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Structured eigenvalue condition numbers and
linearizations for matrix polynomials

Bibhas Adhikari∗ Rafikul Alam† Daniel Kressner‡.

Abstract. This work is concerned with eigenvalue problems for structured matrix polynomials,

including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix poly-

nomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the

matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified

for which the pencil reflects the structure of the original polynomial. A question of practical impor-

tance is whether this process of linearization increases the sensitivity of the eigenvalue with respect

to structured perturbations. For all structures under consideration, we show that this is not the

case: there is always a linearization for which the structured condition number of an eigenvalue does

not differ significantly. This implies, for example, that a structure-preserving algorithm applied to

the linearization fully benefits from a potentially low structured eigenvalue condition number of the

original matrix polynomial.

Keywords. Eigenvalue problem, matrix polynomial, linearization, structured condition num-
ber.

AMS subject classification(2000): 65F15, 15A57, 15A18, 65F35.

1 Introduction

Consider an n× n matrix polynomial

P(λ) = A0 + λA1 + λ2A2 + · · · + λmAm, (1)

with A0, . . . , Am ∈ Cn×n. An eigenvalue λ ∈ C of P, defined by the relation det(P(λ)) = 0,
is called simple if λ is a simple root of the polynomial det(P(λ)).

This paper is concerned with the sensitivity of a simple eigenvalue λ under perturbations
of the coefficients Ai. The condition number of λ is a first-order measure for the worst-case
effect of perturbations on λ. Tisseur [33] has provided an explicit expression for this condition
number. Subsequently, this expression was extended to polynomials in homogeneous form by
Dedieu and Tisseur [9], see also [1, 5, 8], and to semi-simple eigenvalues in [22]. In the
more general context of nonlinear eigenvalue problems, the sensitivity of eigenvalues and
eigenvectors has been investigated in, e.g., [3, 24, 25, 26].

Loosely speaking, an eigenvalue problem (1) is called structured if there is some distinctive
structure among the coefficients A0, . . . , Am. For example, much of the recent research on
structured polynomial eigenvalue problems was motivated by the second-order T -palindromic
eigenvalue problem [18, 27]

A0 + λA1 + λ2AT
0 ,

where A1 is complex symmetric: AT
1 = A1. In this paper, we consider the structures listed

in Table 1. To illustrate the notation of this table, consider a T -palindromic polynomial
∗Department of Mathematics, Indian Institute of Technology Guwahati, India, E-mail: bibhas@iitg.ernet.in
†Department of Mathematics, Indian Institute of Technology Guwahati, India, E-mail: rafik@iitg.ernet.in,

rafikul@yahoo.com, Fax: +91-361-2690762/2582649.
‡Seminar for Applied Mathematics, ETH Zurich, Switzerland. E-mail: kressner@sam.math.ethz.ch



Structured Polynomial P(λ) =
∑m

i=0 λiAi

Structure Condition m = 2

T -symmetric PT (λ) = P(λ) P(λ) = λ2A0 + λA1 + A2,

AT
0 = A0, AT

1 = A1, AT
2 = A2

Hermitian PH(λ) = P(λ) P(λ) = λ2A0 + λA1 + A2,

AH
0 = A0, AH

1 = A1, AH
2 = A2

∗-even P∗(λ) = P(−λ) P(λ) = λ2A + λB + C,

A∗ = A, B∗ = −B, C∗ = C

∗-odd P∗(λ) = −P(−λ) P(λ) = λ2A + λB + C,

A∗ = −A, B∗ = B, C∗ = −C

∗-palindromic P∗(λ) = λmP(1/λ) P(λ) = λ2A + λB + A∗, B∗ = B

∗-anti-palindromic P∗(λ) = λmP(−1/λ) P(λ) = λ2A + λB −A∗, B∗ = −B

Table 1: Overview of structured matrix polynomials discussed in this paper. Note that
∗ ∈ {T, H} may denote either the complex transpose (∗ = T ) or the Hermitian transpose
(∗ = H).

characterized by the condition PT (λ) = λmP(1/λ). For even m, P takes the form

P(λ) = A0 + · · · + λm/2−1Am/2−1 + λm/2Am/2 + λm/2+1AT
m/2+1 + · · · + λmAT

0 ,

with complex symmetric Am/2, and for odd m, P it takes the form

P(λ) = A0 + · · · + λ(m−1)/2A(m−1)/2 + λ(m+1)/2AT
(m+1)/2 + · · · + λmAT

0 .

In certain situations, it is reasonable to expect that perturbations of the polynomial respect
the underlying structure. For example, if a strongly backward stable eigenvalue solver was
applied to a palindromic matrix polynomial then the computed eigenvalues would be the
exact eigenvalues of a slightly perturbed palindromic eigenvalue problems. Also, structure-
preserving perturbations are physically more meaningful in the sense that the spectral sym-
metries induced by the structure are not destroyed. Restricting the admissible perturbations
might have a positive effect on the sensitivity of an eigenvalue. This question has been studied
for linear eigenvalue problems in quite some detail recently [7, 12, 21, 19, 20, 22, 29, 30, 31].
It often turns out that the desirable positive effect is not very remarkable: in many cases
the worst-case eigenvalue sensitivity changes little or not at all when imposing structure. No-
table exceptions can be found among symplectic, skew-symmetric, and palindromic eigenvalue
problems [21, 22]. Bora [6] has identified situations for which the structured and unstruc-
tured eigenvalue condition numbers for matrix polynomials are equal. In the first part of this
paper, we will extend these results by providing explicit expressions for structured eigenvalue
condition numbers of structured matrix polynomials.

Due to the lack of a robust genuine polynomial eigenvalue solver, the eigenvalues of P
are usually computed by first reformulating (1) as an mn×mn linear generalized eigenvalue
problem and then applying a standard method such as the QZ algorithm [11] to the lin-
ear problem. This process of linearization introduces unwanted effects. Besides the obvious
increase of dimension, it may also happen that the eigenvalue sensitivities significantly de-
teriorate. Fortunately, one can use the freedom in the choice of linearization to minimize
this deterioration for the eigenvalue region of interest, as proposed for quadratic eigenvalue
problems in [10, 17, 33]. For the general polynomial eigenvalue problem (1), Higham et
al. [16, 14] have identified linearizations with minimal eigenvalue condition number/backward
error among the set of linearizations described in [28]. For structured polynomial eigenvalue
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problems, rather than using any linearization it is of course advisable to use one which has
a similar structure. For example, it was shown in [27] that a palindromic matrix polynomial
can usually be linearized into a palindromic or anti-palindromic matrix pencil, offering the
possibility to apply structure-preserving algorithms to the linearization. It is natural to ask
whether there is also a structured linearization that has no adverse effect on the structured
condition number. For a small subset of structures from Table 1, this question has already
been discussed in [16]. In the second part of this paper, we extend the discussion to all
structures from Table 1.

The rest of this paper is organized as follows. In Section 2, we first review the derivation
of the unstructured eigenvalue condition number for a matrix polynomial and then provide
explicit expressions for structured eigenvalue conditions numbers. Most but not all of these
expressions are generalizations of known results for linear eigenvalue problems. In Section 4,
we apply these results to find good choices from the set of structured linearizations described
in [27].

2 Structured condition numbers for matrix polynomials

Before discussing the effect of structure on the sensitivity of an eigenvalue, we briefly review
existing results on eigenvalue condition numbers for matrix polynomials. Assume that λ is a
simple finite eigenvalue of the matrix polynomial P defined in (1) with normalized right and
left eigenvectors x and y:

P(λ)x = 0, yHP(λ) = 0, ‖x‖2 = ‖y‖2 = 1. (2)

The perturbation

(P +&P)(λ) = (A0 + E0) + λ(A1 + E1) + · · · + λm(Am + Em)

moves λ to an eigenvalue λ̂ of P +&P. A useful tool to study the effect of &P is the first
order perturbation expansion

λ̂ = λ− 1
yHP′(λ)x

yH&P(λ)x + O(‖&P‖2), (3)

which can be derived, e.g., by applying the implicit function theorem to (2), see [9, 33]. Note
that yHP′(λ)x '= 0 because λ is simple [3, 2].

To measure the sensitivity of λ we first need to specify a way to measure &P. Given
a matrix norm ‖ · ‖M on Cn×n, a monotone vector norm ‖ · ‖v on Cm+1 and non-negative
weights ω0, . . . ,ωm, we define

‖&P‖ :=
∥∥∥∥

[
1
ω0
‖E0‖M ,

1
ω1
‖E1‖M , . . . ,

1
ωm

‖Em‖M

]∥∥∥∥
v

. (4)

A relatively small weight ωi means that ‖Ei‖M will be small compared to ‖&P‖. In the
extreme case ωi = 0, we define ‖Ei‖M/ωi = 0 for ‖Ei‖M = 0 and ‖Ei‖M/ωi = ∞ otherwise.
If all ωi are positive then (4) defines a norm on Cn×n × · · · × Cn×n. See [2, 1] for more on
norms of matrix polynomials.

We are now ready to introduce a condition number for the eigenvalue λ of P with respect
to the choice of ‖&P‖ in (4):

κP(λ) := lim
ε→0

sup
{ |λ̂− λ|

ε
: ‖&P‖ ≤ ε

}
, (5)

where λ̂ is the eigenvalue of P +&P closest to λ. An explicit expression for κP(λ) can be
found in [33, Thm. 5] for the case ‖ ·‖v ≡ ‖ · ‖∞ and ‖ ·‖M ≡ ‖ · ‖2. In contrast, the approach

3



used in [9] requires an accessible geometry on the perturbation space and thus facilitates the
norms ‖ · ‖v ≡ ‖ · ‖2 and ‖ · ‖M ≡ ‖ · ‖F . Lemma 2.1 below is more general and includes both
settings. Note that an alternative approach to the result of Lemma 2.1 is described in [1],
admitting any matrix norm ‖ · ‖M and any (Hölder) p-norm ‖ · ‖V ≡ ‖ · ‖p. For stating our
result, we recall that the dual to the vector norm ‖ · ‖v is defined as

‖w‖d := sup
‖z‖v≤1

|wT z|,

see, e.g., [13].

