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Abstract

For the Galerkin finite element discretization of integrodifferential equations Bu =
f on [0, 1]n, we present a sparse tensor product wavelet compression scheme. The
scheme is of essentially optimal and dimension independent complexityO(h−1| log h|2(n−1))
without corrupting the convergence or smoothness requirements of the original
sparse tensor finite element scheme. The operators under consideration are as-
sumed to be of non-negative order and admit a standard kernel κ(·, ·) (singular
only on the diagonal).



1 Introduction

Due to the possible non-locality of integrodifferential operators, Galerkin discretization of integrodif-
ferential equations in general leads to linear systems with densely populated matrices of substantial
size. For instance in Mathematical Finance the pricing of contracts on baskets of assets where the
underlying is modeled by jump processes results in high dimensional partial integrodifferential equa-
tions (PIDEs) on [0, 1]n. Even on such tensor product domains, the straightforward application of
standard numerical schemes fails due to the “curse of dimension”: the number of degrees of free-
dom on a tensor product Finite Element (FE) mesh of width h in dimension n grows like O(h−n)
as h → 0. The non-locality of the underlying operator thus implies that the stiffness matrix of the
Galerkin discretization based on tensor product FE spaces consists of O(h−2n) non-zero entries.

In this work we show that, using tensor products of univariate wavelet basis functions, the complexity
of the stiffness matrix can be reduced to O(h−1| log h|2(n−1)) without corrupting the rate of conver-
gence and smoothness requirements of the original FE scheme.

Up to now, several approaches to resolve the curse of dimension and the non-locality have been
introduced. Two of them are of special importance for our analysis:

Firstly, to overcome the exponential growth of complexity, sparse tensor product spaces were intro-
duced at the end of the 1990s, see e.g. [3, 16, 17, 25] and the references therein. This methodology
yields O(h−1| log h|n−1) degrees of freedom as h → 0 while at the same time (essentially) preserv-
ing the approximation rate. Discretizing integrodifferential equations on a sparse tensor product space
thus yields matrices containing O(h−2| log h|2(n−1)) entries. As shown in e.g. [17], these results
require greater smoothness of the function to be approximated than the original discretization and this
extra regularity increases with the dimension n.

Secondly, to cope with the non-locality of integral operators, in the very different setting of isotropic
(or standard) wavelet representation, i.e. the FE basis functions consist of tensor products of scaling
functions and wavelets only on the same level, so-called wavelet compression has been introduced in
[1]. There it was shown that wavelet representation yields an almost sparse representation of certain
operators. In [9, 10, 39, 37] this approach was advanced further (on not necessarily tensor product
domains) and given a rigorous mathematical foundation based on the requisite that the compressed
system has to preserve the stability and convergence properties of the unperturbed discretization. In
[30] it was shown that wavelet compression techniques may yield asymptotically optimal complexity
(on not necessarily tensor product domains) in the sense that the number of non-zero entries in the
resulting matrices grows linearly with the number of degrees of freedom. In contrast to sparse tensor
product approximation, this methodology does not require additional smoothness of the approximated
function. But, since the number of non-zero matrix entries grows linearly with the degrees of freedom,
there still is exponential growth of the number of non-trivial matrix entries as the dimension n tends
to infinity. The results on isotropic wavelet compression have been unified in a sophisticated way in
[7]. Since it somewhat presents a finalization of the isotropic wavelet compression, we refer to [7]
for a more detailed description of the development in this field. Note that, with a slightly different
approach but based on analogous principles similar complexity results for the isotropic setting have
been presented in [34]. In summary, substituting h = 2−J , there holds:

• Using sparse tensor product spaces one obtains O(22JJ2(n−1)) non-zero entries in the system
matrix.

1



• Wavelet compression of general full tensor product spaces yields O(2nJ ) non-zero matrix en-
tries.

In this work the notion of computational “complexity” is used exclusively to indicate the number of
non-zero entries in a given system matrix. With an efficient implementation and quadrature as in [19]
it can be shown that the overall cost of computing and assembling the system matrix is essentially of
the same magnitude as its complexity.

Note that the complexity results of this work also imply that, under certain conditions, the stiffness
matrices of the anisotropic non-local operators under consideration are s∗-compressible in the sense
of [5, 15, 31] with essentially dimension independent s∗. This shows that, in order to solve the
corresponding integrodifferential equations one may employ adaptive wavelet algorithms as in [4, 5,
14] that converge with the rate of best approximation by an arbitrary linear combination ofN wavelets
(so-called best N -term approximation).

The outline of this work is as follows:

In Section 3 we derive fundamental estimates of the entries in the sparse tensor product-based matrix.
These estimates form the basis for the consistency analysis and hence enable us to define cut-off
parameters. The estimates rely on techniques developed for isotropic wavelets by [7, 9, 30, 37]. We
intensively exploit the tensor product structure of our wavelets to reduce our considerations to their
one-dimensional counterparts.

Section 4 defines the framework on which the compression is based. In this section we provide con-
sistency requirements that have to be satisfied by the compressed matrix in order to preserve stability
and convergence properties of the sparse tensor product setting without compression.

Combining the results from the two previous sections, in Section 5 the actual cut-off parameters are
defined. The scheme also exploits the tensor product structure in the sense that all dropping criteria
of matrix entries are given in terms of the wavelets defined in one particular coordinate direction.

In Section 6 we provide complexity results for the constructed compression schemes. Based on [28],
we show that the complexity of the sparse tensor product setting can be reduced to O

(
2JJ2(n−1)

)

non-zero matrix entries provided that the number of vanishing moments or the order of the underlying
operator is sufficiently large.

Finally, in Section 7 we briefly illustrate how the results of the previous sections imply s∗-compressibility.

2 Galerkin discretization of multidimensional PIDEs

On the n-dimensional unit cube � := [0, 1]n, we consider an integrodifferential equation

Bu = f, (2.1)

with an integrodifferential operator
B = AD + A, (2.2)

where AD denotes a (possibly vanishing) differential operator

ADu = −
1

2

n∑

i,j=1

Qij
∂2u

∂xi∂xj
, Qij ∈ R, i, j = 1, . . . , n, (2.3)
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and A is an integral operator operator of order 2q ∈ R with symbol in the Hörmander class S 2q
1,0 in the

sense of [20, 35]. It is well known that A acts continuously on Sobolev spaces and admits a kernel
representation

Au(x) =

∫

�

κ(x, y)u(y)dy, (2.4)

with a distributional kernel function κ(·, ·). By the Schwartz kernel theorem (cf. e.g. [33, Section
VI.7]), the kernel κ(·, ·) is singular only on the diagonal in [0, 1]n × [0, 1]n and for any σ, σ′ ∈ N

n
0

there holds
∣∣∣∂σx∂σ

′

y κ(x, y)
∣∣∣ ≤ cσ,σ′ |x− y|−(n+2q+|σ|+|σ′|), for all x, y ∈ [0, 1]n, (2.5)

with some constant cσ,σ′ independent of x, y ∈ [0, 1]n.

Denoting by Q = (Qij)1≤i,j≤n the coefficient matrix of the differential operator AD in (2.3) we shall
assume that either Q = 0 or Q > 0. The order 2q̃ ∈ R of the integrodifferential operator B = AD+A
is then given by

2q̃ =

{
2, if Q > 0 and 2q ≤ 2,

2q, otherwise.
(2.6)

Corresponding to the operator order 2q̃ ∈ R we define the Sobolev spaces H eq(�) as follows: for
u ∈ C∞

0 (�), define ū to be the zero extension of u to all of R
n. Then, for s ∈ R, the space Hs(�) is

given by
Hs(�) := {ū |u ∈ C∞

0 (�)}, (2.7)

where the closure is taken with respect to the norm of H s(Rn), the classical Sobolev space on R
n.

For the numerical solution of (2.1), we employ the Galerkin method with respect to a hierarchy of
conforming trial spaces V̂J ⊂ V̂J+1 ⊂ . . . ⊂ Heq(�). The variational problem of interest reads: find
uJ ∈ V̂J such that,

〈BuJ , vJ〉 = 〈f, vJ〉 for all vJ ∈ V̂J . (2.8)

The index J represents the meshwidth of order 2−J . We shall make the following assumptions on the
operator B to ensure that the variational problem (2.8) is well posed - for details we refer to e.g. [32,
Proposition III.2.3].

1. B satisfies a Gårding inequality, i.e. there exist constants γ > 0, C ≥ 0 such that

〈Bu, u〉 ≥ γ‖u‖2
Heq(�) − C‖u‖2

L2(�), for all u ∈ H eq(�). (2.9)

2. B : Heq(�) → H−eq(�) is continuous, i.e. there exists a constant C ′ > 0 such that for all
u, v ∈ Heq(�) there holds

|〈Bu, v〉| ≤ C ′‖u‖Heq(�)‖v‖Heq(�). (2.10)

The nested trial spaces V̂J ⊂ V̂J+1 we employ in (2.8) shall be sparse tensor product spaces based on
a wavelet multiresolution analysis described in the next sections.

We shall frequently write a . b to express that a is bounded by a constant multiple of b, uniformly
with respect to all parameters on which a and b may depend. Then a ∼ b means a . b and b . a.
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2.1 Wavelets on the interval

On [0, 1] we shall use the same scaling functions and wavelets as described in [7] based on the con-
struction of [6, 8, 23] and the references therein.

