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1 Introduction

We investigate the contractivity of Runge-Kutta methods when applied to
nonlinear differential equations. While stability of a method is concerned
with the boundedness of the numerical result, contractivity requests that the
difference of any two numerical solutions, computed with the same stepsize,
does not grow in a certain norm. For one-step methods and the natural
norm, given by the differential equation, both concepts are identical if the
differential equation is linear with constant coefficients. In the other cases
contractivity is a stronger requirement.

For linear multistep methods contractivity has been introduced by Dahlquist
[4], where it was called G-stability. G stands for a positive definite matrix
which is method dependent and is used to define a norm in the space of
numerical solutions. Nevanlinna and Liniger [10] have treated contractivity
of linear multistep methods using method independent norms, such as the
maximum norm. Butcher [3] introduced B-stability which is contractivity for
non-linear, autonomous contractive differential equations using the natural
norm. In [1] similar contractivity concepts have been discussed, namely AN -
stability for non-autonomous linear and BN -stability for non-autonomous
nonlinear systems. These concepts reduce to A-stability in the linear con-
stant coefficient case and are thus only reasonable for implicit methods. We
extend the contractivity concept for Runge-Kutta methods in such a way
that explicit methods are included too. We will be using the natural norm
in contrast to [2] where an idea similar to Dahlquist’s G-stability is intro-
duced. In all these concepts one requests a certain monotonicity condition
for the differential equation. In the present article this condition is given in
(2.9). Then it is shown that the numerical method when applied to such a
differential equation is contractive for either arbitrary or special choices of
the stepsize h.

In the remaining part of this section we give an outline of the article. In
Section 2 basic notations and definitions are given. In particular the mono-
tonicity condition for the nonlinear differential equations and the concept of
contractivity are described. In Section 3 the r-circle contractivity is intro-
duced. If a method is r-circle contractive then the stability region contains
the interior or exterior of a disk of radius |r| which is tangential to the imag-
inary axis at the origin. However, the converse is not true, i.e. there are
methods whose stability region contains a disk of radius r with the origin
on the boundary which are not r-circle contractive. We then give purely
algebraic necessary and sufficient condition in terms of the coefficients for a
method to be r-circle contractive. An algorithm is given which enables one
to compute r for any given explicit or implicit Runge-Kutta method. It is
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natural to introduce the concept of reducible methods. An m-stage Runge-
Kutta method is reducible if there exists an m′-stage Runge-Kutta method
with m′ < m and both methods give identical results on any computer which
carries out additions of 0 and multiplications by 0 without round-off errors.
It is then shown that for irreducible r-circle contractive methods 1

r
is a con-

tinuous function of the coefficients of the method and that this is not the case
if one admits reducible methods. Further confluent methods are introduced.
A method is called confluent if at least two of the row sums of the coefficient
matrix A are equal. It is then shown that to any confluent method, which
is r-circle contractive and to any ε > 0 there exists a nonconfluent method
which is r′-circle contractive and |1

r
− 1

r′
| < ε. In Section 4 we show that one

has numerical contractivity for nonlinear differential equations if the method
is r-circle contractive, if h is chosen appropriately. In Section 5 we show that
for an explicit r-circle contractive method one has r ≤ m, where m is the
number of stages. This result is sharp. Further if r is negative then the error
order p = 1 and r ≤ 1

2c
where c is the error constant of the method. Finally,

we list r of many of the well known explicit Runge-Kutta methods.

2 The methods and the test equation

For solving initial value problems

(2.1) y′(t) = f
(
t, y(t)

)
, y(0) given, y, f ∈ lRs or Cs ,

we consider m stage Runge-Kutta methods. Let h > 0 be the stepsize,
tn = nh and yn is the numerical approximation to the exact solution y(tn).
The numerical solution yn+1 at tn+1 = tn + h is computed as

(2.2) yn+1 = yn + h
m∑
j=1

bj f(tn + cjh, Yj) ,

where

(2.3) Yi = yn + h
m∑
j=1

aij f(tn + cjh, Yj), i = 1, 2, . . . ,m .

We always request

(2.4a)
m∑
j=1

bj = 1

and

(2.4b) ci =
m∑
j=1

aij .