Lemma 2.1 Consider the condition number κP(λ) defined in (5) with respect to (4). For
any unitarily invariant norm ‖ · ‖M we have

κP(λ) =
‖[ω0, ω1|λ|, . . . , ωm|λ|m]‖d

|yHP′(λ)x| (6)

where ‖ · ‖d denotes the vector norm dual to ‖ · ‖v.

Proof. Inserting the perturbation expansion (3) into (5) yields

κP(λ) =
1

|yHP′(λ)x| sup
{
|yH&P(λ)x| : ‖&P‖ ≤ 1

}
. (7)

Defining b = [‖E0‖M/ω0, . . . , ‖Em‖M/ωm]T , we have ‖&P‖ = ‖b‖v. By the triangular in-
equality,

|yH&P(λ)x| ≤
m∑

i=0

|λ|i|yHEix|. (8)

With a suitable scaling of Ei by a complex number of modulus 1, we can assume without loss
of generality that equality holds in (8). Hence,

sup
‖)P‖≤1

|yH&P(λ)x| = sup
‖b‖v≤1

m∑

i=0

|λ|i sup
‖Ei‖M=ωibi

|yHEix|. (9)

Using the particular perturbation Ei = ωibiyxH , it can be easily seen that the inner supremum
is ωibi and hence

sup
‖)P‖≤1

|yH&P(λ)x| = sup
‖b‖v≤1

∣∣[ω0, ω1|λ|, . . . ,ωm|λ|m]b
∣∣ = ‖[ω0, ω1|λ|, . . . , ωm|λ|m]‖d,

which completes the proof.
From a practical point of view, measuring the perturbations of the individual coefficients

of the polynomial separably makes a lot of sense and thus the choice ‖ · ‖v ≡ ‖ · ‖∞ seems
to be most natural. However, it turns out – especially when considering structured condition
numbers – that more elegant results are obtained with the choice ‖ · ‖v ≡ ‖ · ‖2, which we will
use throughout the rest of this paper. In this case, the expression (6) takes the form

κP(λ) =
‖[ω0, ω1λ, . . . , ωmλm]‖2

|yHP′(λ)x| , (10)

see also [1, 4].
If λ = ∞ is a simple eigenvalue of P, a suitable condition number can be defined as

κP(∞) := lim
ε→0

sup{1/|λ̂ε| : ‖&P‖ ≤ ε},

and, following the arguments above,

κP(∞) = ωm/|yHAm−1x|
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for any p-norm ‖ · ‖v. Note that this discrimination between finite and infinite disappears
when homogenizing P as in [9] or measuring the distance between perturbed eigenvalues with
the chordal metric as in [32]. In order to keep the presentation simple, we have decided not
to use these concepts.

The rest of this section is concerned with quantifying the effect on the condition number
if we restrict the perturbation &P to a subset S of the space of all n× n matrix polynomials
of degree at most m.

Definition 2.2 Let λ be a simple finite eigenvalue of a matrix polynomial P with normalized
right and left eigenvectors x and y. Then the structured condition number of λ with respect
to S is defined as

κS
P(λ) := lim

ε→0
sup

{
|λ̂− λ|

ε
: &P ∈ S, ‖&P‖ ≤ ε

}
(11)

For infinite λ, κS
P(∞) := lim

ε→0
sup{1/|λ̂ε| : &P ∈ S, ‖&P‖ ≤ ε}.

If S is star-shaped, the expansion (3) can be used to show

κS
P(λ) =

1
|yHP′(λ)x| sup

{
|yH&P(λ)x| : &P ∈ S, ‖&P‖ ≤ 1

}
(12)

and
κS

P(∞) =
1

|yHAm−1x|
sup

{
|yHEmx| : &P ∈ S, ‖Em‖M ≤ ωm

}
. (13)

2.1 Structured first-order perturbation sets

To proceed from (12) we need to find the maximal absolute magnitude of elements from the
set {

yH&P(λ)x = yHE0x + λyHE1x + · · ·λmyHEmx : &P ∈ S, ‖&P‖ ≤ 1
}

(14)

It is therefore of interest to study the nature of the set {yHEx : E ∈ E, ‖E‖M ≤ 1} with
respect to some E ⊆ Cn×n. The following theorem by Karow [19] provides explicit descriptions
of this set for certain E. We use ∼= to denote the natural isomorphism between C and R2.

Theorem 2.3 Let K(E, x, y) := {yHEx : E ∈ E, ‖E‖M ≤ 1} for x, y ∈ Cn with ‖x‖2 =
‖y‖2 = 1 and some E ⊆ Cn×n. Provided that ‖ · ‖M ∈ {‖ · ‖2, ‖ · ‖F }, the set K(E, x, y) is an
ellipse taking the form

K(E, x, y) ∼= K(α,β) :=
{
K(α,β)ξ : ξ ∈ R2, ‖ξ‖2 ≤ 1

}
, K(α,β) ∈ R2×2, (15)

for the cases that E consists of all complex (E = Cn×n), real (E = Rn×n), Hermitian
(E = Herm), complex symmetric (E = symm), and complex skew-symmetric (E = skew),
real symmetric (only for ‖ · ‖M ≡ ‖ · ‖F ), and real skew-symmetric matrices. The matrix
K(α,β) defining the ellipse in (15) can be written as

K(α,β) =
[

cos φ/2 sin φ/2
− sinφ/2 cos φ/2

] [ √
α + |β| 0

0
√

α− |β|

]
(16)

with some of the parameter configurations α,β listed in Table 2, and φ = arg(β).

Note that (15)–(16) describes an ellipse with semiaxes
√

α + |β|,
√

α− |β|, rotated by the
angle φ/2. The Minkowski sum of ellipses is still convex but in general not an ellipse [23].
Finding the maximal element in (14) is equivalent to finding the maximal element in the
Minkowski sum.
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‖ · ‖M ≡ ‖ · ‖2 ‖ · ‖M ≡ ‖ · ‖F

E α β α β

Cn×n 1 0 1 0
Herm 1− 1

2 |y
Hx|2 1

2 (yHx)2 1
2

1
2 (yHx)2

symm 1 0 1
2 (1 + |yT x|2) 0

skew 1− |yT x|2 0 1
2 (1− |yT x|2) 0

Table 2: Parameters defining the ellipse (15).

Lemma 2.4 Let K(α0, β0), . . . , K(αm, βm) be ellipses of the form (15)–(16). Define

σ := sup
b0,...,bm∈R

b20+···+b2m≤1

sup
{
‖s‖2 : s ∈ b0K(α0, β0) + · · · + bmK(αm, βm)

}
(17)

using the Minkowski sum of sets. Then

σ = ‖[K(α0, β0), . . . ,K(αm, βm)]‖2, (18)

and √
α0 + · · · + αm ≤ σ ≤

√
2
√

α0 + · · · + αm. (19)

Proof. By the definition of K(αj , βj), it holds that

σ = sup
bi∈R

b20+···+b2m≤1

sup
ξi∈R2
‖ξi‖2≤1

∥∥b0K(α0, β0)ξ0 + · · · + bmK(αm, βm)ξm

∥∥
2

= sup
bi∈R

b20+···+b2m≤1

sup
ξ̃i∈R2

‖ξ̃i‖2≤bi

∥∥K(α0, β0)ξ̃0 + · · · + K(αm, βm)ξ̃m

∥∥
2

= sup
ξ̃i∈R2

‖ξ̃0‖22+···+‖ξ̃m‖22≤1

∥∥K(α0, β0)ξ̃0 + · · · + K(αm, βm)ξ̃m

∥∥
2

=
∥∥[

K(α0, β0), . . . , K(αm, βm)
]∥∥

2
,

applying the definition of the matrix 2-norm. The inequality (19) then follows from the
well-known bound

1√
2
‖[K(α0, β0), . . . ,K(αm, βm)]‖F ≤ σ ≤ ‖[K(α0, β0), . . . ,K(αm, βm)]‖F

and using the fact that:

‖[K(α0, β0), . . . ,K(αm, βm)]‖2F =
m∑

i=0

‖K(αi, βi)‖2F =
m∑

i=0

2αi.

It is instructive to rederive the expression (10) for the unstructured condition number from
Lemma 2.4. Starting from Equation (7), we insert the definition (4) of ‖&P‖ for ‖·‖M ≡ ‖·‖2,
‖ · ‖v ≡ ‖ · ‖2, and obtain

σ = sup
{
|yH&P(λ)x| : ‖&P‖ ≤ 1

}

= sup
b20+···+b2m≤1

‖E0‖2≤b0,...,‖Em‖2≤bm

∣∣∣
m∑

i=0

ωiλ
iyHEix

∣∣∣

= sup
b20+···+b2m≤1

sup
{
|s| : s ∈

m∑

i=0

biωiλiK(Cn×n, x, y)
}

. (20)
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By Theorem 2.3, K(Cn×n, x, y) ∼= K(1, 0) and, since a disk is invariant under rotation,
ωiλiK(Cn×n, x, y) ∼= K(ω2

i |λ|2i, 0). Applying Lemma 2.4 yields

σ =
∥∥[

K(ω2
0 , 0), K(ω2

1 |λ|2, 0), . . . ,K(ω2
m|λ|2m, 0)

]∥∥
2

=
∥∥[

ω0, ω1λ, . . . ,ωmλm
]∥∥

2
,

which together with (7) results in the known expression (10) for κP(λ).
In the following sections, it will be shown that the expressions for structured condition

numbers follow in a similar way as corollaries from Lemma 2.4. To keep the notation compact,
we define

σS
P(λ) = sup

{
|yH&P(λ)x| : &P ∈ S, ‖&P‖ ≤ 1

}
.

for a star-shaped structure S. By (12), κS
P(λ) = σS

P(λ)/|yHP′(λ)x|. Let us recall that the
vector norm underlying the definition of ‖&P‖ in (4), is chosen as ‖ · ‖v ≡ ‖ · ‖2 throughout
the rest of this paper.

