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Abstract

This paper presents recent contributions to the development of macroscopic con-
tinuum transport equations for micro gas flows. Within kinetic theory of gases a
combination of the Chapman-Enskog expansion and Grad’s moment method yields
the regularized 13 moment equations (R13 equations) which are of high approxi-
mation order. In addition, a complete set of boundary conditions can be derived
from the boundary conditions of the Boltzmann equations. The R13 equations are
linearly stable and their results for moderate Knudsen numbers stand in excellent
agreement to DSMC simulations.

We give analytical expressions for heat and mass transfer in micro-channels.
These expressions help to understand the complex interaction of fluid variables
in micro-scale systems. In particular, the R13 model is capable to predict and
explain the Knudsen minimum of mass flow rate in Poiseuille flows.
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1 Introduction

Processes in micro-scale flows of gases or equivalently in rarefaction situations
are well described by the Boltzmann equation [6] which describes the evolution
of the particle distribution function in phase space, i.e. on the microscopic level.

The relevant scaling parameter to characterize processes in micro-flow gases
is the Knudsen number K n, defined as the ratio between the mean free path of a
particle and a relevant length scale. If the Knudsen number is small, the Boltz-
mann equation can be reduced to simpler models, which allow faster solutions.
Indeed, if K n < 0.01 (say), the hydrodynamic equations, the laws of Navier-
Stokes and Fourier (NSF), can be derived from the Boltzmann equation, e.g. by
the Chapman-Enskog method [20]. The NSF equations are macroscopic equations
for mass density ρ, velocity vi and temperature T , and thus pose a mathematically
less complex problem than the Boltzmann equation.

Macroscopic equations for rarefied gas flows at Knudsen numbers above 0.01
promise to replace the Boltzmann equation with simpler equations that still cap-
ture the relevant physics. The Chapman-Enskog expansion is the classical method
to achieve this goal, but the resulting Burnett and super-Burnett equations are un-
stable [4]. To fix these problems in the framework of Chapman-Enskog expansion
is cumbersome [5, 10]. Nevertheless, in some cases Burnett equations could be
used for simulations of non-equilibrium gases [1, 13].

A classical alternative is Grad’s moment method [8] which extends the set of
variables by adding deviatoric stress tensor σi j , heat flux qi , and possibly higher
moments of the velocity distribution function (phase density) of the particles. The
resulting equations are stable but lead to spurious discontinuities in shocks [34].
Nevertheless, some successes have been obtained with moment methods and pop-
ularity is raising, see [17, 2, 12, 7, 18]. However, for a given value of the Knudsen
number it is not clear what set of moments one would have to consider [20].

Struchtrup and Torrilhon combined both approaches by performing a Chapman-
Enskog expansion around a non-equilibrium phase density of Grad type [27, 29]
which resulted in the ”Regularized 13 moment equations” (R13 equations) which
form a stable set of equations for the 13 variables (ρ, vi , T , σi j , qi ) of super-
Burnett order, i.e., of third order in the Knudsen number when asymptotically
expanded. The next Section gives a review of this original derivation. An alter-
native approach to the problem was presented by Struchtrup in [22, 24], partly
based on earlier work by Müller et al. [16]. This Order-of-Magnitude-Method is
based on a rigorous asymptotic analysis of the infinite hierarchy of the moment
equations. A brief outline is also given in the next Section.

One of the biggest problems for all models beyond NSF is to prescribe suitable
boundary conditions for the extended equations, which should follow from the
boundary conditions for the Boltzmann equation. This task was recently tackled
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in [9], and the general solution to the problem [30] will be discussed after the
derivation of the equations, when we present boundary conditions for the R13
equations.

The second part of the paper will survey the properties of the R13 equa-
tions, which are linearly stable, obey an H-theorem for the linear case, contain
the Burnett and super-Burnett equations asymptotically, predict phase speeds and
damping of ultrasound waves in excellent agreement to experiments, yield smooth
and accurate shock structures for all Mach numbers, and exhibit Knudsen bound-
ary layers and the Knudsen minimum of channel flow in excellent agreement to
DSMC simulations. The paper reviews detailed informations about the perfor-
mance of R13 for Poiseuille flow in micro-channels and discusses how micro-
variables enter and influence the classical fluid dynamical relations.