2



Observe that by (2.4a) the method has an error order of at least one. (2.4b)
is not necessary for a method to be convergent, see [11]. However, it is
convenient in notation to have (2.4b) and practically all known methods
satisfy (2.4b). Moreover, the extension of the present results to methods
without (2.4b) is trivial. If the matrix A = {aij} is strictly lower triangular
then the method is called explicit otherwise implicit. We call a method
nonconfluent if all ci are distinct and confluent otherwise. For compactness
in notation we introduce the vectors Y, Fn(Y ) ∈ lRms or Cms and 1 ∈ lRm

defined by

(2.5) Y =


Y1

Y2
...
Ym

 , Fn(Y ) :=


f(tn + c1h, Y1)
f(tn + c2h, Y2)

...
f(tn + cmh, Ym)

 , 1 =


1
1
...
1

 .

With bT = (b1, b2, . . . , bm) one can write (2.2) as

(2.6) yn+1 = yn + hbT ⊗ IsFn(Y )

and (2.3) takes the form

(2.7) Y = 1⊗ yn + hA⊗ IsFn(Y ) .

Here ⊗ denotes the Kronecker-product, see [5,p. 116] and Is is the s × s
identity matrix.

The aim of this article is to show for Runge-Kutta methods that for any
two numerical solutions {yn}n=0,1,..., {zn}n=0,1,... which are computed with the
same h one has

(2.8) ‖yn+1 − zn+1‖ ≤ ‖yn − zn‖, n = 0, 1, . . . .

We assume here that ‖u‖ := 〈u, u〉 12 where 〈·, ·〉 is an innerproduct defined
on lRs or Cs. Note that in contrast to G-stability [4] and the nonlinear
stability in [2] the norm does not depend on the method used but only on
the differential equation treated. We talk of numerical contractivity if (2.8) is
satisfied. The main purpose of this article is to show numerical contractivity.
To do this we need to impose conditions on the differential equations and
on the methods. The condition on the method is the r-circle contractivity
which is treated in Section 3. For the differential equation we request the
monotonicity condition
(2.9)
Re
〈
f(t, y)− f(t, z), y − z

〉
≤ −α ‖f(t, y)− f(t, z)‖2 ∀y, z ∈ lRs or Cs .
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In Section 4 we shall show that if α, r and the stepsize h satisfy the inequality
(4.2) then one has numerical contractivity. To clarify the condition (2.9) we
observe that for a linear equation y′ = λy condition (2.9) becomes

(2.10) Re(1 + αλ)/λ ≥ 0 .

Thus if we introduce the generalized disks

(2.11) D(r) =


{λ ∈ C | |λ+ r| ≤ r} if r > 0

{λ ∈ C | Reλ ≤ 0} if r =∞
{λ ∈ C | |λ+ r| ≥ −r} if r < 0

then (2.10) is equivalent to λ ∈ D( 1
2α

). If α ≥ 0 then (2.9) implies that for
two solutions y(t) and z(t) of (2.1) one has

d

dt
‖y(t)− z(t)‖2 ≤ 0 for all t .

Further observe that α is not invariant against scaling. Let y(t) be a solution
of (2.1) and define z(t) := y(τt). Then z(t) is a solution of the scaled system

z′(t) = g(t, z)

where
g(t, z) := τf(tτ, y) .

If (2.1) satisfies (2.9) with α = αf then g satisfies (2.9) with α = αg = ταf .
Moreover (2.9) with α > 0 implies that f is Lipschitz-continuous with 1

α
as

Lipschitz-constant for one has

‖f(t, y)− f(t, z)‖ ‖y − z‖ ≥ Re
〈
− f(t, y) + f(t, z), y − z

〉
≥ α‖f(t, y)− f(t, z)‖2 .

Here we have used Schwarz’s inequality and (2.9).

