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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Abstract

The calculus of differential forms allows to state general convection-
diffusion problems using the notion of Lie derivatives. We apply the Car-
tan formula for Lie derivatives and the contraction extrusion dualism to
propose an upwind discretization procedure based on discrete differential
forms. We discuss this procedure in detail for 0-forms and the scalar
convection-diffusion boundary value problem. In the case of linear ansatz
spaces one of the stable schemes derived with this procedure coincides
with Tabata’s upwind scheme. In the case of quadratic ansatz spaces we
get a new scheme that enjoys stability properties similar to SUPG.

1 Introduction

The discretization of boundary value problems for the singularly perturbed
convection-diffusion equation

−ε∆u + ∇u · β = f in Ω ⊂ R
n , (1)

has attracted and continues to attract much attention in numerical analysis.
The main difficulty are challenging stability issues connected with steep char-
acteristic or boundary layers of the solution. This manifests itself as spurious
solutions produced by standard methods.

Motivated by the maximum principle that holds for solutions of the contin-
uous equation, stable discretization schemes are achieved by ensuring that the
discrete solution operator Lh is inverse monotone. Examples are one sided up-
wind finite differences, the upwind finite element methods discussed in Ikeda [15]
or the nonlinear finite elements scheme of Mizukami and Hughes [18]. All these
methods establish matrix representations A of Lh that are of positive type (i.e.,
aii > 0, aij ≤ 0, if i $= j, and aii ≥

∑

j !=i aij). Similar to Godunov’s result
for the time dependent transport equation, a finite difference method with this
property is at most first-order consistent [23]. Nevertheless Roos [19] describes a
family of second-order consistent finite difference methods in one dimension that
have inverse monotone matrix representations. Using a result of Lorenz [17], he
showed that they are a product of inverse monotone matrices. Unfortunately
this technique is not applicable for finite difference methods in two or higher
dimensions. Besides this there are several attempts to define a proper discrete
maximum principle for the finite element context [9].
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Another family of discretization methods, mainly based on finite elements or
the discontinuous Galerkin approach adds some mesh dependent terms to the
standard formulation to control the gradient of the solution independently of the
diffusion constant ε. Representatives of this family are SUPG [6], GLSFEM [14]
or methods using interior penalty terms [7].

A new perspective is adopted in this paper. We start from the observa-
tion that (1) is just one specific instance of a larger family of boundary value
problems modeling convective phenomena, including e.g. magnetic convection.
The calculus of differential forms permits us to express the governing partial
differential equation as

−εd ∗ dω + ∗Lβω = ϕ in Ω ⊂ R
n . (2)

This is an equation for an unknown l-form ω, 0 ≤ l ≤ n. The symbol ∗ stands
for the so-called Hodge operator mapping an l-form to an n − l-form, and d
denotes the exterior derivative. Together they define the principal part d ∗ dω
of the differential operator. Differential forms can be modelled by means of
functions and vector fields through so-called vector proxies [5, page 132]. For
n = 3, in the case of ∗ induced by the Euclidean metric on R3, the operator ∗dω
becomes −∆, ∇× (∇ × ·), and ∇ ·∇ in vector proxy notation, for l = 0, 1, 2,
respectively. We refer to [12] for more details and an introduction to the calculus
of differential forms.

Thinking in terms of differential forms offers considerable advantages as re-
gards the construction of structure preserving spatial finite element discretiza-
tions of boundary value problems for d∗dω: one can devise discrete counterparts
of l-forms defined on triangulations of Ω, which provide suitable piecewise poly-
nomial finite element spaces for the variational problems arising from d ∗ dω.
In particular, discrete differential forms respect the algebraic properties of the
exterior derivative like d2 = 0 and the DeRham exact sequence. More details
are given in [2, 5, 13]. Discrete differential forms of any polynomial degree are
available [1, 11]. In light of the success of discrete differential forms, it is worth
exploring their use for the more general equation (2).

The convective part of the operator from (2) is formulated by means of
the Lie derivative Lβ, where iβ is a vector field on Ω. Thus, for l = 0 and
in terms of vector proxies, (2) becomes (1). As explained by Bossavit in [3],
the Lie derivative operator itself is a composition of the so called contraction
operators iβ and the exterior derivatives. The definition of the contraction is
based on the notion of extrusion of manifolds and the duality pairing of forms
and manifolds [4]. This characterization perfectly matches the approximation
techniques based on discrete differential forms.

