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Abstract

We describe the analysis and the implementation of two Finite Element (FE) algo-
rithms for the deterministic numerical solution of elliptic boundary value problems
with stochastic coefficients.

They are based on separation of deterministic and stochastic parts of the input
data by a Karhunen-Loève expansion, truncated after M terms. With a change
of measure we convert the problem to a sequence of M -dimensional, parametric
deterministic problems. Two sparse, high order polynomial approximations of the
random solution’s joint pdf’s, parametrized in the input data’s Karhunen-Loève
expansion coordinates, are analyzed: a sparse stochastic Galerkin FEM (sparse
sGFEM) and a sparse stochastic Collocation FEM (sparse sCFEM).

A-priori and a-posteriori error analysis is used to tailor the sparse polynomial
approximations of the random solution’s joint pdf’s to the stochastic regularity of
the input data. sCFEM and sGFEM yield deterministic approximations of the ran-
dom solutions joint pdf’s that converge spectrally in the number of deterministic
problems to be solved.

Numerical examples with random inputs of small correlation length in diffusion
problems are presented. High order gPC approximations of solutions with stochas-
tic parameter spaces of dimension up to M = 80 are computed on workstations.



1 Introduction

Many engineering models of physical phenomena are subject to significant uncer-
tainties. We mention subsurface flow, soil mechanics, earthquake engineering, to
name but a few. Uncertainty can be crudely categorized as aleatoric (inherent pa-
rameter uncertainty) and epistemic (model uncertainty). Aleatorically uncertain
quantities are very often modeled as random fields, see e.g. [1, 37]. Neglecting
epistemic uncertainty, PDE models with aleatoric uncertainty can be formulated as
stochastic partial differential equations (sPDEs).

Numerical analysis and implementational aspects for the solution of such equa-
tions by stochastic Galerkin Finite Element Method (sGFEM) and stochastic col-
location FEM (sCFEM) will be the focus of this paper.

As in [2, 3, 8, 16, 39, 40, 44], our model problem is an elliptic diffusion problem
with stochastic diffusion coefficient a(ω,x) (most, if not all techniques introduced
here could be applied equally well to general elliptic problems with stochastic coef-
ficients). We assume that the physical domain D ⊂ Rd is a known, bounded open
set with Lipschitz boundary ∂D where, in the present work, d is either 1 or 2. We
also consider a “zero-dimensional” model problem which admits a closed form solu-
tion in order to steer a feedback algorithm for adaptive discretization in probability
space (see Section 2.6 and Algorithm 3.8 below).

ByX we denote a Banach space of admissible input data for the PDE under con-
sideration. Specifically, for isotropic diffusion problems with stochastic coefficients,
we will have X = L∞(D) or a separable subspace of it.

For mathematical modelling of uncertainty in input data, we specify “events”
which correspond here to (sets of) possible realizations of random diffusion coeffi-
cients; the set of all possible realizations of coefficients is a sigma algebra Σ which
we assume to be a sub-sigma algebra of the Borel sets of the data space X and a
probability measure P on (Σ, X). The choice of Σ and P on the data space X is
used to describe the information known to us on the data – roughly speaking, the
larger Σ, the more information we assume can in principle be known. We adopt a
particular construction of measures P based on the covariance operator of the input
data detailed in Remark 2.11. To this end, we make the following assumption on
the random diffusion coefficient a(ω,x).

Assumption 1.1. Let a ∈ L∞(Ω ×D) be strictly positive, with lower and upper
bound α > 0 and β <∞ respectively, i.e.

P

{

a(ω, ·) ∈ X |α ≤ ess inf
x∈D

a(ω,x) ∧ ess sup
x∈D

a(ω,x) ≤ β

}

= 1 (1.1)

where the essential infimum and supremum are understood with respect to the
Lebesgue Measure in D ⊂ Rd.

Some form of boundedness away from zero for a(ω,x) holding P -a.s. is essential
to guarantee existence and uniqueness of a solution to the diffusion problem with
stochastic coefficient introduced next, see e.g. [3].

Under Assumption 1.1, our model problem can be formally written as

{
−div(a(ω,x)∇u(ω,x)) = f(x) D,
u(ω,x)|x∈∂D = 0,

P−a.e. ω ∈ Ω (1.2)

where the diffusion coefficient a(ω,x) and the solution u(ω,x) are random fields in
the spatial domain D.

We emphasize that neither homogeneity nor ergodicity of the input random field
a(ω,x) are usually available in practice. Accordingly, they are not assumed in the
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following. Based on the stochastic input data a(ω,x), solutions u(ω,x) of (1.2) are
themselves random fields.

Our goal is to compute statistical quantities of the random solution u(ω,x).
The simplest approach for deriving the statistics of u(ω,x) is Monte Carlo (MC)

simulation, see e.g. [9]. This means that given the prescribed statistics of a(ω,x),
a set of NΩ many, i.i.d coefficient samples aj(x) is generated and, for each sample,
a (deterministic) PDE is solved. Then, the desired solution statistics are obtained
from the set (or “ensemble”) of computed solutions of the deterministic PDEs ob-
tained from inserting the (numerically generated) data samples. A first comparison
of accuracy vs. complexity between this Monte Carlo Approach and the stochastic
Galerkin (sG) strategy is given in [3]. Even though the sG error analysis in [3] was
based on full tensor product error estimates, it substantiated mathematically the
potential superiority of the sG approach over MC type methods, at least in cer-
tain cases (e.g. dominant long-range spatial correlations in input data with smooth
two-point correlation matrix) which had earlier also been reported in numerical
experiments (e.g. [13] and the references therein). The MC method allows a con-

vergence rate of O(N
−1/2
Ω ) for approximating the random solution’s mean field, see

e.g. [3]. The rate for computing higher order moments by a MC approach might
be even lower.

Sparse approximations of higher order moments together with a perturbation
approach for problem (1.2) leads to a class of deterministic algorithms for the ap-
proximation of Mku, see [30, 31, 36, 38]. These FEM are of log-linear complexity
in ND, the number of degrees of freedom in the physical domain D. Like all per-
turbation methods, they require even for computing the mean field E[u] knowledge
of the distribution function of the random input a(·,x) at any x ∈ D, which is not
a realistic assumption.

The sGFEM and sCFEM discussed here are based on the following assumption
on a(ω,x):

Assumption 1.2. For the diffusion coefficient a(ω,x), the mean field

Ea(x) =

∫

Ω

a(ω,x) dP (ω) (1.3)

and covariance

Va(x,x′) =

∫

Ω

(a(ω,x) − Ea(x))(a(ω,x′) − Ea(x′)) dP (ω). (1.4)

are known.

An equivalent assumption would be that the mean field Ea and the 2-point-correlation
Ca are known, since

Va(x,x′) = Ca(x,x′) − Ea(x)Ea(x′). (1.5)

Note that for Va and Ca to exist, a(ω,x) must have finite second moments (a ∈
L2(Ω×D)) which follows immediately from Assumption 1.1. The source term f(x)
is assumed to be a known deterministic function of L2(D). Both methods con-
sist not only of discretizing the spatial variable x but also the stochastic variable
ω which is usually based on a Wiener polynomial chaos or generalized polynomial
chaos (PC/gPC) expansion, see [41, 43]. This approach leads to a parametric family
of deterministic problems with a countable number of parameters. For the deter-
ministic approximation, the number of parameters is restricted to a finite number
M .

Note that the truncation dimension M of the PC parameter space can be arbi-
trarily large in this approach - it is, in fact, a discretization parameter. The sGFEM
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is the mean-square projection of the unknown random solution onto a sparse poly-
nomial chaos (SPC) expansion in the first M Karhunen-Loève parameters of the
input data.

Similar ideas lead to a sparse collocation method, the sCFEM, where we present
a sparse tensor family of collocation points which lead to an sCFEM algorithm. We
prove that it has essentially the same complexity as the sGFEM, but without the
need for the solution of a large number of coupled, deterministic problems. However,
the sCFEM requires pointwise control of the error incurred in the truncation of the
Karhunen-Loève expansion whereas for any choice of the SPC space, the sGFEM is,
due to Galerkin orthogonality and unlike the sCFEM, exact on the full KL-expansion
of the input data, as observed by Matthies et al. [21] (cf. also Remark 3.2 ahead).

The outline of the paper is as follows: in Section 2 our formulation of PDEs with
stochastic input data is presented, starting with some basic results on Karhunen-
Loève expansions of the input data, deriving the variational formulation and intro-
ducing a “zero-dimensional” model problem.

Section 3 then discusses the stochastic Galerkin FEM. A particular family of
sparse polynomial chaos approximation spaces first introduced in [35] will be pre-
sented. We prove that based on these spaces and under the assumption of piecewise
analytic two-point correlation of the diffusion coefficient, the sGFEM achieves ex-
ponential convergence rates in terms of the degree of the gPC approximations. More
importantly, we estimate the dimension of the gPC space and prove spectral con-
vergence rates in terms of the number NΩ of deterministic PDEs to be solved.

Section 4 briefly describes the stochastic collocation method by using the ideas
and constructions of the previous section and states the second main results pro-
viding essentially the same convergence rates as for the sGFEM. Section 5 deals
with details regarding the implementation of the proposed algorithms and in Sec-
tion 6, numerical examples will be given. Finally, the technical Appendices A and
B provide the proofs of the convergence rates of the SPC approach and the col-
location method, respectively. We point out that (1.2) is just a model problem.
The numerical analysis and implementation can be generalized straightforward to
any stochastic elliptic operator. The FE-space in the deterministic variable and the
assumptions on the stochastic coefficients will then in general change.

2 Uncertainty parametrization

In the deterministic numerical solution of problem (1.2), the random field a(ω,x)
is based on its parametrization in both the spatial and the stochastic variables.
This is achieved by expanding the stochastic diffusion coefficients into a so-called
Karhunen-Loève (KL) expansion described in Subsection 2.1, which is a Fourier-type
representation of random fields in probability space. Based on this parametriza-
tion the problem (1.2) will be solved by either a stochastic Galerkin finite element
method (sGFEM), Section 3 (corresponding to a maximum likelihood estimate of
the random solution’s joint pdf’s) or a stochastic collocation method (sCFEM),
Section 4 (corresponding to MC-like sampling of the solution’s joint pdf’s, albeit in
sampling points adapted to the input data’s regularity).

2.1 Karhunen-Loève (KL) expansion

The KL-expansion can be understood as a Fourier representation of a random field
in which the spatial and stochastic parts are naturally separated into an infinite
number of random variables αi(ω) and functions Ni : D ⊂ R

d −→ R (for example
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finite element shape functions) in the sense of

a(ω,x) =
∑

m>0

Nm(x)αm(ω).

There exist infinitely many such representations, see e.g. [17]. We use the Karhunen-
Loève expansion [19].

2.1.1 Definition of the KL-expansion

First we define what we will later refer to as an admissible covariance function

Definition 2.1. A covariance function Va(x,x′) ∈ L2(D×D) given by (1.4) is said
to be admissible if it is symmetric and positive definite in the sense that

0 6

n∑

k=1

n∑

j=1

akVa(xk , xj)āj ∀xk, xj ∈ D, ak, aj ∈ C (2.1)

We refer to [28] for basic results on positive definite functions and examples.
The covariance operator of a random permeability a(ω,x) ∈ L2(Ω ×D) is

Va : L2(D) −→ L2(D), (Vau)(x) :=

∫

D

Va(x,x′)u(x′) dx′. (2.2)

Given an admissible covariance function Va(x,x′) in the sense of Definition 2.1,
the associated covariance operator Va is a symmetric, non-negative and compact
integral operator.

Therefore it has a countable sequence of eigenpairs (λm, ϕm)m>1

Vaϕm = λmϕm m = 1, 2, ... (2.3)

where the sequence (real and positive) KL-eigenvalues λm is enumerated with de-
creasing magnitude and is either finite or tends to zero as m → ∞, i.e. λ1 > λ2 >

. . . > 0 (with multiplicity counted). The KL-eigenfunctions ϕm(x) are assumed to
be L2(D)-orthonormal, i.e.