3 The rrr-circle contractivity

In this section we define r-circle contractivity. In order to motivate this
definition we consider the scalar test equation

(3.1) y′ = λ(t)y(t), λ(t) ∈ C .
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If one applies (2.6), (2.7) to (3.1) the numbers

(3.2) ζi = hλ(tn + hci), i = 1, 2, . . . ,m

and ζ = (ζ1, ζ2, . . . , ζm)T are needed. Assume that (3.1) satisfies the mono-
tonicity condition (2.9) then ζi ∈ D(r) with r = h/2α. If the ci are distinct
then one can choose any m complex numbers ζi ∈ D(r) and find a smooth
λ(t) such that (3.2) holds. Applying (2.6), (2.7) to (3.1) leads to

(3.3) yn+1 = K(ζ)yn

where

(3.4) K(ζ) = 1 + bT Z(Im − AZ)−1
1

with

(3.5) Z = diag(ζ1, ζ2, . . . , ζm) ,

see [1]. Clearly we have numerical contractivity if |K(ζ)| ≤ 1. This leads to
the

Definition 3.1. A Runge-Kutta method is called rrr-circle contractive if
D(r) is the largest generalized disk with r 6= 0 and

(3.6) |K(ζ)| ≤ 1 for all ζ ∈ Dm(r) .

A method is called circle contractive if (3.6) holds from some r 6= 0.

Note that for a confluent method applied to (3.1) one never has ζi 6= ζj if
ci = cj. Nevertheless we request (3.6). One reason for this is, as we shall see
at the end of this section, that with the present definition 1

r
is a continuous

function of the coefficients aij and bj if the method is irreducible. Clearly
D(r) ⊂ S, where S is the stability region of the method, given by

S =
{
µ ∈ C

∣∣ K(µ1| ≤ 1
}
.

Let

(3.7) Q = BA+ ATB − bbT =
(
qij
)m m

i=1, j=1
,

where

(3.8) B = diag(b1, b2, . . . , bm) .

5



Theorem 3.2. A Runge-Kutta method is r-circle contractive if and only if

(3.9) bj ≥ 0 for j = 1, 2, . . . ,m

and ρ = −1
r

is the largest number such that

(3.10) wTQw ≥ ρwT Bw for all w ∈ lRm .

Proof. Corollary 4.3 states that (3.9) and (3.10) with an arbitrary ρ′ imply
(3.6) with r′ = − 1

ρ′ if ρ′ 6= 0 and r′ = ∞ if ρ′ = 0. We further need the
converse result, namely

Lemma 3.3. Assume (3.6) holds for some r′ 6= 0, r′ may be infinite. Then
(3.9) and (3.10) hold for ρ′ = − 1

r′
if r′ is finite and ρ′ = 0 otherwise.

From this lemma and Corollary 4.3 follows immediately the theorem with
ρ = −1

r
.

To show Lemma 3.3 we need the following lemma of Burrage and Butcher
[1].

Lemma 3.4. Let Z be such that Im − AZ is nonsingular and let

(3.11) u = (Im − AZ)−1
1 .

Then

(3.12) |K(ζ)|2 − 1 = 2
m∑
i=1

bi |ui|2Re ζi −
m∑

i,j=1

qij ζ i ui ζj uj .

Proof of Lemma 3.3. Assume that for r′ one has (3.6), that is

(3.13) |K(ζ)|2 − 1 ≤ 0 for all ζ ∈ Dm(r′) .

To prove bj ≥ 0, assume on the contrary that bi < 0 for some i. Choose
ζj = 0 for j 6= i and ζi = −ε. For ε > 0 sufficiently small one has ζ ∈ Dm(r′).
By (3.11),

(3.14) uj = 1 + ψj(ε), where |ψj(ε)| → 0 as ε→ 0, j = 1, 2, . . . ,m .

The right hand side of (3.12) becomes

(3.15) −2biε+ εk(ε)

with |k(ε)| → 0 as ε → 0. (3.15) is positive for ε sufficiently small. This
contradicts (3.13).
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In order to show that wT (Q + 1
r′
B)w is nonnegative we assume the

contrary. Let w = (w1, w2, . . . , wm)T ∈ lRm be such that

(3.16)
m∑

i,j=1

qij wiwj +
1

r′

m∑
i=1

biw
2
i < 0 .