Denoting by ∆j some suitable index sets, the trial spaces Vj are spanned by single-scale bases Φj =
{φj,k : k ∈ ∆j}. The approximation order of the trial spaces we denote by d, i.e.

d = sup

{
s ∈ R : sup

j≥0

{
infvj∈Vj

‖v − vj‖0

2−js‖v‖s

}
<∞ , ∀ v ∈ Hs([0, 1])

}
. (2.11)

Using the single-scale bases constructed in [6] based on B-splines adapted to the interval [0, 1] as
described in [8], we assume that for each j ≥ 0, the basis functions φj,k ∈ Φj have compact supports
and admit two important properties: ‖φj,k‖L2([0,1]) = 1 and | supp φj,k| ∼ 2−j .

Associated to these primal bases are dual bases Φ̃j = {φ̃j,k : k ∈ ∆j}, i.e. there holds 〈φj,k, φ̃j,k′〉 =

δk,k′ . By d̃ we denote the order of Φ̃j and assume d ≤ d̃. In particular, for B-splines of order d and
duals of order d̃ ≥ d such that d + d̃ is even the bases Φj, Φ̃j as in [8] have approximation orders d
and d̃.

To these single-scale bases there exist biorthogonal complement or wavelet bases Ψj = {ψj,k : k ∈

∇j}, Ψ̃j = {ψ̃j,k : k ∈ ∇j}, where ∇j := ∆j+1\∆j . Inherited from φj,k, the wavelets ψj,k have
compact supports and there holds

| supp ψj,k| ∼ 2−j . (2.12)

The dual pair of wavelet bases Ψ, Ψ̃ is defined by Ψ =
⋃
j≥0 Ψj , Ψ̃ =

⋃
j≥0 Ψ̃j , with Ψ0 := Φ0,

Ψ̃0 := Φ̃0. There holds
‖ψj,k‖L2([0,1]) ∼ 1, for all ψj,k ∈ Ψ.

From the biorthogonality of Ψ and Ψ̃ one infers the so-called cancelation property of Ψ (see e.g. [2]),
i.e.

|〈ψj,k, f〉| . 2−j(
ed+1/2)|f |

W ed,∞(suppψj,k)
, for each ψj,k ∈ Ψ. (2.13)

Here |f |
W ed,∞(Ω)

:= supx∈Ω |∂
edf(x)|. The mother wavelet of Ψ we denote by ψ, i.e. for any j and

k ∈ ∇j ,
ψj,k(x) = 2j/2ψ(2jx− k), x ∈ [0, 1]. (2.14)

Denoting by Wj, W̃j the span of Ψj , Ψ̃j , there holds

Vj+1 = Wj+1 ⊕ Vj, and Ṽj+1 = W̃j+1 ⊕ Ṽj, for all j ≥ 0, (2.15)

and,
Vj = W0 ⊕ . . .⊕Wj , for all j ≥ 0. (2.16)

Crucial for the consistency of our compression scheme is the fact that the wavelets on [0, 1] satisfy the
following norm estimates (cf. e.g. [8, 11], for the one-sided estimates we refer to [39]):

For an arbitrary u ∈ H t([0, 1]), 0 ≤ t ≤ d, with wavelet decomposition

u =

∞∑

j=0

∑

k∈∇j

uj,kψj,k =

∞∑

j=0

∑

k∈∇j

〈u, ψ̃j,k〉ψj,k,

4



there holds the norm equivalence,
∑

(j,k)

22tj |uj,k|
2 ∼ ‖u‖2

Ht([0,1]) , if 0 ≤ t < d− 1/2, (2.17)

or the one-sided estimate,
∑

(j,k)

22tj |uj,k|
2 . ‖u‖2

Ht([0,1]) , if d− 1/2 ≤ t < d. (2.18)

In case t = d there only holds,
∑

(j,k)
j≤J

22tj |uj,k|
2 . J ‖u‖2

Ht([0,1]) , if t = d. (2.19)

We conclude this section by an explicit example of wavelets on [0, 1] with approximation order d = 2:

Example 2.1. The wavelets comprise of piecewise linear continuous functions on [0, 1] vanishing at
the endpoints. The mesh for level j ≥ 0 is defined by the nodes xj,k := k2−(j+1) with k ∈ ∇j :=
{0, . . . , 2j+1}. There holds Nj := dimVj = 2j+1−1 and therefore Mj := dimVj−dimVj−1 = 2j .

On level j = 0 we have N0 = M0 = 1 and ψ0,1 is defined as the piecewise linear function with value
c0 > 0 at x0,1 = 1

2 and 0 at the endpoints 0, 1.

For j > 0 we firstly define cj := 2j/2. Then the wavelet ψj,1 is defined as the piecewise linear function
such that ψj,1(xj,1) = 2cj , ψj,1(xj,2) = −cj and ψj,1(xj,s) = 0 for all other s 6= 1, 2. Similarly,
the wavelet ψj,Mj

takes the values ψj,Mj
(xj,Nj

) = 2cj , ψj,Mj
(xj,Nj−1) = −cj and zero at all other

nodes. For 1 < k < Mj the wavelet ψj,k is defined by ψj,k(xj,2k−2) = −cj , ψj,k(xj,2k−1) = 2cj ,
ψj,k(xj,2k) = −cj and ψj,k(xj,s) = 0 for all other s 6= 2k − 2, 2k − 1, 2k.

Remark 2.2. Note that the analysis of the so-called second compression that we adapt from [7, 30]
refers exclusively to biorthogonal spline wavelets whose singular supports are well defined and not
dense in the wavelets’ supports. We refer to [18] for more specific illustrations.

2.2 Sparse tensor product spaces

For x = (x1, . . . , xn) ∈ [0, 1]n, we denote,

ψj,k(x) := ψj1,k1 ⊗ . . .⊗ ψjn,kn
(x1, . . . , xn) = ψj1,k1(x1) . . . ψjn,kn

(xn).

Using Fubini’s theorem one infers that the scaling and cancelation properties (2.12), (2.13) of the
univariate wavelets carry forward to their tensor products. In particular,

∣∣supp ψj,k
∣∣ =

n∏

i=1

|supp ψji,ki
| ∼ 2−(j1+...+jn),

and each ψj,k has d̃ vanishing moments which implies the cancelation property

|〈v, ψj,k〉| . 2−
1
2
|j|12−

edmax{j1,...,jn}|v|
W ed,∞(suppψj,k)

. (2.20)
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On [0, 1]n, we define the subspace VJ ⊂ Hq(�) as the (full) tensor product of the spaces defined on
[0, 1]

VJ :=

n⊗

i=1

VJ , (2.21)

which can be written using (2.16) as

VJ = span
{
ψj,k : ki ∈ ∇ji , 0 ≤ ji ≤ J, i = 1, . . . , n

}
=

J∑

j1,...,jn=0

Wj1 ⊗ . . . ⊗Wjn .

We define the regularity γ > q̃ of the trial spaces by

γ = sup {s ∈ R : VJ ⊂ Hs(�)} . (2.22)

It is known that based on the spline wavelets constructed in Example 2.1 the regularity index satisfies
γ = d− 1/2.

The sparse tensor product spaces V̂J are now defined by

V̂J := span
{
ψj,k : ki ∈ ∇ji , i = 1, . . . , n; 0 ≤ |j|1 ≤ J

}
=

∑

0≤|j|1≤J

Wj1 ⊗ . . .⊗Wjn . (2.23)

One readily infers that NJ := dim(VJ ) = O(2nJ ) whereas N̂J := dim(V̂J) = O(2JJn−1) as J
tends to infinity. However, both spaces have similar approximation properties in terms of the Finite
Element meshwidth h = 2−J , provided the function to be approximated is sufficiently smooth. To
characterize the necessary extra smoothness we introduce the spaces Hs([0, 1]n), s ∈ N0, of all
measurable functions u : [0, 1]n → R, such that the norm,

‖u‖Hs(�) :=

( ∑

0≤αi≤s,
i=1,...,n

‖∂α1
1 . . . ∂αn

n u‖2
L2(�)

)1/2

,

is finite. That is

Hs([0, 1]n) =
n⊗

i=1

Hs([0, 1]). (2.24)

For arbitrary s ∈ R≥0, we define Hs by interpolation. Because of the underlying tensor product
structure (2.24), one infers from (2.17)–(2.19) that for

u =
∑

(j,k)

uj,kψj,k =
∑

(j,k)

uj,kψj1k1 ⊗ . . .⊗ ψjnkn
,

there holds the norm equivalence
∑

(j,k)

22s(j1+...+jn)|uj,k|
2 ∼ ‖u‖2

Hs , if 0 ≤ s < d− 1/2, (2.25)

and the one-sided bounds
∑

(j,k)

22s(j1+...+jn)|uj,k|
2 . ‖u‖2

Hs , if 0 ≤ s < d, (2.26)
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∑

k

22s(j1+...+jn)|uj,k|
2 . ‖u‖2

Hs , if s = d. (2.27)

By (2.21), one may decompose any u ∈ L2(�) into

u(x) =
∑

ji≥0
i=1,...,n

∑

ki∈∇ji

uj,kψj,k(x) =
∑

ji≥0
i=1,...,n

∑

ki∈∇ji

uj,kψj1,k1(x1) . . . ψjn,kn
(xn).

In this style, the sparse grid projection P̂J : L2(�) → V̂J is defined by truncation of the wavelet
expansion:

(P̂Ju)(x) :=
∑

0≤|j|1≤J

∑

k∈∇j

uj,kψj,k(x), (2.28)

where ∇j = ∇(j1,...,jn) := ∇j1 × . . .×∇jn .

2.3 Approximation rates for sparse tensor product spaces

For the proof of the following convergence and stability results, we refer to [38] and [17], respectively.
By [38, Propositions 3.1 & 3.2], the sparse tensor product projection P̂J in (2.28) satisfies

Lemma 2.3. Suppose 0 ≤ t < γ, then for u ∈ H t, there holds

1. Stability of P̂J :
‖P̂Ju‖Ht(�) . ‖u‖Ht(�). (2.29)

2. Approximation property of P̂J : for 0 ≤ t < γ and t < t′ ≤ d,

‖u− P̂Ju‖Ht(�) .