∫

D

ϕm(x)ϕn(x)dx = δmn, m, n = 1, 2, ... (2.4)

Definition 2.2 (Karhunen-Loève expansion). The Karhunen-Loève (KL) expan-
sion of a random field a(x, ω) with finite mean (1.3) and covariance (1.4) which is
admissible in the sense of Definition 2.1 is given by

a(ω,x) = Ea(x) + r(ω,x) = Ea(x) +
∑

m>1

√

λmϕm(x)Ym(ω). (2.5)

Here, {ϕm(x)}∞m=1 denote the L2(D)-orthonormalized KL-eigenfunctions. The fam-
ily of random variables (Ym)m>1 is given by

Ym(ω) =
1√
λm

∫

D

(a(ω,x) − Ea(x))ϕm(x) dx : Ω → R. (2.6)

The KL-eigenfunctions ϕm(x) in (2.3) - (2.6) can be efficiently computed in
general domains D from a given, analytic covariance Va(x,x′) of the data by means
of a (generalized) Fast Multipole Method (gFMM), see [32]. Once the ϕm(x) are
available, probability densities ρm(xm) of the Ym in (2.6) may be estimated from
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sample input fields a(ω,x) — the KL-eigenfunctions are, in effect, a tool to process
such sampling data via (2.6).
One immediately verifies that

E[Ym] = 0, E[Ym · Yn] = δmn, ∀ m,n > 1, (2.7)

i.e. the Ym(ω) are centered with unit variance and pairwise uncorrelated.
In order to be able to numerically treat the KL-expansion, the series is truncated

after M terms, and we define

aM (ω,x) := Ea(x) +

M∑

m=1

√

λmϕm(x)Ym(ω). (2.8)

2.1.2 Properties of the KL-expansion

The (truncated) KL-series (2.8) converges in L2(Ω × D) to a(ω,x) as shown in
[19] and is an optimal approximation of a(ω,x) in the mean square sense, that is
for any other linear combination ãM (ω,x) of M functions, the error ||a(ω,x) −
ãM (ω,x)||L2(Ω×D) is not smaller than for the KL-expansion, see e.g. [13]. Since
the truncation order M determines the dimension of the stochastic parameter space
in which we have to find an approximation to the random solution, the Karhunen-
Loève expansion is therefore our preferred choice. Estimates on the KL-eigenvalue
decay determine the error of truncating the KL-expansion after M terms due to

E

[∫

D

(a(ω,x) − aM (ω,x))2 dx

]

=
∑

m>M

λm (2.9)

The KL-eigenvalue decay in turn is highly dependent on the regularity of the corre-
lation kernel (1.4). First results on the eigenvalue decay of integral operators with
positive definite kernels have been proved by J.B. Reade [25, 26, 18]. The results
presented in the following are an extension of those results to the case d > 1.

Proposition 2.3 (KL-eigenvalue decay([32], Proposition 2.18)).
Let Va ∈ L2(D ×D) be a symmetric covariance satisfying (2.1). If Va is piecewise
analytic on D × D, i.e. there exists a finite family (Di)16i6I ⊂ Rd of mutually

disjoint, open subdomains of D such that D ⊆ ⋃I
i=1Di and V |Di×Dj has an ana-

lytic continuation in a neighborhood of Di ×Dj for any pair (i, j), then there exist
constants c1, c2 > 0 such that

0 6 λm 6 c1e
−c2mκ

, ∀ m > 1 (2.10)

where κ := 1/d. If Va ∈ L2(D ×D) has piecewise Cs(D ×D) regularity,

∀ m > 1 : 0 6 λm 6 c1m
−κs. (2.11)

Remark 2.4. The case of a Gaussian covariance kernel of the form

Va(x,x′) = σ2e
− |x−x

′|2

γ2diam(D)2 , (x,x′) ∈ D ×D, (2.12)

is particularly interesting since it appears in many applications. The fact that
this function can be extended to an entire function in Cd leads to a faster than
exponential KL-eigenvalue decay, namely

0 < λm .
σ2

γ2

(1/γ)m1/d

Γ(0.5m1/d)
, ∀ m > 1. (2.13)

A proof of this assertion is given in Appendix C. The parameters σ, γ > 0 in (2.12)
and (2.13) refer to the standard deviation and the correlation length, respectively.
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Regularity of the correlation kernel implies pointwise estimates on the eigen-
functions ϕm(x) of the associated covariance operator ([32], Proposition 2.24):

Proposition 2.5 (Pointwise eigenfunction estimate). Let Va(x,x′) be symmetric
and piecewise Cs, s ≥ 1 in the sense of Proposition 2.3. For any fixed multiindex
α ∈ Nd

0 and any t > 0 there exists C(t, |α|) > 0 such that

∀1 6 i 6 I, ∀m > 1 : ||∂αϕm||L∞(Di) 6 Cλ−t
m . (2.14)

Remark 2.6. From Proposition 2.3 and (2.14) it follows that for covariances which
are piecewise analytic in the sense of Proposition 2.3 there exist constants c1(|α|) > 0
and c2 > 0 independent of m, such that for all α ∈ Nd

0 we have pointwise exponential
decay of the KL-terms in the following sense:

∀m ∈ N, α ∈ N
d :

√

λm||∂αϕm||L∞(Di) 6 c1e
−c2mκ

. (2.15)

Similarly, for covariances which are piecewise Cs in the sense of Proposition 2.3
there exist constants c1(|α|) > 0 and c2 > 0 independent of m, such that for all
α ∈ Nd

0 we have pointwise algebraic decay of the KL-terms in the following sense:

∀m ∈ N, α ∈ N
d :

√

λm||∂αϕm||L∞(Di) 6 c1m
−κs. (2.16)

Recall that in (2.15), (2.16) we have κ = 1/d. The pointwise KL-eigenfunction
bounds (2.15), (2.16) in terms of the KL-eigenvalues are crucial in the (uniform in
M) stability of the sCFEM.

2.1.3 Structure of the probability measure P

In the following we assume that the diffusion coefficient a(ω,x) satisfies (1.1) and
admits a Karhunen-Loève expansion (2.5). Furthermore we require

Assumption 2.7. The covariance (1.4) is admissible and piecewise analytic in the
sense of Proposition 2.3.

We also make the following assumptions on the random variables Ym in the
KL-representation (2.5) of the input data.

Assumption 2.8. i) The family (Ym)m>1 : Ω → R is independent,

ii) the KL-expansion (2.5) of the input data is finite, i.e. there exists M̄ < ∞
such that Ym = 0 for all m > M̄ ,

iii) with each Ym(ω) in (2.5), (2.6) is associated a probability space (Ωm,Σm, Pm),
m ∈ N with the following properties:

a) the range of Ym, Im := Ran(Ym) = supp(ρm) ⊆ R, is assumed to be
compact,

b) the probability measure Pm admits a probability density function ρm :
Im −→ [0,∞) such that dPm(ω) = ρm(ym)dym, m ∈ N, ym ∈ Im and

c) the sigma algebras Σm are subsets of the Borel sets of the interval Im,
i.e. Σm ⊆ B(Im).

Assumption 2.8, ii) is made to be able to represent the measure P on the space
of input data as an M̄-fold product measure and to avoid technical issues related
to countable product measures on the space X of input data. We have

Σ =
⊗

m>1

Σm, dP =
⊗

m>1

dPm, I =
⊗

m>1

Im
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Assumption 2.8, iiia) is used in our analysis ahead in an essential fashion. It
precludes the case of Gaussian densities for the Ym. Upon rescaling the Ym, by
Assumption 2.8, iiib) it can be assumed without loss of generality that

Im = Ran(Ym) ⊂ [−1, 1], ∀ m > 1.

Remark 2.9. In general, (2.7) does not imply independence of the random vari-
ables. The case of dependent random variables has been treated in [33] where an
orthonormal system of polynomials are constructed to serve as a basis for the chaos
representation. An alternative way of overcoming the problem of dependent RV’s
has been proposed in [2] by introducing auxiliary probability density functions ρ̃m

with ‖ρm/ρ̃m‖L∞ such that the random variables Ym are independent with respect
to ρ̃ =

∏

m>1 ρ̃m.

2.2 Variational formulation of the sBVP

Multiplying (2.25) with a test function and integrating yields the variational for-
mulation: Find u ∈ L2

P (Ω) ⊗H1
0 (D) such that ∀ v ∈ L2

P (Ω) ⊗H1
0 (D)

b(u, v) := E

[∫

D

a(ω,x)∇u(ω,x) · ∇v(ω,x) dx

]

= E

[∫

D

f(x)v(ω,x) dx

]

. (2.17)

By (1.1), the bilinear form b(·, ·) is continuous and coercive on the Hilbert space
L2

P (Ω) ⊗H1
0 (D).

2.3 Parametric deterministic formulation of the sBVP

As a consequence of the independence in Assumption 2.8, the multivariate proba-
bility density on I = I1 × I2 × . . . is given by

ρ(y) = ρ(y1, . . . , ym, . . .) := Πm>1ρm(ym). (2.18)

We substitute Ym(ω) by ym and equip the range I of the vector (Y1, Y2...) with
the product measure dP (ω) =

⊗

m>1 ρm(ym)dym. Changing measure from dP (ω)
to Πm>1ρm(ym)dym, problem (2.17) is equivalent to the parametric, deterministic
problem

−div(a(y,x)∇u(y,x)) = f(x) y ∈ I, x ∈ D (2.19)

where y = (y1, y2 . . .). Its variational form reads:
Find u ∈ L2

ρ(I) ⊗H1
0 (D) such that ∀ v ∈ L2

ρ(I) ⊗H1
0 (D)

b(u, v) = l(v). (2.20)

with

b(u, v) = E

[∫

D

a(·,x)∇u(·,x) · ∇v(·,x) dx

]

(2.21)

=

∫

I

∫

D

a(y,x)∇u(y,x) · ∇v(y,x)ρ(y) dxdy

and

l(v) = E

[∫

D

f(x)v(·,x) dx

]

=

∫

I

∫

D

f(x)v(y,x)ρ(y) dxdy. (2.22)
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2.4 Stochastic Regularity

By stochastic regularity we mean the smoothness of the parametrized random solu-
tion u(y,x) with respect to the parameters y. It can be shown that the solution to
(2.19) is analytic with respect to y. We have ([2], Lemma 5)

Lemma 2.10. The solution u(y) as a function of ym admits an analytic extension
to the region of the complex plane

Σ(Im, τm) = {z ∈ C : dist(z, Im) 6 τm}, (2.23)

with 0 < τm < 1/ηm, where

ηm =

√
λm||ϕm(x)||L∞(D)

2amin
(2.24)

and amin = α as in (1.1).

In particular there exists a so-called “Bernstein-ellipse” in C with foci at <z = ±1
and for which the sum of semiaxes is bigger than 1, s.t. u(y,x), as a function of
ym for m ≤ M̄ , is analytic in the closure of the Bernstein-ellipse, uniformly with
respect to yi for all i 6= m.

2.5 Dimension Reduction

The parametric deterministic problem (2.19) is, in principle, amenable to numer-
ical treatment by standard discretization schemes. However, in general M̄ in As-
sumption 2.8 could be prohibitively large and a reduction of the (possibly infinite)
stochastic dimension to a finite, possibly large, value M , is necessary. To this end,
the “truncated problem”

{
−div(aM (ω,x)∇uM (ω,x)) = f(x) D,
uM (ω,x)|x∈∂D = 0,

P−a.e. ω ∈ Ω (2.25)

is considered, where the truncated KL-expansion aM (ω,x) of the input data is as
in (2.8). It has been shown in [3] that due to Assumption 1.1 there exists a unique
solution to problem (2.25) in the space H1

0(D) = L2
P (Ω, H1

0 (D)) which is isomorphic
to L2

P (Ω) ⊗H1
0 (D), where L2

P (Ω) :=
{
ξ(ω)|

∫

Ω
ξ2(ω) dP (ω) <∞

}
.

Remark 2.11. (On the structure of the probability measure P and its truncated
approximations P6M ) By Assumption 2.8, P is the (essentially unique, cf. e.g. [4])
product measure

P (ω) =
⊗

m>1

Pm(ω) (2.26)

with dPm(ω) = ρm(ym)dym, m ∈ N on the product sigma algebra Σ =
⊗

m≥1 Σm in
the set of events Ω =

∏

m>1 Ωm (i.e. the essentially unique, smallest sigma algebra
in Ω for which each of the projections πm : Ω → Ωm is Ω − Ωm measurable).

For every M ∈ N and for m > M we define the sigma algebra Σ̃m = {∅,Ωm} ⊂
Σm and denote by Σ6M the corresponding product sub-sigma algebra of Σ, i.e.

Σ6M :=

(
M∏

m=1

Σm

)

×
(
∏

m>M

Σ̃m

)

⊂ Σ

Since, for m > M , each Pm is a probability measure on Σ̃m, it holds Pm(∅) = 0
and Pm(Ωm) := 1. The M -truncated probability measure for the family (Ym)m>1 is

8



the restriction of P to Σ6M . It satisfies for every elementary event ω ∈ Σ6M of the
form ω = (ω1, ω2, ..., ωM ,ΩM+1,ΩM+2, ...)

P6M (ω) =

M⊗

m=1

Pm(ωm) (2.27)

The truncated problem (2.25) can be obtained from (2.17) by taking the conditional
expectation over Σ6M .

2.6 “zero-dimensional” model problem

In the sGFEM and sCFEM, each “stochastic degree of freedom” corresponds to
a solution of one boundary value problem for a deterministic, elliptic PDE. It is
therefore of utmost importance to discretize (2.19) with as few DoFs in y as possible,
without compromising accuracy.

Our methodology to achieve this consists, as mentioned above, in identification
of the most important “active” gPC modes by a-priori error analysis. We also
present a heuristic algorithm for a-posteriori and adaptive choice of such “active”
DoFs by relating the original problem (1.2) to a “zero-dimensional” model problem
whose solutions take values in R rather than in H1

0 (D).
This zero-dimensional problem had been first introduced in [8], to motivate the

sGFEM. Here, we propose to use this stochastic model problem as a tool for on-the-
fly prediction and optimization of relevant gPC solution modes in both, adaptive
sGFEM and adaptive sCFEM.