Let ϕj =
wj

r′
and ζj = −r′ + r′eiϕjε = iwj ε−

w2
j

2r′
ε2 +O(ε3). By construction

ζ = (ζ1, ζ2, . . . , ζm) ∈ Dm(r′) for all ε. Since ζj → 0 as ε → 0 (3.14) holds
again. We substitute ζj in the right hand side of (3.12) and find

(3.17) |K(ζ)|2 − 1 =
(
− 1

r′

m∑
i=1

biw
2
i −

m∑
i,j=1

qij wiwj

)
ε2 + ε2k1(ε)

with |k1(ε)| → 0 as ε→ 0. Hence (3.17) gives a contradiction to (3.13) for ε
sufficiently small. Thus (3.10) holds for ρ′ = − 1

r′
. �

Remark 3.5. From Theorem 3.2 follows easily that an algebraically stable
method in the sense of Burrage and Butcher [1] is r-circle contractive with a
non-positive r.

In order to describe the situation where some of the bj are equal to zero
it is convenient to introduce the

Definition 3.6. An m-stage Runge-Kutta method is called reducible if there
exist two sets S and T such that S 6= ∅, S ∩ T = ∅, S ∪ T = {1, 2, . . . ,m}
and

bk = 0 if k ∈ S(3.18)

ajk = 0 if j ∈ T and k ∈ S .(3.19)

The method is called irreducible if it is not reducible.

This definition says that the stages with index in S don’t have an influ-
ence on the final outcome of the integration provided multiplications by 0
and additions of 0 are performed exactly. It the method is reducible it is
equivalent to the m′-stage Runge-Kutta method which consists of the stages
with index in T only. Hence m′ is the number of elements in T and m′ < m.

We study now Theorem 3.2 for r-circle contractive methods with some
bk = 0. Let S and T be such that S ∪ T = {1, 2, . . . ,m} and

bk = 0 for k ∈ S(3.20)

bj > 0 for j ∈ T .(3.21)

7



By (3.7), qkk = 0 for k ∈ S. Hence for Q− ρB to be nonnegative definite it
is necessary that

(3.22) qkj = 0, j = 1, 2, . . . ,m for all k ∈ S .

Since qkj = ajkbj when bk = 0 one finds that (3.22) is satisfied if and only if

(3.23) ajk = 0 whenever j ∈ T and k ∈ S .

Thus (3.20), (3.21) and (3.23) imply that the method is reducible. We have
therefore shown the

Corollary 3.7. An irreducible Runge-Kutta method is r-circle contractive if
and only if

(3.24) bj > 0 for j = 1, 2, . . . ,m

and ρ = −1
r

is the largest number such that

(3.25) wTQw ≥ ρwTBw for all w ∈ lRm .

LetA be the set of all irreducible circle contractive Runge-Kutta methods.
Hence, by Corollary 3.7, a Runge-Kutta method is in A if and only if all bj
are positive. The methods in A are the ones which interest us. If a method is
not in A it is either not circle contractive or it is reducible and after deleting
the irrelevant stages one may have a member of A. In the following we
shall compute r of a given method in A. Since all bj are positive it follows

that B1/2 = diag(b
1/2
1 , b

1/2
2 , . . . , b

1/2
m ) is nonsingular. Using the transformation

B1/2w = v reduces (3.25) to

(3.26) vTB−
1
2QB−

1
2v ≥ ρvTv for all v ∈ lRm .

Let ν1, ν2, . . . , νm be the eigenvalues of the real and symmetric matrixB−1/2QB−1/2.
Hence the largest ρ for which (3.26) holds is ρmin = mini=1,...,m νi and thus
by Corollary 3.7 one has

(3.27) r =


∞ if min

i=1,...,m
νi = 0

− 1

min
i=1,...,m

νi
otherwise .

Clearly the set A is open and ρmin = mini=1,...,m νi = 1
r

is a continuous
function of the coefficients aij and bj of the methods. However, if some of
the bj tend to zero the following possibilities can occur. Either the limiting
method is no longer r-circle contractive, see for example Heun’s method in
Section 6, or else it must become reducible. In the latter case r may depend
continuously on bj or not as the following example shows.
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Example 3.8. Let

A =

(
0 0
0 α

)
bT = (1− ε, ε) .

Clearly (2.4) and (3.9) are satisfied for all ε ∈ [0, 1]. For ε ∈ (0, 1) we find

B−
1
2QB−

1
2 =

(
ε− 1 −ε 1

2 (1− ε) 1
2

−ε 1
2 (1− ε) 1

2 −ε+ 2α

)
.