However, an ambiguity due the discontinuity of discrete differential forms
needs to be handled in the extrusion contraction discretization of Lβ. We pro-
pose to use this to incorporate an upwinding aspect into the discretization of
convective terms. We show, that this procedure applied to the scalar equation,
that is, the case of 0-forms, not only reproduces Tabata’s upwind scheme [22],
but yields other consistent schemes that are more stable than the standard
scheme. We even derive a new scheme for second order Lagrangian elements,
that seems to be comparable stable with a SUPG scheme. This is independent
of the mesh orientation and there is no specific parameter to be choosen.

We first review the definition of Lie derivatives and contraction via the extru-
sion of manifolds. Next, we propose an approximation procedure for contraction
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operators of arbitrary discrete l-forms. Together with the exterior derivative and
discrete Hodge operators this gives an approximation for general convection-
diffusion boundary value problems. We illustrate the construction for the case
of 0-forms. The schemes will depend on the choice of a quadrature rule and
an interpolation operator. We give sufficient conditions on the parameters of
the schemes to preserve the convergence rates for the second order part and use
these to derive different schemes for linear and quadratic ansatz spaces. Finally
we present numerical experiments, that show that our approximation procedure
leads to superior stability properties.

1.1 Extrusion, Contraction and Lie derivatives

We write Dl for the space of l-forms on Ω. The Lie derivative Lβ of a l-form
ω ∈ Dl is the generalization of the directional derivative for a scalar function
u ∈ D0:

(β · ∇u)(x) := lim
t→

>
0

u(st(x)) − u(s0(x))

t
. (3)

Here st is a parameter dependent family of diffeomorphisms st : Ω *→ Ω that
generates the integral curves of the velocity field β. For differential forms ω ∈ Dl

of order l, l > 0, we replace the point evaluation of 0-form u with integration
over l-dimensional oriented sub-manifolds Ml of Ω. To emphasize the duality
of differential l-forms ωl and l-dimensional oriented manifolds we introduce the
notation

< ωl, Ml >:=

∫

Ml

ωl .

Then the Lie derivative of a l-form ω is:

< Lβω, Ml >:= lim
t→

>
0

< ω, st(Ml) > − < ω, Ml >

t
, (4)

where st(Ml) is a short notation for the union of points on flux lines emerging
from Ml at fixed t. Following [4] we introduce the extrusion Extt(β, Ml) =
{sτ (x0) : 0 ≤ τ ≤ t, x0 ∈ Ml} as the union of flux lines emerging at Ml running
from 0 to t (Figure 1). We define an orientation of the extrusion Extt(β, Ml)
such that

∂Extt(β, Ml) = st(Ml) − Ml − Extt(st, ∂Ml). (5)

Plugging this into the definition of the Lie derivative (4) we get by means of
Stokes theorem

< Lβω, Ml > = lim
t→

>
0

< ω, ∂Extt(β, Ml) > + < ω, Extt(β, ∂Ml) >

t

= lim
t→

>
0

< dω, Extt(β, Ml) > + < ω, Extt(β, ∂Ml) >

t
. (6)

Remark 1.1 For smooth differential forms we have

L−β = −Lβ . (7)
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β st(Ml)

Extt(β, Ml)
Ml

Figure 1: Extrusion of line segment Ml with respect to velocity field β.

The contraction operator is defined as the limit of the dual of the extrusion:

< iβω, Ml >:= lim
t→

>
0

< ω, Extt(β, Ml) >

t
(8)

and we recover from (6) the Cartan magic formula [16, page 142, prop. 5.3] for
the Lie derivative:

< Lβω, Ml >=< iβdω, Ml > + < diβω, Ml > . (9)

For 0-forms the second term vanishes, for top forms the first one.

Remark 1.2 For 1-forms with vector proxy A in R3 this gives a general con-
vective term

LβA ∼ β × ∇ × A + ∇(β · A) .

We refer to [3] for vector proxy representations Lie derivatives of other forms
on two and tree dimensional manifolds.

1.2 Discrete Contraction and Lie derivative

Write W l ⊂ Dl for some space of discrete l-forms on a triangulation of Ω
[13]. The properties of discrete differential forms ensure that exterior derivatives
map discrete forms on discrete forms. By virtue of (9), this means that an
approximation of the contraction operator already yields discrete Lie derivatives.