2−JdJ
1
2 ‖u‖Hd(�) if t = 0 and t′ = d,

2J(t−t′)‖u‖Ht′ (�) otherwise.
(2.30)

Herewith, we can summarize:

Proposition 2.4. Let A in (2.2) be an operator of order 2q ∈ R as in (2.4). Denote the order of B
in (2.2) by 2q̃ as defined in (2.6). Then the sparse tensor product spaces V̂J in (2.23) based on the
wavelets introduced in Section 2.1 satisfy:

1. The Galerkin discretization of (2.1) based on sparse tensor product spaces V̂J as defined in
(2.23) is stable, i.e. there exist J0 > 0 and c1 > 0, c2 ≥ 0 such that for any J ≥ J0 there holds

|〈BvJ , vJ〉| ≥ c1‖vJ‖
2
Heq(�) − c2‖vJ‖

2
L2(�), for all vJ ∈ V̂J , (2.31)

and there exists some c3 > 0 such that for all J ≥ J0,

|〈BvJ , wJ〉| ≤ c3‖vJ‖Heq(�)‖wJ‖Heq(�), for all vJ , wJ ∈ V̂J . (2.32)

In particular, the variational problem (2.8) admits a unique solution.
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2. For q̃ < γ and q̃ < t′ ≤ d, the convergence of the sparse tensor product Galerkin scheme is
determined by

‖u− uJ‖Heq(�) . 2J(eq−t′+ν)‖u‖Ht′ (�), (2.33)

where u, uJ denote the solutions of the original equation Bu = f and the variational problem
(2.8), respectively. Here

ν =





(n− 1)d

nd− 1
, if q̃ = 0 and t′ = d,

0, otherwise.

Proof. The stability estimates (2.31), (2.32) are satisfied on the full tensor product space VJ . This
carries forward to the sparse tensor product space V̂J with sufficiently large J > 0, because V̂J ⊂ VJ
and

⋃∞
J=0 V̂J is dense in H eq(�). To see the latter, note that VJ/2 ⊂ V̂J and

⋃∞
J=0 VJ/2 =

⋃∞
J=0 VJ is

dense in H eq(�).

The convergence rate (2.33) in the sparse tensor product setting can be obtained directly from [38,
Section 3.5].

3 Fundamental estimates

In this section we derive fundamental estimates for the entries of the stiffness matrix AJ of A, i.e.

[AJ ](j,k)(j′,k′) = 〈Aψj,k, ψj′,k′〉,

for 0 ≤ |j|1,|j′|1 ≤ J , k ∈ ∇j, k′ ∈ ∇j′ . Throughout this section, we consider an arbitrary but fixed
pair of n-variate tensor product wavelets ψj,k = ψj1,k1 ⊗ . . .⊗ ψjn,kn

, ψj′,k′ = ψj′1,k′1 ⊗ . . .⊗ ψj′n,k′n .
For any coordinate direction s = 1, . . . , n, we denote

δxs := dist
(
supp{ψjs,ks

}, supp{ψj′s,k′s}
)
,

and

σxs :=

{
dist

(
singsupp{ψjs,ks

}, supp{ψj′s,k′s}
)
, if js ≤ j′s,

dist
(
supp{ψjs,ks

}, singsupp{ψj′s,k′s}
)
, if j′s ≤ js.

In addition, we set
δxy := dist

(
supp{ψj,k}, supp{ψj′,k′}

)
.

Usually, we simply write δxs , σxs without indicating the dependence of these terms on j, j′, k and k′,
because this is clear from the context.

3.1 Auxiliary wavelet-based estimates

Before we give the actual estimates for the matrix entries we need to collect the following lemmas.

Lemma 3.1. Let i ∈ {1, . . . , n} denote a coordinate direction. Consider a linear continuous operator

Ai : Hm/2([0, 1]) → H−m/2([0, 1]),
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of order m ∈ R. Suppose there exists some given function ci(j, j′) that may depend on all level indices
j, j′ except ji, j′i and some universal constant c > 0 independent of the underlying wavelets such that

|Aiψj′i,k′i(x)| ≤ c · ci(j, j′) · 2−j
′
i(

ed+1/2) dist(supp(ψj′i,k′i), x)
−(1+m+ ed), (3.1)

for all x ∈ [0, 1] . Then for any g ∈ L∞([0, 1]) with supp(g) ∩ supp(ψj′i,k′i) = ∅ there holds

|〈Aiψj′i,k′i , g〉|

. ci(j, j′) · ‖g‖L∞([0,1])2
−j′i(

ed+1/2) dist(supp(ψj′i,k′i), supp(g))−(m+ ed).
(3.2)

Proof. Denote Sg := supp(g). Applying (3.1) one obtains

|〈Aiψj′i,k′i , g〉| . ‖g‖L∞([0,1])

∫

Sg

|Aiψj′i,k′i(x)|dx

. ci(j, j′) · ‖g‖L∞([0,1])2
−j′i(

ed+1/2)

∫

Sg

dist(supp(ψj′i,k′i), x)
−(1+m+ ed)dx.

Since Sg and supp(ψj′i,k′i) are disjoint,

∫

Sg

dist(supp(ψj′i,k′i), x)
−(1+m+ ed)dx . dist(supp(ψj′i,k′i), Sg)

−(m+ ed),

and hence,

|〈Aiψj′i,k′i , g〉| . ci(j, j′) · ‖g‖L∞([0,1])2
−j′i(

ed+1/2) dist(supp(ψj′i,k′i), Sg)
−(m+ ed).

Note that for n-variate isotropic wavelets a similar estimate has already been shown in [7, Lemma
6.4].

Remark 3.2. To obtain the desired matrix entry estimates, in the following section we set ci(j, j′) =

2−
1
2
(|j|1+|j′|1−ji−j′i) which is independent of ji, j′i.

Lemma 3.3. For a smooth piece f (not necessarily defined on the whole [0, 1]) of the wavelet ψji,ki

denote by f ∈ C∞
0 (R) a smooth extension of f to the whole of R. There holds

∥∥f
∥∥
W∞, ed+m(suppψj′

i
,k′

i
)
. 2ji(

1
2
+ed+m). (3.3)

Proof. Using integration by parts, one obtains

∥∥f
∥∥
W∞, ed+m(suppψj′

i
,k′

i
)

. ‖2ji/2ψ(2ji · −ki)‖W∞, ed+m([0,1])

. 2ji(
1
2
+ed+m−1)‖ψ(−( ed+m))(2ji · −ki)‖L∞([0,1])

. 2ji(
1
2
+ed+m).

Here ψ denotes the mother wavelet as in (2.14) and ψ(−( ed+m)) is its (d̃+m)-th antiderivative.
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Lemma 3.4. Let A]
i : Hs(R) → Hs−m(R), s ∈ R, be compactly supported and continuous of order

m ∈ R. Let f be as in Lemma 3.3 such that
∥∥∥A]

if
∥∥∥
Hs−m(R)

≤ c · ci(j, j′) ·
∥∥f

∥∥
Hs(R)

, s ∈ R, (3.4)

with some suitable universal constant c > 0 and ci(j, j′) as in Lemma 3.1. There holds

|〈A]
if, ψj′i,k′i〉| . ci(j, j′) · 2−j

′
i(

ed+1/2)2ji(
1
2
+ed+m). (3.5)

Proof. Denote Ωj′i,k
′
i
:= suppψj′i,k′i . Employing the cancelation property (2.13) one obtains

|〈A]
if, ψj′i,k′i〉| =

∣∣∣∣
∫

R

A]
if(x)ψj′i,k′i(x)dx

∣∣∣∣

. 2−j
′
i(

ed+1/2) · sup
x∈Ωj′

i
,k′

i

∣∣∣∂ edA]
if(x)

∣∣∣ .

Since f ∈ C∞
0 (R), the fact that (3.4) holds for each s ∈ R implies

|〈A]
if, ψj′i,k′i〉| . ci(j, j′) · 2−j

′
i(

ed+1/2)
∣∣f

∣∣
W ed+m,∞(Ωj′

i
,k′

i
)

. ci(j, j′) · 2−j
′
i(

ed+1/2)2ji(
1
2
+ed+m),

where the last line follows from Lemma 3.3.

3.2 Matrix entry estimates

In order to exploit the tensor product structure of our discretization the following very simple lemma
is crucial.

Lemma 3.5. Let i ∈ {1, . . . , n} denote any coordinate direction. For a standard kernel κ(·, ·) of
order 2q as in (2.5) and any two wavelets ψj,k = ψj1,k1 ⊗ . . .⊗ψjn,kn

, ψj′,k′ = ψj′1,k′1 ⊗ . . .⊗ψj′n,k′n ,
the “dimensionally reduced” kernels,

κi(xi, x
′
i) :=

∫

[0,1]n−1

∫

[0,1]n−1

κ
(
x, x′

) n∏

s=1
s6=i

ψjs,ks
(xs)ψj′s,k′s(x

′
s)dxdx

′,

inherit a Calderón-Zygmund-type estimate, i.e. for α, β ∈ N0 there holds
∣∣∣∂αxi

∂βx′
i
κi(xi, x

′
i)

∣∣∣ . 2−
1
2
(|j|1+|j′|1−ji−j′i)

∣∣xi − x′i
∣∣−(n+2q+α+β)

. (3.6)

Proof. Without loss of generality, we assume i = 1. The proof is a straightforward application of the
standard estimate (2.5) for κ(·, ·) and Fubini’s theorem:

|∂αx1
∂β
x′1
κ1(x1, x

′
1)| =

∣∣∣∣
∫

[0,1]n−1

∫

[0,1]n−1

∂αx1
∂β
x′1
κ

(
x, x′

)
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·
n∏

s=2

ψjs,ks
(xs)ψj′s,k′s(x

′
s) dx2dx

′
2 . . . dxndx

′
n

∣∣∣∣

.