The eigenvalues are

ν1,2 =
1

2

(
2α− 1±

√
(2α + 1)2 − 8αε

)
.

Hence

lim
ε→0+

ρmin(c) =


−1 if α ≥ −1

2

2α if α < −1
2
.

However, if ε = 0 then the method is reducible and can be reduced to Euler’s
method with

A = (0)

bT = (1)

and
ρmin(0) = −1 .

Hence one has a discontinuity on ∂A if α < −1
2
, and if α ≥ −1

2
then ρmin(ε)

is continuous in [0, 1].

Note that the set C of confluent methods in A is a surface in A of lower
dimension. Thus by continuity of 1

r
as a function of aij and bj any confluent

r-circle contractive method in A can be approximated by a non confluent
r-circle contractive method such that 1

r
is as close to 1

r′
as one wishes. This

property would not hold if we would have replaced (3.6) by

(3.28) |K(ζ)| ≤ 1 for all ζ ∈ Dm(r) ∩ V

where
V = {ζ ∈ Cm | ζi = ζj whenever ci = cj}

as we can see in the following

9



Example 3.9. Consider the classical 3-stage Nyström method of order 3
given by

A =


0 0 0

2
3

0 0

0
2
3

0

 ,

bT =
(

1
4

3
8

3
8

)
,

see [9], p. 48. If one computes r using the above algorithm one obtains
r ≈ 0.92668857. If we would have used (3.28) instead of (3.6) in the definition
of r-circle contractivity one would have found rc = 3. However, for a31 = ε
sufficiently small (3.6) and (3.28) are identical. Thus using (3.28) instead of
(3.6) would have resulted in an r which does not depend continuously on the
coefficients of the method. This is one reason for choosing (3.6) rather than
(3.28). The main reason, however, is the Theorem 4.1 of the next section.

4 Nonlinear contractivity

Theorem 4.1. Assume the differential equation satisfies the monotonicity
condition (2.9) and the Runge-Kutta method is r-circle contractive. Then
two numerical solutions yn and zn computed using the same stepsize h > 0
satisfy

(4.1) ‖yn+1 − zn+1‖ ≤ ‖yn − zn‖ for n = 0, 1, 2, . . .

provided

(4.2)


h

r
≤ 2α if r 6=∞

α ≥ 0 and h arbitrary if r =∞ .

Proof. First we observe that it is enough to show (4.1) for n = 0 only. Sub-
tracting from (2.6) the corresponding equation for the solution {zn}n=0,1,...

gives

(4.3) x1 = x0 + hbT ⊗ IsF

where we have used the abbreviations

x0 = y0 − z0, x1 = y1 − z1, F = F0(Y )− F0(Z)

10



and Z ∈ lRms or Cms is given by

(4.4) Z =


Z1

Z2

. . .
Zm

 .

In a similar fashion one obtains from (2.7) the equation

(4.5) X = 1⊗ x0 + hA⊗ IsF ,

where X = Y − Z. It is enough to show that

(4.6) ‖x1‖2 − ‖x0‖2 ≤ 0 .

Substituting (4.3) in (4.6) leads to

(4.7) ‖x1‖2 − ‖x0‖2 = h2Re
〈
x0, b

T ⊗ IsF
〉

+ h2‖bT ⊗ IsF‖2 .

The first term on the right hand side can be simplified if we introduce the
following product [ , ] in lRms or Cms. Let U, V ∈ lRms or Cms be given by

U =


U1

U2
...
Um

 , V =


V1

V2
...
Vm


where Ui, Vi ∈ lRs or Cs. Then

(4.8) [U, V ] =
m∑
j=1

bi
〈
Uj, Vj

〉
.

Hence

(4.9)
〈
x0, b

T ⊗ IsF
〉

= [1⊗ x0, F ] .

In order to show (4.6) we need an upper bound for Re[1 ⊗ x0, F ]. The
following lemma is an easy consequence of (2.9) and the definition (4.8).

Lemma 4.2. Assume bj ≥ 0 for j = 1, 2, . . . ,m and that the monotonicity
condition (2.9) holds. Then

(4.10) Re[F,X + αF ] ≤ 0 .

11



Eliminating X from (4.10) using (4.5) leads to

(4.11) Re[F,1⊗ x0] ≤ −hRe
[
F,A⊗ IsF +

α

h
F
]
.