2.2 Complex symmetric matrix polynomials

No or only an insignificant decrease of the condition number can be expected when imposing
complex symmetries on the perturbations of a matrix polynomial.

Corollary 2.5 Let S denote the set of complex symmetric matrix polynomials. Then for a
finite or infinite, simple eigenvalue λ of a matrix polynomial P ∈ S,

1. κS
P(λ) = κP(λ) for ‖ · ‖M ≡ ‖ · ‖2, and

2. κS
P(λ) =

√
1+|yT x|2√

2
κP(λ) for ‖ · ‖M ≡ ‖ · ‖F .

Proof. Along the line of arguments leading to (20),

σS
P(λ) = sup

b20+···+b2m≤1

{
‖s‖2 : s ∈

m∑

i=0

biωiλ
iK(symm, x, y)

}

for finite λ. As in the unstructured case, K(symm, x, y) ∼= K(1, 0) for ‖ · ‖M ≡ ‖ · ‖2 by
Theorem 2.3, and thus κP(λ) = κS

P(λ). For ‖ · ‖M ≡ ‖ · ‖F we have

K(symm, x, y) ∼= K((1 + |yT x|2)/2, 0) =
√

1 + |yT x|2√
2

K(1, 0),

showing the second part of the statement. The proof for infinite λ is entirely analogous.

2.3 T -even and T -odd matrix polynomials

To describe the structured condition numbers for T -even and T -odd polynomials in a conve-
nient manner, we introduce the vector

Λω =
[
ωmλm, ωm−1λ

m−1, . . . , ω1λ, ω0

]T (21)

along with the even coefficient projector

Πe : Λω .→ Πe(Λω) :=

{ [
ωmλm, 0, ωm−2λm−2, 0, . . . , ω2λ2, 0, ω0

]T
, if m is even,[

0, ωm−1λm−1, 0, ωm−3λm−3, . . . , 0, ω0

]T
, if m is odd.

(22)

The odd coefficient projection is defined analogously and can be written as (1−Πe)(Λω).

Lemma 2.6 Let S denote the set of all T -even matrix polynomials. Then for a finite, simple
eigenvalue λ of a matrix polynomial P ∈ S,

7



1. κS
P(λ) =

√
1− |yT x|2 ‖(1−Πe)(Λω)‖22

‖Λω‖22
κP(λ) for ‖ · ‖M ≡ ‖ · ‖2, and

2. κS
P(λ) = 1√

2

√
1− |yT x|2 ‖(1−Πe)(Λω)‖22−‖Πe(Λω)‖22

‖Λω‖22
κP(λ) for ‖ · ‖M ≡ ‖ · ‖F .

For an infinite, simple eigenvalue,

3. κS
P(∞) =

{
κP(∞), if m is even,√

1− |yT x|2 κP (∞), if m is odd,
for ‖ · ‖M ≡ ‖ · ‖2, and

4. κS
P(∞) =

{
1√
2

√
1 + |yT x|2κP(∞), if m is even,

1√
2

√
1− |yT x|2κP(∞), if m is odd,

for ‖ · ‖M ≡ ‖ · ‖F .

Proof. By definition, the even coefficients of a T -even polynomial are symmetric while the
odd coefficients are skew-symmetric. Thus, for finite λ,

σS
P(λ) = sup

b20+···+b2m≤1
sup

{
‖s‖2 : s ∈

∑

i even

biωiλ
iK(symm, x, y) +

∑

i odd

biωiλ
iK(skew, x, y)

}
.

Applying Theorem 2.3 and Lemma 2.4 yields for ‖ · ‖M ≡ ‖ · ‖2,

σS
P(λ) =

∥∥∥
[
Πe(Λω)T ⊗K(1, 0), (1−Πe)(Λω)T ⊗K(1− |yT x|2, 0)

]∥∥∥
2

=
∥∥∥
[
Πe(Λω)T ,

√
1− |yT x|2(1−Πe)(Λω)T

]∥∥∥
2

=
√
‖Λω‖22 − |yT x|2‖(1−Πe)(Λω)‖22,

once again using the fact that a disk is invariant under rotation. Similarly, it follows for
‖ · ‖M ≡ ‖ · ‖F that

σS
P(λ) =

1√
2

∥∥∥
[√

1 + |yT x|2Πe(Λω)T ,
√

1− |yT x|2(1−Πe)(Λω)T
]∥∥∥

2

=
1√
2

√
‖Λω‖22 + |yT x|2

(
‖Πe(Λω)‖22 − ‖(1−Πe)(Λω)‖22

)
.

The result for infinite λ follows in an analogous manner.

Remark 2.7 Note that the statement of Lemma 2.6 does not assume that P itself is T -even.
If we impose this condition then, for odd m, P has a simple infinite eigenvalue only if also
the size of P is odd, see, e.g., [22]. In this case, the skew-symmetry of Am forces the infinite
eigenvalue to be preserved under arbitrary structure-preserving perturbations. This is reflected
by κS

P(∞) = 0.

Lemma 2.6 reveals that the structured condition number can only be significantly lower
than the unstructured one if |yT x| and the ratio

‖(1−Πe)(Λω)‖22
‖Λω‖22

=

∑
i odd

ω2
i |λ|2i

∑
i=0,...,m

ω2
i |λ|2i

= 1−

∑
i even

ω2
i |λ|2i

∑
i=0,...,m

ω2
i |λ|2i

are close to one. The most likely situation for the latter ratio to become close to one is when
m is odd, ωm does not vanish, and |λ| is large.

Example 2.8 ([31]) Let

P(λ) = I + λ0 + λ2I + λ3




0 1− φ 0

−1 + φ 0 i
0 −i 0
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with 0 < φ < 1. This matrix polynomial has one eigenvalue λ∞ = ∞ because of the highest
coefficient, which is – as any odd-sized skew-symmetric matrix – singular. The following table
additionally displays the eigenvalue λmax of largest magnitude, the eigenvalue λmin of smallest
magnitude, as well as their unstructured and structured condition numbers for the set S of
T -even matrix polynomials. We have chosen ωi = ‖Ai‖2 and ‖ · ‖M ≡ ‖ · ‖2.

φ 100 10−3 10−9

κ(λ∞) 1 1.4× 103 1.4× 109

κS
P(λ∞) 0 0 0
|λmax| 1.47 22.4 2.2× 104

κP(λmax) 1.12 3.5× 105 3.5× 1017

κS
P(λmax) 1.12 2.5× 104 2.5× 1013

|λmin| 0.83 0.99 1.00
κP(λmin) 0.45 5.0× 102 5.0× 108

κS
P(λmin) 0.45 3.5× 102 3.5× 108

The entries 0 = κS
P(λ∞) 1 κS

P(λ∞) reflect the fact that the infinite eigenvalue stays intact
under structure-preserving but not under general perturbations. For the largest eigenvalues,
we observe a significant difference between the structured and unstructured condition numbers
as φ → 0. In contrast, this difference becomes negligible for the smallest eigenvalues.

Remark 2.9 For even m, the structured eigenvalue condition number of a T -even polynomial
is usually close to the unstructured one. For example if all weights are equal, ‖(1−Πe)(Λ)‖22 ≤
‖Λ‖22/2 implying κS

P(λ) ≥ κP(λ)/
√

2 for ‖ · ‖M ≡ ‖ · ‖2.

For T -odd polynomials, we obtain the following analogue of Lemma 2.6 by simply ex-
changing the roles of odd and even in the proof.

Lemma 2.10 Let S denote the set of all T -odd matrix polynomials. Then for a finite, simple
eigenvalue λ of a matrix polynomial P ∈ S,

1. κS
P(λ) =

√
1− |yT x|2 ‖Πe(Λω)‖22

‖Λω‖22
κP(λ) for ‖ · ‖M ≡ ‖ · ‖2, and

2. κS
P(λ) = 1√

2

√
1− |yT x|2 ‖Πe(Λω)‖22−‖(1−Πe)(Λω)‖22

‖Λω‖22
κP(λ) for ‖ · ‖M ≡ ‖ · ‖F .

For an infinite, simple eigenvalue,

3. κS
P(∞) =

{
κP(∞), if m is odd,
0, if m is even, for ‖ · ‖M ≡ ‖ · ‖2, and

4. κS
P(∞) =

{
1√
2

√
1 + |yT x|2κP(∞), if m is odd,

0, if m is even,
for ‖ · ‖M ≡ ‖ · ‖F .

Similar to the discussion above, the only situation for which κS
P(λ) can be expected to become

significantly smaller than κP(λ) is for |yT x| ≈ 1 and λ ≈ 0.

2.4 T -palindromic and T -anti-palindromic matrix polynomials

For a T -palindromic polynomial it is sensible to require that the weights in the choice of
‖&P‖, see (4), satisfy ωi = ωm−i. This condition is tacitly assumed throughout the entire
section. The Cayley transform for polynomials introduced in [27, Sec. 2.2] defines a mapping
between palindromic/anti-palindromic and odd/even polynomials. As already demonstrated
in [22] for the case m = 1, this idea can be used to transfer the results from the previous
section to the (anti-)palindromic case. For the mapping to preserve the underlying norm we
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have to restrict ourselves to the case ‖ · ‖M ≡ ‖ · ‖F . The coefficient projections appropriate
for palindromic polynomials are given by Π± : Λω .→ Πs(Λω) with

Π±(Λω) :=

{[
ω0

λm±1√
2

, . . . , ωm/2−1
λm/2+1±λm/2−1

√
2

, ωm/2
λm/2±λm/2

2

]T if m is even,
[
ω0

λm±1√
2

, . . . , ω(m−1)/2
λ(m+1)/2±λ(m−1)/2

√
2

]T
, if m is odd.