The interested reader is referred to the cited literature, including the mono-
graph [20].

2 Derivation of R13

The derivation of the regularized 13-moment-equations has been done in two
ways. Both ways give specific insight into the structure and properties of the
theory.

2.1 Based on a Pseudo-Equilibrium

The original derivation [27] develops an enhanced constitutive theory for Grad’s
moment equations. The closure procedure of Grad is too rigid and needs to be
relaxed. The new theory can be summarized in three steps

1. Identify the set of variables U and higher moments V that need a constitu-
tive relation in Grad’s theory.

2. Formulate evolution equations for the difference R = V − V (Grad) (U) of
the constitutive moments and their Grad relation.

3. Perform an asymptotic expansion of R alone while fixing all variables U of
Grad’s theory.

This procedure can in principle be performed on any system obtained by
Grad’s moment method, i.e., any number of moments can be considered as basic
set of variables. For the derivation of R13 the first 13 moments density, veloc-
ity, temperature, stress deviator and heat flux have been considered in accordance
with the classical 13-moment-case of Grad.

2
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In the classical Grad approach the difference R is considered to be zero: All
constitutive moments follow from lower moments by means of Grad’s distribu-
tion V = V (Grad) (U). This rigidity causes hyperbolicity but also artifacts like
subshocks and poor accuracy. However, the evolution equation for R is in general
not an identity. Instead it describes possible deviations of Grad’s closure. The
constitutive theory of R13 takes these deviations into account.

The evolution equation for R can not be solved exactly because it is influ-
enced by even higher moments. Hence, an approximation is found by asymptotic
expansion. In doing this, step 3 requires a modeling assumption about a scaling
cascade of the higher order moments. In the asymptotic expansion of R we fix
lower moments like density and temperature but also non-equilibrium quantities
like stress and heat flux. The assumption is that the higher moments R follow
a faster relaxation or bear a smaller scale of significance. The expansion can be
considered as an expansion around a non-equilibrium (pseudo-equilibrium).

The result for R after one expansion step is a relation that couples R to gra-
dients of the variables U , in R13 these are gradients of stress and heat flux. The
gradient terms enter the divergences in the equations for stress and heat flux and
produce dissipative second order derivatives. The final system is a regularization
of Grad’s 13-moment-equations. The procedure resembles the derivation of the
NSF-system. Indeed the NSF equations can be considered as regularization of
Euler equations (i.e., Grad’s 5-moment-system).

2.2 Based on Order of Magnitude

The Order-of-Magnitude-Method [22, 24] considers the infinite system of moment
equations resulting from Boltzmann’s equation. It does not depend on Grad’s
closure relations and does not directly utilize the result of asymptotic expansions.
The method finds the proper equations with order of accuracy λ0 in the Knudsen
number by the following three steps:

1. Determination of the order of magnitude λ of the moments.

2. Construction of moment set with minimum number of moments at order λ.

3. Deletion of all terms in all equations that would lead only to contributions
of orders λ > λ0 in the conservation laws for energy and momentum.

Step 1 is based on a Chapman-Enskog expansion where a moment ϕ is ex-
panded according to ϕ = ϕ0 + K n ϕ1 + K n2ϕ2 + ..., and the leading order of ϕ

is determined by inserting this ansatz into the complete set of moment equations.
A moment is said to be of leading order λ if λβ = 0 for all β < λ. This first
step agrees with the ideas of [16]. Alternatively, the order of magnitude of the

3



Struchtrup and Torrilhon

moments can be found from the principle that a single term in an equation cannot
be larger in size by one or several orders of magnitude than all other terms [25].

In Step 2, new variables are introduced by linear combination of the moments
originally chosen. The new variables are constructed such that the number of
moments at a given order λ is minimal. This step gives an unambiguous set of
moments at order λ.

Step 3 follows from the definition of the order of accuracy λ0: A set of equa-
tions is said to be accurate of order λ0, when stress and heat flux are known within
the order O

(

K n0
)

.
The order of magnitude method gives the Euler and NSF equations at zeroth

and first order, and thus agrees with the Chapman-Enskog method in the lower
orders [22]. The second order equations turn out to be Grad’s 13 moment equa-
tions for Maxwell molecules [22], and a generalization of these for molecules that
interact with power potentials [20, 24]. At third order, the method was only per-
formed for Maxwell molecules, where it yields the R13 equations [22]. It follows
that R13 satisfies some optimality when processes are to be described with third
order accuracy.

