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1 Introduction

Consider arbitrage-free values u(x, T ) of contingent claims on baskets of d ∈ N assets. The log-
returns of the underlying assets are modeled by a Lévy or, more generally, a Feller process X
with state space Rd and X0 = x.

By the fundamental theorem of asset pricing (see [19]), the arbitrage free price u of a Euro-
pean contingent claim with payoff function g(·) and maturity T > 0 is given by the conditional
expectation

u(x, t) = E (g(XT ) | Xt = x) ,

under an a-priori chosen (risk-neutral) martingale measure equivalent to the historical measure
(see e.g. [18, 20] for measure selection criteria).

Deterministic methods to compute u(x, T ) are based on the solution of the corresponding back-
ward Kolmogorov equation

ut + Au = 0, u|t=T = g. (1.1)

Here A denotes the (integro-differential) infinitesimal generator of X with domain D(A). For the
Galerkin based finite element implementation, equation (1.1) is converted into variational form.
Formally, the resulting problem reads: Find u such that

〈 d
dt
u, v〉 + E(u, v) = 0 ∀v ∈ D(E), (1.2)

where E(u, v) = 〈Au, v〉 denotes the bilinear form associated to A and X .

In the classical setting of Black-Scholes, X is a geometric Brownian Motion and A is a diffusion
operator so that a closed form solution of (1.1) and (1.2) for plain vanilla contracts is possible in
certain cases. For more general Lévy or Feller price processes X , A is in general a pseudodiffer-
ential operator with symbol ψ, i.e.

(Au)(x) = (ψ(x,D)u)(x) = −
∫

Rd

ei〈ξ,x〉ψ(x, ξ)û(ξ)dξ. (1.3)

In one dimension, the pricing equations (1.1) and (1.2) have been studied by several authors,
e.g. [3, 11, 29, 38, 39]. In [22, 45] this setting was extended to d ≥ 2 dimensions using Lévy
processes with 1-homogeneous Lévy copulas. There, the domain of the infinitesimal generator A
was characterized explicitly as an anisotropic Sobolev space. Furthermore, it was shown that the
corresponding variational problem is well-posed.

In order to solve (1.2) using finite elements, there are two main challenges that need to be
addressed:

• The “curse of dimension”: The number of degrees of freedom on a tensor product finite
element mesh of width h in dimension d grows like O(h−d) as h→ 0.

• The non-locality of the underlying operator A: The finite element stiffness matrix is dense
and thus consists of O(h−2d) non-zero entries.

To overcome these two challenges, a wavelet based finite element discretizations of (1.2) was
introduced in [22, 44, 52] based on a sparse tensor product approach in combination with wavelet

1



compression techniques. Under certain conditions on the wavelets’ number of vanishing mo-
ments, this approach yields asymptotically optimal, essentially dimension-independent complex-
ity O(h−1| logh|2(d−1)), see [44]. For the analysis of general wavelet based finite element methods
we refer to [16, 50, 51, 52] and the references therein. Construction techniques for arbitrary order
spline wavelets on the interval with prescribed number of vanishing moments can be found in
[15, 41].

Even though a wavelet discretization of (1.2) is proved to be asymptotically optimal of complexity
O(h−1| logh|2(d−1)) for a very general class of non-local operators, the constants involved in the
complexity estimates can be significant. More precisely, on rather low but practically important
levels of refinement (h = 2−j with j ≤ 8, say) there often occurs a computational overhead that,
especially for local operators, can be reduced considerably by using classical (Lagrangian) finite
element basis functions. Following this observation, in this paper we shall split the non-local
operator A and its corresponding bilinear form into a local and a non-local part. Then, to reduce
the computational complexity for solving the stationary part of the Kolmogorov equation (1.1),
we shall introduce a two-scale approach, including a basic two-scale discretization scheme and a
combination based two-scale discretization scheme. Moreover, based on the two-scale discretiza-
tions, we shall construct certain local and parallel algorithms to reduce the computational cost
even further. These algorithms are motivated by the observation that, for a solution to some
elliptic problems, low frequency components can be approximated well by a relatively coarse
grid and high frequency components can be computed on a fine grid using local and parallel
procedures. Note that the same observation is also crucial in the theory of multigrid and wavelet
methods (see, e.g., [1, 10, 28, 58]). As we will prove below, from a Financial Mathematics point
of view low frequency components correspond to the (non-local) jump part of the underlying
stochastic process, whereas high frequencies are arising from its (local) diffusion part.

The two-scale approach is an iterative method, which is, in a way, related to that in Lin [33]. The
two-scale approach has been used for solving a variety of partial differential equations and integral
equations with different types of discretization methods, see e.g. [17, 25, 32, 35, 36, 37, 40, 53, 54,
55, 56]. We should mention that the combination based two-scale method is closely related to the
sparse grid method that was developed in [4, 26, 59]. The sparse grid method is a powerful tool
in the numerical solution of classical partial differential equations (c.f. [5, 6] and references cited
therein) as well as high-dimensional equations arising in Finance (c.f. [22, 52]). The so-called
(multiscale) combination technique [21, 27], an extrapolation-type sparse grid variant, has been
investigated in a number of papers (see e.g. [5, 24, 27, 43, 57]). In Finance it has been applied
in the Black-Scholes setting by e.g. [46]. Instead of the multi-level basis approach [1, 58], a
two-level basis approach in the two-scale finite element discretization was used in [35, 36, 37],
which is known to be more flexible than the multi-level basis approach [34, 35].

Let us give a little more detailed illustration of the two-scale combination method on tensor prod-
uct domains, for instance. The main idea of the two-scale finite element combination method is to
use a coarse grid to approximate low frequencies and to combine univariate fine and coarse grids
to handle high frequencies by parallel procedures. For instance, in three dimensional cases, with
the same approximation accuracy, the degrees of freedom for getting the two-scale finite element
combination approximation uhH,H,H is only of complexity O(h−2) when H = O(h1/2) is chosen for
the corresponding univariate fine and coarse grids. The complexity of the standard finite element
solution uh,h,h is O(h−3). This approach turns out to be advantageous in two respects. First, the
possibility of using existing codes allows the straightforward application of two-scale combination
discretization to large scale problems. Second, since the different subproblems can be solved fully
in parallel, there is a very elegant and efficient inherent coarse-grain parallelism that makes the
two-scale combination discretization perfectly suitable for modern high-performance computers.
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The remainder of this paper is organized as follows. In Section 2, some basic assumptions and
descriptions for the Lévy copula processes are introduced. Several fundamental auxiliary results
are provided. A basic time stepping scheme is illustrated so that the time-dependence of (1.2)
can be handled. In Sections 3 and 4 the main results of this work are presented. In Section 3, at
first we present and analyze a basic two-scale discretization approach, including the associated
local and parallel algorithms. In Section 4, to reduce the computational complexity further, we
develop a two-scale finite element combination discretization for elliptic (log price) problems. In
Section 5, we briefly illustrate how the advantages of wavelet-based sparse grid methods can be
combined with the algorithms constructed in Sections 3 & 4.

2 The variational formulation for Lévy copula processes

To obtain an explicit realization of the abstract variational problem (1.2), in this section we briefly
recall the basic properties and definitions of Lévy copula processes. Most results presented in
this section are based on [22, 30, 45].