∣∣∣∣
∫

[0,1]n−1

∫

[0,1]n−1

( n∑

m=1

(xm − x′m)2
)−n+2q+α+β

2

·
n∏

s=2

ψjs,ks
(xs)ψj′s,k′s(x

′
s) dx2dx

′
2 . . . dxndx

′
n

∣∣∣∣

.
∣∣x1 − x′1

∣∣−(n+2q+α+β)
n∏

s=2

∣∣∣∣
∫ 1

0
ψjs,ks

(xs)dxs ·

∫ 1

0
ψj′s,k′s(x

′
s)dx

′
s

∣∣∣∣

.
∣∣x1 − x′1

∣∣−(n+2q+α+β)
n∏

s=2

2−
1
2
js2−

1
2
j′s .

Remark 3.6. Obviously, κi depends on the particular choice of ψjs,ks
, ψj′s,k′s , s 6= i. To keep notation

as simple as possible, we will usually conceal this dependence and simply write κi. The corresponding
wavelets are always clear from the context.

Now we turn to the actual fundamental estimates of the matrix entries. Let Ai : Hq+n−1([0, 1]) →
H−q([0, 1]) denote the reduction of A to the operator that canonically corresponds to the dimension-
ally reduced kernel κi defined above. Using the cancelation property of the one-dimensional wavelets
ψj′i,k′i , for x ∈ [0, 1] one infers from Lemma 3.5,

|Aiψj′i,k′i(x)| = |〈κi(x, ·), ψj′i ,k′i〉|

. 2−j
′
i(

ed+1/2)|κi(x, ·)|W∞, ed(supp(ψj′
i
,k′

i
))

. 2−j
′
i(

ed+1/2)2−
1
2
(|j|1+|j′|1−ji−j′i) dist(supp(ψj′i,k′i), x)

−(n+2q+ ed).

(3.7)

In particular, Ai satisfies (3.1) with ci(j, j′) = 2−
1
2
(|j|1+|j′|1−ji−j′i) and m = 2q + n− 1.

Theorem 3.7. Assume ji ≤ j′i. If 0 < σxi
. 2−ji , there holds

|〈Aiψj1,k1 , ψj′1,k′1〉|

|〈Aiψj′1,k′1 , ψj1,k1〉|

}
. 2

ji−j′i
2 2−j

′
i

ed2−
1
2
(|j|1+|j′|1−ji−j′i)σ−(2q+ ed+n−1)

xi
,

uniformly with respect to J .

Proof. Since 0 < σxi
we may denote by f (not defined on the whole [0, 1]) the smooth piece of ψji,ki

whose support contains supp(ψj′i,k′i). Clearly, f may be extended to some f ∈ C∞
0 (R) and one may

decompose,

ψji,ki
= f + f

C
,

with some suitable f
C

. We split

|〈Aiψj′i,k′i , ψji,ki
〉| ≤ |〈Aiψj′i,k′i , f〉| + |〈Aiψj′i,k′i , f

C
〉|, (3.8)
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and estimate both terms separately. On the one hand,

supp(f
C
) ∩ supp(ψj′1,k′1) = ∅,

and thus (3.7) implies that Lemma 3.1 with g = f
C

yields the required estimate for the second term
in (3.8). On the other hand, consider the extension A]

i : Hq+n−1(R) → H−q(R) of Ai defined by

A]
if(x) =

∫

R

χ(x)χ(x′)κi(x, x
′)f(x′)dx′,

with some suitable C∞-cut-off function χ that is 1 on [0, 1] and 0 outside [−1, 2]. By construction, A]
i

is compactly supported (in the sense of [33, 35]) and, as shown in e.g. [35, Section II.6], the operator
A]
i acts continuously on the whole scale of Sobolev spaces. In fact, since A]

i is of order 2q + n− 1,
for each s > 0 there holds

∥∥∥A]
if

∥∥∥
Hs−2q(R)

. 2−
1
2
(|j|1+|j′|1−ji−j′i)‖f‖Hs+n−1(R)

. 2−
1
2
(|j|1+|j′|1−ji−j′i)2ji(s+n−1),

where the factor 2−
1
2
(|j|1+|j′|1−ji−j′i) results from Lemma 3.5, because it is a scalar. Herewith, Lemma

3.4 with ci(j, j′) = 2−
1
2
(|j|1+|j′|1−ji−j′i) and m = 2q + n− 1 yields

|〈A]
if, ψj′i,k′i〉L2(R)| . 2−

1
2
(|j|1+|j′|1−ji−j′i)2−j

′
i(

ed+1/2)2
1
2
ji2ji(

ed+2q+n−1).

Since σxi
. 2−ji , this implies the required estimate for the first term in (3.8).

The following theorem corresponds to Theorem 6.1 in [7]. But here, we exploit the tensor product
structure and anisotropic nature of our wavelets.

Theorem 3.8. There holds

|〈Aψj,k, ψj′,k′〉|

|〈Aψj′,k′ , ψj,k〉|

}
. 2−

1
2
(|j|1+|j′|1)2−

ed(j(1)+j(2))δ−(n+2q+2 ed)
xy , (3.9)

where j(1), j(2) may be any distinct two out of the four indices.

Proof. One may assume without loss of generality that j (1) = j1 and j(2) = j′2, because in the analysis
below all the wavelets are interchangeable. In fact, one only requires that all one-dimensional wavelets
admit the same number of vanishing moments.

Consider arbitrary but fixed points xs ∈ [0, 1], x′l ∈ [0, 1] in all coordinate directions s 6= 1, l 6= 2.
Using integration by parts and the standard kernel estimate (2.5) for κ(·, ·) one finds

∣∣∣∣
∫ 1

0

∫ 1

0
ψj1,k1(x1)ψj′2,k′2(x

′
2)κ((x1, . . . , xn), (x′1, . . . , x

′
n))dx1dx

′
2

∣∣∣∣

. 2−
ed(j1+j′2)

∫ 1

0

∫ 1

0

∣∣ψ(−ed)
j1,k1

(x1)ψ
(−ed)
j′2,k

′
2
(x′2)

∣∣
( n∑

s=1

(xs − x′s)
2

)−n+2q+2 ed
2

dx1dx
′
2.
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Using Fubini’s Theorem, one herewith obtains

|〈Aψj,k, ψj′,k′〉| .

∫

[0,1]n−1

∫

[0,1]n−1

∣∣∣∣
n∏

s=2

ψjs,ks
(xs)

n∏

l=1
l 6=2

ψj′
l
,k′

l
(x′l)

∣∣∣∣

×

∫ 1

0

∫ 1

0

∣∣ψj1,k1(x1)ψj′2,k′2(x
′
2)

∣∣∣∣κ(x, x′)
∣∣dxdx′

. 2−
ed(j1+j′2)

∫

[0,1]n

∫

[0,1]n

∣∣∣∣ψ
(−ed)
j1,k1

(x1)ψ
(−ed)
j′2,k

′
2
(x′2)

∣∣∣∣

×

∣∣∣∣
n∏

s=2

ψjs,ks
(xs)

n∏

l=1
l 6=2

ψj′
l
,k′

l
(x′l)

∣∣∣∣ · |x− x′|−(n+2q+2 ed)dxdx′

. 2−( ed+ 1
2
)(j1+j′2)2−

1
2
(|j|1+|j′|1−j1−j′2)δ−(n+2q+2 ed)

xy ,

where the last line follows from the standard bounds on the volume of the supports of the wavelets
and their suprema as described in Section 2.1.

Theorem 3.9. Assume ji ≤ j′i. If 0 < σxi
. 2−ji then there holds

|〈Aψj,k, ψj′,k′〉|

|〈Aψj′,k′ , ψj,k〉|

}
. 2−

edj′i2ji2−
1
2
(|j|1+|j′|1)σ−(2q+ ed+n−1)

xi
. (3.10)

Proof. Using Fubini’s Theorem one obtains

∣∣〈Aψj,k, ψj′,k′〉
∣∣ =

∣∣∣∣∣

∫

[0,1]n

∫

[0,1]n
ψj,k(x)ψj′,k′(x′)κ(x, x′)dxdx′

∣∣∣∣∣

=

∣∣∣∣
∫ 1

0

∫ 1

0
ψji,ki

(xi)ψj′i,k′i(x
′
i)

×

∫

[0,1]n−1

∫

[0,1]n−1

κ
(
x, x′

) n∏

s=1
s6=i

ψjs,ks
(xs)ψj′s,k′s(x

′
s)dxdx

′

∣∣∣∣

=

∣∣∣∣
∫ 1

0

∫ 1

0
ψji,ki

(xi)ψj′i,k′i(x
′
i)κi(xi, x

′
i)dxidx

′
i

∣∣∣∣

=
∣∣∣〈Aiψji,ki

, ψj′
i
,k′

i
〉
∣∣∣ ,

with κi and Ai defined as above. Thus, the result follows directly from Theorem 3.7.

4 Consistency framework

In order to analyze the impact of a compression scheme for A on the discretization of the original
problem

Bu = ADu+ Au = f,
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recall that by (2.6), the order of B is given by

2q̃ =

{
2, if Q > 0 and 2q ≤ 2,

2q, otherwise,
(4.1)

where Q ∈ R
n×n denotes the coefficient matrix of AD. The stability and convergence results of the

sparse tensor product FE discretization without compression are given by Proposition 2.4.