(23)

Note that ‖Π+(Λω)‖22 + ‖Π−(Λω)‖22 = ‖Λω‖22.

Lemma 2.11 Let S denote the set of all T -palindromic matrix polynomials. Then for a finite,
simple eigenvalue λ of a matrix polynomial P ∈ S, with ‖ · ‖M ≡ ‖ · ‖F ,

κS
P(λ) =

1√
2

√

1 + |yT x|2 ‖Π+(Λω)‖22 − ‖Π−(Λω)‖22
‖Λω‖22

κP(λ).

For an infinite, simple eigenvalue, κS
P(∞) = κP(∞).

Proof. Assume m is odd. For &P ∈ S,

&P(λ) =
(m−1)/2∑

i=0

λiEi +
(m−1)/2∑

i=0

λm−iET
i

=
(m−1)/2∑

i=0

λi + λm−i

√
2

Ei + ET
i√

2
+

(m−1)/2∑

i=0

λi − λm−i

√
2

Ei − ET
i√

2
.

Let us introduce the auxiliary polynomial

&P̃(µ) =
(m−1)/2∑

i=0

µ2iSi +
(m−1)/2∑

i=0

µ2i+1Wi, Si =
Ei + ET

i√
2

, Wi =
Ei − ET

i√
2

.

Then P̃ ∈ S̃, where S̃ denotes the set of T -even polynomials. Since symmetric and skew-
symmetric matrices are orthogonal to each other with respect to the matrix inner product
〈A, B〉 = trace(BHA), we have ‖A‖2F + ‖AT ‖2F = ‖(A + AT )/

√
2‖2F + ‖(A − AT )/

√
2‖2F for

any A ∈ Cn×n and hence ‖&P‖ = ‖&P̃‖ for ‖ · ‖M ≡ ‖ · ‖F . This allows us to write

σS
P(λ) = sup

{
|yH&P(λ)x| : &P ∈ S, ‖&P‖ ≤ 1

}

= sup
{∣∣∣∣

∑ λi + λm−i

√
2

yHSix +
∑ λi − λm−i

√
2

yHWix

∣∣∣∣ : &P̃ ∈ S̃, ‖&P̃‖ ≤ 1
}

=
1√
2

sup
b20+···+b2m≤1

{
‖s‖2 : s ∈

∑
biωi(λi + λm−i)K(symm, x, y)

+
∑

b(m−1)/2+iωi(λi − λm−i)K(skew, x, y)
}

=
1
2

√
(1 + |yT x|2)

∑
ω2

i |λi + λm−i|2 + (1− |yT x|2)
∑

ω2
i |λi − λm−i|2

=
1√
2

√
(1 + |yT x|2)‖Π+(Λω)‖22 + (1− |yT x|2)‖Π−(Λω)‖22

=
1√
2

√
‖Λω‖22 + |yT x|2(‖Π+(Λω)‖22 − ‖Π−(Λω)‖22),

where we used Theorem 2.3 and Lemma 2.4.
For even m the proof is almost the same; with the only difference that the transformation

leaves the complex symmetric middle coefficient Am/2 unaltered.
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For λ = ∞, observe that the corresponding optimization problem (13) involves only a
single, unstructured coefficient of the polynomial and hence palindromic structure has no
effect on the condition number.

From the result of Lemma 2.11 it follows that a large difference between the structured
and unstructured condition numbers for T -palindromic matrix polynomials may occur when
|yT x| is close to one, and ‖Π+(Λω)‖2 is close to zero. Assuming that all weights are positive,
the latter condition implies that m is odd and and λ ≈ −1. An instance of such a case is
given by a variation of Example 2.8.

Example 2.12 Consider the T -palindromic matrix polynomial

P(λ) =




1 1− φ 0

−1 + φ 1 i
0 −i 1



 + λI + λ2I − λ3




1 1− φ 0

−1 + φ 1 i
0 −i 1





with 0 < φ < 1. An odd-sized T -palindromic matrix polynomial, P has the eigenvalue λ−1 =
−1. The following table additionally displays one eigenvalue λclose closest to −1, an eigenvalue
λmin of smallest magnitude, as well as their unstructured and structured condition numbers for
the set S of T -palindromic matrix polynomials. We have chosen ωi = ‖Ai‖F and ‖·‖M ≡ ‖·‖F .

φ 10−1 10−4 10−8

κ(λ−1) 20.9 2.2× 104 2.2× 108

κS
P(λ−1) 0 0 0

|1 + λclose| 0.39 1.4× 10−2 1.4× 10−4

κP(λclose) 11.1 1.1× 104 1.1× 108

κS
P(λcloser) 6.38 2.5× 102 2.6× 104

|1 + λmin| 1.25 1.41 1.41
κP(λmin) 7.92 7.9× 103 7.9× 107

κS
P(λmin) 5.75 5.6× 103 5.6× 107

The entries 0 = κS
P(λ−1) 1 κP(λ−1) reflect the fact that the eigenvalue −1 remains intact

under structure-preserving but not under general perturbations. Also, eigenvalues close to −1
benefit from a significantly lower structured condition numbers as φ → 0. In contrast, only a
practically irrelevant benefit is revealed for the eigenvalue λmin not close to −1.

Structured eigenvalue condition numbers for T -anti-palindromic matrix polynomials can
be derived in the same way as in Lemma 2.11.

Lemma 2.13 Let S denote the set of all T -anti-palindromic matrix polynomials. Then for a
finite, simple eigenvalue λ of a matrix polynomial P ∈ S, with ‖ · ‖M ≡ ‖ · ‖F ,

κS
P(λ) =

1√
2

√

1− |yT x|2 ‖Π+(Λω)‖22 − ‖Π−(Λω)‖22
‖Λω‖22

κP(λ).

For an infinite, simple eigenvalue, κS
P(∞) = κP(∞).

2.5 Hermitian matrix polynomials

The derivations in the previous sections were greatly simplified by the fact that the first-order
perturbation sets under consideration were disks. For the set of Hermitian perturbations,
however, yHEix forms truly an ellipse. Still, a computable expression is provided by (18)
from Lemma 2.4. However, the explicit formulas derived from this expression take a very
technical form and provide little immediate intuition on the difference between the structured
and unstructured condition number. Therefore, we will work with the bound (19) instead.
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Lemma 2.14 Let S denote the set of all Hermitian matrix polynomials. Then for a finite or
infinite, simple eigenvalue of a matrix polynomial P ∈ S,

1.
√

1− 1
2 |yHx|2 κP(λ) ≤ κS

P(λ) ≤ κP(λ) for ‖ · ‖M ≡ ‖ · ‖2, and

2. κP(λ)/
√

2 ≤ κS
P(λ) ≤ κP(λ) for ‖ · ‖M ≡ ‖ · ‖F .

Proof. Let ‖ · ‖M ≡ ‖ · ‖F . Then Theorem 2.3 states

K(Herm, x, y) ∼= K(1/2, (yHx)2/2).

Consequently,
ωiλ

iK(Herm, x, y) ∼= K(ω2
i |λ|2i/2, ω2

i λ2i(yHx)2/2),

which implies

σS
P(λ) = sup

b20+···+b2m≤1

{
‖s‖2 : s ∈

m∑

i=0

biK(ω2
i λ2i/2, ω2

i λ2i(yHx)2/2)
}

.

By Lemma 2.4,
1√
2
‖Λω‖2 ≤ σS

P(λ) ≤ ‖Λω‖2.

The proof for the case ‖ · ‖M ≡ ‖ · ‖2 is analogous.

Remark 2.15 Since Hermitian and skew-Hermitian matrices are related by multiplication
with i, which simply rotates the first-order perturbation set by 90 degrees, a slight modification
of the proof shows that the statement of Lemma 2.14 remains true when S denotes the space
of H-odd or H-even polynomials. This can in turn be used – as in the proof of Lemma 2.11
– to show that also for H-(anti-)palindromic polynomials there is at most an insignificant
difference between the structured and unstructured eigenvalue condition numbers.

3 Condition numbers for linearizations

As already mentioned in the introduction, polynomial eigenvalue problems are often solved by
first linearizing the matrix polynomial into a larger matrix pencil. Of the classes of lineariza-
tions proposed in the literature, the vector spaces DL(P) introduced in [28] are particularly
amenable to further analysis, while offering a degree of generality that is often sufficient in
applications.

Definition 3.1 Let Λm−1 = [λm−1, λm−2 . . . λ, 1]T and let P be a matrix polynomial of
degree m. Then a matrix pencil L(λ) = λX +Y ∈ Cmn×mn is in DL(P) if there is a so called
ansatz vector v ∈ Cm satisfying

L(λ) · (Λm−1 ⊗ I) = v ⊗ P (λ) and (ΛT
m−1 ⊗ I) · L(λ) = vT ⊗ P (λ).

It is easy to see that the ansatz vector v is uniquely determined by L ∈ DL(P). In [28,
Thm. 6.7] it has been shown that L ∈ DL(P) is a linearization of P if and only if none of the
eigenvalues of P is a root of the polynomial

p(µ; v) = v1µ
m−1 + v2µ

m−2 + · · · + vm−1µ + vm (24)

associated with the ansatz vector v. If P has eigenvalue ∞, this condition should be read
as v1 '= 0. Apart from this elegant characterization, probably the most important property
of DL(P) is that it leads to a simple one-to-one relation between the eigenvectors of P and
L ∈ DL(P). To keep the notation compact, we define Λm−1 as in Definition 3.1 for finite λ
but let Λm−1 = [1, 0, . . . , 0]T for λ = ∞.
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Theorem 3.2 ([28]) Let P be a matrix polynomial and L ∈ DL(P) with ansatz vector v.
Then x '= 0 is a right eigenvector of P associated with an eigenvalue λ if and only if Λm−1⊗x
is a right eigenvector of L associated with λ. Similarly, y '= 0 is a left eigenvector of P
associated with an eigenvalue λ if and only if Λm−1 ⊗ y is a left eigenvector of L associated
with λ.