Recall, that a càdlàg stochastic process X = {Xt : t > 0} with state space Rd such that X0 = 0
a.s. is called a Lévy process if it has independent and stationary increments and is stochastically
continuous.

For its characteristic function we have the Lévy-Khinchin representation (c.f. [47]),

E

(
ei〈ξ,Xt〉

)
= e−tψ(ξ), ξ ∈ R

d , (2.1)

with characteristic exponent ψ : Rd → C given by

ψ(ξ) = ψD(ξ) + ψJ (ξ), (2.2)

where

ψD(ξ) := i〈γ, ξ〉 − 1

2
〈ξ,Qξ〉 , (2.3)

ψJ(ξ) :=

∫

Rd

(
1 − ei〈ξ,z〉 + i〈ξ, z〉1{|z|≤1}

)
ν(dz) . (2.4)

Here Q ∈ Rd×d denotes a covariance matrix, γ ∈ Rd is a drift vector and ν a Lévy measure which
satisfies ∫

Rd

1 ∧ |z|2 ν(dz) <∞. (2.5)

The triplet (Q, ν, γ) is called characteristic triplet of the process X . Throughout this work, we
shall assume

Assumption 2.1. The diffusion part of X does not vanish, i.e.

Q > 0. (2.6)

Since the law of a Lévy process X is described in a time-independent fashion in terms of its
characteristic triplet (Q, ν, γ), it seems natural to use the triplet for a characterization of the
dependence among the one-dimensional margins of X . Since the drift vector γ corresponds to
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the deterministic drift part of X , it has no effect on the dependence structure between margins.
The dependence of the Brownian motion part of X is characterized entirely by its covariance
matrix Q. Since the continuous part and the jump part of a Lévy process are independent, it
remains to describe the dependence structure of the jump part of X . To this end, we apply Lévy
copulas as originally defined in [30, 49].

Throughout this work, we shall consider a Lévy copula process X as defined in [22, 45]. For sake
of brevity, we refer to these sources for the detailed definitions. In particular, the process X with
characteristic triplet (Q, ν, γ) admits a Lévy density k(z)dz = ν(dz). Furthermore, we assume
the following:

Assumption 2.2. The marginal Lévy measures νi, i = 1, . . . , d, of X are absolutely continuous
with densities ki that satisfy:

• Semiheavy tails: There are constants Gi > 0, Mi > 0, i = 1, . . . , d, such that

ki(z) .

{
eGiz, z < −1

e−Miz, z > 1
. (2.7)

• Quasi-stable margins: There are constants 0 < Yi ≤ 1 and c+i , c
−
i ≥ 0, c+i + c−i > 0,

i = 1, . . . , d, such that

ki(z) & c−i
1

|z|1+Yi
1{z<0}(z) + c+i

1

|z|1+Yi
1{0≤z}(z) 0 < |z| ≤ 1 ,

ki(z) . c−i
1

|z|1+Yi
1{z<0}(z) + c+i

1

|z|1+Yi
1{0≤z}(z) 0 < |z| ≤ 1 .

(2.8)

Remark 2.3. The assumption of semiheavy tails (2.7) is required to obtain a suitable explicit
form of the infinitesimal generator A of X as in [45, Corollary 4.3]. Furthermore, it is necessary
for the efficient localization of the corresponding variational problem (1.2) on Rd to the bounded
domain Ω := [−R,R]d, R > 0, as described in [45, Section 4.3].

Remark 2.4. Assumption (2.8) with Y ≤ 1 on the intensity of the margins’ singularities at the
origin is required to prove optimal convergence of our numerical schemes below.

Remark 2.5. Assumption 2.2 is satisfied by many Lévy processes used in financial modeling, for
example Kou’s model [31], Normal Inverse Gaussian processes [2], Meixner processes [48], and
tempered stable or CGMY processes [8] with Y ≤ 1.

With (2.6) and Assumption 2.2, from [22, Theorem 3.6] and [45, Theorem 4.6] we infer the
following concrete realization and well-posedness of the abstract problem (1.2):

Find u ∈ L2((0, T );H1(Rd)) ∩H1((0, T );H−1(Rd)) such that

〈∂u
∂τ
, v〉H−1(Rd),H1(Rd) + E(u, v) = 0 , τ ∈ (0, T ), ∀v ∈ H1(Rd) , (2.9)

u(0) = u0(x) := g(ex1 , . . . , exd) .

After so-called “removal of drift”, i.e. a suitable transformation to remove the linear terms in
(2.3) under the assumption of semiheavy tails (2.7) as described in e.g. [45, Corollary 4.3], the
bilinear form E(·, ·) in (2.9) is given by
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E(u, v) = D(u, v) + J(u, v), u, v ∈ H1(Rd), (2.10)

with diffusion part

D(u, v) =
1

2

d∑

i,j=1

Qij

∫

Rd

∂u

∂xi
(x)

∂v

∂xj
(x)dx , (2.11)

and jump part

J(u, v) = −
∫

Rd

ψJ(ξ)û(ξ)v̂(ξ)dξ

= −
∫

Rd

∫

Rd

(
u(x+ z) − u(x) −

d∑

i=1

zi
∂u

∂xi
(x)

)
v(x)dx ν(dz) .

(2.12)

Here, the symbol ψJ is given by (2.4). The well-posedness of (2.9) is ensured by

Theorem 2.6. The bilinear form E(·, ·) satisfies a G̊arding inequality, i.e. there exist constants
γ > 0 and c ≥ 0 such that

E(u, u) ≥ γ‖u‖2
H1(Rd) − c‖u‖2

L2(Rd) ∀u ∈ H1(Rd), (2.13)

and is continuous, i.e.

E(u, v) . ‖u‖H1(Rd)‖v‖H1(Rd) ∀u, v ∈ H1(Rd).

Proof. See [45, Theorem 4.6].

Using the exponential shift in time u 7→ e−ctu with c ≥ 0 as in (2.13) to erase the L2-term in
(2.13), one may furthermore assume without loss of generality that E(·, ·) is coercive on H 1(Rd)×
H1(Rd), i.e. there holds

E(u, u) & ‖u‖2
H1(Rd) ∀u ∈ H1(Rd). (2.14)

For our analysis, we also need to recall the following well-known result:

Lemma 2.7. There holds
‖u‖2

H1(Rd) . D(u, u) ∀u ∈ H1(Rd) , (2.15)

where D(·, ·) denotes the Laplace-type bilinear form given by (2.11).

Additionally, from (2.8) and the Fourier representation in (2.12) we obtain the following crucial
lemma.

Lemma 2.8. For any u, v ∈ H1(Rd) there holds

|J(u, v)| . ‖u‖L2(Rd)‖v‖H1(Rd). (2.16)

Proof. By [22, Theorem 3.4] and [45, Proposition 3.5], assumption (2.8) implies that the symbol
ψJ in (2.4) is equivalent to an anisotropic distance function that satisfies ψJ (ξ) ≥ 0 for all ξ ∈ Rd

and furthermore
ψJ(ξ) . |ξ1|Y1 + . . .+ |ξd|Yd + 1
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with Y1, . . . , Yd given by (2.8). Denoting Y = max{Y1, . . . , Yd}, we thus obtain

ψJ(ξ) . (1 + |ξ|2)Y /2 . (1 + |ξ|2)1/2 ∀ξ ∈ R
d,

where the last inequality follows from (2.8). Hence, using the Cauchy-Schwarz inequality and
Plancherel’s Theorem with the representation (2.12), we obtain

|J(u, v)|2 .