We propose the following procedure. We introduce auxiliary spaces W l,i ⊂
Dl(Ω) of discrete differential forms with basis functions (bl

i)i=1...Nl
∈ W l,i such

that all global degrees of freedom (lli)i=1...Nl
are integral evaluations lli(·) :=<

·, M i
l > on l dimensional oriented manifolds M i

l . Due to the non smoothness of
discrete differential forms we have in general

lli(iβωh) $= −lli(i−βωh)

for ωh ∈ W l+1. Hence we do not expect to preserve the linearity of Lie deriva-
tives in β as in the smooth case (see Remark 1.1). Here we propose an ap-
proximation of the contraction operator iβωh ∈ Dl(Ω), that complies with the
successful upwind idea from the finite difference method:
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Definition 1.3 Given a discrete interpolation space W l,i ⊂ Dl with basisfunc-
tion (bl

i)i=1...Nl
∈ W l,i and global degrees of freedom lli(·) :=< ·, M i

l > the
upwind interpolation I l(iβωh) of the contraction of a (l + 1)-form ωh ∈ W l+1

is defined as

I l(iβωh) =
Nl
∑

i=1

−lli(i−βωh)bl
i. (10)

This is indeed an upwind method since we use only information from the upwind
direction:

−lli(i−βωh) = − lim
t→

>
0

< ωh, Extt(−β, M i
l ) > . (11)

As exterior derivatives map discrete forms on discrete forms the operator

Lh
βωh := I l(iβdω) + dI l−1(iβωh) (12)

is well defined for ωh ∈ W l. Then discrete Hodge operators ∗h [12] yield discrete
counterparts

bh(ωh, νh) :=< ∗hLh
βωh, νh > (13)

of the bilinear form

b(ωh, νh) =< ∗Lβωh, νh > . (14)

on W l × W l. At first glance it seems to be crude to approximate Lie deriva-
tives via upwind interpolation of the contractions. But we presume that the
consistency of the approximation depends only on additional conditions on the
interpolation spaces and the discrete Hodge operators. Moreover we expect
good stability properties of the resulting schemes due to the upwinding present
in the discretizations. Below we investigate these issues for the simplest case of
0-forms in two dimensions.

2 Extrusion contraction upwinding for 0-forms

0-forms are scalar functions u and their Lie derivatives are the streamline deriva-
tives

Lβu = β · ∇u. (15)

To illustrate the proposed approximation procedure for Lie derivatives (i.e. con-
vective terms) based on interpolation of contraction and discrete Hodge oper-
ators we will discuss in the following several discretizations of the standard
convection-diffusion problem:

−ε∆u(x) + β(x) · ∇u(x) = f(x) on Ω ⊂ R2

u(x) = g(x) ∂Ω,

5



where we assume that ε > 0 and β continuous with ‖β‖ = 1. Hence we need to
discretize the following weak formulation:

a(u, v) + b(u, v) = 〈l, v〉, u, v ∈ H1
0 (Ω) (16)

with the diffusion term

a(u, v) = ε

∫

Ω
∇u · ∇v dx, (17)

and the convection term

b(u, v) =

∫

Ω
β · ∇u v. (18)

The convection term (18) is the realization of the bilinear form (14) for 0-forms.
We introduce a triangulation τh of the domain and define the usual piecewise

polynomial approximation spaces W0
k = {v ∈ C(Ω), ∀T ∈ τ, v|T ∈ Pk(T )} ⊂

H1
0 (Ω). Pk(T ) is the set of polynomials with degree less or equal p. The ap-

proximated solution uh ∈ W0
k then fulfils

a(uh, vh) + b(uh, vh) = (f, vh) vh ∈ W0
k . (19)

To convert this equation in the unkown uh into a system of equations for the
expansion coefficients of uh we approximate the convection term (18), either
by one of the new upwind schemes or by the standard finite element Galerkin
approach.

2.1 Upwind and standard approximation of the convec-
tion term

The definition (1.3) of the interpolation operator I0 hinges on global degrees
of freedom that are point evaluations. This leaves little choice for a basis of a
interpolation space W0,i ⊂ D0. The second step in the approximation of (14)
is the discrete Hodge ∗h. Here we take for simplicity local quadrature rules
Q(T ) = {(xT

i , wT
i )}i=1...N defined on triangles T ∈ τh to approximate the L2

innerproducts

(uh, vh)T :=

∫

T

uhvhdx, uh ∈ W0,i, vh ∈ Wk
h

with

(uh, vh)T,h :=
N

∑

i=1

(uhvh)(xT
i )wT

i .

For a fixed quadrature Q(T ) and basis (b̃j)j=1...M of W0,i the bilinear form (14)
has the following representation:

bh(uh, vh) = (I0(β · ∇uh), vh)Ω,h

=
M
∑

j=1

(β · ∇uh|Tj
)(xj)

∑

T

N
∑

k=1

b̃j(x
T
k )vh(xT

k )wT
k . (20)
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xi

Ti

s(t)

β

Figure 2: Streamline derivative and extrusion contraction characterization. Ti

is the triangle in upwind direction.