As a matrix pencil L(λ) = λX + Y is a special case of a matrix polynomial, we can use
the results of Section 2 to study the (structured) eigenvalue condition numbers of L. To
simplify the analysis, we will assume that the weights ω0, . . . ,ωm in the definition of ‖&P‖
are all equal to 1 for the rest of this paper. This assumption is only justified if P is not
badly scaled, i.e., the norms of the coefficients of P do not vary significantly. To a certain
extent, bad scaling can be overcome by rescaling the matrix polynomial before linearization,
see [10, 14, 16, 17]. Moreover, we choose ‖ · ‖v ≡ ‖ · ‖2 and assume that ‖ · ‖M is an arbitrary
but fixed unitarily invariant matrix norm. The same norm is used for measuring perturbations
&L(λ) = &X + λ&Y to the linearization L. To summarize

‖&P‖ =
√
‖E0‖2M + ‖E1‖M + · · · + ‖Em‖2M , (25)

‖&L‖ =
√
‖&X‖2M + ‖&Y ‖2M , (26)

for the rest of this paper. For unstructured eigenvalue condition numbers, Lemma 2.1 together
with Theorem 3.2 imply the following formula.

Lemma 3.3 Let λ be a finite, simple eigenvalue of a matrix polynomial P with normalized
right and left eigenvectors x and y. Then the eigenvalue condition number κL(λ) for a lin-
earization L ∈ DL(P) with ansatz vector v satisfies

κL(λ) =
√

1 + |λ|2
|p(λ; v)| · ‖Λm−1‖22

|yHP ′(λ)x| =
√

1 + |λ|2 ‖Λm−1‖22
|p(λ; v)| ‖Λm‖2

κP(λ).

Proof. A similar formula for the case ‖ · ‖v ≡ ‖ · ‖1 can be found in [16, Section 3]. The
proof for our case ‖ · ‖v ≡ ‖ · ‖2 is almost identical and therefore omitted.

To allow for a simple interpretation of the result of Lemma 3.3, we define the quantity

δ(λ; v) :=
‖Λm−1‖2
|p(λ; v)| (27)

for a given ansatz vector v. Obviously δ(λ; v) ≥ 1. Since L is assumed to be a linearization,
p(λ; v) '= 0 and hence δ(λ; v) < ∞. Using the straightforward bound

1 ≤
√

1 + |λ|2‖Λm−1‖2
‖Λm‖2

≤
√

2, (28)

the result of Lemma 3.3 yields

δ(λ; v) ≤ κL(λ)
κP(λ)

≤
√

2 δ(λ; v). (29)

This shows that the process of linearizing P invariably increases the condition number of a
simple eigenvalue of P at least by a factor of δ(λ; v) and at most by a factor of

√
2δ(λ; v). In

other words, δ(λ; v) serves as a growth factor for the eigenvalue condition number.
Since p(λ; v) = ΛT

m−1v, it follows from the Cauchy-Schwartz inequality that among all
ansatz vectors with ‖v‖2 = 1 the vector v = Λm−1/‖Λm−1‖2 minimizes δ(λ; v) and, hence,
for this particular choice of v we have δ(λ; v) = 1 and

κP(λ) ≤ κL(λ) ≤
√

2 κP(λ).
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Let us emphasize that this result is primarily of theoretical interest as the optimal choice
of v depends on the (typically unknown) eigenvalue λ. A practically more useful recipe is
to choose v = [1, 0, . . . , 0]T if |λ| ≥ 1 and v = [0, . . . , 0, 1]T if |λ| ≤ 1. In both cases,
δ(λ; v) = ‖Λm−1‖2

|p(λ;v)| ≤
√

m and therefore κP(λ) ≤ κL(λ) ≤
√

2m κP(λ).
In the following section, the discussion above shall be extended to structured linearizations

and condition numbers.

4 Structured condition numbers for linearizations

If the polynomial P is structured, its linearization L ∈ DL(P) should reflect this structure.
Table 3 summarizes existing results on the conditions the ansatz vector v should satisfy for
this purpose. These conditions can be found in [15, Thm 3.4] for symmetric polynomials,
in [15, Thm. 6.1] for Hermitian polynomials, and in [27, Tables 3.1, 3.2] for ∗-even/odd,
∗-palindromic/anti-palindromic polynomials with ∗ ∈ {T, H}. The matrices R,Σ ∈ Rm×m

structure of P structure of L ansatz vector

T -symmetric T -symmetric v ∈ Cm

Hermitian Hermitian v ∈ Rm

∗-even ∗-even Σv = (v∗)T

∗-odd Σv = −(v∗)T

∗-odd ∗-even Σv = −(v∗)T

∗-odd Σv = (v∗)T

∗-palindromic ∗-palindromic Rv = (v∗)T

∗-anti-palindromic Rv = −(v∗)T

∗-anti-palindromic ∗-palindromic Rv = −(v∗)T

∗-anti-palindromic Rv = (v∗)T

Table 3: Conditions the ansatz vector v needs to satisfy in order to yield a structured lin-
earization L ∈ DL(P) for a structured polynomial P. Note that (v∗)T = v if ∗ = T and
(v∗)T = v if ∗ = H.

are defined as

R =




1

. . .

1



 , Σ = diag{(−1)m−1, (−1)m−2, . . . , (−1)0}. (30)

If, for example, a structure-preserving method is used for computing the eigenvalues of a
structured linearization L then the structured condition number of L is an appropriate mea-
sure for the influence of roundoff error on the accuracy of the computed eigenvalues. It is
therefore of interest to choose L such that the structured condition number is minimized.

Let us recall our choice of norms (25)–(26) for measuring perturbations. A first general
result can be obtained from combining the identity κS

L(λ)
κS
P(λ)

= κS
L(λ)

κL(λ)
κP(λ)
κS
P(λ)

κL(λ)
κP(λ) with (29):

κS
L(λ)

κL(λ)
κP(λ)
κS

P(λ)
δ(λ; v) ≤ κS

L(λ)
κS

P(λ)
≤
√

2
κS

L(λ)
κL(λ)

κP(λ)
κS

P(λ)
δ(λ; v). (31)

We will make frequent use of (31) to obtain concrete upper bounds for specific structures.
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4.1 Complex symmetric matrix polynomials

For a complex symmetric matrix polynomial P, any ansatz vector v yields a complex sym-
metric linearization. Thus, we are free to use the optimal choice v = Λm−1/‖Λm−1‖2 from
Section 3. Combined with Corollary 2.5, which states that there is (almost) no difference
between structured and unstructured condition numbers, we have the following result.

Theorem 4.1 Let S denote the set of complex symmetric matrix polynomials. Let λ be a
finite or infinite, simple eigenvalue of a matrix polynomial P. Then for the linearization
L ∈ DL(P) corresponding to an ansatz vector v, we have

δ(λ; v) ≤ κS
L(λ)

κS
P(λ)

≤
√

2 δ(λ; v)

for ‖ · ‖M ≡ ‖ · ‖2 and ‖ · ‖M ≡ ‖ · ‖F . In particular, for v = Λm−1/‖Λm−1‖2, we have

κS
P(λ) ≤ κS

L(λ) ≤
√

2 κS
P(λ). (32)

Proof. For ‖ · ‖M ≡ ‖ · ‖2, we have κS
P(λ) = κP(λ) and κS

L(λ) = κL(λ). Hence the
result follows directly from (31). For ‖ · ‖M ≡ ‖ · ‖F , the additional factors appearing in
Corollary 2.5 are the same for κS

P(λ) and κS
L(λ). This can be seen as follows. According to

Theorem 3.2, the normalized right and left eigenvectors of the linearization take the form
x̃ = Λm−1 ⊗ x/‖Λm−1‖2, ỹ = Λm−1 ⊗ y/‖Λm−1‖2. Thus,

ỹT x̃ =
Λm−1

T Λm−1

‖Λm−1‖22
yT x = yT x, (33)

concluding the proof.

4.2 T -even and T -odd matrix polynomials

In contrast to complex symmetric polynomials, structure-preserving linearizations for T -even
and T -odd polynomials put a restriction on the choice of the ansatz vector: Σv = ±v. The
following theorem shows that the increase of structured condition number can still be made
nearly proportional to δ(λ; v).

Theorem 4.2 Let Se and So denote the sets of T -even and T -odd polynomials, respectively.
Let λ be a finite or infinite, simple eigenvalue of a T -even matrix polynomial P. Consider the
T -even and T -odd linearizations Le, Lo ∈ DL(P) corresponding to ansatz vectors satisfying
Σv = v and Σv = −v, respectively. Then the following statements hold for ‖ · ‖M ≡ ‖ · ‖2.

1. If m is odd: δ(λ; v) ≤
κSe

Le
(λ)

κSe
P (λ)

≤
√

2 δ(λ; v).

2. If m is even and |λ| ≤ 1:
δ(λ; v)√

2
≤

κSe
Le

(λ)

κSe
P (λ)

≤
√

2 δ(λ; v).

3. If m is even and |λ| ≥ 1:
δ(λ; v)√

2
≤

κSo
Lo

(λ)

κSe
P (λ)

≤
√

2 δ(λ; v).