∫

Rd

|û(ξ)|2dξ ·
∫

Rd

|ψJ(ξ)v̂(ξ)|2dξ

. ‖û‖2
L2(Rd) ·

∫

Rd

(1 + |ξ|2)|v̂(ξ)|2dξ

. ‖u‖2
L2(Rd) · ‖v‖2

H1(Rd).

Remark 2.9. In case the constraint Yi ≤ 1, i = 1, . . . , d, in (2.8) is not satisfied, for any
sufficiently smooth function v the arguments of Lemma 2.8 directly imply

|J(u, v)| . ‖u‖L2(Rd)‖v‖HY (Rd) (2.17)

with Y = max{Y1, . . . , Yd}.

Furthermore, if Ω ⊂ Rd is a bounded convex domain, then it is seen from a standard argument
that ∀f ∈ L2(Ω), there exists a unique u ≡ A−1f ∈ H1

0 (Ω) ∩H2(Ω) such that

‖u‖2,Ω . ‖f‖0,Ω. (2.18)

Even though the main goal of this work is to obtain an efficient space discretization scheme for
(2.9), for sake of completeness we also briefly illustrate how the time dependence of (2.9) can be
discretized. To this end, we describe the θ-scheme here. In practice, very often more sophisticated
tools, e.g. hp-DG time-stepping (see [29]), can be applied to obtain exponential convergence in
time.

For the moment, assume that we have fixed a finite dimensional space V h ⊂ H1(Ω) corresponding
to a given meshwidth h > 0. After removal of drift, the Kolmogorov equation (1.1) is parabolic,
and the θ-scheme can be described as follows:

Let 0 ≤ θ ≤ 1. For T < ∞ and M ∈ N, define the time step k = T/M, and tm = mk,
m = 0, . . . ,M . The fully discrete θ-scheme reads:

First find u0
h ∈ V h satisfying u0

h = u0,J .

Then for m = 0, 1, . . . ,M − 1, find um+1
h ∈ V h such that

〈u
m+1
h − umh

k
, vJ〉 + E(um+θ

h , vJ ) = 0 ∀vJ ∈ V h .

(2.19)

Here um+θ
h := θum+1

h + (1 − θ)umh . The approximation of the initial data could be chosen as a
finite element projection u0,J = Ph(u0|Ω) or as an interpolant of u0|ΩR

. The efficient numerical
solution of the stationary elliptic problems in (2.19) is studied in the following sections. If we
denote the resulting coefficient vector of the solution by um then the sequence of problems (2.19)
is equivalent to the matrix equations

(k−1
M + θA)um+1 = k−1

Mum − (1 − θ)Aum, m = 0, 1, . . . ,M − 1, (2.20)
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where M denotes the mass-matrix and A the stiffness matrix of E(·, ·) with respect to the basis
of V h.

Note that for θ = 1/2, the scheme in (2.19) coincides with the Crank-Nicholson scheme whereas
for θ = 0 one obtains the explicit and for θ = 1 the implicit Euler scheme. For stability and
convergence considerations, see e.g. [39, 51].

3 Basic two-scale discretizations

In this section we define certain finite element discretization schemes to solve the elliptic (log
price) problem. More generally, we solve: Find u ∈ H1

0 (Ω) such that

E(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω) , (3.1)

where E(·, ·) is given by (2.10) and Ω is a bounded domain in Rd.

In order to discretize the variational equation (3.1), we employ a sequence of piecewise linear finite
element spaces associated with a shape-regular finite element mesh. Assume that T h(Ω) = {τ}
is a mesh of Ω with mesh-size function h(x) whose value is the diameter hτ of the element τ
containing x. One basic assumption on the mesh is that it is not exceedingly over-refined locally,
namely,

Assumption 3.1. There exists ν ≥ 1 such that

hν
Ω

. h(x), x ∈ Ω, (3.2)

where h
Ω

= max
x∈Ω

h(x) is the (largest) mesh size of T h(Ω).

This is obviously a very mild assumption from theoretical point of view. Usually, we will drop
the subscript and simply write h instead of h

Ω
for the mesh size on a domain that is clear from

the context.

Let T h(Ω) consist of shape-regular simplices and define Sh,r(Ω) to be a space of continuous
functions on Ω such that for v ∈ Sh,r(Ω), v restricted to each τ is a polynomial of total degree
≤ r, namely

Sh,r(Ω) = {v ∈ C(Ω̄) : v |τ∈ P rτ ∀τ ∈ T h(Ω)}, (3.3)

where P rτ is the space of polynomials of degree not greater than a positive integer r. Set Sh,r0 (Ω) =
Sh,r(Ω) ∩H1

0 (Ω). These are the Lagrange finite element spaces and we refer to [9, 54] for their
basic properties that will be used in our analysis. For simplicity, in this paper we shall focus our
study only on the piecewise linear Lagrange finite element approximation. Let Sh(Ω) = Sh,1(Ω)

and Sh0 (Ω) = Sh,10 (Ω).

Note that, the analysis of this work does not depend on the particular choice of piecewise linear
basis functions for Sh0 (Ω). For instance, one may choose a classical Lagrangian (“nodal”) finite
element bases (see e.g. [9, Section II.7]) or piecewise linear wavelet basis functions (see e.g. [10,
Chapter 1]). In particular, if Ω is a tensor product domain choosing a wavelet basis for Sh0 (Ω)
allows for the very efficient discretization of the non-local part J(·, ·) of E(·, ·) as described in
[22, 44, 51, 52].
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The (standard) one-scale finite element discretization for (3.1) reads: Find uh ∈ Sh0 (Ω) such that

E(uh, v) = 〈f, v〉 ∀v ∈ Sh0 (Ω). (3.4)

We also require the Galerkin-projection Ph : H1
0 (Ω) 7→ Sh0 (Ω), defined by

E(u− Phu, v) = 0 ∀v ∈ Sh0 (Ω). (3.5)

Using the coercivity (2.14) of E(·, ·) and Theorem 2.6, one obtains the following well-known error
bounds (see e.g. [9, Chapter III]):

Theorem 3.2. If uh ∈ Sh0 (Ω) is the solution of (3.4), then

‖u− uh‖1,Ω . h|u|2,Ω, (3.6)

‖u− uh‖0,Ω . h2|u|2,Ω. (3.7)

Remark 3.3. As shown in [45, Section 4.5], in the theory of asset pricing the bounded domain Ω
arises from a localization procedure. In fact, Ω can be interpreted as the active area of a knock-out
barrier option with the boundary of Ω being the barrier. In the notation of Section 1, the price
of this barrier contract is given by

uΩ(x, t) = E
(
g(XT )1{T<τΩ}|Xt = x

)
, (3.8)

where τΩ = inf{s ≥ 0|Xs /∈ Ω} denotes the first exit time of Ω by X.

3.1 A basic two-scale discretization

Due to the non-locality of E(·, ·) and the high-dimensionality of Ω, the straightforward finite
element discretization (3.4) yields a dense matrix of substantial size, which ususally is not prac-
ticable to implement. In order to reduce the computational cost of solving the original problem
(3.1), we may introduce a so-called basic two-scale method.