The coefficients (β ·∇uh|Tj
)(xj) here correspond to the upwind evaluations (11)

of the global degrees of freedom l0j (vh) = vh(xj). They depend on the restriction
of β · ∇uh to that triangle Tj adjacent to interpolation point xj that lies in
upwind direction (see fig. 2). The standard finite element method in contrast
uses only a local quadrature Qs(T ) = {(xT

i , wT
i )}i=1...Ns

to approximate the
convection term (18) of the weak formulation (16):

bs
h(uh, vh) :=

∑

T

Ns
∑

i=1

(β · ∇uh)(xT
i )vh(xT

i )wT
i . (21)

In order to compare both approximations we change the order of summation in
(20), yielding

bh(uh, vh) =
∑

T

N
∑

i=1

M
∑

j=1

(β · ∇uh|Tj
)(xj)b̃j(x

T
i )vh(xT

i )wT
i . (22)

If the restriction of the basis (b̃j)j=1...M of W0,i on a triangle T has N non–
vanishing elements b̃j1 , . . . b̃jN

such that b̃jk
(xT

i ) = δik (22) is simplified as

bh(uh, vh) =
∑

T

N
∑

i=1

(β · ∇uh|Ti
)(xT

i )vh(xT
i )wT

i . (23)

We recover the standard approximation (21) if none of the quadrature points is
located on the boundary of a element.

2.2 Consistency error

If we use local polynomial basis functions of degree k and the standard approxi-
mation (21) to solve (19) the Strang lemma [10, Theorem 26.1] and consistency
error estimates tell us, that the local quadrature rule must be exact for polyno-
mials of degree 2k − 2 [10, Theorem 29.1] to preserve the optimal convergence
rates O(hk) for uniform h–refinement. Assuming that the interpolation I0 in
definition (1.3) is local we get a similar result for the new scheme (22).
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Proposition 2.1 We make the following assumptions on the interpolation I0

from definition (1.3) and the local quadrature Q(T ):

• I0 is local, e.g. for v ∈ C0(Ω):

v|ΩT
≡ 0 ⇒ I0(v)|T ≡ 0,

where ΩT is the union of all triangles Ti adjacent to T .

• There exists p ∈ N, such that for all triangles T

I0|T (v) − Id|T (v) = 0 ∀v ∈ Pp(ΩT ),

i.e. for all polynomials v of degree less or equal p on ΩT .

• Q(T ) is exact for polynomials of degree less or equal (k + l).

Then the consistency error R(uh, vh) := |b(vh, wh) − bh(vh, wh)| due to the ap-
proximation

bh(uh, vh) = (I0(β · ∇uh), vh)Ω,h, uh, vh ∈ W0
k

defined in (20) is bounded

R(uh, vh) = |b(uh, vh) − be
h(uh, vh)| ≤ Chm+1‖uh‖m+1‖vh‖1 (24)

with C independent of the mesh and m = min(p, l). We denote with ‖ ·‖s,D and
‖ · ‖s,∞,D the norms on Sobolev spaces W s,2(D) and W s,∞(D) on some domain
D ⊂ Ω and omit D if D = Ω.

Proof: We follow the usual localization technique:

R(vh, wh) =
∑

T

EΩT
(β · ∇vh, wh)

with local error function:

EΩT
(β · ∇vh, wh) := (β · ∇vh, wh)T − (I0(β · ∇vh), wh)T,h.

Using the linear pullback x = BT x̂ + bT to a reference triangle T̂ we get the
following relation

EΩT
(ψ, φ) = | detBT |EΩT̂

(ψ̂, φ̂)

between EΩT
and the error EΩT̂

(ψ̂, φ̂) on the reference element. Furthermore
we have

EΩT̂
(ψ̂, φ̂) = 0

for φ̂ ∈ Pk(T̂ ) and ψ̂ ∈ Pm(ΩT̂ ). On the other hand

EΩT̂
(ψ̂, φ̂) ≤ C ‖ψ̂‖0,∞,ΩT̂

‖φ̂‖0,T̂

≤ C ‖ψ̂‖m+1,∞,ΩT̂
‖φ̂‖0,T̂
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for any ψ̂ ∈ Wm+1,∞(ΩT̂ ) and φ̂ ∈ Pk(T̂ ). Here we used the continuous em-
bedding Wm+1,∞ ↪→ C0 and equivalence of norms in finite dimensional spaces.
This shows that for fixed φ̂ ∈ Pk(ΩT̂ ) the functional

ψ̂ → EΩT̂
(ψ̂, φ̂)

is a continuous linear functional which vanishes for ψ̂ ∈ Pm(ΩT̂ ). Therefor we
can apply the Bramble-Hilbert lemma and bound the error by the semi norm

EΩT̂
(ψ̂, φ̂) ≤ C |ψ̂|m+1,∞,ΩT̂

‖φ̂‖0,T̂ .