Using (4.9) and (4.11) in (4.7) gives

(4.12) ‖x1‖2 − ‖x0‖2 ≤ −h2ReP (F )

where

(4.13) P (F ) = 2
[(
A⊗ Is +

α

h
Ims

)
F, F

]
− ‖bT ⊗ IsF‖2 .

Observe that P (F ) is quadratic form in F and it remains to show that its
real part is nonnegative. Let G ∈ lRms or Cms be written as

G =


G1

G2
...
Gm


where Gi ∈ lRs or Cs. Hence

ReP (G) =
m∑
j=1

bj

(〈 m∑
i=1

ajiGi, Gj

〉
+
〈
Gj,

m∑
i=1

ajiGi

〉)
+ 2

α

h

m∑
j=1

bj
〈
Gj, Gj

〉
−
〈 m∑

i=1

biGi,
m∑
j=1

bj Gj

〉
=

m∑
i=1

m∑
j=1

qij
〈
Gi, Gj

〉
+ 2

α

h

m∑
i=1

bi
〈
Gi, Gi

〉
.

Thus by (3.10) ReP (G) is nonnegative if −2α
h
≤ ρ = −1

r
if r 6=∞. If r =∞

then α has to be nonnegative and h is arbitrary. This completes the proof
of Theorem 4.1.

Observe that (4.2) covers two totally different situations. If α is nonneg-
ative then the differential equation is contractive and one should either use
a method with r < 0 or r = ∞ with h arbitrary or r > 0 with h ≤ 2αr in
order to obtain a contractive numerical scheme. However, if α is negative the
differential equation is no longer contractive and hence one no longer wants
a contractive scheme. Thus (4.2) should be violated, that is one either wants
that r ∈ (0,∞] and then h is arbitrary or r < 0 and h ≤ 2αr. Collecting
these results we see that one should always choose h ≤ 2αr if αr ∈ (0,∞)

12



while for αr /∈ (0,∞) the contractivity or noncontractivity does not give any
restriction on h. Clearly accuracy will give restrictions on the choice of the
stepsize as well as the solvability of (2.7) for Y . This is, however, not the
concern of the present article.

Corollary 4.3. Assume that

(4.14) bj ≥ 0 for j = 1, 2, . . . ,m ,

and

(4.15) wTQw ≥ ρ′wTBw for all w ∈ lRm .

Then one has

(4.16) |K(ζ)| ≤ 1 for all ζ ∈ Dm(r′)

where

r′ =


∞ if ρ′ = 0

− 1

ρ′
otherwise .

Proof. Let ζ = (ζ1, ζ2, . . . , ζm)T ∈ Dm(r′), Z = diag(ζ1, . . . , ζm). Let h = 1,
s = 1 and F = ZX where X ∈ Cm. Then (4.3) and (4.5) become

(4.17) x1 = x0 + bTZX

and

(4.18) X = x01 + AZX .

Thus

(4.19) x1 = K(ζ)x0

and we have proved the corollary provided (4.6) holds. This is, however,
shown exactly in the same way as in the proof of Theorem 4.1. Just observe
that ζ ∈ Dm(r′) implies Re[ZX,X + αZX] ≤ 0 for α = 1

2r′
and that (4.15)

with ρ′ = − 1
r′

implies ReP (G) ≥ 0.

13



5 Methods with optimal rrr and examples

Given an r-circle contractive Runge-Kutta method. Let D(rs) be the largest
generalized disk of form (2.11) in the stability region S. Then one has D(r) ⊂
D(rs). The following two examples show that D(r) may be a proper subset
of D(rs).

Example 5.1. The θ-method is given by

A =

(
0 0
θ 1− θ

)
bT = (θ 1− θ)

or
yn+1 = yn + h

(
θf(tn, yn) + (1− θ) f(tn+1, yn+1)

)
.

For θ = 0 it is reducible and can be reduced to the implicit Euler method
with r(0) = −1. For θ = 1 it is reducible too and the reduced method is the
explicit Euler method with r(1) = 1. For 0 ∈ (0, 1) one finds r(θ) = 1

θ
. In

particular, for the trapezoidal rule, where θ = 1
2
, it follows that r(1

2
) = 2.