Proof. The proof makes use of the basic algebraic relation

|λ|2

1 + |λ|2 ≥
‖(1−Πe)(Λm)‖22

‖Λm‖22
, with equality for odd m. (34)
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1. If m is odd, (34) implies – together with Lemma 2.6 and (33) – the equality

κSe
Le

(λ)
κSe

P (λ)
=

√
1− |yT x|2 |λ|2

1+|λ|2√
1− |yT x|2 ‖(1−Πe)(Λm)‖22

‖Λm‖22

· κLe(λ)
κP(λ)

=
κLe(λ)
κP(λ)

. (35)

Now the desired result follows directly from our general bounds (31).

2. If m is even and |λ| ≤ 1 then

1√
2
· κLe(λ)

κP(λ)
≤

κSe
Le

(λ)
κSe

P (λ)
≤ κLe(λ)

κP(λ)
,

where the lower and upper bounds follow from the first equality in (35) using |λ|2
1+|λ|2 ≤

1
2

and (34), respectively. Again, the desired result follows from (31).

3. If m is even, |λ| ≥ 1 and a T -odd linearization is used then Lemma 2.10 along with (33)
yield

κSo
Lo

(λ)
κSe

P (λ)
=

√
1− |yT x|2 1

1+|λ|2
√

1− |yT x|2 ‖(1−Πe)(Λm)‖22
‖Λm‖22

· κLo(λ)
κP(λ)

.

The relation
‖(1−Πe)(Λm)‖22

‖Λm‖22
≤ 1

1 + |λ|2 ≤
1
2

then implies
1√
2
· κLo(λ)

κP(λ)
≤

κSo
Lo

(λ)
κSe

P (λ)
≤ κLo(λ)

κP(λ)
.

Hence the result follows from (31).

Obtaining an optimally conditioned linearization requires finding the maximum of |p(λ; v)| =
|ΛT

m−1v| among all v with Σv = ±v and ‖v‖2 ≤ 1. This maximization problem can be
addressed by the following basic linear algebra result.

Proposition 4.3 Let ΠV be an orthogonal projector onto a linear subspace V of Fm with
F ∈ {C, R}. Then for A ∈ Fl×m,

max
v∈V

‖v‖2≤1

‖Av‖2 = ‖AΠV‖2.

For a T -even linearization we have V = {v ∈ Cm : Σv = v} and the orthogonal projector onto
V is given by the even coefficient projector Πe defined in (22). Hence, by Proposition 4.3,

max
v=Σv
‖v‖2≤1

|p(λ; v)| = max
v=Σv
‖v‖2≤1

|ΛT
m−1v| = ‖Πe(Λm−1)‖2

where the maximum is attained by v = Πe(Λm−1)/‖Πe(Λm−1)‖2. Similarly, for a T -odd
linearization,

max
v=−Σv
‖v‖2≤1

|p(λ; v)| = ‖(1−Πe)(Λm−1)‖2

with the maximum attained by v = (1−Πe)(Λm−1)/‖(1−Πe)(Λm−1)‖2.

Corollary 4.4 Under the assumptions of Theorem 4.2, consider the specific T -even and T -
odd linearizations Le, Lo ∈ DL(P) belonging to the ansatz vectors v = Πe(Λm−1)/‖Πe(Λm−1)‖2
and v = (1−Πe)(Λm−1)/‖(1−Πe)(Λm−1)‖2, respectively. Then the following statements hold.
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1. If m is odd: κSe
P (λ) ≤ κSe

Le
(λ) ≤ 2 κSe

P (λ).

2. If m is even and |λ| ≤ 1: κSe
P (λ)/

√
2 ≤ κSe

Le
(λ) ≤ 2 κSe

P (λ).

3. If m is even and |λ| ≥ 1: κSe
P (λ)/

√
2 ≤ κSo

Lo
(λ) ≤ 2 κSe

P (λ).

Proof. Note that, by definition, δ(λ; v) ≥ 1 and hence all lower bounds are direct conse-
quences of Theorem 4.2. To show δ(λ; v) ≤

√
2 for the upper bounds of statements 1 and 2,

we make use of the inequalities

‖Πe(Λm−1)‖ ≤ ‖Λm−1‖2 ≤
√

2‖Πe(Λm−1)‖, (36)

which hold if either m is odd or m is even and |λ| ≤ 1. For statement 3, the bound δ(λ; v) ≤
√

2
is a consequence of (34).

The morale of Theorem 4.2 and Corollary 4.4 is quickly told: There is always a “good”
T -even linearization (in the sense that the linearization increases the structured condition
number at most by a modest factor) if either m is odd or m is even and |λ| ≤ 1. In the
exceptional case, when m is even and |λ| ≥ 1, there is always a “good” T -odd linearization.
Intuitively, the necessity of such an exceptional case becomes clear from the fact that there
exists no T -even linearization for a T -even polynomial with even m and infinite eigenvalue.
Even though there is a T -even linearization for even m and large but finite λ, it is not advisable
to use it for numerical computations.

In practice, one does not know λ in advance and hence the linearizations used in Corol-
lary 4.4 for which δ(λ; v) ≤

√
2 are mainly of theoretical interest. Table 4 provides practically

more feasible recommendations on the choice of v, such that there is still at worst a slight in-
crease of the structured condition number. The bounds in this table follow from Theorem 4.2
combined with δ(λ; v) ≤

√
m for all displayed choices of v. The example linearizations are

taken from [27, Tables 3.4–3.6].

m λ of v Bound on struct. cond. Example
interest of linearization

odd
or
even

|λ| ≤ 1 em κSe
Le

(λ) ≤
√

2m κSe
P (λ)

2

4
0 −A3 0

A3 A2 0
0 0 A0

3

5 + λ

2

4
0 0 A3
0 −A3 −A2

A3 A2 A1

3

5

odd |λ| ≥ 1 e1 κSe
Le

(λ) ≤
√

2m κSe
P (λ)

2

4
A2 A1 A0
−A1 −A0 0
A0 0 0

3

5 + λ

2

4
A3 0 0
0 A1 A0
0 −A0 0

3

5

even |λ| ≥ 1 e1 κSo
Lo

(λ) ≤
√

2m κSe
P (λ)

»
A2 0
0 A0

–
+ λ

»
A1 A0
−A0 0

–

Table 4: Recipes for choosing the ansatz vector v for a T -even or T -odd linearization Le or
Lo of a T -even matrix polynomial of degree m. Note that e1 and em denote the 1st and mth
unit vector of length m, respectively.

We extend Theorem 4.2 and Corollary 4.4 to T -odd polynomials.

Theorem 4.5 Let Se and So denote the sets of T -even and T -odd polynomials, respectively.
Let λ be a finite or infinite, simple eigenvalue of a T -odd matrix polynomial P. Consider the
T -odd and T -even linearizations Lo, Le ∈ DL(P) corresponding to ansatz vectors satisfying
Σv = v and Σv = −v, respectively. Then the following statements hold for ‖ · ‖M ≡ ‖ · ‖2.

1. If m is odd: δ(λ; v) ≤
κSo

Lo
(λ)

κSo
P (λ)

≤
√

2 δ(λ; v).

2. If m is even and |λ| ≤ 1: δ(λ; v) ≤
κSo

Lo
(λ)

κSo
P (λ)

≤ 2 δ(λ; v).
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3. If m is even and |λ| ≥ 1: δ(λ; v) ≤
κSe

Le
(λ)

κSo
P (λ)

≤ 2 δ(λ; v).

Proof.

1. Similar to the proof of Theorem 4.2, Lemma 2.10 yields

κSo
Lo

(λ)
κSo

P (λ)
=

√
1− |yT x|2 1

1+|λ|2
√

1− |yT x|2 ‖Πe(Λm)‖22
‖Λm‖22

· κLo(λ)
κP(λ)

. (37)

Relation (34) implies 1/(1 + |λ|2) = ‖Πe(Λm)‖22/‖Λm‖22 and hence
κSo

Lo
(λ)

κSo
P (λ)

= κLo (λ)
κP(λ) ,

which proves the first statement by (31).

2. If m is even and |λ| ≤ 1, relation (34) yields 1/(1+ |λ|2) ≤ ‖Πe(Λm)‖22/‖Λm‖22, implying

1 ≤

√
1− |yT x|2 1

1+|λ|2
√

1− |yT x|2 ‖Πe(Λm)‖22
‖Λm‖22

≤

√
1− 1

1+|λ|2
√

1− ‖Πe(Λm)‖22
‖Λm‖22

=
‖Λm‖2
‖Λm−1‖2

≤
√

1 + |λ|2 ≤
√

2,

where the previous last bound follows from (28). Combined with (37) and (31), this
shows the bounds of the second statement.

3. For m even and |λ| ≥ 1, a T -even linearization gives

κSe
Le

(λ)
κSo

P (λ)
=

√
1− |yT x|2 |λ|2

1+|λ|2√
1− |yT x|2 ‖Πe(Λm)‖22

‖Λm‖22

· κLe(λ)
κP(λ)

.

It is not hard to verify |λ|2
1+|λ|2 ≤

‖Πe(Λm)‖22
‖Λm‖22

, implying

1 ≤

√
1− |yT x|2 |λ|2

1+|λ|2√
1− |yT x|2 ‖Πe(Λm)‖22

‖Λm‖22

≤

√
1− |λ|2

1+|λ|2√
1− ‖Πe(Λm)‖22

‖Λm‖22

=
‖Λm‖2

|λ| · ‖Λm−1‖2
≤

√
1 + |λ|2
|λ| ≤

√
2,

where the previous last bound follows again from (28). This concludes the proof by (31).

Corollary 4.6 Under the assumptions of Theorem 4.5, consider the specific T -odd and T -
even linearizations Lo, Le ∈ DL(P) belonging to the ansatz vectors v = Πe(Λm−1)/‖Πe(Λm−1)‖2
and v = (1−Πe)(Λm−1)/‖(1−Πe)(Λm−1)‖2, respectively. Then the following statements hold.