The main idea of the basic two-scale method is to use a coarse mesh of size H , to approximate
the low frequencies and to use a fine mesh of size h, h � H , to handle the high frequencies (c.f.
[53, 54]). Based on (2.10), Theorem 2.6, Lemma 2.7 and [22, Theorem 3.5], we may indeed treat
J(·, ·) as a low frequency perturbation of the high frequency part D(·, ·) of E(·, ·). More precisely,
for h� H our basic two-scale algorithm is defined as follows:

Algorithm 3.4.

1. Solve (3.1) on a coarse gird: Find uH ∈ SH0 (Ω) such that

E(uH , v) = 〈f, v〉 ∀v ∈ SH0 (Ω).

2. Compute a linear boundary value problem on a fine gird: Find uh ∈ Sh0 (Ω) such that

D(uh, v) = 〈f, v〉 − J(uH , v) ∀v ∈ Sh0 (Ω).

3. Find a further coarse grid correction eH ∈ SH0 (Ω) such that

E(eH , v) = 〈f, v〉 − E(uh, v) ∀v ∈ SH0 (Ω)

and set ũh = uh + eH in Ω.
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Theorem 3.5. Assume that uh and ũh are obtained by Algorithm 3.4, then

‖uh − uh‖1,Ω . H2|u|2,Ω, (3.9)

‖ũh − uh‖0,Ω . H3|u|2,Ω, (3.10)

where uh denotes the solution of the one-scale discretization (3.4). Consequently,

‖u− uh‖1,Ω . (h+H2)|u|2,Ω, (3.11)

‖u− ũh‖0,Ω . (h2 +H3)|u|2,Ω, (3.12)

where u denotes the solution of the original variational equation (3.1).

Proof. From (3.4), we have

D(uh, v) + J(uh, v) = 〈f, v〉 ∀v ∈ Sh0 (Ω),

which together with Lemma 2.8 implies

D(uh − uh, v) = −J(uH − uh, v) . ‖uH − uh‖0,Ω‖v‖1,Ω ∀v ∈ Sh0 (Ω).

Using Theorem 3.2, we then obtain

‖uh − uh‖2
1,Ω . D(uh − uh, u

h − uh)

. ‖uH − uh‖0,Ω‖uh − uh‖1,Ω . H2|u|2,Ω‖uh − uh‖1,Ω.

Hence, we get (3.9). Note that there holds

‖ũh − uh‖0,Ω = ‖(I − PH)(uh − uh)‖0,Ω . H‖uh − uh‖1,Ω . H3|u|2,Ω.

Here I denotes the identity operator. By Theorem 3.2 and the triangle inequality, we obtain
(3.11) and (3.12). This completes the proof.

Remark 3.6. If instead of the finite element space Sh0 (Ω) with piecewise linear basis functions one

chooses a higher order basis, i.e. Sh,r0 (Ω)(r ≥ 1) with the mesh of size h, then it can be seen from
the above arguments that the solutions uh and ũh of the corresponding basic two-scale Algorithm
3.4 satisfy

‖u− uh‖1,Ω . (hr +Hr+1)|u|r+1,Ω,

‖u− ũh‖0,Ω . (hr+1 +Hr+2)|u|r+1,Ω.

Naturally, in this case one may choose Lagrangian finite element basis functions of order r or
piecewise polynomial wavelets of degree r to generate Sh,r0 (Ω).

3.2 Local and parallel algorithms

In this subsection, following [54] we propose a local and a parallel algorithm. We shall first discuss
the local algorithm. The generalization of the local to the parallel algorithm is straightforward.

The main idea of the local algorithm is that the global components of an approximation may be
obtained by a relatively coarse grid and the rest of the computation can then be localized.
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Figure 1: Subdomains

For D ⊂ G ⊂ Ω, we use the notation D ⊂⊂ G to mean that dist(∂D \ ∂Ω, ∂G \ ∂Ω) > 0 (see
Figure 1). For simplicity, we assume that Ω and its any subdomain involved in this subsection
are polytopic. Note that any w ∈ H1

0 (Ω0) can be naturally extended to be a function in H1
0 (Ω)

with zero outside of Ω0 when Ω0 ⊂ Ω, thus we shall state this fact by the slightly abused notation
H1

0 (Ω0) ⊂ H1
0 (Ω).

Given G ⊂ Ω, we define Sh(G) and T h(G) to be the restriction of Sh(Ω) and T h(Ω) to G,
respectively, and

Sh0 (G) = {v ∈ Sh(Ω) : supp v ⊂⊂ G}.
For any G ⊂ Ω mentioned in this paper, we assume that it aligns with T h(Ω) whenever necessary.

Let Ω0 be a subdomain of Ω containing another slightly smaller subdomain D ⊂ Ω (namely
D ⊂⊂ Ω0). As above, suppose h � H . We let T hH(Ω) denote a locally refined shape-regular
mesh that may be viewed as being obtained by refining TH(Ω) locally around the subdomain D
in such a way that T hH(Ω0) = T h(Ω0). We are interested in obtaining the approximation solution
in the given subdomain D with an accuracy comparable to that from T h(Ω).

The local algorithm reads as follows.

Algorithm 3.7. 1. Find a global coarse grid solution uH ∈ SH0 (Ω):

E(uH , v) = 〈f, v〉 ∀v ∈ SH0 (Ω).

2. Find a local fine grid correction eh ∈ Sh0 (Ω0):

D(eh, v) = 〈f, v〉 − E(uH , v) ∀v ∈ Sh0 (Ω0).

3. Update: uh = uH + eh, in Ω0.

To analyze Algorithm 3.7, we need the following result that was shown in [54].

Lemma 3.8. [54] Suppose that f ∈ H−1(Ω) and D ⊂⊂ Ω0. If w ∈ Sh(Ω0) satisfies

D(w, v) = f(v) ∀ v ∈ Sh0 (Ω0), (3.13)
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then

‖w‖1,D . ‖w‖0,Ω0
+ ‖f‖−1,Ω0

, (3.14)

where
‖f‖−1,Ω0

= sup
φ∈H1

0 (Ω0),‖φ‖1,Ω0
=1

f(φ).

Theorem 3.9. Assume that uh ∈ Sh0 (Ω0) is obtained by Algorithm 3.7. Then

‖uh − uh‖1,D . ‖uh − uH‖0,Ω +H‖uh − uH‖1,Ω . H2|u|2,Ω.

Proof. From the construction of Algorithm 3.7, we have

D(uh − uh, v) = J(uh − uH , v) ∀v ∈ Sh0 (Ω0), (3.15)

which together with Lemma 3.8 yields

‖uh − uh‖1,D . ‖uh − uh‖0,Ω0
+ ‖uh − uH‖0,Ω0

. ‖uh − uH‖0,Ω0
+ ‖eh‖0,Ω0

.

It remains to estimate ‖eh‖0,Ω0
, for which we use the Aubin-Nitsche duality argument. Given

any φ ∈ L2(Ω0), there exists w ∈ H1
0 (Ω0) such that

D(v, w) = 〈φ, v〉 ∀v ∈ H1
0 (Ω0).

Let w0
h ∈ Sh0 (Ω0) and w0

H ∈ SH0 (Ω0) satisfy

D(vh, w
0
h) = D(vh, w) ∀vh ∈ Sh0 (Ω0), D(vH , w

0
H) = D(vH , w) ∀vH ∈ SH0 (Ω0).

Then
‖w − w0

h‖1,Ω0
. h‖φ‖0,Ω0

, ‖w − w0
H‖1,Ω0

. H‖φ‖0,Ω0
.