To characterize the consistency requirements that need to be satisfied by a compression scheme for A,
we define the following scale of interpolation spaces

Xθ,eq,d := (Heq(�), Hd(�))θ,2, 0 ≤ θ ≤ 1, (4.2)

using the K-method of interpolation (cf. e.g. [36, Section 1.3]). From the wavelet norm equivalences
and estimates of the spaces H eq(�) and Hd(�) one obtains the following estimate for the norm of
Xθ,eq,d.

Proposition 4.1. Let 0 ≤ θ ≤ 1 and j ∈ N
n
0 be a fixed level index. For any u ∈ Xθ,eq,d with wavelet

representation
u =

∑

j′

∑

k′∈∇j′

uj′,k′ψj′,k′ ,

there holds ∑

k∈∇j

22(1−θ)eq|j|∞22θd|j|1 |uj,k|
2 . ‖u‖2

Xθ,eq,d
. (4.3)

Proof. By e.g. [36, Theorem 1.3.3 (c)], there exists a positive number c > 0 only depending on θ
such that for all t ∈ R>0 there holds

t−θK(t, u) ≤ c‖u‖Xθ,eq,d
, for all u ∈ Xθ,eq,d,

where
K(t, u) = inf

g∈Hd
{‖u− g‖Heq + t‖g‖Hd} ,

denotes the K-functional. Thus, it suffices to show that there exists some constant c > 0 such that for
any fixed j ∈ N

n
0 there exists 0 < t <∞ such that

∑

k∈∇j

22(1−θ)q|j|∞22θd|j|1 |uj,k|
2 ≤ c · t−2θK(t, u)2, for all u ∈ Xθ,eq,d. (4.4)

Define

T (j, t, u) := inf
g∈Hd

g=
P

k∈∇j
gj,kψj,k

{( ∑

k∈∇j

(22eqj1 + . . .+ 22eqjn)

×|uj,k − gj,k|
2

) 1
2

+ t

( ∑

k∈∇j

22d|j|1 |gj,k|
2

) 1
2
}
.
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Using the wavelet norm estimate (2.27) for ‖ · ‖Hd and the well-known norm equivalence for ‖ · ‖Heq

one obtains

T (j, t, u) . inf
g∈Hd

{( ∑

j′∈Nn
0

k′∈∇j′

(22eqj′1 + . . .+ 22eqj′n)|uj′,k′ − gj′,k′ |2
) 1

2

+ t‖g‖Hd

}

∼ inf
g∈Hd

{
‖u− g‖Heq + t‖g‖Hd

}

∼ K(t, u),

for any 0 < t < ∞. Thus, to prove (4.3) it suffices to show that there exists some 0 < t < ∞ such
that ∑

k∈∇j

22(1−θ)eq|j|∞22θd|j|1 |uj,k|
2 . t−2θT (j, t, u)2. (4.5)

With t = (22eqj1+...+22eqjn )
1
2

2d(j1+...+jn) , inequality (4.5) reads

∑

k∈∇j

22(1−θ)eq|j|∞22θd|j|1 |uj,k|
2 .

22θd(j1+...+jn)

(22eqj1 + . . .+ 22eqjn)θ−1

× inf
g∈Hd

{( ∑

k∈∇j

|uj,k − gj,k|
2

) 1
2

+

( ∑

k∈∇j

|gj,k|
2

) 1
2
}2

∼
22θd(j1+...+jn)

(22eqj1 + . . .+ 22eqjn)θ−1

∑

k∈∇j

|uj,k|
2.

Since the validity of this inequality follows immediately from the trivial estimate 22(1−θ)eq|j|∞ ≤
(22eqj1 + . . . + 22eqjn)1−θ, this implies the validity of (4.5) with this particular choice of 0 < t < ∞.
Hence the result follows.

For a given compression scheme, denote by A
compr
J the compressed matrix and let the corresponding

operator be given by

Acompr
J u :=

∑

j,j′

∑

k,k′

[
A
compr
J

]
(j,k)(j′,k′)

〈ψ̃j,k, u〉 ψ̃j′,k′ ,

where the first sum is taken over all level indices such that 0 ≤ |j|1, |j
′|1 ≤ J . There holds

〈Acompr
J ψj,k, ψj′,k′〉 =

[
A
compr
J

]
(j,k)(j′,k′)

, for all ψj,k, ψj′,k′ ∈ Ψ.

As shown below, in order to preserve stability and convergence results from the unperturbed (but
sparse tensor product) Galerkin discretization the compression scheme has to satisfy the following
consistency requirement.

Requirement 1. For any 0 ≤ θ1, θ2 ≤ 1 and all u ∈ Xθ1,eq,d, v ∈ Xθ2,eq,d, the operator Acompr
J

corresponding to a compressed matrix A
compr
J has to satisfy

∣∣∣
〈(

A−Acompr
J

)
P̂Ju, P̂Jv

〉∣∣∣

. ε · 22Jeq2−J((1−θ1)eq+θ1d)2−J((1−θ2)eq+θ2d) ‖u‖Xθ1,eq,d
‖v‖Xθ2,eq,d

,
(4.6)
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with some suitable constant ε > 0 uniformly with respect to J ≥ 0.

Setting θ1 = θ2 = 0 one directly obtains that if the compressed matrix satisfies Requirement 1 there
holds ∣∣〈(A−Acompr

J

)
uJ , uJ

〉∣∣ . ε‖uJ‖
2
Heq , uJ ∈ V̂J . (4.7)

Note that, since B = AD + A and AD is local, there holds

B − BcomprJ = A−Acompr
J for all J > 0. (4.8)

Thus, one obtains

Theorem 4.2. Suppose the solution u of (2.1) satisfies u ∈ Hd and Acompr
J satisfies Requirement 1.

Then for sufficiently small ε > 0 the compressed Galerkin scheme is stable, i.e. there exist J0 > 0
and c′1 > 0, c2 ≥ 0 such that for any J ≥ J0 there holds

〈BcomprJ uJ , uJ〉 ≥ c′1‖uJ‖
2
Heq − c2‖uJ‖

2
L2 , for all uJ ∈ V̂J , (4.9)

and there exists some c′3 > 0 such that for all J ≥ J0,

|〈BcomprJ uJ , vJ〉| ≤ c′3‖uJ‖Heq‖vJ‖Heq , for all uJ , vJ ∈ V̂J . (4.10)

Furthermore, the convergence rate (2.33) of the Galerkin scheme without compression is preserved
(cf. Proposition 2.4).

Proof. Inequality (4.9) may be verified by inserting (4.7) into (2.31) and using (4.8). This yields,

〈BcomprJ uJ , uJ〉 ≥ c1‖uJ‖
2
Heq − c2‖uJ‖

2
L2 − 2ε‖uJ‖

2
Heq

= (c1 − 2ε) ‖uJ‖
2
Heq − c2‖uJ‖

2
L2 ,

and c′1 := c1 − 2ε > 0 for sufficiently small ε > 0 from Requirement 1. The constants c1, c2 are
obtained from (2.31). For the continuity inequality (4.10) one obtains from (2.32) and Requirement 1
with θ1 = θ2 = 0,

|〈BcomprJ uJ , vJ〉| ≤ |〈BuJ , vJ〉| + |〈
(
BcomprJ −B

)
uJ , vJ〉|

≤ c3‖uJ‖Heq‖vJ‖Heq + ε‖uJ‖Heq‖vJ‖Heq ,

with c3 from (2.32). Setting c′3 = c3 + ε one obtains (4.10).

Finally, noting that q̃ < γ (with γ as in (2.22)), the convergence result follows by setting θ1 = 1,
θ2 = 0 in (4.6) from Strang’s first lemma (see e.g. [12, Lemma 2.27]).

By the above results, Requirement 1 indeed provides the correct framework for the anisotropic com-
pression scheme. Incorporating this idea, the following theorem provides (lower) bounds for the
cut-off parameters and hence will enable us to define the compression scheme (cf. Section 5). To
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simplify notation, for any two level indices j, j′ ∈ N
n
0 we introduce

σj,j′ :=





2J(d′ − q̃) − d′(|j|1 + |j′|1), if

{
(J − |j′|1)d

′ ≥ (J − |j′|∞)q̃,

(J − |j|1)d
′ ≥ (J − |j|∞)q̃,

− q̃(|j|∞ + |j′|∞), if

{
(J − |j′|1)d

′ < (J − |j′|∞)q̃,

(J − |j|1)d
′ < (J − |j|∞)q̃,

J(d′ − q̃) − q̃|j′|∞ − d′|j|1, if

{
(J − |j′|1)d

′ < (J − |j′|∞)q̃,

(J − |j|1)d
′ ≥ (J − |j|∞)q̃,

J(d′ − q̃) − d′|j′|1 − q̃|j|∞, if

{
(J − |j′|1)d

′ ≥ (J − |j′|∞)q̃,

(J − |j|1)d
′ < (J − |j|∞)q̃,

(4.11)

with some given control parameter d ≤ d′ < d̃+ 2q̃.

Theorem 4.3. Let A
compr
J denote the matrix compressed with respect to some cut-off parameter Ej, j′ ,

i.e.
[
A
compr
J

]
(j,k)(j′,k′)

:=

{
0, if δj,j′ > Ej, j′ ,

[AJ ](j,k)(j′,k′) , otherwise,

with some suitable δj,j′ ∈ {δxi
, σxi

: i = 1, . . . , n}. Then A
compr
J satisfies Requirement 1 if the block

matrices A
compr
j, j′ satisfy ∥∥∥Aj, j′ − A

compr
j, j′

∥∥∥
2

. ε 2−σj,j′ ,

with σj,j′ as in (4.11).