1. If m is odd: κSo
P (λ) ≤ κSo

Lo
(λ) ≤ 2 κSo

P (λ).

2. If m is even and |λ| ≤ 1: κSo
P (λ) ≤ κSo

Lo
(λ) ≤ 2

√
2 κSo

P (λ).

3. If m is even and |λ| ≥ 1: κSo
P (λ) ≤ κSe

Le
(λ) ≤ 2

√
2 κSo

P (λ).

Proof. The proof follows, similar as the proof of Corollary 4.4, from Theorem 4.5 and (36).

We mention that Table 4 has a virtually identical analogue in the case of a T -odd matrix
polynomial.
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4.3 T -palindromic matrix polynomials

Turning to T -palindromic matrix polynomials, we first show that the condition number growth
under T -(anti-)palindromic linearization is again governed by the quantity δ(λ; v) introduced
in (27). Let us recall Table 3: the ansatz vector v for a T -(anti-)palindromic linearization of
a T -palindromic polynomial should satisfy Rv = v (Rv = −v) with the flip permutation R
defined in (30). Our first result reveals relations between the unstructured condition numbers
for the matrix polynomials and the structured condition numbers for the linearizations.

Proposition 4.7 Let Sp and Sa denote the sets of T -palindromic and T -anti-palindromic
polynomials, respectively. Let λ be a finite or infinite, simple eigenvalue of a matrix polynomial
P and let Lp, La ∈ DL(P) be a T -palindromic and T -anti-palindromic linearizations of P,
respectively. Then the following statements hold for ‖ · ‖M ≡ ‖ · ‖F .

1. If Re(λ) ≥ 0 :
δ(λ; v)√

2
≤

κ
Sp
Lp

(λ)

κP(λ)
≤
√

2 δ(λ; v).

2. If Re(λ) ≤ 0 :
δ(λ; v)√

2
≤

κSa
La

(λ)

κP(λ)
≤
√

2 δ(λ; v).

Proof. For an infinite eigenvalue, κ
Sp

Lp
(λ) = κLp(λ) as well as κSa

La
(λ) = κLa(λ) , and hence

the result follows from (29). We can therefore assume λ to be finite.

1. By Lemma 2.11,

κ
Sp

Lp
(λ) =

‖Λm−1‖22
√

1 + |λ|2 + 2Re(λ)|yT x|2√
2 |p(λ; v)| ‖Λm‖2

κP(λ).

Since Re(λ) > 0, it holds that ‖(1, λ)‖2 ≤
√

1 + |λ|2 + 2Re(λ)|yT x|2 ≤
√

2 ‖(1, λ)‖2.
Hence the result follows from Lemma 3.3 and (28).

2. This result follows analogously from Lemma 2.13.

In the following, we will treat the more difficult case of structured condition numbers for both
the polynomial and its linearization.

Theorem 4.8 Let Sp, Sa be defined as in Proposition 4.7. Let λ be a finite or infinite,
simple eigenvalue of a T -palindromic matrix polynomial P. Let Lp ∈ DL(P) and La ∈ DL(P)
be T -palindromic and T -anti-palindromic linearizations of P corresponding to ansatz vectors
satisfying v = Rv and v = −Rv, respectively. Then the following statements hold for ‖ ·‖M ≡
‖ · ‖F .

1. If m is odd:
κ

Sp
Lp

(λ)

κ
Sp
P (λ)

≤
p

2(m + 1) δ(λ; v).

2. If m is even and Re(λ) ≥ 0:
δ(λ; v)√

2
≤

κ
Sp
Lp

(λ)

κ
Sp
P (λ)

≤
p

2(m + 1) δ(λ; v).

3. If m is even and Re(λ) ≤ 0:
δ(λ; v)√

2
≤

κSa
La

(λ)

κ
Sp
P (λ)

≤
p

2(m + 1) δ(λ; v).

Proof. With the same argument as in the proof of Proposition 4.7, we can assume w.l.o.g.
that λ is finite. Moreover, since κS

L(λ)/κP(λ) ≤ κS
L(λ)/κS

P(λ) holds for any structure S, the
desired lower bounds follow from Proposition 4.7. It remains to prove the upper bounds.
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1. If m is odd and Re(λ) ≥ 0, Lemma 2.11 implies – together with Lemma A.1.1 and (33)
– the inequality

κ
Sp

Lp
(λ)

κ
Sp

P (λ)
=

√
1 + |yT x|2 |1+λ|2−|1−λ|2

2(1+|λ|2)√
1 + |yT x|2 ‖Π+(Λm)‖22−‖Π−(Λm)‖22

‖Λm‖22

·
κLp(λ)
κP(λ)

(38)

≤ 1√
1 + ‖Π+(Λm)‖22−‖Π−(Λm)‖22

‖Λm‖22

·
κLp(λ)
κP(λ)

=
‖Λm‖2√

2‖Π+(Λm)‖2
·
κLp(λ)
κP(λ)

≤
√

m + 1
κLp(λ)
κP(λ)

.

In the case Re(λ) ≤ 0, Lemma A.1.2 combined with (38) directly gives
κ

Sp
Lp

(λ)

κ
Sp
P (λ)

≤ κLp (λ)

κP(λ) .

In both cases, the desired upper bound now follows from (31).

2. For even m, the result can be proven along the lines of the proof of the first statement,
now using Lemma A.1.3.

3. The proof of the third statement also follows along the lines of the proof of the first
statement. Lemmas 2.11, 2.13 and A.13 reveal – for even m and a T -anti-palindromic
linearization – the inequality

κSa
La

(λ)

κ
Sp

P (λ)
=

√
1− |yT x|2 |1−λ|2−|1+λ|2

2(1+|λ|2)√
1 + |yT x|2 ‖Π+(Λm)‖22−‖Π−(Λm)‖22

‖Λm‖22

· κLa(λ)
κP(λ)

≤
√

m + 1
κLa(λ)
κP(λ)

.

Again, the desired upper bound follows from (31).

In the sense of condition numbers, the optimal linearization belongs to an ansatz vector
that minimizes δ(λ; v) or, equivalently, maximizes |p(λ; v)|. By Proposition 4.3,

max
v=Rv
‖v‖2≤1

|p(λ; v)| = ‖Π+(Λm−1)‖2,

where the maximum is attained by v+ defined as

v± =
[

λm−1±1
2 , . . . , λm/2+1±λm/2

2 , λm/2+1±λm/2

2 , . . . , λm−1±1
2

]T

‖Π±(Λm−1)‖2
(39)

if m is even and as

v± =
[

λm−1±1
2 , . . . , λ(m−1)/2±λ(m−1)/2

2 , . . . , λm−1±1
2

]T

‖Π±(Λm−1)‖2
(40)

if m is odd. Similarly,
max

v=−Rv
‖v‖2≤1

|p(λ; v)| = ‖Π−(Λm−1)‖2,

with the maximum attained by v−.

Corollary 4.9 Under the assumptions of Theorem 4.8, consider the specific T -palindromic
and T -anti-palindromic linearizations Lp, La ∈ DL(P) belonging to the ansatz vectors v+, v−
defined in (39)–(40), respectively. Then the following statements hold.

1. If m is odd: κ
Sp
Lp

(λ) ≤ 2(m + 1) κ
Sp
P (λ).
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2. If m is even and Re(λ) ≥ 0: κ
Sp
Lp

(λ) ≤ 2(m + 1) κ
Sp
P (λ).

3. If m is even and Re(λ) ≤ 0: κSa
La

(λ) ≤ 2(m + 1) κ
Sp
P (λ).

Proof. The bounds follow from Theorem 4.8 and Lemma A.1.
Theorem 4.8 and Corollary 4.9 admit a simple interpretation. If either m is odd or m is

even and λ has nonnegative real part, it is OK to use a T -palindromic linearization; there will
be no significant increase of the structured condition number. In the exceptional case, when
m is even and λ has negative real part, a T -anti-palindromic linearization should be preferred.
This is especially true for λ = −1, in which case there is no T -palindromic linearization.

The upper bounds in Corollary 4.8 are probably too pessimistic; at least they do not fully
reflect the optimality of the choice of v+ and v−. Yet, the heuristic choices listed in Table 5
yield almost the same bounds! These bounds are proven in the following lemma. To provide
recipes for even m larger than 2, one would need to discriminate further between |λ| close to
1 and |λ| far away from 1, similar as for odd m.

m λ of v Bound on struct. cond. Example
interest of linearization

odd |λ| ≥ αm

|λ| ≤ α−1
m

2

66664

1
0.
.
.
0
1

3

77775
κ

Sp
Lp

(λ) ≤ 2
√

2(m + 1)κ
Sp
P (λ)

2

4
A0 0 A0

A1 − AT
0 A0 − AT

1 0
AT

1 A1 − AT
0 A0

3

5 +

λ

2

4
AT

0 AT
1 − A0 A1

0 AT
0 − A1 AT

1 − A0
AT

0 0 AT
0

3

5

odd |λ| ≤ αm

|λ| ≥ α−1
m

e m−1
2

κ
Sp
Lp

(λ) ≤ 2(m + 1)κ
Sp
P (λ)

2

4
0 A0 0
0 A1 A0

−AT
0 0 0

3

5+λ

2

4
0 0 −A0

AT
0 AT

1 0
0 AT

0 0

3

5

m = 2 Re(λ) ≥ 0

»
1
1

–
κ

Sp
Lp

(λ) ≤ 2
√

3κ
Sp
P (λ)

»
A0 A0

A1 − AT
0 A0

–
+ λ

»
AT

0 AT
1 − A0

AT
0 AT

0

–

m = 2 Re(λ) ≤ 0

»
1
−1

–
κSa

La
(λ) ≤ 2

√
3κ

Sp
P (λ)

»
−A0 A0

−A1 − AT
0 −A0

–
+λ

»
AT

0 AT
1 + A0

−AT
0 AT

0

–

Table 5: Recipes for choosing the ansatz vector v for a T -palindromic or T -anti-palindromic
linearization Le or Lo of a T -palindromic matrix polynomial of degree m. Note that αm =
21/(m−1).