This result is in agreement with the fact that the trapezoidal rule is not B-
stable, see [12]. To compute the stability region we observe that K(µ1) =
(1 + µθ)/(1 − (1 − θ)µ). Hence S = D

(
rs(θ)

)
with rs(θ) = 1/(2θ − 1).

Therefore one has

r(0) = −1 = rs(0) implicit Euler,

D
(
r(θ)

)
is a proper subset

}
for 0 < θ < 1

of D
(
rs(θ)

)
r(1) = 1 = rs(1) explicit Euler.

It is, however, known [4] that the θ-method has a simple relation to the
one-leg methods,

zn+1 = zn + hf
{
θtn + (1− θ) tn+1, θzn + (1− θ) zn+1

}
which is A-contractive for θ ≤ 1

2
. This indicates that the disks of contractivity

calculated in this paper can be larger if a different norm is used. The ideas
of Burrage and Butcher [2] are interesting in this context.

Example 5.2. The most general two stage second order explicit Runge-
Kutta method is characterized by

A =

 0 0

1

2α
0

 , bT = (1− α, α), α 6= 0 ,
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see [6], p. 121. If α = 1 the method is reducible and thus not circle contrac-
tive. However, for α ∈ (0, 1) one finds by an easy calculation that

(5.1) r(α) = 2
/(

1 +

√
1

α(1− α)
− 3

)
, α ∈ (0, 1) .

Here r(α) denotes truly on α, and r(α) < 1 for α 6= 1
2
. This is in contrast

to the stability region S which is independent of α. In fact S = {µ ∈
C
∣∣ |1 + µ+ µ2| ≤ 1} and thus

(5.2) rs(α) = 1 for all α 6= 0 .

It is well-known that S is bounded for explicit methods. Hence r is positive
for explicit circle contractive methods. How large can r actually be?

Theorem 5.3. Assume an explicit m-stage Runge-Kutta method is r-circle
contractive. Then

(5.3) r ≤ m.

Moreover equality is only attained if

(5.4) K(µ1) =
(

1 +
µ

m

)m
,

which implies that the error order is one. The method with

bi =
1

m
i = 1, 2, . . . ,m .

aij =


0 for i ≤ j

1

m
for i > j

(5.5)

attains equality in (5.3).

Proof. In [8] it is shown that rs ≤ m with rs = m if and only if (5.4) holds.
Thus from r ≤ rs follows (5.3) and (5.4). If a Runge-Kutta method has error
order p, then K(µ1)− eµ = O(µp+1). For the special K(µ1) of (5.4) we find
eµ −K(µ1) = − 1

2m
µ2 +O(µ3) and thus by (2.4) p = 1. An easy calculation

shows that B−
1
2QB−

1
2 = − 1

m
Im for the method given by (5.5). Thus by

(3.27) one has r = m and equality in (5.3) holds.

Let us now consider the same problem for implicit methods. Burrage and
Butcher [1] have investigated algebraic stability and shown that there are
implicit m-stage Runge-Kutta methods of order 2m, 2m−1 and 2m−2 which
are algebraically stable, that is r is nonpositive. The following theorem gives
a relation between the size of a negative r and the accuracy of the method.
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Theorem 5.4. Assume the Runge-Kutta method is r-circle contractive with
r < 0 and

(5.6) K(µ1)− eµ = −cµp+1 +O(µp+2) .

Then
p = 1, c < 0

and

r ≤ 1

2c
.

Proof. Let R be the radius of curvature of ∂S at µ = 0. Since D(r) ⊂ S one
has that 0 ≤ R ≤ −r. It remains to show that

(5.7) R =


∞ if p > 1

− 1

2c
if p = 1 .

Let ∂S be given in a neighborhood of 0 by the equation µ = ξ(t) + it. ξ(t)
is implicitly defined by |K((ξ(t) + it)1)|2 = 1. Using (5.6) we find

1 = e2ξ(t)
(

1 + c(ξ(t) + it)p+1 +O(ξ(t) + it)p+2
)

(
1 + c(ξ(t)− it)p+1 +O(ξ(t)− it)p+2

)
.