From (3.15) and

〈eh, φ〉 = D(eh, w) = D(eh, w
0
h) = D(uh − uh, w

0
h) +D(uh − uH , w

0
h),

it follows that

〈eh, φ〉 = J(uh − uH , w
0
h) +D(uh − uH , w

0
h) = E(uh − uH , w

0
h)

= E(uh − uH , w
0
h − w) + E(uh − uH , w)

= E(uh − uH , w
0
h − w) + E(uh − uH , w − w0

H )

. H‖uh − uH‖1,Ω‖φ‖0,Ω0
,

which implies
‖eh‖0,Ω0

. H‖uh − uH‖1,Ω.

The desired result then follows.

Next, we shall propose a parallel algorithm that achieves the following goals:

1. Smooth uh to obtain a global H1(Ω) approximation;

2. Improve the L2 error.

11
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Figure 2: Domain decomposition: Dj ⊂⊂ Ωj and Dm+1

We assume that {Ω1,Ω2, . . . ,Ωm} is a partition of Ω (namely, Ωi∩Ωj = ∅, i 6= j, and ∪mj=1Ω̄j = Ω̄)

and set Dm+1 = Ω \ (∪mj=1D̄j), where Dj ⊂⊂ Ωj , j = 1, 2, . . . ,m, (see Figure 2 for an illustration
in two dimensions).

Algorithm 3.10. 1. Find a global coarse grid solution uH ∈ SH0 (Ω):

E(uH , v) = 〈f, v〉 ∀v ∈ SH0 (Ω).

2. Find local fine grid corrections ejh ∈ Sh0 (Ωj)(j = 1, 2, . . . ,m) in parallel:

D(ejh, v) = 〈f, v〉 − E(uH , v) ∀v ∈ Sh0 (Ωj).

3. Set uh = uH + ejh, in Dj(j = 1, 2, . . . ,m), and uh on D̄m+1 is defined by: uh |∂Dj∩∂Dm+1
=

uH + ejh(j = 1, 2, . . . ,m) and satisfying

D(uh, v) = 〈f, v〉 − J(uH , v) ∀v ∈ Sh0 (Dm+1).

4. Find a further coarse grid correction eH ∈ SH0 (Ω):

E(eH , v) = 〈f, v〉 − E(uh, v) ∀v ∈ SH0 (Ω).

5. Update: ũh = uh + eH in Ω.

In the above algorithm, Step 3 is for obtaining a global H1 solution and Step 4 is for improving
the L2 error.

Theorem 3.11. Assume that uh and ũh are the solutions obtained by Algorithm 3.10. Then

‖uh − uh‖1,Ω . H‖uh − uH‖1,Ω . H2|u|2,Ω

and
‖uh − ũh‖0,Ω . H2‖uh − uH‖1,Ω . H3|u|2,Ω.
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Proof. Let

DDm+1
(u, v) =

1

2

d∑

i,j=1

Qij

∫

Dm+1

∂u

∂xi
(x)

∂v

∂xj
(x)dx,

then there holds

‖∇(uh − uh)‖2
0,Dm+1

. DDm+1
(uh − uh, uh − uh).

Note that from the construction of Algorithm 3.10, we have

D(uh − uh, v) = J(uH − uh, v) ∀v ∈ Sh0 (Dm+1). (3.16)

Hence, for any v ∈ Sh0 (Dm+1), by Lemma 2.8 we obtain

‖∇(uh − uh)‖2
0,Dm+1

. DDm+1
(uh − uh, uh − uh − v) + ‖uh − uH‖0,Ω‖v‖1,Ω

and

‖∇(uh − uh)‖2
0,Dm+1

. ‖∇(uh − uh)‖0,Dm+1
inf

χ∈Sh
0 (Dm+1)

‖uh − uh − χ‖1,Dm+1

+‖uh − uH‖0,Ω inf
χ∈Sh

0 (Dm+1)

(
‖uh − uh − χ‖1,Dm+1

+ ‖χ‖1,Ω

)
.

Since

inf
χ∈Sh

0 (G)
‖v − χ‖1,G . ‖v‖1/2,∂G ∀v ∈ Sh(G) (3.17)

is valid for any polytopic domain G ⊂ Ω [54], we get

‖∇(uh − uh)‖2
0,Dm+1

. ‖∇(uh − uh)‖0,Dm+1
‖uh − uh‖1/2,∂Dm+1

+‖uh − uH‖0,Ω(‖uh − uh‖1/2,∂Dm+1
+ ‖uh − uh‖1,Dm+1

).

Using the estimation

‖uh − uh‖1/2,∂Dm+1
.




m∑

j=1

‖uh − uh‖2
1/2,∂Dj




1/2

.




m∑

j=1

‖uh − uh‖2
1,Dj




1/2

,

or
‖uh − uh‖1/2,∂Dm+1

. |||uh − uh|||1,Ω,
we conclude

‖∇(uh − uh)‖2
0,Dm+1

. |||uh − uh|||21,Ω
+ (|||uh − uh|||1,Ω + ‖uh − uh‖1,Dm+1

)‖uh − uH‖0,Ω,

where

|||uh − uh|||1,Ω =




m∑

j=1

‖uh − uh‖2
1,Dj




1/2

.
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Thus we may estimate as follows

‖uh − uh‖2
1,Ω . ‖∇(uh − uh)‖2

0,Ω = ‖∇(uh − uh)‖2
0,Dm+1

+ ‖∇(uh − uh)‖2
0,Ω\Dm+1

. |||uh − uh|||21,Ω + ‖uh − uH‖0,Ω|||uh − uh|||1,Ω + ‖uh − uh‖1,Ω‖uh − uH‖0,Ω,

namely, we arrive at

‖uh − uh‖1,Ω . |||uh − uh|||1,Ω + ‖uh − uH‖0,Ω. (3.18)

Note that
‖uh − uH‖0,Ω . H‖uh − uH‖1,Ω.

By Theorem 3.9 and

uh − ũh = (I − PH)(uh − uh), (3.19)

we complete the proof.

4 A combination based two-scale discretization

In this section, we shall discuss a combination based two-scale finite element discretization to
reduce the computational complexity further over tensor product domains. For sake of brevity,
we only give a detailed description of three-dimensional problems over the domain Ω = [0, 1]3

here. The extension to Ω = [0, 1]d, d ≥ 3, is addressed at the end of this section. The results
in this section can easily be generalized to the domain [−R,R]d, R > 0. Note that such tensor
product domains arise in most of the classical asset pricing problems (c.f. e.g. [11, 22]).

In our discussion, we require a so-called mixed Sobolev space (see e.g. [35, 43]):

WG,3
2 (Ω) := {w ∈ H2(Ω)| ∂xi

∂xj
∂xk

(w) ∈ L2(Ω), i, j, k = 1, . . . , d, xi 6= xj or xi 6= xk}

with its natural norm ‖ · ‖WG,3
2 (Ω). In this notation similar spaces have already been introduced

in [42]. The superscript G stems from the German “gemischt” meaning “mixed”.