It consists of the algebraic problem

a0(ω)u0(ω) = 1, P−a.e. ω ∈ Ω. (2.28)

Clearly, the exact solution of this problem is u0(ω) = 1
a0(ω) . It is assumed that

a0(ω) has a formal KL expansion of the form

a0(ω) = γ0 + γ1

√

λ1Y1 + · · · + γm

√

λmYm + · · · , (2.29)

where the eigenvalues λm stem from the underlying original problem in (2.8) and
Ym are i.i.d. random variables as described above. The γi’s represent the values
that can be taken by the functions Ea(x) (in the case i = 0) and ϕi(x), respectively.
The truncated zero-dimensional problem which corresponds to (2.25) then reads

a0
M (y)u0

M (y) = 1 (2.30)

where a0
M (y) = γ0 + γ1

√
λ1y1 + · · ·+ γM

√
λMyM . For any M < M̄ , u0

M = 1
a0

M
and

we have

||∂αu0
M ||L∞(I) = α!

M∏

m=1

γαm
m · (||u0

M ||L∞(I))
|α|. (2.31)

The regularity (2.31) of the model problem (2.28) is determined by the coefficients
γm, m = 0, ...,M . We propose to use the explicit solution u0

M = 1/a0
M of (2.30) with

coefficients γi related to the KL-data of the full problem to predict significant coeffi-
cients of sGFEM approximations of the full problem (1.2) resp. of its approximation
(2.25), see Subsection 3.2.3 ahead for more details.

To relate the truncated problem (2.25) to the zero dimensional problem (2.30),
we proceed as follows: based on the first M KL-eigenfunctions ϕm(x), m = 1, ..,M ,
a conservative choice of the parameters γi to assess the approximability of uM (x, ω)
in (2.25) is

γ0 := inf
D
Ea(x), γm := ||ϕm(x)||L∞(D), m = 1, 2, 3, ... (2.32)
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To avoid singularities we assume that the expansion (2.29) satisfies

0 < α∗ 6 a0
M (y) 6 β∗ (2.33)

which is not restrictive due to (2.10), (2.11) and (2.14).
Multiplying equation (2.30) with a test function v(y) ∈ L2

ρ(I) and integrating
yields to the variational form corresponding to (2.20): Find u0

M (y) ∈ L2
ρ(I) s.t.

b0(u0
M , v) = l0(v) ∀v ∈ L2

ρ(I) (2.34)

with the bilinear form

b0(u, v) := E
[
a0

M (y)u(y)v(y)
]
, (2.35)

and the linear functional
l0(v) := E [v(y)] . (2.36)

Furthermore, problem (2.30) is equipped with the stochastic energy norm

||v||2E := b0(v, v) = E
[
a0

M (y)v(y)2
]
. (2.37)

3 Stochastic Galerkin FEM

We will discuss the Galerkin discretization of the variational problem (2.20). For a
general discussion of the sGFEM we refer to [13, 3, 8, 17] and references therein.
Here, due to the high dimensionality of L2

ρ(I), we will primarily focus on sparse
techniques to reduce the complexity of the stochastic approximation.

We discretize the variational formulation (2.20) by Galerkin projection onto a
sequence of finite dimensional subspaces of

L2
ρ(I,H

1
0 (D)) ' L2

ρ(I) ⊗H1
0 (D). (3.1)

Specifically, we choose a gPC discretization in I based on two-parametric families
of finite dimensional subspaces Y M

µ,ν ⊂ L2
ρ(I). Here, µ and ν refer to the polynomial

degree and the maximal number of “active gPC dimensions”, respectively (see Re-
mark 3.6 ahead). Denoting the FE-space in the physical domain V D

h ⊂ H1
0 (D), the

sGFEM is based on the tensor product space

YM
µ,ν ⊗ V D

h ⊂ L2
ρ(I) ⊗H1

0 (D). (3.2)

Then the sGFEM approximation of (2.20) reads:

Find uM ∈ Y M
µ,ν ⊗ V D

h : bM (uM , v) = l(v) ∀v ∈ Y M
µ,ν ⊗ V D

h (3.3)

where

bM (uM , v) = E

[∫

D

aM (y,x)∇uM (y,x) · ∇v(y,x) dx

]

. (3.4)

Remark 3.1. Note that the ‘factor’-subspaces in the tensor product (3.2) can be
chosen independently of each other. In fact, the spatial and stochastic variables of
the random solution only interact with each other when building up the combined
stiffness matrix, as we will show in Section 5.3 ahead.

Remark 3.2. The dimensional reduction from b(·, ·) in (2.21) to bM (·, ·) in (3.3) was
done by truncating the Karhunen-Loève expansion (2.5) of a(x, ω) to aM (x, ω) in
(2.8), resulting in (2.25). By Remark 2.11, a “probabilistic interpretation” of this
transition is to take in (2.17) instead of E[·] expectations E[·|Σ≤M ] conditional on
Σ≤M ⊂ Σ as in Remark 2.11. Therefore, the solution uM of (3.3) is a maximum
likelihood estimate of u subject to the (reduced) information Σ≤M on coefficient
a(x, ω).
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Remark 3.3. In order for (2.25) or, equivalently, for (3.3) to be well-posed, coercivity
of bM (·, ·) is necessary. In the sCFEM, aM (ω,x) in (2.8) must satisfy (1.1) at least
forM sufficiently large, possibly with worse constants 0 < α ≤ β <∞ but uniformly
in M to ensure the V -coercivity of

∫

D

aM (·,x)∇uM (·,x) · ∇v(·,x) dx : V × V → R

uniformly in y ∈ I which is necessary for the stability of the scFEM. In the sGFEM
this assumption is redundant, as pointed out in [21]: Due to the fact that the
random variables ym are centered, see (2.7), an easy computation shows that

bM (uM , v) = b(uM , v) ∀uM , v ∈ YM
µ,ν ⊗ V D

h ,

with b(uM , v) and bM (uM , v) as in (2.21) and (3.4), respectively, so that bM (·, ·)
satisfies (1.1) for any M .

3.1 Multilevel hierarchic spatial discretization

For the sake of simplicity, we assume that the spatial domain D is a bounded Lip-
schitz polyhedron with straight faces in Rd. In order to find a hierarchic sequence
of discrete spaces V D

h ⊂ H1
0 (D) we introduce piecewise polynomial wavelet dis-

cretizations. For a discussion of spline wavelets we refer to [6, 5] and references
therein.

V D
0 ⊂ V D

1 ⊂ ... ⊂ V D
l ⊂ V D

l+1 ⊂ ... ⊂ H1
0 (D)

be a dense sequence of finite dimensional subspaces, given by e.g. V D
l := Sp

0 (D, Tl)
where p ≥ 1 is a (fixed) polynomial degree and {Tl} is a nested sequence of regular
simplicial triangulations of D and define

Sp
0 (D, Tl) =

{
u ∈ H1

0 (D) : u|T ∈ Pp(T ) for T ∈ Tl

}
, l = 0, 1, ...

i.e. the space of continuous piecewise polynomials of total degree at most p on the
triangulation Tl. We denote by PD

l the H1
0 (D) projection onto V D

l , i.e.
(
∇(u− PD

l u), v
)

= 0 ∀v ∈ V D
l ,

where (·, ·) denotes the L2(D) inner product, and define the detail spaces WD
l such

that
WD

0 := V D
0 and V D

l = V D
l−1 ⊕WD

l for 1 6 l 6 L.

The FE-space V D
L admits a multilevel decomposition V D

L :=
⊕L

l=0 W
D
l . Further-

more, let ψl = {ψlk : k ∈ ∇l}, where ∇l is an index set, be a basis of the “increment
space” WD

l . The ensemble of basisfunctions Ψ = {ψlk : l > 1, k ∈ ∇l} are then
called wavelets, whereas ψ0k are the scaling functions.

Every function u ∈ H1
0 (D) can be decomposed in terms of the scaling functions

at the coarsest level l = 0 and wavelets on levels l > 1 as

u =
∑

l>0

∑

k∈∇l

dlkψlk =
∑

l>0

d>
l Ψl = d>Ψ, (3.5)

and the following norm equivalences hold (see e.g. [5]):

‖u‖L2(D) ∼ ‖d‖`2

‖∇u‖2
L2(D) ∼ ∑

l>0 22l‖dl‖2
`2 .

(3.6)

Remark 3.4. We emphasize that for the computation of the FE stiffness matri-
ces, any h-version FE-code in conjunction with a wavelet transformation can be
used, since the matrices correspond to diffusion FE stiffness matrices with the KL-
eigenfunctions ϕm(x) as coefficients, see Section 5.3 for details.
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3.2 Discretization in the stochastic variable

In the sGFEM (3.3), judicious choice of Y M
µ,ν ⊂ L2

ρ(I) is crucial, since the complexity

of the sGFEM (3.3) is at least that of solving NΩ = dimYM
µ,ν deterministic problems

D. Since the solution of (2.19) is analytic with respect to y, a Polynomial Chaos
(PC) approximation by Hermite Polynomials of Gaussian random variables due to
N. Wiener [41] seems appropriate. As the measure P in (1.1) is not necessarily
Gaussian, generalized Polynomial Chaos (gPC) has been proposed, see e.g. [44,
43]. This leads to exponential convergence rates in numerical experiments, even if
non-Gaussian probability density functions are present, see [44, 16] and references
therein. Multi-element gPC (ME-gPC) have then been considered in [40, 39] and
can be viewed as an hp-version of the gPC approach, where the probability domain I
is partitioned and a gPC approximation is performed in each subdomain. However,
gPC and ME-gPC suffer from the curse of dimension when M gets large which is the
case for ‘rough’ covariances as well as for problems in space dimensions d = 2 and
d = 3, since due to (2.10), (2.11) the corresponding slow decay of the KL-eigenvalues
forces a large value of M .

Sparse polynomial tensor product [35] expansions allow to treat high truncation
orders M with only algebraic growth of the number NΩ of deterministic problems
to be solved uniformly, as M → ∞.

3.2.1 Sparse polynomial chaos

For every coordinate ym, m ∈ {1, 2, . . .M} let a family of one-dimensional polyno-
mials (πm

i (ym))i∈N0
be given, where πm

i (ym) is a polynomial of degree i on Im, and
denote by

ζM,α(y1, . . . , yM ) := π1
α1

(y1)π
2
α2

(y2) · · ·πM
αM

(yM ), α ∈ N
M
0 . (3.7)

their tensor product. Assume that the polynomials (πm
i (ym))i∈N0 form a basis for

L2
ρm

(Im). Then it follows that the tensorized polynomials (3.7) form a basis in
L2

ρ(I). The gPC representation for the solution of (2.19) is

uM (y,x) =
∑

α∈NM
0

uα(x)ζM,α(y), (3.8)

where only a finite number of coefficients uα(x) are nonzero. Our aim is to choose
an appropriate subset Λ ⊂ NM

0 such that an as small as possible number NΩ of
functions ζM,α(y) are considered in the approximation of uM while still retaining
spectral convergence rates of the sGFEM discretization in y. That this is in principle
possible has been proved for exponential KL-eigenvalue decay (2.10) in [35]. Here,
we will present a more sophisticated selection of Λ ⊂ N

M
0 with a still moderate

cardinality NΩ := |Λ| such that, up to a given accuracy, uM can be approximated
as

uM,Λ(y,x) =
∑

α∈Λ

uα(x)ζM,α(y). (3.9)

Moreover, we show spectral convergence in terms of the number NΩ of gPC “modes”
(where each mode corresponds to a deterministic problem).

Following [35], we introduce the gPC approximation space as follows:

Definition 3.5. For M,µ, ν ∈ N with ν 6 M let the index set ΛM,µ,ν ⊂ NM
0 be

given by
ΛM,µ,ν := {α ∈ N

M
0 : ‖α‖1 6 µ, ‖α‖0 := |supp(α)| 6 ν}, (3.10)

where |supp(α)| denotes the number of nonzero components of the multiindex α.
The corresponding approximation space is then defined as

PM,µ,ν := span{ζM,α : α ∈ ΛM,µ,ν}. (3.11)
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Remark 3.6. The approximation space Y M
µ,ν = PM,µ,ν in (3.10), (3.11) used in

the gPC sGFEM discretization is inspired by Hoeffding’s ANOVA decomposition of
random fields [14]: there, a function f(y) = f(y1, y2, ...) of countably many variables
yi is represented by

∑

i(1)∈N1
0

f
(1)

i(1)
(yi(1) )+

∑

i(2)∈N2
0

f
(2)

i(2)
(y

i
(2)
1
, y

i
(2)
2

)+...+
∑

i(k)∈Nk
0

f
(k)

i(k) (yi
(k)
1
, ..., y

i
(k)
k

)+... (3.12)

Our approximation space Y M
µ,ν = PM,µ,ν consists in a) truncation of the ANOVA

representation (3.12) at levels k = ν, b) in term k ≤ ν, truncating the ranges of the
multiindices i(k) from Nk

0 to {0, 1, ...,M}k and c) replacing for k ≤ ν each function

f
(k)

i(k) (·) in (3.12) by a polynomial of degree at most µ in at most k ≤ ν of the
variables yj , j ≤M .