2.3 Result

Here, we display the original R13 equations from [27] which are build from the
general conservation laws for a monatomic gas with mass density ρ, velocity vi ,
and the temperature θ in energy units,

∂%

∂t
+ ∂%vk

∂xk
= 0, (1)

%
∂vi

∂t
+ %vk

∂vi

∂xk
+ ∂p

∂xi
+ ∂σik

∂xk
= 0 (2)

3

2
%
∂θ

∂t
+ 3

2
%vk

∂θ

∂xk
+ ∂qk

∂xk
+

(

pδi j + σi j
) ∂vi

∂x j
= 0 (3)

where δi j is the Kronecker symbol or identity matrix. For the pressure p we as-
sume the ideal gas law p = ρ θ . We use Cartesian index notation with i, j, k, l ∈
{1, 2, 3} and summation convention. The additional evolution equations that closes
the system are given by

∂σi j

∂t
+ ∂σi jvk

∂xk
+ 4

5

∂q〈i
∂x j〉

+ 2p
∂v〈i
∂x j〉

+ 2σk〈i
∂v j〉
∂xk

+ ∂mi jk

∂xk
= − p

µ
σi j (4)
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for the stress deviator σi j and

∂qi

∂t
+ ∂qivk

∂xk
+ p

∂(σik/ρ)

∂xk
+ 5

2
(pδik + σik)

∂θ

∂xk
− σi j

%

∂σ jk

∂xk

+ (mi jk + 6

5
q(iδ jk) + qkδi j )

∂v j

∂xk
+ 1

2

∂ R̂ik

∂xk
= −2p

3µ
qi (5)

the heat flux qi with µ the viscosity of the gas. Round brackets give the symmet-
ric part of a tensor, while angular brackets around indices denote the symmetric
deviatoric part, e.g., A〈i j〉 = A(i j) − 1

3 Akkδi j = 1
2(Ai j + A j i) − 1

3 Akkδi j and
analogously for three indices, see [20].

Note, that these equations include the classical laws of Navier-Stokes and
Fourier for stress deviator and heat flux. They can be formally recovered by set-
ting σi j , qi , mi jk and R̂i j to zero on the left hand side only. The additional terms in
the equations beyond the classical laws allow for inertial effects and non-gradient
transport. That is, stress and heat flux are not anymore slaved to the thermody-
namic fluxes, velocity gradient and temperature gradient.

The remaining quantities mi jk and R̂i j represent higher moments and as such
they form fluxes of stress and heat flux. These are zero in the Grad case, but the
R13 theory provides the gradient expressions

mi jk = −2µ
∂(σ〈i j/ρ)

∂xk〉
+ 8

10p
q〈iσ

(NSF)
jk〉 , (6)

Ri j = −24

5
µ

∂(q〈 j/ρ)

∂x j〉
+ 32

25p
q〈i q

(NSF)
j〉 + 24

7ρ
σk〈iσ

(NSF)
j〉k , (7)

R = −12µ
∂(qk/ρ)

∂xk
+ 8

p
qkq(NSF)

k + 6

ρ
σi jσ

(NSF)
i j . (8)

with R̂i j = Ri j + 1
3 Rδi j and the abbreviations

σ
(NSF)
i j = −2µ

∂v〈i
∂x j〉

, q(NSF)
i = −15

4
µ

∂θ

∂xi
. (9)

In total the R13 system is given by non-linear parabolic-hyperbolic partial dif-
ferential equations with relaxation. In that sense it resembles the mathematical
structure of the NSF equations.

3 Boundary Conditions for R13

The computation of boundary conditions for the R13 equations is based on Maxwell’s
model for boundary conditions for the Boltzmann equation [6, 20, 14], which
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states that a fraction χ of the particles hitting the wall is thermalized, while the
remaining 1 − χ particles are specularly reflected. Boundary conditions for mo-
ments follow by taking moments of the boundary conditions of the Boltzmann
equation. To produce meaningful boundary conditions, one needs to obey the
following rules:

1. Continuity: In order to have meaningful boundary conditions for all accom-
modation coefficients χ ∈ [0, 1], only boundary conditions for tensors with
an odd number of normal components should be considered [9].