Proof. Let 0 ≤ θ1, θ2 ≤ 1 be as in Requirement 1. There holds

∣∣∣
〈(

A−Acompr
J

)
P̂Ju, P̂Jv

〉∣∣∣ =

∣∣∣∣
∑

0≤|j|1≤J
k∈∇j

∑

0≤|j′|1≤J
k′∈∇j′

〈(
A−Acompr

J

)
uj

kψj,k, v
j′

k′ψj′,k′

〉 ∣∣∣∣

.
∑

0≤|j|1≤J
0≤|j′|1≤J

∣∣∣∣
∑

k∈∇j
k′∈∇j′

uj
kv

j′

k′

〈(
A−Acompr

J

)
ψj,k, ψj′,k′

〉 ∣∣∣∣

.
∑

0≤|j|1≤J
0≤|j′|1≤J

(∥∥[
uj

k

]
k∈∇j

∥∥
2

∥∥[
vj′

k′

]
k′∈∇j′

∥∥
2

∥∥Aj, j′ − A
compr
j, j′

∥∥
2

)

. ‖u‖Xθ1,eq,d
‖v‖Xθ2,eq,d

×
∑

0≤|j|1≤J
0≤|j′|1≤J

∥∥∥2−(1−θ1)eq|j′|∞2−θ1d|j
′|1

×2−(1−θ2)eq|j|∞2−θ2d|j|1
(

Aj, j′ − A
compr
j, j′

)∥∥∥
2
,

where the last inequality follows from Proposition 4.1.
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Thus, Requirement 1 is satisfied if for all 0 ≤ θ1, θ2 ≤ 1 there holds
∥∥Aj, j′

∥∥
2

. ε,

where

Aj, j′ := 2−2Jeq · 2J((1−θ1)eq+θ1d)2J((1−θ2)eq+θ2d)

× 2−(1−θ1)eq|j′|∞2−θ1d|j
′|12−(1−θ2)eq|j|∞2−θ2d|j|1

(
Aj, j′ − A

compr
j, j′

)
.

With this definition, the row sums of A :=
(
Aj, j′

)
(j,j′)

can trivially be estimated by

∑

0≤|j′|1≤J

∣∣Aj, j′
∣∣ ≤

∑

0≤|j′|1≤J

2(1−θ1)eq(J−|j′|∞)2θ1d(J−|j′|1)

× 2(1−θ2)eq(J−|j|∞)2θ2d(J−|j|1)2−2Jeq
∥∥∥Aj, j′ − A

compr
j, j′

∥∥∥
2
.

Since the same estimate is also valid for the column sums, by the Cauchy-Schwarz inequality (or the
Schur Lemma with unit weight, cf. [22, Section VIII.4]) one obtains that Requirement 1 is satisfied if

∥∥∥Aj, j′ − A
compr
j, j′

∥∥∥
2

. ε 2−σ ,

with σ such that

(1 − θ1)q̃(J − |j′|∞) + θ1d(J − |j′|1) + (1 − θ2)q̃(J − |j|∞) + θ2d(J − |j|1) − 2Jq̃ ≤ σ,
(4.12)

for all 0 ≤ θ1, θ2 ≤ 1. Differentiation of the left hand side of (4.12) with respect to θ1 and θ2, resp.,
shows its monotonicity with respect to these parameters. Thus using a monotonicity argument one
obtains that (4.12) is satisfied by σj,j′ defined in (4.11).

The definition of the cut-off parameters will directly rely on the following modification of Theorem
4.3.

Corollary 4.4. If there exists some parameter g = g(j, j′) and a constant c, such that,

2−σj,j′ = 2−gE−c
j, j′ ,

then Theorem 4.3 boils down to requiring that

Ej, j′ ≥ ε−c 2
τ
c , with τ ≥ σj,j′ − g.

Remark 4.5. Note that in case one is interested in using sparse tensor product based wavelet com-
pression for the fast evaluation of integral expressions as in e.g. [21], then (because the stability
estimates (4.9)–(4.10) are not necessary) Requirement 1 can be relaxed to

Requirement 2. For d < d̃+2q, the operator Acompr
J corresponding to a compressed matrix A

compr
J

has to satisfy ∣∣∣
〈(

A−Acompr
J

)
P̂Ju, P̂Jv

〉∣∣∣ . 22Jq2−J(t+t′) ‖u‖Ht′ ‖v‖Ht , (4.13)

for any q ≤ t, t′ ≤ d uniformly with respect to J ≥ 0.
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Analogously to Theorem 4.3 one then obtains

Corollary 4.6. Let A
compr
J denote the matrix compressed with respect to some cut-off parameter Ej, j′ ,

i.e.
[
A
compr
J

]
(j,k)(j′,k′)

:=

{
0, if δj,j′ > Ej, j′ ,

[AJ ](j,k)(j′,k′) , otherwise,

with some suitable δj,j′ ∈ {δxi
, σxi

: i = 1, . . . , n}. Then A
compr
J satisfies Requirement 2 if the block

matrices A
compr
j, j′ satisfy, ∥∥∥Aj, j′ − A

compr
j, j′

∥∥∥
2

. 2
−σ′

j,j′ ,

with
σ′j,j′ := 2J(d′ − q) − d′(|j|1 + |j′|1), (4.14)

for given d ≤ d′ < d̃+ 2q.

Remark 4.7. By definition, σ′
j,j′ ≤ σj,j′ for all j, j′ ∈ N

n
0 .

5 Compression scheme

In this section, we define two compression schemes and show that the resulting compressed matrices
A
compr
J satisfy Requirement 1 and Requirement 2, respectively. The schemes are split into two parts

based on the distinction of first and second compression as defined in [7, 30]:

In the first compression the cut-off criteria are based on the distance of the wavelets’ supports. The
second compression employs cut-off criteria based on the distance of the support of smaller wavelets
to the singular support of larger ones, i.e. it is based on σxs defined above. Note that here matrix
entries can be dropped even if the supports of their wavelets intersect. The consistency of the first
compression relies on Theorem 3.8 whereas the second compression scheme results from Theorem
3.9.

Denote by σ̃j,j′ some parameter depending on j, j′ which can be chosen to be either σj,j′ or σ′j,j′ as
defined in (4.11) and (4.14).

For each coordinate direction i = 1, . . . , n and any index set I ⊂ {1, . . . , n}, the corresponding
cut-off parameter of the first compression is defined by

Ci,Ij,j′ := cimax

{
2−min{ji,j′i}, 2

eσj,j′−
ed(j(1)+j(2))−

P
k∈I min{jk,j′

k
}

2 ed+2q+|I|

}
,

with ci > 0. Here |I| denotes the cardinality of the index set I ⊂ {1, . . . , n}. Clearly, one has to pick

j(1) = max{j1, . . . , jn}, j(2) = max({j1, . . . , jn}\{j
(1)}) (5.1)

for the best compression results. We therefore fix j (1) and j(2) in this way for the remainder of this
work.

Furthermore, to each pair of wavelets ψj,k, ψj′,k′ corresponding to one matrix entry, we associate the
index subset

I(j, k, j′, k′) :=
{
s ∈ {1, . . . , n} : δxs ≤ 2−min{js,j′s}

}
.
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Herewith, for q ≤ d ≤ d̃, the first compression scheme is defined by

[
A
cpr−1
J

]
(j,k)(j′,k′)

:=





0, if





∃ i ∈ {1, . . . , n}, s.t.

δxi
> C

i,I(j,k,j′,k′)

j,j′ ,

[AJ ](j,k)(j′,k′) , otherwise.

The cut-off parameters of the second compression are defined by

Ei,Ij,j′ := ei2

eσj,j′−
ed max{ji,j′i}−

P
k∈I\{i} min{jk,j′

k
}

ed+2q+|I|−1 ,

with ei > 0. The second compression scheme is thus defined by

[
A
cpr−2
J

]
(j,k)(j′,k′)

:=





0, if





∃ i ∈ {1, . . . , n}, s.t.

i ∈ I(j, k, j′, k′),

σxi
> E

i,I(j,k,j′,k′)

j,j′ ,

[AJ ](j,k)(j′,k′) , otherwise.

The fully compressed matrix A
compr
J is defined by

[
A
compr
J

]
(j,k)(j′,k′)

:=





0, if





[
A
cpr−m
J

]
(j,k)(j′,k′)

= 0,

for some m ∈ {1, 2},

[AJ ](j,k)(j′,k′) , otherwise.

The consistency of this scheme is ensured by

Theorem 5.1. If σ̃j,j′ = σj,j′ as defined in (4.11) then the compressed matrix A
compr
J satisfies Require-

ment 1 with
ε = max

{
c
−(2 ed+2q+n−1)
i , e

−( ed+2q+n−1)
i : i = 1, . . . , n

}
. (5.2)

If σ̃j,j′ = σ′j,j′ as defined in (4.14) then the compressed matrix A
compr
J satisfies Requirement 2.

Proof. For sake of brevity, we only prove the result in case σ̃j,j′ = σj,j′ . For σ̃j,j′ = σ′j,j′ the result
follows analogously by replacing Theorem 4.3 by Corollary 4.6 in the analysis below.

Throughout this proof, we further assume without loss of generality that j ′s ≤ js, s = 1, . . . , n. For
all other index combinations, the result follows in the same fashion.

To analyze A
cpr−1
J it is sufficient to show that, for arbitrary but fixed i ∈ {1, . . . , n} and I ⊂

{1, . . . , n}, the perturbation matrix T
i,I with blocks T

i,I
j,j′ defined by

[
T
i,I
j,j′

]
(k,k′)

:=





[AJ ](j,k)(j′,k′) , if





δxi
> Ci,Ij,j′ ,

δxs > 2−min{js,j′s} ∀ s /∈ I,

δxs ≤ 2−min{js,j′s} ∀ s ∈ I,

0, otherwise.
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satisfies the requirements of Theorem 4.3. To this end, we shall apply Schur’s Lemma (cf. [22, Section
VIII.4]) to estimate

∥∥T
i,I
j,j′

∥∥
2
.