Choose now ψ̂ = b̂σ̂, b̂ ∈ (Wm+1,∞(ΩT̂ ))2, σ̂ ∈ (Pm(ΩT̂ ))2, using the chain
rule and the equivalence of norms again gives

EΩT̂
(ψ̂, φ̂) ≤ C

2
∑

i=1

m
∑

j=0

|b̂i|m+1−j,∞,ΩT̂
|σ̂i|j,ΩT̂

‖φ̂‖0,T̂ .

Next we use scaling inequalities to obtain a bound for the error EΩT
:

EΩT
(ψ, φ) ≤ Chm+1

T

2
∑

i=1

m
∑

j=0

|bi|m+1−j,∞,ΩT
|σi|j,ΩT

‖φ‖0,T

≤ Chm+1
T

2
∑

i=1

‖bi‖m+1,∞,ΩT
‖σi‖m,ΩT

‖ψ‖0,T .

Replacing σi with ∂ivh, bi with βi and φ with wh we arrive at:

EΩT
(β · ∇vh, wh) ≤ C hm+1

T (
2

∑

i=1

|βi|m+1,∞,ΩT
)‖vh‖m+1,ΩT

‖wh‖0,T .

The Cauchy-Schwarz inequality finishes the proof provide the number of trian-
gles in ΩT is bounded.

!

Proposition 2.1 together with the Strang lemma [10, Theorem 26.1] gives suf-
ficient conditions on the two building blocks interpolation I0 and local quadra-
ture Qc(T ) in (20) to preserve the optimal order of convergence, i.e. k for the
energy norm when uh, vh ∈ W0

k in (19). If we limit the choice of an interpola-
tion space W0,i to the piecewise polynomial spaces W0

p we have to ensure that
for a fixed ansatz space W0

k and a quadrature Q(T ) exact for Pk+l(T ) we have
min(p, l) ≥ k − 1. Since we want to keep the calculation as cheap as possible
one would prefer choices of p and l with p = l = k − 1. We will see that for
stability reasons it is worth to slightly increase p. In order to better distinguish
these new schemes we introduce the following notation for the approximation
(20):

Definition 2.2 Given an interpolation space W0,i = W0
p with basis (b̃j)j=1...M

and global degrees of freedom (l0j )j=1...M , that are point evaluations lj(b̃k) :=

b̃k(xj) = δkj and a local quadrature Qc(T ) = {(xi, w
T
i )}i=1...Nc

we define:

bp,c
h (uh, vh) := (I0

p (β · ∇uh), vh)Ω,hc

:=
M
∑

j

(β · ∇uh|Tj
)(xj)

∑

T

Nc
∑

i=1

b̃j(x
T
i )vh(xT

i )wT
i (25)

9
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|T |
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|T |
3|T |

3

Figure 3: Location and weight of the quadrature points of the barycenter rule
QT , the vertex rule Qv and the midpoint rule Qm.

Remark 2.3 Proposition 2.1 includes the statement that a quadrature rule
should be exact for polynomials of degree 2k − 1. This could be improved to
2k − 2 with a technical refinement of the proof based on insertion of projections
due to Ciarlet [10, page 207]. The same technique is applicable for L2 error
estimates.

2.3 Low order approximation

When we choose k = 1 in (19) and conforming Lagrangian linear basis functions
λi we need to ensure that min(p, l) ≥ 0. The cheapest method preserving the or-
der of convergence uses piecewise constant interpolation I0

0 in the characteristic
functions ξT of triangles T of τh,

I0
0 (β · ∇uh) :=

∑

T

(β · ∇uh)(bT )ξT

and the barycenter quadrature rule Qb(T ) = {(bT , |T |)}, for bT barycenter of
T (see Fig. (3)):

b0,b
h (uh, vh) =

∑

T

(β · ∇uh)(bT )vh(bT )|T |.