2. Consistency: Only boundary conditions for fluxes that actually appear in
the equations should be considered [30].

3. Coherence: The same number of boundary conditions should be prescribed
for the linearized and the non-linear equations [30].

The application of Rules 1 and 2 is straight forward and yields the following
set of kinetic boundary conditions (t and n denote tangential and normal tensor
components, respectively) for moments

σtn = −β
(

P Vt + 1
2 mtnn + 1

5qt
)

qn = −β
(

2P 1θ + 5
28 Rnn + 1

15 R + 1
2θ σnn − 1

2 P V 2
t

)

Rtn = β
(

P θ Vt − 1
2θ mtnn − 11

5 θ qt − P V 3
t + 6P 1θVt

)

(10)

mnnn = β
(

2
5 P 1θ − 1

14 Rnn + 1
75 R − 7

5θ σnn−3
5 P V 2

t

)

mt tn = −mnnn
2 − β

(

1
14(Rt t + Rnn

2 ) + θ(σt t+σnn
2 ) − P V 2

t

)

where 1θ = θ − θW , Vt = vt − vW
t and

P := ρ θ + σnn

2
− Rnn

28θ
− R

120θ
. (11)

The properties of the wall are given by its temperature θW and velocity vW
t and

the modified accommodation coefficient

β = χ/(2 − χ)
√

2/(πθ). (12)

In extrapolation of the theory of accommodation these coefficients that occur in
every equation of (10) could be chosen differently. This represents a different
accommodation of the single moment fluxes, like shear or heat flux, see [30].

The first condition above is the slip condition for the velocity, while the second
equation is the jump condition for the temperature. They come in a generalized

6
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form with the essential part given by σtn ∼ Vt and qn ∼ 1θ . In a manner of
speaking, the other conditions can be described as jump conditions for higher
moments which again relate fluxes and respective variables. In perfect analogy
to the usual slip and jump conditions, the essential part is given by Rtn ∼ qt and
mnnn ∼ σnn . The additional terms in 10 are off-diagonal terms coupling all even
(in index n) moments in the boundary conditions.

When the R13 equations are considered for channel flows in their original
form, it turns out that a different number of boundary conditions is required to
solve the fully non-linear and the linearized equations. Since this would not allow
a smooth transition between linear and non-linear situations, we formulated the
third rule as given above.

Asymptotic analysis shows that some terms can be changed without changing
the overall asymptotic accuracy of the R13 equations. This leads to the algebraiza-
tion of several non-linear terms in the pde’s which, after some algebra, leads to
algebraic relations, termed as bulk equations, between the moments which serve
as additional boundary conditions for the non-linear equations [30],

mtnn = 32

45p
σtn qn (13)

R̂nn = 136

25p
q2

n − 72

35ρ
σ 2

tn, (14)

These equations have a special interpretation. The possibility to prescribe ki-
netic boundary conditions like in (10) for moments is related to the ability of the
moments to produce a, so-called Knudsen layer. The Knudsen layer is a bound-
ary layer that occurs close to wall in high Knudsen number flows like in micro
channels. The kinetic boundary condition specifies the amplitude of the bound-
ary layer. In the R13-system some variables, like parallel heat flux and normal
stresses, are able to produce a Knudsen layer, while others, like the higher mo-
ments R̂nn and m tnn, can not. This is due to the finite number of moments consid-
ered. In the infinite moment hierarchy all moments exhibit Knudsen layers, see
[21].

Due to the lack of a Knudsen layer, kinetic boundary conditions may not
be used for the moments R̂nn and m tnn. Instead, we assume that the boundary
layer is relaxed infinitely fast to an interior solution - the bulk solution given in
(13). Hence, the bulk solution turns out to be the natural boundary conditions for
Knudsen-layer-less variables. Details of this interpretation can be found in [30].

7
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4 Achievements with R13

We summarize the most important features of the R13 equations which result from
analytical considerations and from analytical and numerical solutions. The results
of R13 have been compared to experimental data as well as to direct simulation
results obtained by DSMC [3].

The R13 equations:

I are derived in a rational manner by means of the order of magnitude method
[22, 24], or from a Chapman-Enskog expansion around non-equilibrium [27, 29],
as described above.