3.2.2 Sparse orthogonal chaos

As a special choice of polynomials (πm
i (ym))i∈N0 , a family of univariate orthogonal

polynomials in ym with respect to the probability density ρm can be considered.
Choosing orthogonal polynomials in each variable y1, . . . , yM , spanning the same
space as (3.11), will naturally sparsify the matrix of the stochastic discretization
and, in addition, reduce its condition number. In case the multivariate probability
density function ρ(y) in (2.18) is uniform, the tensorized Legendre polynomials

LM,α(y) := Lα1(y1)Lα2(y2) · · ·LαM (yM ) (3.13)

form such an orthogonal family. Here Lαm(ym) is the Legendre polynomial of degree
αm on Im = [−1, 1] normalized such that Lαm(1) = 1, i.e. it satisfies

∫

Im

Lαm(ym)Lα′
m

(ym)ρ(ym) dym = δαmα′
m

1

2αm + 1
. (3.14)

The Legendre expansion with respect to y can then be written as

uM (y,x) =
∑

α∈NM
0

uα(x)LM,α(y). (3.15)

We denote by

uΛM,µ,ν (y,x) =
∑

α∈ΛM,µ,ν

uα(x)LM,α(y) (3.16)

the Legendre chaos expansion restricted to the index set ΛM,µ,ν in (3.10).
For non-uniform probability density functions, other types of orthogonal func-

tions can be considered. See e.g. [43] for a list of various probability density
functions and their corresponding orthogonal polynomials.

3.2.3 Adaptive selection of active gPC modes

Although the family ΛM,µ,ν of index sets in Definition 3.5 represents a judicious,
sparse choice of active gPC coefficients, its cardinality increases rapidly as M , µ
and ν are increased.

Proposition 3.7. For the sGFEM based on the gPC approximation with coefficients
in the set ΛM,µ,ν specified in (3.10), it holds

NΩ = |ΛM,µ,ν | 6 2Mν(µ+ 1)ν+1. (3.17)
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We refer to Appendix A.2 for the proof.
As every stochastic ‘degree of freedom’ entails the numerical solution of one

deterministic boundary value problem in D, hence yielding a total number of
Ntot = NΩND degrees of freedom, it is important to represent the unknown so-
lution uM (y,x) in (3.15) by as few gPC modes as possible. Hence, for a prescribed
error bound ε and a given gPC dimension M < M̄ , we aim at finding an index set
Λ(ε) ⊂ NM

0 which satisfies

Λ(ε) := argmin
{

|Λ̃| : Λ̃ ⊂ N
M
0 , ‖uM − uM,Λ̃‖L∞(I) < ε

}

(3.18)

In the following we present a heuristic algorithm of selecting such an index set Λ
adaptively in each step, based only on Karhunen-Loève data of a(ω,x). Motivated
by Subsection 2.6, every stochastic elliptic diffusion problem corresponds to a purely
stochastic problem of the form (2.30) with the formal solution

u0
M (y) =

1

γ0 +
∑∞

m=1 γm

√
λmym

. (3.19)

It is easy to see that u0
M (y) can be expanded in a geometric series like

ΨM (y) =
1

γ0
+

∞∑

n=1

(−1)n

(

1

γ0

M∑

m=1

γm

√

λmym

)n

=
1

γ0
+
∑

α∈NM
0

cαγ̃
αyα,

with γ̃ = 1
γ0

(γ1

√
λ1, γ2

√
λ2, . . .) and some constants cα. By using a (finitely sup-

ported) index set Λ ⊂ `∞c (N), the sequence space of all bounded sequences with
compact support, the series is truncated as

GM (y) =
1

γ0
+
∑

α∈Λ

cαγ̃
αyα. (3.20)

The order of magnitude of the coefficients of yα are asymptotically determined by

γ̃α =
∏

m>1

γ̃αm
m . (3.21)

Hence, in the spirit of a best N-term approximation we propose the following Al-
gorithm 3.8 for selecting an index set Λ containing the largest coefficients γ̃α. We
emphasize here, that the presented algorithm is also dimension-adaptive, i.e. the
maximum dimension of ‘active’ coefficients, previously called M , may vary when
computing the modified index set Λ̃ from Λ.

Algorithm 3.8. (KL-adapted selection of indices)

Input:

• KL-data (γm, λm)

• Steering parameter θ > 0

• Index set Λ

Output: Modified index set Λ̃ computed by

1. Compute ∀α ∈ Λ the numbers γ̃α and denote by γ̃min = minα∈Λ γ̃
α their

minimum.
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2. Determine

Λ̃ = {α ∈ `∞c (N) : γ̃α > θγ̃min}.

Choosing 0 < θ < 1 corresponds to an extension of the index set Λ whereas for
θ > 1 Λ will be contracted, i.e.







0 < θ < 1 : Λ̃ ⊇ Λ

θ = 1 : Λ̃ = Λ

1 < θ : Λ̃ ⊆ Λ

(3.22)

Starting e.g. with Λ(0) = {0} and applying Algorithm 3.8 with 0 < θ < 1 repeatedly
provides a hierarchic sequence of index sets

Λ(0) ⊆ Λ(1) ⊆ · · · ⊆ Λ(l) ⊆ · · · ⊆ `∞c (N) (3.23)

to be used in conjunction with the deterministic FE-spaces V D
l . Numerical examples

in Section 6 will show that the adaptive refinement of stochastic modes by Algorithm
3.8 results in accurate representations of the random solution involving considerably
less degrees of freedom than by using ΛM,µ,ν instead.

Remark 3.9. The values of γ0, γ1, . . . have been set to the minima and maxima
of Ea(x) and ϕm(x), respectively, over the domain D, see (2.32). Consider now
a decomposition of D into open, nonempty, disjoint subsets {Di}06i6I , s.t. D =
∪I

i=0Di and set

γ
(i)
0 := inf

Di

Ea(x), γ(i)
m := ‖ϕm(x)‖L∞(Di), m = 1, 2, 3, . . .

Consequently, by Algorithm (3.8), we get sequences Λ
(0)
Di

⊆ Λ
(1)
Di

⊆ · · · ⊆ `∞c (N)
taking into account that a(ω,x) might behave differently on each Di. Solving now

(2.20) on separate subdomains Di, together with the appropriate index sets Λ
(j)
Di

,
might lead to a better approximation of the random solution’s joint pdf’s.

3.3 Error analysis

By choosing the discrete spatial space V D
h = V D

L and the discrete stochastic space
Y M

µ,ν = PM,µ,ν(I) as discussed in the previous subsections we obtain the full dis-
cretization

PM,µ,ν(I) ⊗ V D
L ⊂ L2

ρ(I) ⊗H1
0 (D) ' L2

ρ(I,H
1
0 (D)). (3.24)

The approximate solution uL
ΛM,µ,ν

(y,x) ∈ PM,µ,ν(I)⊗ V D
L to the stochastic elliptic

problem (2.17) is then represented as a series of the form

uL
ΛM,µ,ν

(y,x) =
∑

α∈ΛM,µ,ν

uα(x)LM,α(y) (3.25)

where, according to (3.5), uα ∈ V D
L can be written as

uα(x) =
L∑

l=0

∑

k∈∇l

uα
lkψlk(x). (3.26)

Let us denote by PD
L : H1

0 (D) → V D
L the Galerkin finite element projection operator

in the physical domain D. It satisfies quasi optimality in H1
0 (D), i.e.

||v − PD
L v||H1

0 (D) 6 C min
vL∈VL

||v − vL||H1
0 (D), ∀v ∈ H1

0 (D) (3.27)
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were C depends only on α and β in (1.1).
Similarly we can define an interpolation operator P I

ΛM,µ,ν
: L2

ρ(I) → PM,µ,ν

which projects functions from L2
ρ(I) onto their truncated sparse Legendre chaos

expansion (3.16) defined by

P I
ΛM,µ,ν

uM (y,x) =
∑

α∈ΛM,µ,ν

uα(x)LM,α(y), uα(x) =

M∏

m=1

(2αm+1)

∫

I

uM (y,x)LM,α(y) dy.

Let us recall that we use the notation u for the solution of (1.2), uM for the so-
lution of the dimensionally truncated problem (2.25) and uL

ΛM,µ,ν
for the sGFEM

approximation (3.25). To estimate the overall sGFEM error

εLΛM,µ,ν
:= ||u− uL

ΛM,µ,ν
||H1

0(D). (3.28)

we split it into three parts, namely

εLΛM,µ,ν
6 ||u− uM ||H1

0
︸ ︷︷ ︸

εM

+ ||uM − PD
L uM ||H1

0
︸ ︷︷ ︸

ε
V D

L

+ ||PD
L (uM − P I

ΛM,µ,ν
uM )||H1

0
︸ ︷︷ ︸

εµ,ν

(3.29)

Here, εM denotes the Karhunen-Loève truncation error due to replacing a(y,x) by
aM (y,x), εV D

L
is the FE discretization error and εµ,ν stems from the gPC discretiza-

tion in the stochastic variables y. We chooseM,L, µ, ν in relation to each other such
that the corresponding error contributions are equilibrated while the total number
of degrees of freedom is minimal. We use numerical analysis of the error to identify
sets ΛM,µ,ν of ‘active’ gPC modes of small cardinality NΩ = |ΛM,µ,ν |, the number
of deterministic FE solutions needed to approximate the random field.

We start with the spatial finite element discretization error εV D
L

. A-priori FE-
estimates on quasiuniform meshes of width h in the physical domain D are well
known, see, e.g. [29]: as the meshwidth h→ 0 and p ≥ 1 is fixed, we have

εV D
L

∼ hp as h→ 0.

In the case of an arbitrary but fixed polynomial degree p ≥ 1, we therefore choose
L as

L ∼ | ln εV D
L
|/p. (3.30)

Next, we aim at choosing M , such that εM ∼ εV D
L

. To obtain an estimate for εM ,

recall the definition of the (truncated) bilinear and linear forms b(uM , v), bM (uM , v)
and l(v) from (2.21),(3.4) and (2.22), respectively. The variational formulation of
the model problem (1.2) and its truncated version (2.17) are:

Find u ∈ L2
P (Ω, H1

0 (D)) s.t. ∀v ∈ L2
P (Ω, H1

0 (D)) holds b(u, v) = l(v)

and

Find uM ∈ L2
P (Ω, H1

0 (D)) s.t. ∀v ∈ L2
P (Ω, H1

0 (D)) holds bM (uM , v) = l(v),

respectively.
Using a Strang-type perturbation argument, the error εM due to the truncation

of the KL-expansion can be estimated as follows: we use

||uM ||2H1
0

(1.1)

6
2

α
bM (uM , uM ) = lM (uM ) 6

2

α
CP ||f ||L2(D)||uM ||H1

0
,

where CP is the Poincaré constant, and obtain

||εM ||H1
0

6 CP
2

α2
||aM − a||L∞(I,H1

0 (D))||f ||L2(D).
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A stochastic source term f(x, ω̃) would lead here to an additional term of the form
||f − fM ′ ||L∞ , where fM ′ denotes the truncated Karhunen-Loève expansion of f .

From (2.9) and Proposition 2.3 it follows that

εM ∼ exp(−cMκ),

where κ = 1/d. Hence, together with (3.30)

M ∼ | ln εM |d ∼ Ldpd (3.31)

It remains to choose µ, ν, such that εµ,ν is of the same order as εV D
L

and εM .

Due to (3.27) the third term in (3.29) reduces to

||PD
L (uM − P I

ΛM,µ,ν
uM )||H1

0
6 C||uM − P I

ΛM,µ,ν
uM ||H1

0
(3.32)

The following Lemma provides a pointwise estimate for the stochastic approxima-
tion error εµ,ν in (3.29):

Lemma 3.10. If uM solves (2.19) then there exist constants c1, c2, c3, c4 > 0,
depending only on the data a, r, f but are independent of M , µ, ν such that the
expansion of uM into tensorized Legendre polynomials of PM,µ,ν(I) satisfies

||uM − uΛM,µ,ν ||L∞(I,H1
0 (D)) 6 c1

(

e−c2ν1+κ

+ ec3ν(lnM+ln µ)−c4µ
)

(3.33)

for any M,µ, ν ∈ N with ν 6 M .

For the proof we refer again to Appendix A.2. Choosing µ ∼Mκ and ν ∼Mκ/(κ+1)

yields asymptotically, as µ, ν, L,M → ∞, that εµ,ν ∼ εM ∼ εV D
L

. With the com-

plexity estimate (3.17), we have proved

Proposition 3.11. There exist positive constants cL, cM , cµ, cν , independent of
L,M, µ, ν, s.t. for any ε > 0, by choosing

L(ε) :=
⌈

cL
| ln ε|

p

⌉

, M(ε) = dcML(ε)dpde,
µ(ε) = dcµM(ε)κe, ν(ε) = dcνM(ε)κ/(κ+1)e

(3.34)

for m = 1, 2, ...,M(ε), we have

‖u− uL
ΛM,µ,ν

‖H1
0(D) 6 ε (3.35)

and the number NΩ of deterministic problems to be solved is asymptotically, as
ε→ 0 for any fixed s > 0 bounded by

NΩ = |ΛM,µ,ν | . ε−1/s, ε→ 0 (3.36)

with a constant independent of the parameters in (3.34)

Note that (3.36) inserted in (3.35) implies for all s > 0 as the number NΩ of
stochastic DOFs tends to ∞ the convergence rates

‖u− uL
ΛM,µ,ν

‖H1
0(D) 6 CsN

−s
Ω (3.37)

while, by (3.29)-(3.30), the total number N of degrees of freedom necessary for
computing the sGFEM approximation uL

ΛM,µ,ν
of u which is accurate of order ε in

L2
ρ(I,H

1
0 (D)) is bounded by

N = NΩND ∼ ε−1/s−d/p as ε→ 0 (3.38)
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4 Stochastic Collocation FEM

A stochastic collocation method for sPDEs has first been proposed in [42, 2] by us-
ing numerical quadrature for the approximate evaluation of the stochastic integrals.
Whereas [42] already proposed the usage of Smolyak grids to reduce the number of
collocation points, this was further analyzed and developed in [22] and [23]. We pro-
pose here a stochastic collocation method based on our sGFEM approach. Judicious
selection of a two-parameter sequence of collocation points is shown to overcome the
problem of high dimensionality for random coefficients a(ω,x) with Karhunen-Loève
eigenvalue decay (2.10) for any κ > 0. Our sCFEM uses the sGFEM subspaces Y M

µ,ν

in Definition 3.5. For the resulting sCFEM we prove, under (2.10) for any κ > 0,
similar convergence rates as the sGFEM approach, see Lemma 4.1 below, while
having complexity equal to that of the MC method with NΩ “samples”, i.e. NΩ

many solutions of deterministic problems in D.