Furthermore, we shall introduce two-scale interpolations for the three-dimensional case. Assume
that T hxi ([0, 1]) is a uniform mesh with mesh size hxi

on [0, 1] and Shxi ([0, 1]) ⊂ H1([0, 1])

is the associated piecewise linear finite element space, where i = 1, 2, 3. Set S
hxi

0 ([0, 1]) =
Shxi ([0, 1])∩H1

0 ([0, 1]) and T hx1
,hx2

,hx3 (Ω) = T hx1 ([0, 1])×T hx2 ([0, 1])×T hx3 ([0, 1]) is the tensor
product mesh. The operator Ih : C([0, 1]) → Sh([0, 1]) is the standard Lagrangian interpolation
operator defined on T h([0, 1]).

Let Ihx1
,hx2

,hx3
be the usual trilinear interpolation operator on the partition T hx1

,hx2
,hx3 (Ω).

One sees that Ihx1
,0,0 is the interpolation operator which interpolates only in x1−direction on

lines of mesh size hx1
, etc. Obviously,

Ihx1
,hx2

,hx3
= Ihx1

,0,0 · I0,hx2
,0 · I0,0,hx3

.

It is shown in the following lemma that a one-scale interpolation on a fine grid can be obtained
by a combination of two-scale interpolations asymptotically. Let H � h, and define the two-scale
interpolation by

IhH,H,Hu = Ih,H,Hu+ IH,h,Hu+ IH,H,hu− 2IH,H,Hu.
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From the identity

I =Ih,h,h + (I − Ih,0,0) + (I − I0,h,0) + (I − I0,0,h) − (I − Ih,0,0)(I − I0,h,0)

− (I − Ih,0,0)(I − I0,0,h) − (I − I0,h,0)(I − I0,0,h) + (I − Ih,0,0)(I − I0,h,0)(I − I0,0,h),

we obtain the following two results (see [35] for details).

Lemma 4.1. [35] If u ∈WG,3
2 (Ω), then

H‖IhH,H,Hu− Ih,h,hu‖1,Ω + ‖IhH,H,Hu− Ih,h,hu‖0,Ω . H3‖u‖WG,3
2 (Ω). (4.1)

Lemma 4.2. [35] If u ∈ H1
0 (Ω) ∩WG,3

2 (Ω), then

D((I − Ihx1
,hx2

,hx3
)u, v) . (max{hx1

, hx2
, hx3

})2‖u‖WG,3
2 (Ω)‖v‖1,Ω ∀v ∈ S

hx1
,hx2

,hx3

0 (Ω). (4.2)

Recall that the standard trilinear finite element scheme on Ω is: Find uhx1
,hx2

,hx3
∈ S

hx1
,hx2

,hx3

0

(Ω) such that

E(uhx1
,hx2

,hx3
, v) = 〈f, v〉 ∀v ∈ S

hx1
,hx2

,hx3

0 (Ω). (4.3)

Following [35, 36], we may define a two-scale finite element combination approximation uhH,H,H
by

uhH,H,H = uh,H,H + uH,h,H + uH,H,h − 2uH,H,H . (4.4)

Theorem 4.3. If u ∈ H1
0 (Ω) ∩WG,3

2 (Ω), then

‖uh,h,h − uhH,H,H‖1,Ω . H2‖u‖WG,3
2 (Ω), (4.5)

‖uh,h,h − uhH,H,H‖0,Ω . H3‖u‖WG,3
2 (Ω). (4.6)

Consequently,

‖u− uhH,H,H‖1,Ω . (h+H2)‖u‖WG,3
2 (Ω), (4.7)

‖u− uhH,H,H‖0,Ω . (h2 +H3)‖u‖WG,3
2 (Ω). (4.8)

Proof. By the triangle inequality, we have

‖uh,h,h − uhH,H,H‖1,Ω

. ‖uh,H,H − Ih,H,Hu‖1,Ω + ‖uH,h,H − IH,h,Hu‖1,Ω

+‖uH,H,h − IH,H,hu‖1,Ω + 2‖uH,H,H − IH,H,Hu‖1,Ω + ‖uh,h,h − Ih,h,hu‖1,Ω

+‖Ih,H,Hu+ IH,h,Hu+ IH,H,hu− 2IH,H,Hu− Ih,h,hu‖1,Ω. (4.9)

Next, we want to estimate ‖uh,H,H − Ih,H,Hu‖1,Ω. For all v ∈ Sh,H,H0 (Ω), there holds

E(uh,H,H − Ih,H,Hu, v) = E(u− Ih,H,Hu, v) = D(u− Ih,H,Hu, v) + J(u− Ih,H,Hu, v).

Using Lemmas 4.2 and 2.8, we then obtain

E(uh,H,H − Ih,H,Hu, v) . H2‖u‖WG,3
2 (Ω)‖v‖1,Ω + ‖u− Ih,H,Hu‖0,Ω‖v‖1,Ω

. H2‖u‖WG,3
2 (Ω)‖v‖1,Ω.
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Choose v := uh,H,H − Ih,H,Hu and apply the coercivity (2.14), we get

‖uh,H,H − Ih,H,Hu‖1,Ω . H2‖u‖WG,3
2 (Ω), (4.10)

which together with Lemma 4.1 and similar estimations of the other terms in (4.9) yields (4.5).

For the L2-norm error estimate, we use a duality argument. Let w ∈ H1
0 (Ω) such that

E(w, φ) = 〈uh,h,h − uhH,H,H , φ〉 ∀φ ∈ H1
0 (Ω).

Let φ := uh,h,h − uhH,H,H ∈ H1
0 (Ω), then we have

〈uh,h,h − uhH,H,H , uh,h,h − uhH,H,H〉
= E(w, uh,h,h − uhH,H,H) = E(uh,h,h − uhH,H,H , w − IH,H,Hw)

. ‖uh,h,h − uhH,H,H‖1,Ω‖w − IH,H,Hw‖1,Ω

. H‖uh,h,h − uhH,H,H‖1,Ω|w|2,Ω.
By (2.18), there holds

|w|2,Ω . ‖uh,h,h − uhH,H,H‖0,Ω,

so we arrive at

‖uh,h,h − uhH,H,H‖0,Ω . H‖uh,h,h − uhH,H,H‖1,Ω . H3‖u‖WG,3
2 (Ω).

By the triangle inequality, we complete the proof.

It is concluded from Theorem 4.3 that the two-scale finite element combination approximation
uhH,H,H is a much more efficient approximate solution in terms of computational cost as compared
to uh,h,h. In fact, with the same approximate accuracy, the degrees of freedom for getting
uhH,H,H is only of O(h−2) when H = O(h1/2) is chosen while that for the standard finite element

solution uh,h,h is of O(h−3). In addition, it may be very important that the two-scale finite
element combination approximation uhH,H,H can be carried out in parallel. As a result, both the
computational time and the storage can be reduced.

It is seen from Theorem 2.6, Lemma 2.7 and [22, Theorem 3.5] that D(·, ·) can be interpreted as
the high frequency part while J(·, ·) is the low frequency part of E(·, ·). We therefore propose a
refined two-scale finite element combination algorithm as follows.

Algorithm 4.4.

1. Solve (3.1) on a coarse grid: Find uH,H,H ∈ SH,H,H0 (Ω) such that

E(uH,H,H , v) = 〈f, v〉 ∀v ∈ SH,H,H0 (Ω).