I are of third order in the Knudsen number [20, 22, 24, 27, 29], when expanded
in a asymptotic expansion and compared to the full expansion of Boltzmann’s
equation.

I are linearly stable for initial and boundary value problems [27, 29], that is
amplitudes of linear sound and heat waves are not amplified.

I contain Burnett and super-Burnett asymptotically in the linear [27] and non-
linear [29] case, however, higher order contributions stabilize the R13 system.

I predict phase speeds and damping of sound waves with high frequencies and
short wavelengths in excellent agreement to experiments [27].

I give smooth shock structures without subshocks for all Mach numbers, with
quantitatively very good agreement to DSMC simulations for Ma . 3 [29].

I are accompanied by a complete set of boundary conditions [30], based on the
most commonly used accommodation model in kinetic theory.

I obey an entropy and H-theorem for the linear case, including the boundaries
[28], which can also be used to derive the equations as such.

I exhibit the Knudsen paradox, i.e., the minimum of the mass flow rate for
channel flows (see next section) [30, 28].

I exhibit Knudsen boundary layers for temperature and velocity profiles as well
as other moments in good agreement to DSMC [23, 26].

I are easily accessible to numerical simulations in multiple space dimensions
based on finite volume methods [31] or pressure-correction-schemes [9].

I predict dynamic form factors [32] in accordance to experiments of light scat-
tering spectra measuring small scale density fluctuations.

We proceed with presenting the details of micro-channel flows.
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Figure1: General setting for shear flow between two infinite plates. The plates are moving
and maybe heated.

5 Micro-Channel Flows

To approach micro-channel flows we study a special class of steady shear flows
that include steady Couette or Poiseuille flows. For the R13 system, shear flow
is a multi-dimensional phenomenon in the sense that it produces a fully multi-
dimensional reaction for the stress tensor and heat flux. Introducing xi=̂(x, y, z),
we consider shear flow which is homogeneous in z-direction and define the re-
maining non-vanishing parts of stress tensor and heat flux as

σ =





σxx σxy 0
σyx σyy 0
0 0 σzz



 , q =
(

qx , qy, 0
)

(15)

where σxy = σyx , and σzz = −(σxx + σyy) since σ must be trace-free. For the
velocity we assume vy = vz = 0 and

v (x, y, z) = (vx (y) , 0, 0) . (16)

The force acts only in x-direction, f = (F, 0, 0) and enters the momentum balance
(2), but no other equation. This setting is valid for channel flows as displayed in
Fig. 1. The gas is confined between two infinite plates at distance L and is moving
solely in x-direction. The walls are moving with x-velocities v

(0,1)
W and may be

heated with different temperatures θ
(0,1)
W . The Knudsen number

K n = L

λ
(17)

with mean free path λ = µ/(ρ
√

θ) is based on the width of the channel.

9
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In this setting we have 8 independent variables in the R13 equations, namely
{ρ, vx , p, σxx , σyy , σxy , qx , qy}. Optionally, the pressure p can be replaced by the

temperature θ . The 5 remaining relevant constitutive quantities are
{

mxxy , mxyy, m yyy, R̂xy, R̂yy

}

.

The system (1)-(9) reduces to 13 first order non-linear ordinary differential equa-
tions in the space variable y. The equations uncover a striking simplicity by de-
composing into three linearly decoupled blocks. The coupling is displayed by
writing the vector of variables in the form

U =
{

vx , σxy, qx , mxyy, Rxy | θ, qy, σyy, R̂yy, m yyy | ρ, σxx , mxxy

}

(18)

The first block describes the velocity part with the balances of vx , σxy , and qx ,
and higher moments mxyy and R̂xy , the second block describes the temperature
part with balances of θ , qy , and σyy , and higher moments R̂yy and m yyy. Both
parts are governed dominantly by two classical variables, (vx , σxy) and (θ , qy),
respectively, which behave essentially in an intuitive way. In NSF the second
variable is related to the gradient of the first. The third variable in both parts, qx

and σyy , respectively, is given by a seemingly classical variable which however
plays a non-intuitive role. It represents a heat flux produced by a velocity shear
in the first block and a normal stress due to temperature difference in the second.
Both are typical bulk effects in micro-flows of gases. Through these variables the
classical variables velocity and temperature are coupled to the high order internal
quantities, mxyy and R̂xy , and, R̂yy and m yyy, respectively. From tensorial con-
siderations the first block can be identified with mixed normal/tangential variables
(shear), while the second block couples the purely normal variables (temperature).
The last block combines the density and purely tangential tensorial variables and
exhibits only a minor influence.