Since we evaluate the contraction inside the elements this scheme does not
include upwinding. This changes if we take W0

1 as interpolation space as
well. Then we use the extrusion contraction characterization of the stream-
line derivative and at vertices ai we take the value from the upwind direction
(β ·∇uh|Ti

)(ai), where Ti is the triangle in upwind direction at ai (fig. 2). The
interpolation operator reads:

I0
1 (β · ∇uh) =

∑

ai

(β · ∇uh|Ti
)(ai)λi (26)

and the scheme is:

b1,b
h (uh, vh) =

∑

ai

(β · ∇uh|Ti
)(ai)

∑

T :ai∈T̄

|T |
3

vh(bT ). (27)
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ai

aj

ak

β(aj)

Tj

∇λj

∇λi

∇λk

Figure 4: Sign condition for expansion coefficients of I0
1β · ∇λ

Another local quadrature rule exact for P1(T ) is the vertex rule (fig. (3))

Qv(T ) = {(ai1 ,
|T |
3

), (ai2 ,
|T |
3

), (ai3 ,
|T |
3

)}

evaluating the integrand at the three vertices ai1 ,ai2 ,ai3 of a triangle T . While
for piecewise constant interpolation the schemes using Qb(T ) and Qv(T ) coin-
cide:

b0,v
h (uh, vh) = b0,b

h (uh, vh), (28)

the scheme

b1,v
h (uh, vh) =

∑

ai

(β · ∇uh|Ti
)(ai)

∑

T :ai∈T̄

|T |
3

vh(ai) (29)

differs from b1,b(uh, vh). The scheme b1,v(uh, vh) is exactly the scheme intro-
duced by Tabata [22]. The crucial observation here is the sign property of the
expansion coefficients cij := (β · ∇λj |Ti

)(ai) of the interpolation I0
1 (β · ∇λj)

(26). We have that cii > 0 and cij ≤ 0, whenever i $= j (fig. 4). Thanks to the
orthogonality λi(aj) = δij of basis functions and quadrature points in (29) this
sign property is inherited by the discrete matrix operator. The sign condition
ensures that the corresponding discrete matrix operator is inverse monotone.
Under mild additional assumptions one could prove that this scheme is L∞

stable, uniformly in the diffusion constant ε [20, page 208].
When we combine the linear interpolation I0

1 with the third order midpoint
quadrature rule (fig. (3))

Qm(T ) = {(me1
,
|T |
3

), (me2
,
|T |
3

), (me3
,
|T |
3

)}

based on evaluations at the midpoints mek
= 1

2 (ail
+ aim

), for {k, l, m} per-
mutations of {1, 2, 3}, the interpolation remains the only approximation in
b1,m
h (uh, vh).
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Finally, we may also use second order Lagrangian elements as interpolation
space. The basis functions are the quadratic polynomials bv

i = λi(2λi − 1)
connected to vertices ai and bm

e
= 4λe1

λe2
connected to midpoints me of edges

e = (e1, e2) between vertices ae1
and ae2

. Hence we apply

I0
2 (β · ∇uh) =

∑

ai

(β · ∇uh|Ti
)(ai)b

v
i +

∑

me

(β · ∇uh|Te
)(me)b

m
e

to define b2,b
h (uh, vh), b2,v

h (uh, vh) and b2,m
h (uh, vh). With b2,ex

h (uh, vh) we want
to denote an approximation using some quadrature rule that is exact for poly-
nomials of degree 3. We could invent many more approximations using other
quadrature rules or higher order interpolation operators.

2.4 Second order Lagrangian elements

In principle we could use all the approximations from the previous section for
second order Lagrangian elements. In order to have consistent schemes that
preserve the order of convergence proposition 2.1 tells us, that we need to con-
sider more accurate quadrature rules. A combination of Qb(T ) and Qv(T ) gives
a 4 point quadrature rule

Qvb(T ) = {(ai1 ,
1

12
|T |), (ai2 ,

1

12
|T |), (ai3 ,

1

12
|T |), (bT ,

3

4
|T |)}

of order 3, while a combination of Qb(T ), Qv(T ) and Qm(T ) results in a 7 point
quadrature rule

Qvmb(T ) = {(ai1 ,
1

20
|T |), (ai2 ,

1

20
|T |), (ai3 ,

1

20
|T |),

(me1
,

2

15
|T |), (me2

,
2

15
|T |), (me3

,
2

15
|T |), (bT ,

9

20
|T |)}

of order 4. These yield the approximations b1,vb
h (uh, vh) and b2,vmb

h (uh, vh).
Additionally we apply some quadrature that evaluates the inner products of the
quadratic basis functions exact to define b2,ex

h (uh, vh).
Based on the characterization of (22) as upwind quadrature we use Qvb(T )

and Qvmb(T ) to define a second family of approximations, which does not ex-
actly fit into the framework of proposition 2.1 and definition 2.2

b1b,vb
h (uh, vh) =

∑

ai

(β · ∇uh|Ti
)(ai)