(5.8)

Implicit differentiation of (5.8) gives

ξ′(0) = 0

ξ′′(0) =

{
0 if p > 1

−2c if p = 1

and hence (5.7) follows immediately.

Observe that for implicit r-circle contractive methods with an nonpositive
r the absolute value of r increases as the accuracy increases. In the discussion
of Theorem 4.1 we notice that a method with r negative is undesirable.
Theorem 5.4 shows that most practical r-circle contractive methods have a
nonnegative r. However, there are methods with r < 0, for example the
implicit Euler method, see Example 5.1.
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6 Calculation of rrr for some explicit methods

We omit the algebraically stable methods given in [1] and restrict ourselves
to the explicit methods listed in [9].

All second order two stage methods are contained in Example 5.2.

Third order formulas. Observe that for all these formulas one has rs ∼ 1.25.

Classic form

A =


0 0 0

1

2
0 0

−1 2 0


bT =

(
1

6

2

3

1

6

)
r = 0.5

Nyström form

A =


0 0 0

2
3

0 0

0
2
3

0


bT =

(
1
4

3
8

3
8

)
r ≈ 0.927

Heun form

A =


0 0 0

1
3

0 0

0
2
3

0


bT =

(
1
4

0
3
4

)
This method has b2 = 0 and is irreducible. Thus it is not circle contractive.
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Ralston’s optimum third-order form

A =


0 0 0

1
2

0 0

0
3
4

0


bT =

1
9

(
2, 3, 4

)
r ≈ 0.899

Kuntzmann’s optimum third-order form

A =


0 0 0

0.4648162 0 0

−0.0581020 0.8256939 0


bT =

(
0.2071768 0.3585646 0.4342585

)
r ≈ 0.847

Fourth order formulas. Observe that for all these formulas one has rs ∼ 1.4.

Classical form

A =


0 0 0 0

1
2

0 0 0

0
1
2

0 0

0 0 1 0


bT =

(
1
6

1
3

1
3

1
6

)
r = 1

Kutta form

A =



0 0 0 0

1
3

0 0 0

−1
3

1 0 0

1 −1 1 0


bT =

(
1
8

3
8

3
8

1
8

)
r ≈ 0.464
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Gill form

A =



0 0 0 0

1

2
0 0 0

√
2− 1
2

2−
√

2
2

0 0

0
−
√

2
2

1 +

√
2

2
0


bT =

(
1
6

2−
√

2
6

2 +
√

2
6

1
6

)
r ≈ 0.586

Kuntzman optimum fourth order form

A =
1

220


0 0 0 0

88 0 0 0

−33 165 0 0

95 −75 200 0


bT =

1
360

(
55, 125, 125, 55

)
r ≈ 0.698

Ralston’s optimum fourth order form given in [9], p. 58 is not circle contrac-
tive since b2 ∼ −0.55198066 < 0.

The fifth order six stage formulas by Nyström, Luther, Butcher, Sarafayan,
Fehlberg and Lawson listed in [9], p. 50-54 are all irreducible and have b2 = 0.
Hence these are not circle contractive. The same is true for Shanks almost
fifth order 5-stage and the almost sixth order 6-stage methods given in [9].
The sixth order methods of Huta and Butcher [9], p. 55 are not circle con-
tractive since at least one bj is nonpositive. None of the methods which are
used for estimating the local truncation error and are listed in [9], p. 68-76
are circle contractive. Among these formulas one finds methods of Merson,
Scraton, Sarafayan, Butcher, Fehlberg, Grabunov and Shakhov.

Finally, we want to point out that we do not claim that the circles cal-
culated here are the true contractivity regions. For the so-called one-leg
methods, see e.g. [4] one of the authors has recently shown that the con-
tractivity regions are indeed circles, but we don’t yet know if this is true for
Runge-Kutta methods.

19



We also remind of the remark, made in Example 5.1 of Section 5, that
one may find different, perhaps larger, contractivity regions with respect to
other norms. Therefore, our values of r must not be considered as a final
verdict in the comparison of methods. We have found sufficient conditions
rather than necessary. Hyman [7] has reported some interesting empirical
evidence of the shortcomings of the linear stability theory as a guide-line for
the behaviour of Runge-Kutta methods on non-linear problems. We have
not yet had the opportunity to study his results from our point of view.
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