figure 8 (d). Similar observations with asymptotic tendency of first order

convergence rate with respect to the meshsize further consolidate our theoretical result.

In addition, we numerically check the relation between the relative error and relative jump of

the coefficients χ2/χ1 as in Example 5.1. As can be seen from Table 2, the relative error in the

H(curl; Ω)-norm does not fluctuate wildly as we refine the meshes.

Level of refinement

χ2/χ1 1 2 3 4 5

10−3 0.7763 0.6122 0.3481 0.1676 0.0791

10−2 0.7263 0.5222 0.2810 0.1418 0.0709

10−1 0.6628 0.4912 0.2736 0.1405 0.0707

100 0.6587 0.4915 0.2742 0.1408 0.0708

101 0.7948 0.5451 0.2974 0.1522 0.0767

102 0.8616 0.5718 0.3088 0.1578 0.0795

103 0.8635 0.5724 0.3090 0.1579 0.0795

Table 2: Relative error in theH(curl;Ω)-norm versus relative jump of coefficients
at different levels of refinement.

Last, we test the relation between the relative error in the energy norm and relative jump of the

coefficients χ2/χ1. On a typical fine mesh with meshsize h = 0.04, we increase the relative jump
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Figure 8: (a): The exact solution in Example 5.2 when χ1 = 1, χ2 = 0.1; (b): The
convergence rate when χ1 = 1, χ2 = 0.1; (c): The convergence rate when χ1 = 1,
χ2 = 1000; (d): The convergence rate when χ1 = 1, χ2 = 0.001; (e): A sample
slice view of the triangulation of interface-aligned mesh for Example 2 in 3D.
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of coefficients from 10−8 to 108 and plot the corresponding relative energy error curve versus the

relative jump in Figure 7, It can be seen that the numerical solution converges quite robustly in the

sense of energy norm with respect to the relative jump of coefficients as in the first example.
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Figure 9: Relative error in the energy norm versus relative jump of coefficients for

a fine triangulation with meshsize h = 0.04.

6 Conclusion

We have analyzed the convergence of the H(curl; Ω)-conforming finite element method for
H(curl; Ω)-elliptic interface problems based on a family of interface-alignedmeshes. The difficulty
mainly arises from the discontinuity of the magnetic susceptibility coefficient χ in the curlχ curl

term. It is pointed out that the analysis framework here can be generalized naturally to cover the case

when the coefficient β in the low order term also has jumps across the interface, which may be due
to the different conductivity of several materials. Optimal convergence results in H(curl; Ω)-norm
are obtained under reasonable regularity assumptions. Further work may target the time-dependent

H(curl; Ω)-interface problem andH(div; Ω)-elliptic interface problem.
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