4.1 Formulation of the collocation algorithm

The functions aM , uM , v, f are viewed as functions taking values in V = H1
0 (D),

parametrized by y ∈ I . We consider again the parametric deterministic formulation
introduced in (2.19). By projecting it in the spatial variable x onto a subspace
V D

L ⊂ H1
0 (D) we obtain a parametric semidiscrete problem which can be written

in variational form as: Find uL
M : I −→ V D

L s.t. ∀vL ∈ V D
L , ∀y ∈ I :

∫

D

aM (y,x)∇uL
M (y,x) · ∇vL(y,x) dx =

∫

D

f(x)vL(y,x) dx. (4.1)

Equation (4.1) is collocated w.r. to y at the roots of polynomials which are orthog-
onal w.r. to

⊗

m>1 L
2(Im, ρm(ym)dym). Approximate joint pdf’s of the unknown

random solution are recovered by interpolation and statistical moments are com-
puted by ANOVA-composite, tensorized Gaussian Quadratures associated with the
collocation points (postprocessing, see Subsection 5.5) .

Specifically, for each parameter m ∈ {1, . . .M} we denote by ym,km , 1 6 km 6
µm + 1 the µm + 1 roots of the orthogonal polynomial πm

µm+1(ym) with respect to
the probability measure ρm. We will restrict the discussion to the case of Jacobi
polynomials Jα,β

µm+1(ym), i.e. ρm(ym) = 1
2 (1− ym)α(1 + ym)β , which covers the case

of Legendre and Chebyshev polynomials. For any multiindex k = (k1, . . . , kM ) we
write yk = (y1,k1 , . . . , yM,kM ). For a vector µ = (µ1, . . . , µM ) of polynomial degrees,
the (anisotropic) Lagrange interpolation operator is defined by

Iµu
L(y) =

∑

16k6µ+1

uL(yk)lk(y), (4.2)

where uL(yk) is the solution of (4.1) for y = yk and where lk(y) =
∏M

m=1 lm,km(ym)
where lm,km(ym) is the Lagrange interpolation polynomial of degree µm at the point
ym,km , defined by

lm,km(ym) ∈ Pµm(Im), lm,km(ym,jm) = δkmjm , 1 6 km, jm 6 µm + 1. (4.3)

Now, let S ⊂ {1, . . . ,M} be the index set of ‘active’ coordinate axes and denote by
uL

S the restriction of uL to ym = 0 for all m /∈ S. Define the interpolation operator

IM,µ,ν : L∞(I,H1
0 (D)) −→ H1

0 (D) ⊗Pµ(I) (4.4)

IM,µ,νu
L
M (y) =

∑

S⊂{1,...,M}
|S|6ν

γM,|S|,ν

∑

k∈N
M
0

k6µ+1,supp(k)=S

uL
M (yk)lk(y)

=
∑

S⊂{1,...,M}
|S|6ν

γM,|S|,νIµu
L
M,S(y),

(4.5)
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where

γM,s,ν :=

ν∑

r=s

(−1)r−s

(
M − s

r − s

)

(4.6)

and ym,0 = 0. In the isotropic case we will write IM,µ,ν := IM,µ,ν with µ =

(µ, . . . , µ).

4.2 Analysis of the sCFEM

The interpolation error then satisfies the following bound:

Lemma 4.1. If uL
M solves (4.1) then there exist constants c, c̃, c1, . . . , cM > 0,

depending only on the data a, r, f but not on M,µ, ν such that the sCFEM solution
satisfies

‖uL
M − IM,µ,νu

L
M‖L∞(I,H1

0 (D)) 6 c

(

e−c̃ν1+κ

+ (M + 1)2νec0ν

(
M∑

m=1

e−cmµm

))

(4.7)
for any M,µ, ν ∈ N with ν 6 M .

The proof will be given in Appendix B. By similar arguments as in Proposition 3.7,
we can provide an estimate on the number of collocation points.

Proposition 4.2. For input data a(ω,x) with piecewise analytic covariance Va(x,x′)
in the sense of Proposition 2.3, the number NΩ of collocation points in the sCFEM
satisfies the bound

NΩ = #(Col.points) 6 Mν max
m∈{1,...,M}

(µm)ν (4.8)

Similar as in the sGFEM, the a-priori error analysis of the collocation algorithm
is based on splitting the total error εLIM,µ,ν

into three parts. Adopting the notations

of Subsection 3.3 we obtain

εLIM,µ,ν
6 ||u− uM ||H1

0
︸ ︷︷ ︸

εM

+ ||uM − PD
L uM ||H1

0
︸ ︷︷ ︸

ε
V D

L

+ ||PD
L (uM − IM,µ,νuM )||H1

0
︸ ︷︷ ︸

εµ,ν

. (4.9)

Following the analysis presented in Subsection 3.3, replacing Lemma 3.10 by Lemma
4.1, we obtain the following proposition for choosing the parametersL,M, ν, µ1, . . . , µM

in order to equilibrate the error contributions in (4.9).

Proposition 4.3. There exist positive constants cL, cM , cν , cµ1 , . . . , cµM s.t. by
choosing for any ε > 0

L(ε) =
⌈

cL
| ln ε|

p

⌉

, M(ε) = dcML(ε)dpde,
µm(ε) = dcµmM(ε)κe, ν(ε) = dcνM(ε)κ/(κ+1)e,

(4.10)

for m = 1, 2, ...,M(ε), we have

‖u− uL
ΛM,µ,ν

‖H1
0(D) 6 ε (4.11)

and the number NΩ of deterministic problems to be solved is asymptotically, as
ε→ 0 for any fixed s > 0 bounded by

NΩ = #(Col.points) . ε−1/s, ε→ 0. (4.12)

19



Hence, inserting (4.11) in (4.12) yields for all s > 0 the asymptotic convergence
rates

‖u− uL
ΛM,µ,ν

‖H1
0(D) 6 CsN

−s
Ω (4.13)

as the number of collocation points NΩ tends to ∞. The total number of DoFs
satisfies, like in (3.38)

Ntot = NΩND ∼ ε−1/s−d/p as ε→ 0 (4.14)

for any fixed s > 0.

4.3 Discussion: sGFEM versus sCFEM

So far, two sparse methods for solving (1.2) have been presented: sGFEM and
sCFEM. Starting point for both methods is its parametric reformulation (2.19).
While the sGFEM projects the solution onto a finite dimensional subspace PM,µ,ν(I) ⊂
L∞(I), the sCFEM samples the solution on a set of predetermined points yk and
interpolates its probability densities on these points. Both methods make reduce
the problem of approximating a function in L∞(I) to a sum of approximation prob-
lems in L∞(Î), Î = Ii1 × · · · × Iiν , ij ∈ {1, . . . ,M} with lower “active” dimension
ν � M , while still providing arbitrary high algebraic convergence rates for both,
sGFEM and sCFEM.

One major difficulty of the sGFEM lies in the fact that it leads to a fully coupled
system of NΩ linear deterministic equations whereas in the sCFEM they are natu-
rally decoupled. Parallelization is therefore straightforward in the latter case. Com-
paring Lemma 3.10 with Lemma 4.1 already indicates that the sGFEM approach
may converge faster than the sCFEM in terms of NΩ, the number of deterministic
problems to be solved, as µ and ν are increased. This will also be illustrated in the
numerical examples, see Section 6. Furthermore, due to the restriction ‖α‖1 6 µ
in (3.10), the sGFEM algorithm uses considerably less degrees of freedom than the
collocation approach. The main advantage of the sGFEM algorithm, however, lies
in the fact that it provides much more flexibility regarding adaptively increasing
or decreasing the index set ΛM,µ,ν . An example of this flexibility has already been
given by Algorithm 3.8, where a sequence of ‘optimal’, in the sense of (3.18), sets
Λ(j) of “active” indices have been constructed to approximate uM (y).

In summary, the sGFEM may be preferable over the sCFEM for the following
reasons:

• The system of linear equations is smaller in the sGFEM, which, despite the
fact that they are coupled, dramatically affects the run-time of the algorithm,

• in the absence of spatial discretization, sGFEM yields a maximum likelihood
estimate of the unkown random field u, conditional on the information Σ≤M

about the random coefficient,

• sGFEM provides faster convergence rates w.r.t. the total number of degrees
of freedom Ntot = NDNΩ,

• sGFEM is stable on any subspace Y M
µ,ν ⊆ L2

ρ(I) (cf. Remark 3.3) provid-
ing maximum flexibility in the adaptive selection active gPC modes, to be
discussed below.
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5 Implementation

5.1 Algorithms

A crucial point in the implementation of the sGFEM and the collocation algorithm
is to equilibrate their different sources of error as pointed out in Subsection 3.3.
The main error sources are

• truncating the KL-expansion

• spatial discretization

• stochastic discretization and stochastic interpolation error, respectively

Proposition 3.11 and Theorem 4.3 provide guidelines on how to choose the param-
eters of the algorithms in order to equilibrate the error contributions.

Given a tolerance ε on the solution u and input data Va(x,x′), Ea(x), we propose
the following algorithms

Algorithm 5.1. (sGFEM algorithm) .

1. Given ε > 0, determine a KL-truncation order M such that

||u(ω,x) − uM (ω,x)||H1
0(D) 6 ε.

2. Compute eigenpairs (λm, ϕm), m = 1, ...,M of the covariance operator (2.2)
by [32].

3. Choose a spatial discretization level L, such that the associated error εV D
L

in

(3.29) is less than ε.

Compute the stiffness matrices (5.7) and the spatial load vector (5.9).

4. Determine µ and ν such that the stochastic error ||uM −P I
ΛM,µ,ν

uM ||H1
0

6 ε.

Compute the stiffness matrices (5.6) and the stochastic load vector in (5.8).

5. Solve the resulting system.

6. Calculate the required statistical data from the solution.

Algorithm 5.2. (sCFEM algorithm).

1. Given ε > 0, determine a truncation order M such that

||u(ω,x) − uM (ω,x)||H1
0(D) 6 ε.

2. Compute the eigenpairs (λm, ϕm) of the covariance operator (2.2) by [32].

3. Choose a spatial FE discretization level L, such that the associated spatial
error is less than ε.

4. Determine the parameters µ, ν such that the interpolation error (4.9) is less
than ε and compute the corresponding collocation points.

5. Solve (4.1) for each collocation point yk by finite element projection.

6. Calculate the required statistical data from the set of solutions.

As it can be seen above, both algorithms consist of several key tasks, namely for
the sGFEM
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• Eigenvalue and eigenfunction computation of the covariance operator (Vau)(x)
defined in (2.2).

• Assembly of the stochastic and spatial stiffness matrices.

• Solving the global system.

• Postprocessing the deterministic solution to obtain statistics.

and in the sCFEM

• Eigenvalue and eigenfunction computation of the covariance operator (Vau)(x)
defined in (2.2).

• Computing the collocation points.

• Deriving the response statistics from the interpolated solution (postprocess-
ing).

The following subsections briefly address those computational tasks.

5.2 KL - Eigenpair Computation

The eigenproblem to be solved can be formulated as: Find (λ, ϕ) ∈ R+ ×L2(D) s.t.

(Vau)(x) =

∫

D

Va(x,x′)ϕ(x′) dx′ = λϕ(x), (5.1)

where Va(x,x′) is an admissible covariance function in the sense of Definition 2.1.
This is a Fredholm integral equation of the second kind. For some special corre-
lation functions like exponential ones and simple domains D, analytical solutions
to (5.1) can be obtained by separation of variables, [13]. For more general corre-
lation functions and arbitrary domains D, however, the KL-eigenpairs have to be
computed numerically [32]. In variational form, the KL-Eigenvalue problem (5.1)
becomes:
Find λ ∈ R and 0 6= ϕ ∈ L2(D) s.t. ∀v ∈ L2(D)

∫

D

∫

D

Va(x,x′)ϕ(x′)v(x) dx′dx = λ

∫

D

ϕ(x)v(x) dx. (5.2)

For the numerical examples in Section 6 the discretization was done by piecewise
linear finite element shape functions. The obtained generalized matrix eigenvalue
problem was then solved by using JDBSYM, a Jacobi Davidson method optimized
for large symmetric eigenproblems, see [11, 12] for details.