2. Compute linear boundary value problems on partially fine grids in parallel:
Find eh,H,H ∈ Sh,H,H0 (Ω) such that

D(eh,H,H , v) = 〈f, v〉 − E(uH,H,H , v) ∀v ∈ Sh,H,H0 (Ω);

Find eH,h,H ∈ SH,h,H0 (Ω) such that

D(eH,h,H , v) = 〈f, v〉 − E(uH,H,H , v) ∀v ∈ SH,h,H0 (Ω);

Find eH,H,h ∈ SH,H,h0 (Ω) such that

D(eH,H,h, v) = 〈f, v〉 − E(uH,H,H , v) ∀v ∈ SH,H,h0 (Ω).
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3. Set

ũhH,H,H = uH,H,H + eh,H,H + eH,h,H + eH,H,h in Ω.

4. Find a further coarse grid correction êH,H,H ∈ SH,H,H0 (Ω) such that

E(êH,H,H , v) = 〈f, v〉 − E(ũhH,H,H , v) ∀v ∈ SH,H,H0 (Ω).

5. Set ûhH,H,H = ũhH,H,H + êH,H,H in Ω.

Theorem 4.5. Assume that ũhH,H,H and ûhH,H,H are obtained by Algorithm 4.4, then

‖uh,h,h − ũhH,H,H‖1,Ω . H2‖u‖WG,3
2 (Ω), (4.11)

‖uh,h,h − ûhH,H,H‖0,Ω . H3‖u‖WG,3
2 (Ω). (4.12)

Consequently,

‖u− ũhH,H,H‖1,Ω . (h+H2)‖u‖WG,3
2

(Ω), (4.13)

‖u− ûhH,H,H‖0,Ω . (h2 +H3)‖u‖WG,3
2 (Ω). (4.14)

Proof. Set uh,H,H = uH,H,H + eh,H,H , uH,h,H = uH,H,H + eH,h,H and uH,H,h = uH,H,H + eH,H,h,
then from the definition, we obtain ũhH,H,H = uh,H,H + uH,h,H + uH,H,h − 2uH,H,H . Hence,

‖uh,h,h − ũhH,H,H‖1,Ω

. ‖uh,H,H + uH,h,H + uH,H,h − uh,H,H − uH,h,H − uH,H,h‖1,Ω

+ ‖uh,H,H + uH,h,H + uH,H,h − 2uH,H,H − uh,h,h‖1,Ω

. ‖uh,H,H − uh,H,H‖1,Ω + ‖uH,h,H − uH,h,H‖1,Ω + ‖uH,H,h − uH,H,h‖1,Ω

+ ‖uh,H,H + uH,h,H + uH,H,h − 2uH,H,H − uh,h,h‖1,Ω.

Note that Theorem 3.5 implies

‖uh,H,H − uh,H,H‖1,Ω + ‖uH,h,H − uH,h,H‖1,Ω + ‖uH,H,h − uH,H,h‖1,Ω . H2‖u‖2,Ω. (4.15)

Therefore, combining (4.15) and Theorem 4.3, we get (4.11) and then (4.13). There holds

‖uh,h,h − ûhH,H,H‖0,Ω = ‖(I − PH,H,H )(uh,h,h − ũhH,H,H)‖0,Ω . H‖uh,h,h − ũhH,H,H‖1,Ω.

This completes the proof.

Remark 4.6. We may also develop some local and parallel algorithms for the combination based
two-scale finite element method (c.f. [36]).

Remark 4.7. The combination based two-scale discretization approach can be generalized to any
dimensions. For Ω = [0, 1]d, d ≥ 3, recall that the standard Galerkin projection Ph : H1

0 (Ω) 7→
Sh

0 (Ω) is defined by

E(u− Phu, v) = 0 ∀v ∈ Sh

0 (Ω) (4.16)
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for h = (h1, h2, . . . , hd). Then we can construct the two-scale finite element Galerkin projection
as follows:

BhHePheu =

d∑

i=1

PHêi+hei
u− (d− 1)PHeu,

where e = (1, . . . , 1) ∈ Rd, êi = e − ei, ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd whose i-th component
is one and zero otherwise, and hα = (h1α1, . . . , hdαd) for αi ∈ {0, 1}, i ∈ {1, 2, . . . , d}. For
instance, BhH,H,HPh,h,hu = Ph,H,Hu + PH,h,Hu + PH,H,hu − 2PH,H,Hu. Following [23], we can

expect similar results for d−dimensions. For instance, if u ∈ H1
0 (Ω) ∩WG,3

2 (Ω), then

‖BhHe
Pheu− Pheu‖0,Ω +H‖BhHe

Pheu− Pheu‖1,Ω . H3‖u‖WG,3
2 (Ω). (4.17)

5 Wavelet-Lagrangian finite element implementation

Recall that the algorithms of Sections 3 & 4 do not depend on any particular choice of basis
in Sh0 (Ω) or Sh

0 (Ω), respectively. Since Lagrangian finite element functions as well as certain
piecewise polynomial wavelet basis functions generate Sh0 (Ω), in this section we briefly illustrate
how one may use a wavelet basis to discretize the non-local bilinear form E(·, ·) on the coarse
mesh and employ classical Lagrangian functions for the parallel discretization of D(·, ·) on the
fine meshes in Algorithms 3.4, 3.10 and 4.4. As already indicated in the introduction, the basic
idea behind this approach is the following: First, wavelet discretization yields an almost sparse
representation of the non-local form J(·, ·) defined by (2.12), see [14, 51, 44]. Second, as illustrated
in the above Sections, the local form D(·, ·) can be discretized very efficiently with significantly
less computational overhead using plain Lagrangian basis functions.

We need to introduce some notation: Assume that any meshwidth under consideration can be
represented by a negative power of two and we therefore can associate a level index j > 0 to each
meshwidth h = 2−j . Denoting h0 = 20, h1 = 2−1, h2 = 2−2, . . ., one obtains that the spaces

Sh0

0 (Ω) ⊂ Sh1

0 (Ω) ⊂ Sh2

0 (Ω) ⊂ . . . L2(Ω),

define a multiresolution in the sense of [10, 13]. The spaces S
hj

0 (Ω) = span(Φj), j = 0, 1, 2, . . .,
are spanned by single scale bases Φj = {φj,k : k ∈ ∆j} consisting of the Lagrangian finite
element (or “nodal”) basis functions φj,k . Here ∆j denotes a suitable index set of cardinality

dim(S
hj

0 (Ω)).

Using the methodology of e.g. [15, 41], to the collections Φj one can associate a set of dual

bases Φ̃j = {φ̃j,k : k ∈ ∆j}, i.e. one has 〈φj,k , φ̃j,k′ 〉 = δk,k′ , k, k
′ ∈ ∆j . With ∇j = ∆j+1\∆j ,

for these single-scale bases one can then construct biorthogonal complement or wavelet bases
Ψj = {ψj,k : k ∈ ∇j}, Ψ̃j = {ψ̃j,k : k ∈ ∇j}, i.e. 〈ψj,k, ψ̃j′,k′ 〉 = δ(j,k),(j′ ,k′).