Lemma 4.10 The upper bounds on κ
Sp

Lp
(λ) and κSa

La
(λ) listed in Table 5 are valid.

Proof. It suffices to derive an upper bound on δ(λ; v) = ‖Λm−1‖2
p(λ;v) . Multiplying such a

bound by
√

2(m + 1) then gives the coefficient in the upper bound on the structured condition
number of the linearization, see Theorem 4.8.

1. For odd m and |λ| ≥ αm or |λ| ≤ 1/αm, the bound κ
Sp

Lp
(λ) ≤

√
2(m + 1)κ

Sp

P (λ) follows
from

‖Λm−1‖22
|p(λ; v)|2 ≤

1 + α2
m + · · · + α2m−2

m

|1− αm−1
m |2

= 1 + α2
m + · · · + α2m−2

m ≤ 4m.

2. For odd m and 1/αm ≤ |λ| ≤ αm, the bound κ
Sp

Lp
(λ) ≤ 2(m + 1) κ

Sp

P (λ) follows from

‖Λm−1‖22
|p(λ; v)|2 ≤

1 + α2
m + · · · + α2m−2

m

αm−1
m

=
1
2
(1 + α2

m + · · · + α2m−2
m ) ≤ 2m.

3. For m = 2 and Re(λ) ≥ 0, the bound κ
Sp

Lp
(λ) ≤ 2(m + 1)κ

Sp

P (λ) follows for |λ| ≤ 1 from

‖Λm−1‖22
|p(λ; v)|2 =

1 + |λ|2

|1 + λ|2 ≤ 2
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and for |λ| ≥ 1 from
‖Λm−1‖22
|p(λ; v)|2 =

|λ|2

|λ|2
1

|λ|2 + 1

| 1λ + 1|2
≤ 2.

4. The proof for m = 2 and Re(λ) ≤ 0 is analogous to Part 3.

For T -anti-palindromic polynomials, the implications of Theorems 4.8 and 4.7, Corol-
lary 4.9 and Table 5 hold, but with the roles of T -palindromic and T -anti-palindromic ex-
changed. For example, if either m is odd or m is even and Re(λ) ≥ 0, there is always a
good T -anti-palindromic linearization. Otherwise, if m is even and Re(λ) ≤ 0, there is a good
T -palindromic linearization.

4.4 Hermitian matrix polynomials and related structures

The linearization of a Hermitian polynomial is also Hermitian if the corresponding ansatz
vector v is real, see Table 3. The optimal v, which maximizes |p(λ; v)|, could be found by
finding the maximal singular value and the corresponding left singular vector of the real m×2
matrix [Re(Λm−1), Im(Λm−1)]. Instead of invoking the rather complicated expression for this
optimal choice, the following lemma uses a heuristic choice of v.

Lemma 4.11 Let Sh denote the set of Hermitian polynomials. Let λ be a finite or infinite,
simple eigenvalue of a Hermitian matrix polynomial P. Then the following statements hold
for ‖ · ‖M ≡ ‖ · ‖F .

1. If |λ| ≥ 1 then the linearization L corresponding to the ansatz vector v = [1, 0, . . . , 0] is
Hermitian and satisfies κSh

L (λ) ≤ 2
√

mκSh
P (λ).

2. If |λ| ≤ 1 then the linearization L corresponding to the ansatz vector v = [0, . . . , 0, 1] is
Hermitian and satisfies κSh

L (λ) ≤ 2
√

mκSh
P (λ).

Proof. Assume |λ| ≥ 1. Lemma 2.14 together with Lemma 3.3 and (28) imply

κSh
L (λ)

κSh
P (λ)

≤
√

2
κLp(λ)
κP(λ)

=
√

2
‖Λm−1‖2
|p(λ; v)| ≤ 2

√
m|λ|m

|λ|m = 2
√

m.

The proof for |λ| ≤ 1 proceeds analogously.
H-even and H-odd matrix polynomials are closely related to Hermitian matrix polyno-

mials, see Remark 2.15. In particular, Lemma 4.11 applies verbatim to H-even and H-odd
polynomials. Note, however, that in the case of even m the ansatz vector v = [1, 0, . . . , 0]
yields an H-odd linearization for an H-even polynomial, and vice versa. Similarly, the recipes
of Table 5 can be extended to H-palindromic polynomials.

5 Summary and conclusions

We have derived relatively simple expressions for the structured eigenvalue condition numbers
of certain structured matrix polynomials. These expressions have been used to analyze the
possible increase of the condition numbers when the polynomial is replaced by a structured
linearization. At least in the case when all coefficients of the polynomial are perturbed to
the same extent, the result is very positive: There is always a structured linearization, which
depends on the eigenvalue of interest, such that the condition numbers increase at most by a
factor linearly depending on m. We have also provided recipes for structured linearizations,
which do not depend on the exact value of the eigenvalue, and for which the increase of
the condition number is still negligible. Hence, the accuracy of a strongly backward stable
eigensolver applied to the structured linearization will fully enjoy the benefits of structure on
the sensitivity of an eigenvalue for the original matrix polynomial. The techniques and proofs
of this paper represent yet another testimonial for the versatility of the linearization spaces
introduced by Mackey, Mackey, Mehl, and Mehrmann in [27, 28].
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A Appendix

The following lemma summarizes some auxiliary results needed in the proofs of Section 4.3.

Lemma A.1 Let λ ∈ C and let Λ± be defined as in (23. Then the following statements hold.

1. Assume m is odd. If Re(λ) ≥ 0 then ‖Π+(Λm)‖22
‖Λm‖22

≥ 1
2(m+1) . If Re(λ) ≤ 0 then

‖Π−(Λm)‖22
‖Λm‖22

≥ 1
2(m+1) .

2. Assume m is odd. If Re(λ) ≤ 0 then ‖Π+(Λm)‖22−‖Π−(Λm)‖22
‖Λm‖22

≥ |1+λ|2−|1−λ|2
2(1+|λ|2) .

3. Assume m is even. Then ‖Π+(Λm)‖22
‖Λm‖22

≥ 1
2(m+1) .

Proof.

1. For |λ| ≥ 1 the statement follows from ‖Λm‖22 ≤ (m + 1)|λ|2m and

2‖Π+(Λm)‖22 ≥ |λm + 1|2 + |λ(m+1)/2 + λ(m−1)/2|2

= |λ|2m + 2Re(λm) + 1 + |λ|m−1(|λ|2 + Re(λ) + 1)
≥ |λ|2m − 2|λ|m + 1 + |λ|m−1(|λ|2 + 1)
= |λ|2m + 1 + |λ|m−1(|λ|− 1)2 ≥ |λ|2m.

If |λ| ≤ 1, we can apply an analogous argument with λ replaced by 1/λ to

‖Π+(Λm)‖22
‖Λm‖22

=
|λ|2m

|λ|2m
·




(m−1)/2∑

k=0

1
2

∣∣∣∣
1
λk

+
1

λm−k

∣∣∣∣
2



/ (

m∑

k=0

1
|λ|2k

)
.

The second part follows from the first part by the substitution λ → −λ.

2. Using (1 + |λ|2)(1 + |λ|4 + · · ·+ |λ|(2m−2)) = ‖Λm‖22, we prove the equivalent statement

‖Π+(Λm)‖22 ≥ (|1 + λ|2 − |1− λ|2)(1 + |λ|4 + · · · + |λ|(2m−2)).

Assume |λ| ≤ 1. Then the statement follows if we can show

‖Π+(Λm)‖22 − ‖Π−(Λm)‖22 ≥
1
4
(|1 + λ|2 − |1− λ|2)(m + 1). (41)

Inserting λ = |λ|(cos(φ) + i sin(φ)), we expand

‖Π+(Λm)‖22 − ‖Π−(Λm)‖22 =
1
2

(m−1)/2∑

k=0

|λm−k + λk|2 − |λm−k − λk|2

= 2|λ|m
(m−1)/2∑

k=0

(cos((m− k)φ) cos(kφ) + sin((m− k)φ) sin(kφ))

= 2|λ|m
(m−1)/2∑

k=0

cos((m− 2k)φ) = 2|λ|m
(m−1)/2∑

k=0

cos(φ + 2kφ)

= 2|λ|m
sin(m+1

2 φ) cos(m+1
2 φ)

sinφ
= 2|λ|m sin((m + 1)φ)

sin φ
.

On the other hand,

|1 + λ|2 − |1− λ|2 = 4|λ| sin(2φ)
sin φ

.
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Thus (41) is equivalent to

|λ|m−1 sin((m + 1)φ)
sin φ

≥ m + 1
2

sin(2φ)
sinφ

Dividing by cos(φ) ≤ 0 on both sides, this is in turn equivalent to

|λ|m−1 sin((m + 1)φ)
sin(2φ)

≤ m + 1
2

.

Finally, using |λ| ≤ 1, the last inequality follows from the basic trigonometric inequality
sin((m+1)φ)

sin(2φ) ≤ m+1
2 . For |λ| ≥ 1, we can use the same trick as in the proof of statement

1 and replace λ by 1/λ.

3. Again as in the proof of statement 1, we can assume w.l.o.g. |λ| ≥ 1. Then ‖Λm‖22 ≤
(m + 1)|λ|2m and

2‖Π+(Λm)‖22 ≥ |λm + 1|2 + 2|λ|m

= |λ|2m + 2Re(λm) + 1 + 2|λ|m ≥ |λ|2m,

concluding the proof.
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