5.3 Assembly of sGFEM stiffness matrix

Once discrete spaces PM,µ,ν and V D
L have been selected in Algorithm 5.1, any

choice of basis functions (ζi(y))
NΩ

i=1 ∈ PM,µ,ν and (ψi(x))
ND

i=1 ∈ V D
L will lead to a

linear system
Au = l, (5.3)

where

A = G0 ⊗A0 +
M∑

m=1

Gm ⊗Am, (5.4)

l = g0 ⊗ f0, (5.5)
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with the stochastic mass matrices

[G0]ij =

∫

I

ζi(y)ζj (y)ρ(y) dy,

[Gm]ij =

∫

I

√

λmymζi(y)ζj (y)ρ(y) dy,

(5.6)

the deterministic finite element stiffness matrices

[A0]ij =

∫

D

Ea(x)∇ψi(x)∇ψj(x) dx,

[Am]ij =

∫

D

ϕm(x)∇ψi(x)∇ψj(x) dx

(5.7)

and the load vectors

[g0]i =

∫

I

ζi(y)ρ(y) dy, (5.8)

[f0]i =

∫

D

f(x)ψi(x) dx. (5.9)

Hence, the resulting linear system has a block structure with a total number of
Ntot = NΩ · ND degrees of freedom. Even though the number of variables in the
system grows polynomially with M, the memory consumption consists of saving the
(M+1) spatial matrices (5.7), the stochastic mass matrices (5.6) and the vectors g0

and f0 given in (5.5). As it can be seen in (5.6) and (5.7) all of them are sparse and
can therefore be efficiently stored using an appropriate storage scheme.

The assembly procedures for the spatial and stochastic stiffness matrices can
be run independently from each other. Since the spatial matrices (5.7) are generic
finite element stiffness matrices, their assembly is standard and will not be discussed
here.

For the computation of the stochastic stiffness matrices we use tensor products
of polynomials which are orthogonal w.r. to the marginal probability densities
ρm(ym) in Assumption 2.8, iiib). Such polynomial systems can be generated for
each marginal coordinate ym independently and in parallel once the densities ρm(·)
are known using standard algorithms (see e.g. [10] and the references therein). In
certain cases they are known explicitly as e.g. in the case when Im = [−1, 1] and
ρm = 1

2 for all m where they are tensorized Legendre polynomials. Denoted again
by LM,α. According to (5.6), the integrals

∫

I

LM,α(y)LM,α′ (y) dy and

∫

I

ymLM,α(y)LM,α′ (y) dy (5.10)

have to be computed. The evaluation of the integrals can be done analytically, since
formulae for Legendre polynomials are known explicitly. Due to L2-orthogonality
the first integral is nonzero if and only if α = α′. Specifically,

∫

Im

Lαm(ym)Lα′
m

(ym) dym =
2

2αm + 1
δαmα′

m
. (5.11)

The second integral can be computed by the formula

∫

Im

ymLαm(ym)Lα′
m

(ym) dym =







2αm+1
(2αm+1)(2αm+3) α′

m = αm + 1
2αm

(2αm−1)(2αm+1) α′
m = αm − 1

0 else.

(5.12)

Hence, the second integral in (5.10) is nonzero if and only if α and α′ differ exactly
by one in the m’th entry.

We define the sum of the stochastic mass matrices as
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Figure 5.1: Sparsity patterns of the cumulated mass matrix G. Different Parameter
choices of M,µ, ν are considered as indicated.

Definition 5.3 (cumulated stochastic mass matrix).

G := G0 +G1 + . . .+GM . (5.13)

The sparsity pattern of the cumulated stochastic mass matrix is illustrated in Figure
5.1. The index set ΛM,µ,ν in conjunction with a Legendre basis has been used
to assemble the matrices (5.6). The eigenvalues and eigenvectors stem from an

underlying spatial problem, using a covariance function Va(x, x′) = e−10|x−x′|2 on
D = [−1, 1].

From the integral formulae (5.11) and (5.12) it follows immediately that G has
at most 2M+1 nonzero entries per row and column. Note that the structure of the
combined stiffness matrix A in (5.3) remains the same as of G where every entry of
G is multiplied with a spatial FE-matrix, hence becoming a tensor of order four.

Remark 5.4. In case of an additional stochastic right hand side in problem (1.2)
the source f(x, ω̃), like the diffusion coefficient, could be represented as a truncated
Karhunen-Loève series. Then, the vector l in (5.5) would have a similar represen-
tation as A in (5.4), namely as the sum of tensor products between deterministic
and stochastic load vectors with eigenfunctions and associated random variables as
weighting functions cf. [21].

5.4 Iterative solution of the combined system

For the solution of the symmetric and positive definite combined system Au = l

(5.3) a conjugate gradient algorithm is used. The matrix vector multiplication
is done blockwise whereas the outer iteration runs over the stochastic degrees of
freedom. It is well-known, see e.g. [27], how the number of CG-steps to achieve a
given accuracy can be estimated in terms of the condition number of the matrix A.

Proposition 5.5 (CG-steps). Let Au = l be a symmetric positive definite linear
system. Denote by e(k) := u(k) − u the residual in the k-th CG-step. The number
of required CG-steps to achieve a given accuracy

‖e(k)‖A/‖e(0)‖A 6 ε (5.14)

can be estimated as

k 6
1

2

√

κ(A) ln

(
2

ε

)

+ 1, (5.15)

where κ(A) denotes the condition number of A measured in the 2-norm.

For an efficient iterative solver, we must reduce the condition number of A
by means of preconditioning. As the matrix A in (5.4) is a (sum of) Kronecker
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products of the stochastic moment matrices and the finite element stiffness matrices,
preconditioners must be built as Kronecker products of preconditioners of each
factor.

For the finite element stiffness matrix, we propose the usage of biorthogonal FE
wavelets on L2(D) to build the stiffness matrices (5.7) and the load vector (5.9), see
also Subsection 3.1. Given a FE-wavelet discretization, the following proposition
then ensures the existence of a diagonal matrix Π, such that the preconditioned
linear system

Π−1Au = Π−1l (5.16)

has a bounded condition number, independent of the deterministic and stochastic
discretization parameters.

Proposition 5.6. There exists a robust preconditioner Π for the sGFEM, such that

κ(ΠA) 6 C, (5.17)

where the constant C is independent of M,µ, ν, L.

Proof Let us denote by Ψ = {ψλ, λ ∈ ∇}, where ∇ denotes an index set, the
ensemble of biorthogonal wavelets on L2(D). Hence, every function ṽ ∈ L2(D) can
be represented in terms of wavelets as

ṽ =
∑

λ∈∇

dλψλ = d>Ψ (5.18)

From (3.6) we recall the fact that biorthogonal wavelets in L2(D) satisfy (by con-
struction) the norm equivalence ‖d‖l2(∇) ∼ ‖d>Ψ‖L2(D). Since every function
v ∈ H1

0 (D) can be represented equivalently as in (3.5), there exists a diagonal
matrix Π1, such that the following norm equivalence holds:

‖Π−1
1 d‖l2(∇) ∼ ‖d>Ψ‖H1

0 (D), (5.19)

i.e. the scaled wavelets form a Riesz basis for the FE energy space H1
0 (D). There-

fore, diagonal preconditioning of the FE stiffness matrix leads to bounded condition
numbers of A, independent of the meshwidth in the physical domain D.

Let us address the preconditioning of the stochastic moment matrix G. To this
end, let w ∈ L2(I) and denote by LM,α the tensorized Legendre polynomials defined
earlier in (3.13). Then

w =
∑

α∈NM

wαLα = wLM , wα = (w,Lα)L2(D) (5.20)

Define the diagonal matrix Π2 = {∏M
m=1

2
2αm+1δαα′}αα′ . It follows (Parseval)

‖Π−1
2 w‖l2(NM ) = ‖w>L‖L2(I). (5.21)

We then set Π := Π2 ⊗ Π1. Any function u ∈ L2
ρ(I,H

1
0 (D)) can be written as

u =
∑

α∈NM

∑

λ∈∇

uλ,αψλ ⊗LM,α

Denote u = {uλ,α}λ,α. Therefore, by (5.19), (5.21) and Assumption 1.1,

(ΠAu,u)L2(I)⊗H1
0 (D) ∼ ‖u‖l2(NM )⊗l2(∇) (5.22)

which ensures (5.17) 2

Remark 5.7. From the previous proof it follows immediately that the sequence
of linear systems obtained by the collocation algorithm can be preconditioned by
means of Π1, since the diffusion parameter aM (yk,x) is bounded for any choice of
collocation point yk.
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5.5 Postprocessing

5.5.1 sGFEM postprocessing

In order to extract the statistical information from the sGFEM solution

uL
ΛM,µ,ν

(y,x) =
∑

α∈ΛM,µ,ν

uα(x)LM,α(y)

some sort of postprocessing is necessary. For the mean value we obtain, due to the
orthogonality relation (5.11), the simple formula

E[uL
ΛM,µ,ν

] = u0(x), (5.23)

where 0 = (0, 0, . . . , 0)
︸ ︷︷ ︸

M times

.

Since the variance can be expressed as Var[uL
ΛM,µ,ν

] = E[(uL
ΛM,µ,ν

)2] − E[uL
ΛM,µ,ν

]2

we obtain the formula
Var[uL

ΛM,µ,ν
] =

∑

α6=0

uα(x)2 (5.24)

5.5.2 sCFEM postprocessing

To retrieve statistics from the set of collocation solutions uL
M (yk,x) we use formula

(4.5) and the fact that the collocation points yk are nodes of a weighted tensor
product Gaussian quadrature formula. Denote by ωk the weights associated with
yk. For the mean we obtain

E[uL
IM,µ,ν

] =
∑

S⊂{1,...,M}
|S|6ν

γM,|S|,ν

∑

k∈N
M
0

k6µ+1,supp(k)=S

ωku
L
M (yk). (5.25)

The computation of higher order moments can be done similarly, e.g. in the case
of E[(uL

IM,µ,ν
)2] we have

E[(uL
IM,µ,ν

)2] =
∑

S⊂{1,...,M}
|S|6ν

γM,|S|,ν

∑

k∈N
M
0

k6µ+1,supp(k)=S

ωk(uL
M (yk))2. (5.26)

The quadratures in (5.25), (5.26) are summed and tensorized Gaussian quadrature
rules which are exact for the ANOVA type spaces PM,µ,ν .

6 Numerical examples

This section provides numerical examples illustrating sparse polynomial chaos ap-
proximation, the sGFEM (Algorithm 5.1) and sparse collocation method (Algorithm
5.2). The sGFEM and collocation examples will be given in one and two space di-
mensions. A uniform pdf of the random variables ym on I = I1 × I2 × ... is assumed
in all examples. Therefore, gPC spaces based on active modes given by ΛM,µ,ν in
combination with Legendre polynomials are used for the stochastic discretization.
For the spatial discretization, if considered, piecewise linear finite elements are used.
All examples have been run on a single processor AMD64 machine.
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6.1 Sparse polynomial chaos approximation

To illustrate the convergence of SPC approximations we will, on one hand, consider
the variational “zero-dimensional” model problem (2.34) and, on the other hand,
approximate the solution of the semidiscrete problem (4.1).

Motivated by the fact that

u0
M =

1

γ0 + γ1

√
λ1y1 + . . .+ γM

√
λMyM

(6.1)

is the exact solution to the “zero-dimensional” problem, we try to approximate (6.1)
by a sparse polynomial chaos expansion. Discretizing (2.34) with PM,µ,ν ⊂ L2

ρ(I)
as in Subsection 5.3 results in a linear system

Gu0
ΛM,µ,ν

= g0, (6.2)

for the discrete solution u0
ΛM,µ,ν

with G and g0 denoting the same matrix and vector

as in the underlying spatial problem, see (5.13) and (5.8), respectively.
Hence the error εµ,ν , see Section 3.3, of the y-approximation in (3.29) can be

measured by looking at the algebraic problem (2.28) where the exact solution is
known. In fact, the numerical examples will show that the y-approximation error
of the “zero-dimensional” problem is mostly higher than the corresponding error of
the semidiscrete problem. Since

||u0
M − u0

ΛM,µ,ν
||2L2

ρ(I) 6
1

α∗
b0(u0

M − u0
ΛM,µ,ν

, u0
M − u0

ΛM,µ,ν
) (6.3)

we compute the (“zero-dimensional”) energy error as follows.

Proposition 6.1 (“zero-dimensional” energy error).

b0(u0
M −u0

ΛM,µ,ν
, u0

M −u0
ΛM,µ,ν

) =

∫

I

ρ(y)

γ0 +
∑M

m=1 γm

√
λmym

dy−E[u0
ΛM,µ,ν

], (6.4)

i.e. the difference between the mean values of u0
M and u0

ΛM,µ,ν
.

Proof The variational formulations of (2.30) and its discretized version read

b0(u0
M , v) = l0(v), ∀v ∈ L2

ρ(I) (6.5)

b0(u0
Ny
, v) = l0(v), ∀v ∈ PM,µ,ν . (6.6)

The energy error
e = b0(u0

M − u0
ΛM,µ,ν

, u0
M − u0

ΛM,µ,ν
)

is given by

e = b0(u0
M , u0

M ) − 2b0(u0
M , u0

ΛM,µ,ν
) + b0(u0

ΛM,µ,ν
, u0

ΛM,µ,ν
)

(6.5),(6.6)
= l0(u0

M ) − 2l0(u0
ΛM,µ,ν

) + l0(u0
ΛM,µ,ν

) = l0(u0
M ) − l0(u0

ΛM,µ,ν
),

which concludes the proof. 2

The integral in formula (6.4) we found best evaluated with a Smolyak cubature
based on the Clenshaw-Curtis rule, see [24].