Denote T
i,I
j,j′ =

(
ti,I
(j,k)(j′,k′)

)
(k,k′)

and, to simplify notation, introduce the index set

D1
j,j′ := {k ∈ ∇j : δxi

> Ci,Ij,j′ , δxs > 2−js ∀ s /∈ I, δxs ≤ 2−js ∀ s ∈ I}.

Recall that by δxy we denote the distance of the supports of two wavelets corresponding to a matrix
entry. By Theorem 3.8, the column sums of T

i,I
j,j′ may be estimated by

∑

k∈∇j

∣∣ti,I
(j,k)(j′,k′)

∣∣ .
∑

k∈D1

j,j′

2−
1
2
(|j|1+|j′|1)2−

ed(j(1)+j(2))δ−(n+2q+2 ed)
xy

. 2−
1
2
(|j|1+|j′|1)2−

ed(j(1)+j(2)) ·
∏

l∈I

2jl−j
′
l ·

∑

k∈D1

j,j′

ks:s/∈I

δ−(n+2q+2 ed)
xy ,

where we have used that for each l ∈ I there holds δxl
≤ 2−jl and hence there are only O(2jl−j

′
l)

non-zero entries per column.

Furthermore, for each s ∈ Ic := {1, . . . , n}\I there holds δxs > 2−js , which implies that the
distance of the wavelets’ supports is larger than the longest edge length in coordinate direction s.
Thus, denoting

X1 := {x ∈ R
n−|I| : |x| > C i,I

j,j′},

the remaining sum may be estimated by an integral (cf. [7]) to obtain

∑

k∈∇j

∣∣ti,I
(j,k)(j′,k′)

∣∣ . 2−
1
2
(|j|1+|j′|1)2−

ed(j(1)+j(2)) ·
∏

l∈I

2jl−j
′
l

∏

s∈Ic

2js ·

∫

X1

|x|−(n+2q+2 ed)dx,

since the sum is only taken over those matrix entries that satisfy δxy > Ci,Ij,j′ . Hence,

∑

k∈∇j

∣∣ti,I
(j,k)(j′,k′)

∣∣ . 2−
1
2
(|j|1+|j′|1)2−

ed(j(1)+j(2)) ·
∏

l∈I

2jl−j
′
l ·

∏

s∈Ic

2js · (C i,I

j,j′ )
−(|I|+2q+2 ed)

. 2
1
2
(|j|1−|j′|1)2−

ed(j(1)+j(2))2−
P

l∈I j
′
l(Ci,Ij,j′)

−(|I|+2q+2 ed).

Using that for each l ∈ I there are only O(1) non-zero row-entries, one analogously obtains that the
row sums can be estimated by

∑

k′∈∇j′

∣∣ti,I
(j,k)(j′,k′)

∣∣ . 2
1
2
(|j′|1−|j|1)2−

ed(j(1)+j(2))2−
P

l∈I j
′
l(Ci,Ij,j′ )

−(|I|+2q+2 ed).

Thus, by Schur’s lemma with weights 2
1
2
(|j′|1−|j|1), 2

1
2
(|j|1−|j′|1) one obtains

∥∥∥T
i,I
j,j′

∥∥∥
2

. 2−(j(1)+j(2)) ed2−
P

l∈I j
′
l · (Cx

j,j′)
−(2q+2 ed) . c

−(2q+2 ed+|I|)
i 2−σj,j′ . (5.3)

Hence, by Theorem 4.3, the matrix A
cpr−1
J satisfies Requirement 1.
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To analyze A
cpr−2
J , consider the corresponding perturbation matrix S

i,I given by

[
S
i,I
j,j′

]
(k,k′)

:=





[AJ ](j,k)(j′,k′) , if





σxi
> Ei,Ij,j′ , i ∈ I,

δxs > 2−min{js,j′s} ∀ s /∈ I,

δxs ≤ 2−min{js,j′s} ∀ s ∈ I,

0, otherwise.

By Theorem 3.9, the entries of S
i,I can be estimated by

∣∣si,I
(j,k)(j′,k′)

∣∣ . 2−
edji2j

′
i2−

1
2
(|j|1+|j′|1)σ−(2q+ ed+n−1)

xi
.

Introduce the index set

D2
j,j′ := {k ∈ ∇j : σxi

> Ei,Ij,j′ , δxs > 2−js ∀ s /∈ I, δxs ≤ 2−js ∀ s ∈ I}.

Denoting X2 := {x ∈ R
n−|I| : |x| > Ei,I

j,j′}, as for the first compression one herewith obtains

∑

k∈∇j

2
1
2
(|j′|1−|j|1)

∣∣si,I
(j,k)(j′,k′)

∣∣

. 2|j
′|1−|j|12−(|j′|1−j′i)2−

edji
∑

k∈D2

j,j′

σ−(2q+ ed+n−1)
xi

. 2|j
′|1−|j|12−(|j′|1−j′i)2−

edji ·
∏

l∈I

2jl−j
′
l ·

∏

s∈Ic

2js
∫

X2

|x|−(2q+ ed+n−1)dx,

since for all s ∈ Ic there holds δxs = σxs . Thus, for the weighted column sums of S
i,I
j,j′ one finds

∑

k∈∇j

2
1
2
(|j′|1−|j|1)

∣∣si,I
(j,k)(j′,k′)

∣∣ . 2−
edji2−

P
l∈I\{i} j

′
l(Ei,Ij,j′)

−(2q+ ed+|I|−1)

. e
−(2q+ ed+|I|−1)
i 2−σj,j′ .

Analogously, as above one may estimate the row sums by

∑

k′∈∇j′

2
1
2
(|j|1−|j′|1)

∣∣si,I
(j,k)(j′,k′)

∣∣ . e
−(2q+ ed+|I|−1)
i 2−σj,j′ .

Hence, by Theorem 4.3, the matrix A
cpr−2
J satisfies Requirement 1 and the overall consistency of

A
compr
J follows.

6 Complexity estimates

In this section we analyze the complexity of the compression scheme assuming that we have a large
number of vanishing moments at hand. For more sophisticated methods and detailed results (which
are less restrictive on the vanishing moments) we refer to [28, Sections 2.4, 4.6].
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Theorem 6.1. For arbitrary dimension n ≥ 2, any operator of order 2q̃ ≥ 0 and approximation order
d ≥ 2 there exists a number d̃0 ≥ d such that the number of non-zero entries in the matrix A

compr
J

defined by the compression scheme in Section 5 with σ̃j,j′ = σj,j′ is O
(
2JJ2(n−1)

)
, provided that the

underlying wavelets admit d̃ ≥ d̃0 vanishing moments.

Proof. Fix any I ⊂ {1, . . . , n}. Since I is arbitrary, it suffices to show that there are O
(
2JJ2(n−1)

)

entries 〈Aψj,k, ψj′,k′〉 of A
compr
J that satisfy

δxi
≤ 2−min{ji,j′i}, for all i ∈ I,

δxi
≥ 2−min{ji,j′i}, for all i /∈ I.

(6.1)

Based on the compression scheme of Section 5, in each matrix block Aj,j′ of A
compr
J we divide the

coordinate directions into three groups. Let

D1 :=

{
s ∈ I : 2−min{js,j′s} ≤ Es,Ij,j′

}
, (6.2)

D2 :=

{
t ∈ I : Et,I

j,j′ ≤ 2−min{jt,j′t}

}
, (6.3)

D3 :=

{
i ∈ {1, . . . , n}\I

}
. (6.4)

Obviously D1 ∪D2 ∪D3 = {1, . . . , n}. By definition of the compression scheme, the number #Aj,j′

of non-zero entries that satisfy (6.1) in each matrix block Aj,j′ can be bounded by

#Aj,j′ = O


 ∏

s∈D1

2js+j′s2−min{js,j′s} ·
∏

t∈D2

2jt+j
′
tEt,Ij,j′ ·

∏

i∈D3

2ji+j
′
iCi,Ij,j′




= O


 ∏

s∈D1

2max{js,j′s} ·
∏

t∈D2

2jt+j
′
t2

eσj,j′−
ed max{jt,j′t}−

P
k∈I\{t} min{jk,j′

k
}

ed+2q+|I|−1

×
∏

i∈D3

2ji+j
′
i2

eσj,j′−
ed(j(1)+j(2))−

P
k∈I min{jk,j′

k
}

2 ed+2q+|I|


 .

(6.5)

To simplify this notation, from now on we assume without loss of generality that j ′l ≤ jl for all
l = 1, . . . , n. The result for all other index combinations follows analogously.

Regrouping the single factors in (6.5) corresponding to their level index yields

#Aj,j′ = O

(
C0 ·

∏

s∈D1

Ss ·
∏

t∈D2

Tt ·
∏

i∈D3

Ii

)
, (6.6)

where now the particular form ofC0, Ss, Tt, Ii depends on the particular form of σ̃j,j′ = σj,j′ as defined
in (4.11). We analyze the different possible cases separately: denote

N :=
#D2

d̃+ 2q + |I| − 1
+

#D3

2d̃+ 2q + |I|
. (6.7)
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In case σ̃j,j′ = 2J(d′ − q̃) − d′(|j|1 + |j′|1) one obtains

C0 = 2N(2J(d′−eq)),

Sm = 2jm2−N(d′(jm+j′m)+j′m),

Tm = 2jm+j′m2
−

ed
ed+2q+|I|−1

jm
2−N(d′(jm+j′m)+j′m)2

1
ed+2q+|I|−1

j′m ,

Im = 2jm+j′m2
−

ed
2 ed+2q+|I|

(j(1)+j(2))
2−Nd

′(jm+j′m),

(6.8)

for m = 1, . . . , n. Here, each factor (except for C0) depends on exactly one coordinate direction.