∑

T :ai∈T

|T |
12

vh(ai)

+
∑

T

3

4
|T |(β · ∇uh)(bT )vh(bT ),

b2b,vmb
h (uh, vh) =

∑

ai

(β · ∇uh|Ti
)(ai)

∑

T :ai∈T

|T |
20

vh(ai)

+
∑

me

(β · ∇uh|Ti
)(me)

∑

T :me∈T

2

15
|T |vh(me)

+
∑

T

9

20
|T |(β · ∇uh)(bT )vh(bT ).
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Nevertheless it is straightforward to show consistency in adapting the proof of
proposition 2.1. The interpolation spaces W0,i that correspond to these ap-
proximations are piecewise constant on meshes that are somehow dual to the
initial tetrahedral mesh. The basis functions of W0,i are the characteristic func-
tions of cells attached to vertices, midpoints and barycenters and partitioning
the triangles T adequate. The dual grid for b1b,vb

h (uh, vh) e.g. consists of cells
surrounding the vertices and the barycenters of the initial triangulation. The
overlap of a vertex cell of the dual grid and a triangle T is 1

12 |T |. That of a
barycenter cell is 3

4 |T |.

3 Numerical experiments

3.1 Convergence

First we study the convergence rates for the various discretizations introduced
in the previous section. We consider the convection-diffusion problem:

−ε∆u + 2∂xu + 3∂yu = f in [0, 1]2

u(x, y) = g(x, y) in ∂[0, 1]2, (30)

where we chose f and g such that the solution is:

u(x, y) = xy2 − y2e2 x−1
ε − xe3 y−1

ε + e2x−1
ε

+3 y−1

ε . (31)

Figures (5) and (6) confirm the statements of proposition 2.1. For linear ansatz
spaces convergence in the energy norm is linear, while for quadratic polyno-
mials the convergence is quadratic. We further stress that the approximation
b2,m(uh, vh) preserves the convergence rate according to remark 2.3. If we
measure the error in the L2–norm (fig. 7 and 8) we realize that convergence
rates for linear ansatz spaces remain the same as for the H1–semi norm while
for quadratic ansatz spaces the rates increase by 1.

3.2 Stability

While standard schemes for the numerical solution of (30) have a nice behaviour
for large and moderate ε ≥ 1 those schemes produce high frequent spurious
solution for the singularly perturbed case ε 3 1. Even if the analytical solution
is bounded in most parts of the domain a single tiny characteristic or boundary
layer causes the pollution of the solution in the hole domain. Since our method is
based on upwinding we expect that the stability is superior to standard methods.

Boundary layers For very small ε the solution of (30) has a strong bound-
ary layer towards the corner (1, 1) (fig. 9). Therefore the solution loses regularity
and the convergence rates deteriorate (fig. 10). This figure shows additionally
that in the case of W0

1 as interpolation space, upwinding can not only retain
convergence outside the boundary layer, but also reduces the error substantially.
The same observation can be seen for the scheme b2b,vmb

h (uh, vh) in the case of
quadratic Lagrangian elements (fig. 11).
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Figure 5: Convergence rate in H1–semi norm for non perturbed problem (30)
with ε = 1 and linear Lagrangian elements.
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Figure 6: Convergence rate in H1–semi norm for non perturbed problem (30)
with ε = 1 and quadratic Lagrangian elements.

Characteristic layers To study the stability properties in presence of a
characteristic layer we look at the following problem:

−ε∆u + v1(θ)∂xu + v2(θ)∂yu = 0 in [0, 1]2

u(x, y) =

{

0 x ≤ 0.5

1 x > 0.5 in ∂[0, 1]2,
, (32)

where v(θ) = (cos(θ), sin(θ))T . We calculate the solutions on a regular mesh
(mesh width = 0.04) for various θ-values 0 < θ < π and monitor the profile of
the solutions on the line running through (0.5, 0.5) perpendicular to the flow.
The profile lines in figure (12) indicate that the scheme using b2b,vmb

h (uh, vh) as
stable as a SUPG method [6] independent of the orientation of the mesh, while
the schemes using b2,m

h (uh, vh) or b1b,vm
h (uh, vh) are unstable.