Hence, in the following we will always consider a semidiscrete problem (4.1)
and, at the same time, use it as an underlying problem for the “zero-dimensional”
case using the same Karhunen-Loève data to compute γm. We will compare the
stochastic sGFEM error ‖uL

M − uL
ΛM,µ,ν

‖, measured in the L2(D)-norm and the

H1(D)-seminorm, to the “zero-dimensional” energy error (6.4).
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Figure 6.1: Numerical example to show the SPC approximation forM = 20 in terms
of the “zero-dimensional” relative energy error (6.4) and the relative semidiscrete
error ‖uL

M − uL
ΛM,µ,ν

‖ as described in Subsection 6.1.1. The left graphs show the
errors w.r.t. the parameter choices µ, ν and the right graphs w.r.t. the cardinality
|Λ20,µ,ν |

6.1.1 SPC approximation in M = 20 dimensions, Example 1

This example considers a one-dimensional problem on [−1, 1] with Va(x, x′) =

e−4|x−x′|2 and Ea(x) = 3 + x. The Karhunen-Loève expansion is truncated after
M = 20 terms. For the semidiscrete problem, 800 spatial elements have been used
for discretization. The stochastic approximation has been computed using different
values of µ, ν as indicated in Figure 6.1. There, the top graphs show the approxi-
mation of the mean field whereas the bottom graphs show the approximation error
w.r.t. the variance.

6.1.2 SPC approximation in M = 20 dimensions, Example 2

Choosing the same correlation function as in the previous example but a different
mean field Ea(x) = 5 − x should lead to a better convergence due to the fact that
u0

M in (6.1) is now “more” bounded away from its singularity, i.e. α∗ (2.33) is larger.
This is indeed shown in Figure 6.2.
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Figure 6.2: Numerical example to show the SPC approximation forM = 20 in terms
of the “zero-dimensional” relative energy error (6.4) and the relative semidiscrete
error ‖uL

M − uL
ΛM,µ,ν

‖ as described in Subsection 6.1.2. The left graphs show the
errors w.r.t. the parameter choices µ, ν and the right graphs w.r.t. the cardinality
|Λ20,µ,ν |
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Figure 6.3: Numerical example to show the SPC approximation forM = 40 in terms
of the “zero-dimensional” relative energy error (6.4) and the relative semidiscrete
error ‖uL

M − uL
ΛM,µ,ν

‖ as described in Subsection 6.1.3. The left graphs show the
errors w.r.t. the parameter choices µ, ν and the right graphs w.r.t. the cardinality
|Λ40,µ,ν |

6.1.3 SPC approximation in M = 40 dimensions

This example considers a 1-d problem with Va(x, x′) = e−25|x−x′|2 and Ea(x) = 5−x.
The approximation is now carried out in M = 40 dimensions. Again the relative
“zero-dimensional” energy error and the relative error measured in the L2(D)-norm
and the H1(D)-seminorm are shown in Figure 6.3.

6.1.4 SPC approximation in M = 80 dimensions

This example considers again a Gaussian covariance on [−1, 1] × [−1, 1] but with

short correlation length γ = 0.0125, hence Va(x, x′) = e−400|x−x′|2 . By Remark
2.4, the KL-eigenvalue decay is at least exponential but with small constant in the
exponent. To achieve reasonable accuracy with sGFEM, we are therefore forced
to consider a tensor product gPC space in M = 80 independent variables in the
stochastic approximation space PM,µ,ν . Figure 6.4 shows again the relative “zero-
dimensional” energy error compared to the L2 and H1 error for both, mean field
E[u] and variance Var[u].
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Figure 6.4: Numerical example to show the SPC approximation forM = 80 in terms
of the “zero-dimensional” relative energy error (6.4) and the relative semidiscrete
error ‖uL

M − uL
ΛM,µ,ν

‖ as described in Subsection 6.1.4. The left graphs show the
errors w.r.t. the parameter choices µ, ν and the right graphs w.r.t. the cardinality
|Λ80,µ,ν |
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Figure 6.5: Numerical examples showing adapted SPC approximation using Algo-
rithm 3.8. Various examples of two-point correlation functions Va(x,x′) and mean
fields Ea(x) are considered as indicated. The “zero-dimensional” error is compared
against the H1(D) error of the mean and variance

6.1.5 Adapted SPC approximation

Here, we will again consider the numerical examples 6.1.1–6.1.4 but instead of using
a sparse PC approximation based on Λµ,ν , we will use Algorithm 3.8 to obtain a
hierarchic sequence of stochastic indices Λ(0) ⊂ Λ(1) ⊂ . . .. The steering parameter
θ is chosen equal to 0.1. Figure 6.5 shows the obtained results. Again, the “zero-
dimensional” error is compared to the H1(D)-error in mean and variance. By
comparing the obtained results to the ones in Figure 6.1–6.4 it can clearly be seen,
that the adapted approach takes considerably less stochastic DoFs into account
than the ΛM,µ,ν approach considered earlier.

6.2 sGFEM and sCFEM

In the following we will consider 3 example problems of the form (1.2) in one and
two space dimensions where the aim is to compute first- and second-order moments
of the solution using Algorithm 5.1. The second example will again be an exam-
ple where the correlation function has a short correlation length and therefore an
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Step M Ndet ΛM,µ,ν Ntot CG-steps time [s]
1 7 10 Λ7,1,1 84 9 0.01
2 10 40 Λ10,2,2 2772 12 0.15
3 13 100 Λ13,3,3 113120 14 3.49
4 15 400 Λ15,4,4 1558152 15 114.02

Table 6.1: Sequence of discrete spaces used to approximate Example 1 by sGFEM

Step M Ndet ν/µ Ntot time [s]
1 7 10 1/1 88 0.01
2 10 40 2/2 8241 0.34
3 13 100 3/3 85484 31.6
4 15 400 4/4 152500701 5993

Table 6.2: Sequence of interpolants IM,µ,ν for solving Example 1 by sparse colloca-
tion

a-priori reduction of the stochastic approximation space is necessary. We will, in
particular, compare the performance of the sGFEM and the sCFEM for these prob-
lems with particular attention to the case of small correlation length, resp. large
values of M .

6.2.1 Example 1, d=1

This one-dimensional example on D = [−1, 1] compares the sGFEM to the sparse
collocation algorithm. It considers a random coefficient a(ω,x) with Ea(x) = 3 + x

and Va(x, x′) = e−4|x−x′|2 . The deterministic right hand side is assumed to be
periodic of the form f(x) = 2 sin(x). Table 6.1 shows the sGFEM settings that have
been used in each step as well as the number of iteration steps used to solve the
global system and the total time used. Table 6.2 reports the corresponding settings
for the sparse collocation algorithm. Figure 6.6 shows the numerical results obtained
with these choices. To compare the obtained solutions, an “overkill” solution (i.e.
a numerical solution on a substantially finer discretization) with Λ20,5,5 and 800
spatial elements has been computed as a reference.
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Figure 6.6: Numerical example to show convergence of sGFEM and sparse colloca-
tion as described in Subsection 6.2.1. Convergence of the mean field for discretiza-
tion choices as shown in Tables 6.1 and 6.2 w.r.t. Ntot and M . is shown
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Figure 6.7: Numerical example with small correlation length: Va(x, x′) =

e−400|x−x′|2 . Mean and variance of the solution computed with 400 spatial elements
and Λ̃80,3,3 as stochastic discretization space.

6.2.2 Example 2, d=1

Here we consider the model problem (1.2) on D = [−1, 1] with small correlation

length. The covariance kernel is given by Va(x, x′) = e−400|x−x′|2 , hence the corre-
lation length is γ = 0.025. The computation is done by using piecewise continuous
linear elements for the spatial discretization in a uniform mesh T with 400 elements
onD = [−1, 1] and the gPC space based on the index set Λ80,3,3 for the discretization
in the stochastic parameters. Note that the FE meshwidth h = 2/400 = 0.005 < γ,
i.e. the FE mesh in D resolves the fluctuations of the random coefficient which
occur on the length scale γ in this example.

We chose the mean field Ea(x) = 8+x and a smooth right hand side f(x) = ex.
The above choices lead to a system with Ntot ≈ 30 million. The total computation
time was below 5 hours and the preconditioned block-CG algorithm converged in 9
steps. Figure 6.7 shows the computed mean value and variance of the solution.

6.2.3 Example 3, d=2

This last example considers the model problem in two dimensions, hence on D =
[−1, 1]2. We consider a diffusion coefficient with a Gaussian correlation kernel

Va(x,x′) = e−4|x−x
′|2 and mean field Ea(x) = 5 + x1 and right hand side f(x) =

2ex1+2x2 . The spatial discretization has been performed using piecewise linear fi-
nite elements on a triangular mesh with 7200 elements. The approximation space
P20,2,2, hence M = 20, has been used for the stochastic discretization. Figure 6.8
shows the computed mean field and variance of the solution.
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A Technical Appendix on sGFEM

The appendix is devoted to the proof of Lemma 3.10. In the first subsection some
auxiliary results will be stated, whereas in the second subsection the proof itself
will be presented.
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Figure 6.8: Numerical example in [−1, 1]2. Va(x,x′) = e−4|x−x
′|2 , Ea(x) = 5 + x1

and f(x) = 2ex1+2x2 are given. For the discretization piecewise linear finite elements
and Λ20,2,2 with Legendre polynomials have been used.

A.1 Auxiliary results

First we state two results which will be used in the proof of Lemma 3.10.
As a first result, we prove

Lemma A.1. For any fixed t ∈ (0, 1) and N,L ∈ N with N 6 L it holds

∞∑

n=N

(
L+ n

n

)

tn = tN (1 − t)−(L+1)eL(1+lnN) (A.1)

6 c1,te
c2,tL ln N−c3,tN (A.2)

with positive constants c1,t, c2,t, c3,t.

Proof Define

SL :=

∞∑

n=0

(
L+ n

L

)

tn (A.3)

Due to the binomial identity
(
L+ n

L

)

=

(
L+ n− 1

L

)

+

(
L+ n− 1

L− 1

)

(A.4)

we obtain the recursive formula SL = tSL + SL−1, which leads to

SL = (1 − t)−LS0 = (1 − t)−(L+1) (A.5)

It follows
∞∑

n=N

(
L+ n

n

)

tn = tN
∞∑

n=0

(
L+N + n

L

)

tn. (A.6)

By expanding the binomial coefficient into factorials we see that
(
L+N + n

L

)

=

(

1 +
L

n+N

)

· · ·
(

1 +
L

n+ 1

)(
L+ n

L

)

(A.7)

Since for x > 0 it holds 1 + x 6 ex and furthermore
∑K

k=1
1
k 6 1 +

∫K

1
1
x dx the

lemma follows 2

The next result can be found in [35], Lemma A.2:

Lemma A.2. If κ > 0 and y > z > 0, then there exists cκ,y,z > 0 such that

∑

16m1<···<mj<∞

j
∏

i=1

e−ymκ
i 6 cκ,y,ze

−z 1
1+κ j1+κ

(A.8)

for all j ∈ N+.
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The following proposition is a generalization of a result in [7], Chapter 12.4 and
provides a bound on the coefficients of the Legendre expansion (3.15)

Proposition A.3. If uM solves (2.19) and is expanded in a Legendre chaos series
as in (3.15), then there exists a constant ca,r,f , independent of M and α, such that
the Legendre coefficients satisfy

‖uα‖H1
0 (D) 6 ca,r,f r̃

−α, (A.9)

where r̃m =
(

1
2ηmm1+δ +

√

1 + 1
(2ηmm1+δ)2

)(1−ε)

with any 0 < ε < 1, 0 < δ and ηm

as defined in (2.24).