By definition of D1, D2, there holds Ss ≤ Ts for all s ∈ D1. In order to keep notation feasible we
can thus assume #D2 = |I|, D1 = ∅ and estimate

#Aj,j′ = O

(
C0 ·

∏

t∈D2

Tt ·
∏

i∈D3

Ii

)
. (6.9)

Note that the estimate (6.9) introduces a certain suboptimality in the assumptions on the number of
vanishing moments that we shall need below. For slightly improved estimates we refer to [28].

Denote

j̃m :=
jm + j′m

2
, m = 1, . . . , n. (6.10)

For sufficiently large d̃ ≥ N − 1/(d̃+ 2q + I − 1) one obtains for any t ∈ D2,

Tt = 2

“
1−

ed
ed+2q+|I|−1

”
jt

2

“
1−N+ 1

ed+2q+|I|−1

”
j′t2−Nd

′(jt+j′t)

≤ 22ejt2
−

ed−1
ed+2q+|I|−1

ejt
2−N

ejt2−N2d′ejt =: T̃t.

In addition, one immediately obtains for i ∈ D3,

Ii ≤ 22eji2
− 2 ed

2 ed+2q+|I|
eji

2−N2d′eji =: Ĩi.

Thus,

#Aj,j′ =O

(
C0 · 2

2|ej|
12−N2d′|ej|

1 ·
∏

t∈D2

2
−

ed−1
ed+2q+|I|−1

ejt
·

∏

i∈D3

2
− 2 ed

2 ed+2q+|I|
eji

)
. (6.11)

Since D2 = I and D3 = {1, . . . , n}\I , there holds

N =
|I|

d̃+ 2q + |I| − 1
+

n− |I|

2d̃+ 2q + |I|
.

Herewith, a basic calculation shows that for a sufficiently large number of vanishing moments d̃, the
maximum of (6.11) is obtained when #D2 = n and hence N = n/(d̃ + 2q + n − 1). Then (6.11)
reads

#Aj,j′ =O

(
2N(2d′−2eq)J22|ej|

12−N2d′|ej|
12

−
ed−1

ed+2q+n−1
|ej|

1

)
, (6.12)
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and (for sufficiently large d̃) the right hand side of (6.12) is monotonically increasing in |̃j|1 ≤ J .
Hence,

#Aj,j′ =O

(
2N(2d′−2eq)J22J2−N2d′J2

−
ed−1

ed+2q+n−1
J
)
,

=O

(
22J2

−
ed+2eq+n−1
ed+2q+n−1

J
)

= O
(
2J

)
,

(6.13)

since q ≤ q̃. In case σ̃j,j′ = 2J(d′ − q̃) − d′(|j|1 + |j′|1), summing over all matrix blocks yields
that there are indeed O

(
2JJ2(n−1)

)
entries satisfying (6.1), because the maximum O(2J ) in (6.13) is

only obtained when |̃j|1 = J (i.e. jm = j′m = J/n for all m = 1, . . . , n) and the number of non-zero
entries per block is monotonically decreasing as |̃j|1 decreases.

To prove the claimed result in case σ̃j,j′ = −q̃(|j|∞ + |j′|∞) we proceed similarly: note that in this
case (6.6) holds with

C0 = 2−Neq(|j|∞+|j′|∞),

Ss = 2js2−Nj
′
s ,

Tt = 2jt+j
′
t2

−
ed

ed+2q+|I|−1
jt

2−Nj
′
t2

1
ed+2q+|I|−1

j′t,

Ii = 2ji+j
′
i2

−
ed

2 ed+2q+|I|
(j(1)+j(2))

.

(6.14)

As above, we assume without loss of generality that D1 = ∅, because this provides a worst but
admissible case. Herewith

#Aj,j′ =O

(
C0 · 2

|j|1+|j′|1 ·
∏

t∈D2

2
−

ed
ed+2q+|I|−1

jt
2−Nj

′
t2

1
ed+2q+|I|−1

j′t ·
∏

i∈D3

2
− 2 ed

2 ed+2q+|I|
ji
)

=O

(
C0 · 2

2|ej|
1 ·

∏

t∈D2

2
−

ed−1
ed+2q+|I|−1

ejt
2−N

ej′t
∏

i∈D3

·2
− 2 ed

2 ed+2q+|I|
eji

)
,

(6.15)

with j̃m, m = 1, . . . , n, as in (6.10). Since N → 0 as d̃→ ∞, provided a sufficiently large number of
vanishing moments the right hand side of (6.15) reaches its maximum when #D2 = |I| = n. Thus,

#Aj,j′ =O

(
2−Neq(|j|∞+|j′|∞) · 22|ej|

1 · 2
−

ed−1
ed+2q+n−1

|ej|
12−N|

ej|
1

)
. (6.16)

Clearly (6.16) becomes maximal only when |j|∞ + |j′|∞ is minimal, i.e. j̃1 = . . . = j̃n. Thus,

#Aj,j′ =O

(
22nej1 · 2−N2eqej1 · 2

−
n( ed−1)

ed+2q+n−1
ej1

2−Nn
ej1

)

=O

(
22nej1 · 2

− n2eq
ed+2q+n−1

ej1
· 2

− n( ed−1)
ed+2q+n−1

ej1
2
− n2

ed+2q+n−1
ej1

)

=O
(
2n

ej1) = O
(
2J

)
,

(6.17)

where the maximum is only obtained when j̃1 is maximal, i.e. j̃1 = . . . = j̃n = J/n.

Hence, as above, in case σ̃j,j′ = −q̃(|j|∞ + |j′|∞), summing over all matrix blocks yields that there
are indeed O

(
2JJ2(n−1)

)
entries satisfying (6.1).

Finally, the cases σ̃j,j′ = J(d′− q̃)− q̃|j′|∞−d′|j|1 and σ̃j,j′ = J(d′− q̃)−d′|j′|1− q̃|j|∞ follow in the
same fashion as the above, since these choices of σ̃j,j′ are simply a combination of the two previous
ones. For sake of brevity we omit the details here.
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7 s
∗-compressibility

In this final section, we briefly illustrate that the above complexity results also imply that the stiffness
matrices of the non-local operators under consideration are s∗-compressible in the sense of [5, 15, 31]
– with essentially dimension independent s∗. This shows that, in order to solve the corresponding in-
tegrodifferential equations one may employ adaptive wavelet algorithms as in [4, 5, 14] that converge
with the rate of best approximation by an arbitrary linear combination of N wavelets (so-called best
N -term approximation).

More precisely, to introduce the required notation we convert the original operator equation (2.1) into
an infinite matrix-vector system

Bu = f, (7.1)

where B denotes the infinite stiffness matrix of B. We shall use ‖ · ‖ to denote ‖ · ‖`2→`2 and define

Definition 7.1. For s∗ > 0, an infinite matrix B is called s∗-compressible if for each J ∈ N0 an
infinite matrix BJ can be constructed that has in each row and column O(2J ) non-zero entries and
satisfies

‖B − BJ‖ . 2−Js, for any constant s < s∗. (7.2)

From the consistency Theorem 5.1 and the complexity Theorem 6.1 one obtains that B in (7.1) is
indeed s∗-compressible:

Corollary 7.2. Suppose the solution u of (2.1) satisfies u ∈ Hd. Then the infinite matrix B of the non-
local operator B is s∗-compressible. If in addition the number d̃ of the wavelets’ vanishing moments
is sufficiently large, there holds

d− q̃ ≤ s∗, (7.3)

where, as above, d denotes the approximation order of the wavelet basis Ψ and 2q̃ is the order of B.

Proof. (Sketch) For J ∈ N0, let BJ be the infinite matrix given by

[BJ ](j,k)(j′,k′) :=





0, if |j|1 > J or |j′|1 > J,

0, if

{
ψj,k, ψj′,k′ ∈ V̂J ,

but B
compr
J = 0,

[B](j,k)(j′,k′) , otherwise,

for any j, j′ ∈ N
n
0 and k ∈ ∇j, k′ ∈ ∇j′ . Here B

compr
J denotes the (finite) compressed stiffness matrix

of B at level J as given by the compression scheme of Section 5 with σ̃j,j′ = σj,j′ as defined in (4.11).

By Theorem 6.1, in each row and column of BJ there are O(2J) non-zero entries (provided d̃ is
chosen sufficiently large, depending on the dimension n). Furthermore, by Theorem 5.1, the finite
matrix B

compr
J satisfies Requirement 1. Setting θ1 = 1, θ2 = 0 in (4.6) one may thus proceed as in the

proofs of [34, Theorems 2.3, 3.3] to obtain

‖B − BJ‖ . 2−Js, for all s < d− q̃.

For sake of brevity, we omit the details here.
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Remark 7.3. One central advantage of best N -term approximations in the sense of [4, 5, 14] is that
it can be based on Besov regularity which in general is a much milder condition than assuming the
corresponding Sobolev regularity. Since we are working on sparse tensor product spaces based on
mixed Sobolev smoothness, future work is required to exploit this advantage here. For best N -term
approximations on sparse tensor products based on Besov regularity we refer to [24].

Remark 7.4. In this work we have provided a compression scheme exclusively for operators of
Hörmander type. There are however applications (e.g. Mathematical Finance) where anisotropic in-
tegrodifferential operators occur that are not covered by the described schemes. In [28, 29] a wavelet
compression scheme is constructed especially for such anisotropic operators (cf. [13, 26, 27]).
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