Remark 5.1. As illustrated in [10, Section 2.11] and [15, 41], one can construct several different

wavelet bases for S
hj

0 (Ω), j ≥ 0, depending on which properties are desired. For example, one may
obtain wavelets with an arbitrarily large number of vanishing moments, which is very desireable
for the compression of non-local operators (cf. e.g. [14, 44]). Increasing the number of vanishing
moments however expands the wavelets’ supports. Here, in dimension d = 1, we give an explicit
example of a piecewise linear wavelet basis with two vanishing moments which has turned out
to be very useful in practice (multivariate wavelets on [0, 1]d can be obtained as suitable tensor
products of these):
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The wavelets comprise of piecewise linear continuous functions on [0, 1] vanishing at the end-
points. The mesh for level j ≥ 0 is defined by the nodes xj,k := k2−(j+1) with k ∈ ∆j :=

{0, . . . , 2j+1}. There holds Nj := dimS
hj

0 = 2j+1 − 1 and therefore Mj := dim Ψj = dimS
hj

0 −
dimS

hj−1

0 = 2j .

On level j = 0 we have N0 = M0 = 1 and ψ0,1 is defined as the piecewise linear function with
value c0 :=

√
3/2 > 0 at x0,1 = 1

2 and 0 at the endpoints 0, 1. This choice of c0 ensures the L2

normalization of the wavelets.

For j > 0 we firstly define cj := c02
j/2. Then the boundary wavelet ψj,0 is defined as the

piecewise linear function such that ψj,0(xj,1) = 2cj, ψj,0(xj,2) = −cj and ψj,0(xj,s) = 0 for all
other s 6= 1, 2. Similarly, the boundary wavelet ψj,Mj−1 takes the values ψj,Mj−1(xj,Nj

) = 2cj,
ψj,Mj−1(xj,Nj−1) = −cj and zero at all other nodes. For the remaining location indices 0 < k <
Mj − 1 the wavelet ψj,k is defined by ψj,k(xj,2k) = −cj , ψj,k(xj,2k+1) = 2cj , ψj,k(xj,2k+2) = −cj
and ψj,k(xj,s) = 0 for all other s 6= 2k, 2k + 1, 2k + 2.

Since the corresponding dual wavelet bases Ψ̃j , j ≥ 0, are solely of analytic importance and do
not have to be computed in practice, for sake of brevity we refer to [10] for their illustration.

Denoting by W j the span of Ψj there holds

S
hj+1

0 (Ω) = W j ⊕ S
hj

0 (Ω), j > 0. (5.1)

Thus, for any j > 0, the finite element space S
hj

0 (Ω) can be written as a direct sum of the wavelet

spaces W j′ , j′ < j, (using the convention W 0 := Sh0

0 (Ω)). Figure 3 shows the decomposition of

the finite element space S
hj

0 , j = 4, spanned by continuous, piecewise linear (“nodal”) Lagrangian

basis functions φj,k into its increment spaces W j′ , j′ = 0, . . . , 3, spanned by the wavelets defined
in Remark 5.1.

φ
4,2

Sh
4

0

ψ
0,0

W0

W1
ψ

1,0

ψ
2,1

W2

ψ
3,5

W3

Figure 3: Schematic of single-scale space S
hj

0 and its decomposition into multiscale wavelet spaces

W j′

By (5.1), for any uj ∈ S
hj

0 (Ω) one has two equivalent representations

uj =

j−1∑

j′=0

∑

k′∈∇j′

dj′ ,k′ψj′,k′ =
∑

k∈∆j

ckφj,k. (5.2)
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The corresponding arrays of single-scale, respectively wavelet coefficients c, d are interrelated
by the explicitly known multiscale transformation Tj : d 7→ c, c.f. e.g. [13]. Based on the
constructions in [15, 41], one readily infers that

⋃
j′<j Ψj′ , j > 0, forms a Riesz-basis in L2(Ω),

i.e. there holds

‖uj‖2 ∼
j−1∑

j′=0

∑

k′∈∇j′

d2
j′,k′ ∀uj ∈ S

hj

0 (Ω).

Thus, by [7, 12], there holds
‖Tj‖, ‖T−1

j ‖ = O(1),

which is crucial for the realizations of Algorithms 3.4, 3.10 and 4.4 that we describe in the
following:

In order to exploit the advantages of the wavelet basis when dealing with the non-local bilinear
form E(·, ·) as well as the efficient parallelization of the discretization of the local form D(·, ·)
using classical Lagrangian basis functions, Algorithms 3.4, 3.10 and 4.4 can be realized by

1. For the coarse grid discretization of the form

Find uH ∈ SH0 (Ω) such that E(uH , v) = 〈f, v〉 ∀v ∈ SH0 (Ω),

employ the sparse tensor product wavelet methods of [22] with additional wavelet compres-
sion as in [39, 44] to efficiently obtain the wavelet representation

uH =
J∑

j′=0

∑

k′∈∇j′

dHj′,k′ψj′ ,k′ ,

where H = 2−J .

2. Employ the multiscale transformation Tjd
H to obtain the corresponding single-scale rep-

resentation of uH in terms of Lagrangian basis functions with coefficient vector cH as in
(5.2).

3. Proceed from Step 2 in Algorithms 3.4, 3.10 and 4.4 using existing methodology of e.g.
[23, 35, 36] to efficiently discretize the local form D(·, ·) and obtain the final numerical
solution.

The main reason for combining wavelet methods with classical finite element methods in the above
algorithms is the non-locality of the form E(·, ·) due to the existence of jumps in the underlying
stochastic process X . Even on the coarse grid, standard finite element schemes are of complexity
O(H−2d) and therefore hard to apply even in moderate dimensions. It is known however that
sparse tensor product wavelets yield a quasi-sparse representation even of non-local bilinear forms
resulting in asymptotically optimal complexity O(H−1| logH |2(d−1)), see [22, 44]. For the fine-
grid discretization of D(·, ·) one may still employ the same wavelet methods, but, since the form
is local, for moderate dimensions one obtains an efficient discretization with significantly less
computational overhead by using the algorithms of Sections 3 & 4 with Lagrangian finite element
functions.

Remark 5.2. Numerical results for the presented methods will appear in a separate paper.

Acknowledgments. The authors wish to thank Professor C. Schwab of ETH Zürich for valuable
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and numerical aspects. Math. Model. Methods Appl. Sci., 17:1405–1443, 2007.

[23] X. Gao, F. Liu, and A. Zhou. Three-scale finite element discretization schemes for eigenvalue
problems. submitted.

[24] J. Garcke and M. Griebel. On the computation of the eigenproblems of hydrogen and helium
in strong magnetic and electric fields with the sparse grid combination technique. J. Comput.
Phys., 165:694–716, 2000.

[25] V. Girault and J.L. Lions. Two-grid finite element schemes for the transient Navier-Stokes
problem. M2AN Math. Model. Numer. Anal., 35:945–980, 2001.

[26] M. Griebel, P. Oswald, and T. Schiekofer. Sparse grids for boundary integral equations.
Numer. Math., 83:279–312, 1999.

[27] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse
grid problem. In Iterative Methods in Linear Algebra (P. de Groen and P. Beauwens, eds),
pages 263–281. IMACS, Elsevier, North Holland, 1992.

[28] W. Hackbusch. Multigrid Methods and Applications, volume 4 of Springer Series in Com-
putational Mathematics. Springer-Verlag, Berlin, 1985.

[29] N. Hilber, A.-M. Matache, and C. Schwab. Sparse wavelet methods for option pricing under
stochastic volatility. J. Comput. Finance, 8:1–42, 2005.

[30] J. Kallsen and P. Tankov. Characterization of dependence of multidimensional Lévy pro-
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