Proof The Legendre coefficients are given by the formula

uα =

(
M∏

m=1

2αm + 1

)
∫

I

uM (y)Lα(y)ρ(y) dy (A.10)

According to Lemma 2.10, uM is separately analytic in each variable ym, uniformly
with respect to all other variables yj ∈ Ij with j 6= m, and the domain of analyticity
is given by

Σ(Im, τm) = {z ∈ C : dist(z, Im) 6 τm} , (A.11)

where τm = 1/2ηm. It follows that uM is also separately analytic in each vari-
able ym, assuming all other variables are given arbitrary but fixed values yj ∈
Σ(Ij ,

τj

j1+δ ) with a δ > 0. By Hartogs theorem (cf. [15], Theorem 2.2.8) such a sep-
arately analytic function is analytic. Hence, uM is analytic in the product domain
∏M

m=1 Σ(Im,
τm

m1+δ ) and we can use the Cauchy formula to write

uM (y) =
1

(2πi)M

∮

Γ

uM (z)

(z − y)1
dz, (A.12)

where
Γ = Γ1 × · · · × ΓM (A.13)

and Γm is the largest possible ellipse in Σm with foci ±1. It is easy to verify that
the sum of its semiaxes is equal to

1 < rm :=
τm
m1+δ

+

√

1 +
( τm
m1+δ

)2

. (A.14)

Hence, we have

uα =

(
M∏

m=1

2αm + 1

2πi

)
∫

I

Lα(y)

∮

Γ

uM (z)

(z − y)1
dz ρ(y)dy (A.15)

=

(
M∏

m=1

2αm + 1

2πi

)
∮

Γ

uM (z)

∫

I

Lα(y)

(z − y)1
ρ(y) dy dz (A.16)

By [34] §4.9, the inner integral is a representation for the Legendre polynomials of
the second kind,

Qα(z) =

∫

I

Lα(y)

(z − y)1
ρ(y) dy. (A.17)

Furthermore, if we substitute zm = 1
2 (wm +w−1

m ) (Joukowski transformation) with
|wm| = rm, the Legendre polynomials of the second kind can be expanded like (cf.
[7], Lemma 12.4.6)

Qαm(
1

2
(wm + w−1

m )) =
∞∑

k=αm+1

qαmk

wk
m
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with |qαmk| 6 π. Hence,

|Qα(z)| 6

M∏

m=1

∞∑

k=αm+1

π

rk
m

=
πMr−(α+1)

∏M
m=1(1 − r−1

m )

Together with (A.16) we obtain

|uα| =

∣
∣
∣
∣
∣

(
M∏

m=1

2αm + 1

2πi

)
∮

Γ

uM (z)Qα(z) dz

∣
∣
∣
∣
∣

6

(
M∏

m=1

2αm + 1

2π
Len(Γm)

)

max
Γ

|uM (z)|max
I

|Qα| (A.18)

6

(
M∏

m=1

2αm + 1

2π
Len(Γm)

)

max
Γ

|uM (z)| πMr−(α+1)

∏M
m=1(1 − r−1

m )

6 ca,r,f

(
M∏

m=1

2(2αm + 1)

)

r−α (A.19)

where the last estimate holds due to the fact that Len(Γm) 6 4rm. Since to every
ε > 0 there exists a constant C(ε) > 0 s.t. 2αm + 1 6 C(ε)rεαm

m for any ε > 0 the
Proposition follows. 2

Remark A.4. Note that due to the exponential decay of ηm, the same estimates for
r̃−1
m hold as for ηm, i.e according to (2.15)

r̃−1
m 6 cre

−c1,rmκ

(A.20)

with constants depending on ε and δ if ε→ 0 and δ → 0.

A.2 Proof of Lemma 3.10 and of Proposition 3.7

Proof of Lemma 3.10 To get the error estimate (3.33) we estimate the part of
the expansion

uM =
∑

α∈NM

uαLM,α (A.21)

that belongs to the complement of ΛM,µ,ν . Since

ΛM,µ,ν = ΛM,µ ∩ ΛM,ν ,

where

ΛM,µ :=
{
α ∈ N

M : |α| 6 µ
}
, ΛM,ν :=

{
α ∈ N

M : supp(α) 6 ν
}
,

we can split the complement into 2 parts, namely

N
M\ΛM,µ,ν = (ΛM,ν\ΛM,µ)

︸ ︷︷ ︸

I

∪
(
N

M\ΛM,ν

)

︸ ︷︷ ︸

II

. (A.22)

We will then estimate parts I and II separately.

Part I: Denote SI := ||∑α∈ΛM,ν\ΛM,µ
uαLα(y)||L∞(I,H1

0 (D)). By using Propo-
sition A.3 we get

SI 6 ca,r,f

∑

α∈ΛM,ν

|α|>µ+1

r̃−α 6 ca,r,f

∑

α∈ΛM,ν

|α|>µ+1

r̃
−|α|
1

6 ca,r,f

∞∑

n=µ+1

r̃−n
1

(
ν + n− 1

n

)(
M

ν

)
(A.2)

6 ca,r,fe
c1,a,r,fν(ln M+ln µ)−c2,a,r,f µ,(A.23)
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where we used Lemma A.1 the last line.

Part II: Denote SII := ||∑α∈NM\ΛM,ν
uαLα(y)||L∞(I,H1

0 (D)). Using again Propo-
sition A.3 and by parametrizing the indices α through their support we get

SII 6 ca,r,f

∑

α∈N
M

supp(α)>ν+1

r̃−α

= ca,r,f

M∑

j=ν+1

∑

16m1<···<mj6M

j
∏

k=1

(r̃−1
mk

+ r̃−2
mk

+ . . .)

= ca,r,f

M∑

j=ν+1

∑

16m1<···<mj6M

j
∏

k=1

(
r̃−1
mk

1 − r̃−1
mk

)

(A.20)

6 ca,r,f

M∑

j=ν+1

∑

16m1<···<mj6M

j
∏

k=1

c1e
−c1,rmκ

k

(A.8)

6 ca,r,f

M∑

j=ν+1

cj1e
−c1,rj1+κ

6 ca,r,fe
−c2,rν1+κ

. (A.24)

(A.23) together with (A.24) yields the desired result. 2

Proof of Proposition 3.7 We adopt the notations of the previous proof of
Theorem 3.10. Therefore |ΛM,µ,ν | = |ΛM,µ ∩ ΛM,ν |. Based on the fact that the

equation x1 + x2 + . . .+ xq = l has exactly
(

l
q

)
solutions (x1, x2, . . . , xq) ∈ N

q
+, we

obtain by a counting argument

|ΛM,µ ∩ ΛM,ν | =

µ
∑

l=0

ν∑

q=0

(
M

q

)(
l

q

)

=

ν∑

q=0

(
M

q

)(
µ+ 1

q + 1

)

6 Mν
ν∑

q=0

(
µ+ 1

q + 1

)

6 2Mν(µ+ 1)ν+1

2

B Technical Appendix on sCFEM

To prove Lemma 4.1 we establish bounds on the stability of the interpolation oper-
ator. Let Ip be the one-dimensional Lagrange interpolation operator as defined in
(4.2) for µ = p ∈ N.

Lemma B.1.

‖Ipv‖L∞(Im,H1
0 (D)) 6 Λα,β(p+ 1)‖v‖L∞(Im,H1

0 (D)) (B.1)

where Λα,β(p+1) denotes the Lebesgue constant which is in the case of Jacobi zeros
given by

Λα,β(p+ 1) =

{
O(log(p+ 1)) −1 6 α, β 6 −1/2
O(pγ+1/2), γ = max(α, β) else

(B.2)

(see e.g. [20]).
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Proof

‖Ipv‖L∞ = ‖
p+1
∑

k=1

v(yk)lk(y)‖L∞ 6 max
k

v(yk) max
y∈Im

p+1
∑

k=1

|lk(y)|

6 Λα,β(p+ 1)‖v‖L∞

where Λα,β(p + 1) := maxy∈Im

∑p+1
k=1 |lk(y)| is the Lebesgue constant for Lagrange

interpolation on the roots of Jacobi polynomials Jα,β
p+1(y). 2

Hence, for fixed p, the interpolation operator satisfies a continuity estimate in
L∞. By writing Iµ = Iµ1 ⊗ · · · ⊗ IµM we immediately obtain a continuity estimate
for the multivariate case.

Corollary B.2.

‖Iµv‖L∞(I,H1
0 (D)) 6

M∏

m=1

Λα,β(µm + 1)‖v‖L∞(I,H1
0 (D)) (B.3)

Now let u ∈ Pµ(I) be a polynomial in I = I1 × · · · × IM . It holds

‖v − Iµv‖L∞ 6 ‖v − u‖L∞(I) + ||Iµu− Iµv||L∞(I) (B.4)

6

(

1 +

M∏

m=1

Λα,β(µm + 1)

)

‖v − u‖L∞(I) (B.5)

Since this holds for any u ∈ Pµ we have proved

Lemma B.3.

‖v−Iµv‖L∞(I,H1
0 (D)) 6

(

1 +

M∏

m=1

Λα,β(µm + 1)

)

min
u∈Pµ(I)

‖v−u‖L∞(I,H1
0 (D)) (B.6)

Proof of Lemma 4.1 For notational convenience, we omit the subscript L∞(I,H1
0 (D))

of the norm in this paragraph. As it has been shown in [35] (Corollary 5.3), for
every analytic function g : I → H1

0 (D) and ν 6 M the following equation holds:

g(y) −
∑

S⊂{1,...,M}
|S|6ν

γM,|S|,νgS(y) =
∑

α∈N
M

|supp(α)|=ν

∂αg(0)

α!
yα. (B.7)

where γM,s,ν is given as in (4.6). Therefore the interpolation error ε := ‖uM −
IM,µ,νuM‖ can be split into two parts, namely

ε 6 ‖uL
M −

∑

S⊂{1,...,M}
|S|6ν

γM,|S|,νu
L
M,S‖ (B.8)

+
∑

S⊂{1,...,M}
|S|6ν

|γM,|S|,ν |‖uL
M,S − Iµu

L
M,S‖ (B.9)

As it has been shown in [35], Proposition 5.4 the first term is bounded by

‖uL
M −

∑

S⊂{1,...,M}
|S|6ν

γM,|S|,νu
L
M,S‖ 6 ca,r,fe

−c1,a,r,fν1+κ

. (B.10)
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It remains to bound the second term. It has been shown in [35], Theorem 5.5 that
the multivariate Chebyshev interpolant ICheb

µ satisfies the following estimate for

functions g analytic in a region as in (2.10):

‖gS − ICheb
µ gS‖ 6 cec0ν

(
∑

m∈S

e−cmµm

)

(B.11)

(B.11) together with Lemma B.3 then yields

‖uL
M,S − Iµu

L
M,S‖ 6 ca,r,fe

c0,a,r,fν

(
∑

m∈S

e−cm,a,r,fµm

)

(B.12)

Furthermore, [35] Lemma 5.3 assures that

∑

S⊂{1,...,M}
|S|6ν

|γM,|S|,ν | 6 (ν + 1)(M + 1)2ν (B.13)

Combining (B.10),(B.12) and (B.13) we obtain the final result

ε 6 ca,r,f

(

e−c̃a,r,fν1+κ

+ (M + 1)2νec0,a,r,f ν

(
M∑

m=1

e−cm,a,r,fµm

))

. (B.14)

2

C Proof of Remark 2.4

Let H be a Hilbert space on D and denote by B(H) the set of bounded linear
operators in H . In [32], Lemma 2.16 it has been proven that for a symmetric,
nonnegative and compact operator C ∈ B(H) with eigenpair sequence (λm, ϕm)m>1

it holds
λm+1 6 ‖C − Cm‖B(H) (C.1)

where Cm ∈ B(H) denotes an operator of rank at most m. We define

C = σ2e
|x−y|2

γ2diam(D)2 = σ2
∞∑

k=0

1

k!

1

(−γdiam(D))2k
|x − y|2k (C.2)

and

Cm̄ = σ2e
|x−y|2

γ2diam(D)2 = σ2
m̄∑

k=0

1

k!

1

(−γdiam(D))2k
|x − y|2k (C.3)

Denote by C and Cm̄ the Carleman operator which is, by means of (2.2), associated
to C and Cm̄, respectively. It follows that

‖C − Cm̄‖B(H) . ‖C − Cm̄‖L∞(D×D)

. σ2
∞∑

k=m̄+1

1

k!

1

(γdiam(D))2k
diam(D)2k

.
1

(m̄+ 1)!

1

γ2(m̄+1)
e1/γ2

.
1

(m̄+ 1)!

1

γ2(m̄+1)
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The rank of the Carleman operator defined by (C.3) can be estimated as

rank(Cm̄) ≤ dim span{xα1
1 · · ·xαd

d : α1 + · · · + αd 6 2m̄} =

(
2m̄+ d

d

)

(C.4)

Hence, for a given m ∈ N we choose m̄ such that

(
2m̄+ d

d

)

6 m 6

(
2(m̄+ 1) + d

d

)

, (C.5)

from which it follows that m̄ ∼ 1
2m

1/d as m→ ∞. This completes the proof.
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data. PhD thesis, ETH Zürich, 2005. Diss. Nr. 16192.

[37] Erik Vanmarcke. Random fields. The MIT press, Cambridge-Mass. & London,
1983.

[38] T. von Petersdorff and C. Schwab. Sparse finite element methods for operator
equations with stochastic data. Applications of Mathematics, 52:p. 145–180,
2006.

[39] X. Wan and G.E. Karniadakis. Error control in multi-element generalized
polynomial chaos method for elliptic problems with random coefficients. to
appear in Communications in Computational Physics.

[40] X. Wan and G.E. Karniadakis. Multi-element generalized polynomial chaos
for arbitrary probability measures. SIAM J. Sci. Comput., 28(3):p. 901–928,
2006.

[41] N. Wiener. The homogeneous chaos. American J. Math., 60:p. 897–936, 1930.

[42] D. Xiu and J.S. Hesthaven. High-order collocation methods for differential
equations with random inputs. SIAM J. Scientific Computing, 27(3):p. 1118–
1139, 2005.

[43] D. Xiu and G.E. Karniadakis. Modeling uncertainty in steady state diffusion
problems via generalized polynomial chaos. Comput. Methods Appl. Mech.
Engrg., 191(43):p. 4927–4948, 2002.

[44] D. Xiu and G.E. Karniadakis. The wiener-askey polynomial chaos for stochastic
differential equations. SIAM J. Scientific Computing, 24(2):p. 619–644, 2002.

43