3.3 Numerical prediction of stability

A more general method to predict the stability of a scheme, than just solving
model problems is described in [21].G. Sangalli shows there that the solution of
problem (16) fulfils

lim
ε→0+

inf
f∈L2(Ω)

‖f‖L2(Ω)

‖β · ∇u‖L2(Ω′)
= 1,

where Ω′ ⊂ Ω with nonzero distance to the outflow boundary. He suggests
that stabilization effect of a numerical method can be studied in computing the

15



10
!1

10
!5

10
!4

10
!3

10
!2

 h

 E
rr

o
r

 

 

p = 1.00 p = 2.00

(0,b)

(1,b)

(1,v)

(1,m)

10
!1

10
!5

10
!4

10
!3

10
!2

 h

 E
rr

o
r

 

 

p = 1.00 p = 2.00

(2,b)

(2,v)

(2,m)

(2,ex)

Figure 7: Convergence rate in L2–norm for non perturbed problem (30) with
ε = 1 and linear Lagrangian elements.
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Figure 9: Analytic solution u of (30) for ε = 10−10. Since u has homogeneous
boundary conditions there occurs a boundary layer towards (1, 1).
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discrete counterpart:

s(ε) := inf
f∈L2(Ω)

‖f‖L2(Ω)

‖β · ∇uh‖L2(Ω′)
. (33)

This implies the computation of a discrete infsup-constant:

s(ε) = inf
uh∈W0

sup
vh∈W0

a(uh, vh) + bh(uh, vh)

‖vh‖L2(Ω)‖β · ∇uh‖L2(Ω′)
, (34)

which in turn is equivalent to a generalized eigenvalue problem:

ST V −1Sx = λUx,

where S, V and U are the matrix operators for a(uh, vh) + bh(uh, vh), (uh, vh)Ω
and (β · ∇uh, β · ∇vh)Ω′ . Then s(ε) =

√
λmin and the scheme will produce

spurious oscillations, in case s(ε) is close to zero.

Remark 3.1 In the case of linear Lagrangian ansatz and interpolation spaces
and local quadrature Qc that preserves the rank of the local mass matrix, we
have that

b0,c
h (uh, I0

0 (β ·∇uh)) ∼= ‖β ·∇uh‖L2(Ω)

hence s(0) > 0. No spurious oscillations may appear.

Figures (13) and (14) show the dependence of s on the mesh size and the
diffusion constant for linear Lagrangian elements; figure 15) deals with the
quadratic case. For linear Lagrangian elements and linear interpolation any up-
wind scheme seems to produce a non-zero value for s (fig. 13). With quadratic
ansatz spaces this this is true only for b2b,vmb

h (uh, vh) (fig. 15).

4 Upwind quadrature as penalty-term formula-

tion

Let us finally stress, that the upwind quadrature formulation (23) resembles a
stabilized Discontinuous Galerkin methods using penalty terms. The difference
between standard methods (21) and the upwind quadrature is the evaluation
of the gradient at element boundaries. If we add and subtract to (23) the
non-upwind quadrature evaluation and collect the different terms belonging to
quadrature points we get:

bh(uh, vh) =
∑

T

N
∑

i=1

ωT
i (β · ∇uh)(xT

i )vh(xT
i )

−
∑

T

N
∑

i=1

ωT
i ((β · ∇uh)|Ti

− β · ∇uh) (xT
i )vh(xT

i )

= bs
h(uh, vh) + B(uh, vh)

where B(uh, vh) penalizes the jump [β ·∇uh]xi
:= ((β · ∇uh)|Ti

− β · ∇uh) (xi)
at the quadrature points xi. The upwind quadrature enforces weak continuity
of the streamline derivative β · ∇uh. Unfortunately the penalty term is not
symmetric like the edge penalty term in [8] and can not be used to define a
mesh dependent norm.
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Figure 13: Numerical evaluation of s = infsup (see (33)) for linear Lagrangian
elements and linear interpolation. Upper: mesh size dependence for fixed ε =
diff. Lower: dependence on diffusion constant for fixed mesh size h.
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Figure 14: Numerical evaluation of s = infsup (see (33)) for linear Lagrangian
elements and quadratic interpolation. Upper: mesh size dependence for fixed
ε = diff. Lower: dependence on diffusion constant for fixed mesh size h.
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Figure 15: Numerical evaluation of s = infsup (see (33)) for quadratic La-
grangian elements. Upper: mesh size dependence for fixed ε = diff. Lower:
dependence on diffusion constant for fixed mesh size h.
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5 Conclusion

At least in some cases the proposed approximation technique based on con-
traction extrusion seems to lead to schemes with superior stability properties.
While for linear Lagrangian elements we obtain many different stable schemes,
there was only one in the quadratic case. Although this observation is confirmed
by the quite general evaluation technique proposed by Sangalli [21] further re-
search will focus on non-empirical methods to predict stability. Moreover, it is
important to study the stability of schemes for differential l-forms with l > 0.
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