5.1 Linear Equations and Knudsen Layers

One of the most important advantages of continuum models is the possibility to
gain understanding in micro-gas dynamics through analytical expressions. The
mathematical structure of the equations provide a general insight into new physics
and may teach intuition about complex processes.

Here, we demonstrate the rise of Knudsen layers and micro-scale variables like
non-gradient heat fluxes and normal stresses. Similar calculations can be found in
[23, 26].

5.1.1 Velocity Part

As mentioned above the equations split into a velocity and a temperature part
in the linear case. The velocity part is governed by the momentum balance and

10
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an equation for shear stress which are given by (2) with force term and the xy-
component of (4) and read

∂yσxy = ρF (19)

σxy = −µ ∂yvx − 2

5

µ

p
∂yqx (20)

with constant density, pressure and viscosity µ. Obviously, shear stress is given
by the velocity gradient, but also by a micro-scale contribution from the heat flux
qx parallel to the walls. This heat flux satisfies the equation (5)

µ

ρ
∂yσxy + 1

2

µ

p
∂y Rxy = −2

3
qx (21)

Rxy = −12

5

µ

ρ
∂yqx (22)

with higher order flux Rxy given by (7). In particular, the parallel heat flux is
independent of a temperature gradient. It is triggered from the shear stress and
boundary conditions. Elimination of Rxy leads to a second order ordinary differ-
ential equation for qx with solution (assuming symmetry)

qx(y) = −3

2
µF + C1 sinh

(

1

K n

y

L/2

)

(23)

using the special Knudsen number K n = 3µ
√

θ√
5ρL

. The hyperbolic sine function

has the shape of a boundary layer as can be seen in Fig. 2. This boundary layer is
superimposed on a bulk solution ∼ µF in qx . Finally, the parallel heat flux enters
the velocity solution (assuming symmetry)

vx(y) = C2 + ρF

2µ

(

(
L

2
)2 − y2

)

− 2

5p
qx(y) (24)

inheriting the Knudsen layer. Hence, the velocity consists of a bulk solution given
by the classical parabolic profile and a layer contribution from the parallel heat
flux.

Note, that the boundary layers grow quickly with Knudsen number and fill
out the channel already at K n = 0.5, see 2. At these Knudsen numbers the bulk
and layer in (24) can not be distinguished anymore and the solution will show a
quality in its own right with no resemblance to classical solutions.

5.1.2 Temperature part

Remarkably, the temperature part of the linear R13 equations shows identical
mathematical structure. The two basic equations are now given by the energy

11



Struchtrup and Torrilhon

Figure2: R13 predicts exponential Knudsen layers for, e.g., parallel heat flux. The upper
plot shows a schematic picture for F = 0, Kn = 0.01, 0.1, 0.5. These functions lead to
typical s-shaped profiles for, e.g., temperature, see the schematic lower plot with Kn =
0.01, 0.1, 0.2.

balance (3) and the equation for normal heat flux qy (5) which read together

∂yqy = 0 (25)

qy = −κ ∂yθ − 2

5

κ

ρ
∂yσyy (26)

with constant density, pressure and heat conductivity κ = 15
4 µ (temperature in

energy units). Again, the first term on the right hand side describes Fourier’s law,
but the second shows the influence of normal stress σyy as a micro-scale variable.
This normal stress is determined by the equation (4)

κ

p
∂yqy + 2

9

κ

p
∂ym yyy = −5

6
σyy (27)

m yyy = − 8

25

κ

ρ
∂yqx (28)

with higher order flux m yyy given by relation (7). Note, the perfect analogy to the
equations of the velocity part above. Consequently, the normal stress is given by
a hyperbolic sine function (assuming anti-symmetry)

σyy(y) = C3 sinh

(

1

K n

y

L/2

)

(29)
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exhibiting boundary layer character with a specialized Knudsen number K n =
4

15

√

6
5

κ
√

θ
ρL . This boundary layer enters the profile of the temperature

θ(y) = C4 + C5

κ

y

L/2
− 2

5p
σyy(y) (30)

and leads to typical s-shape as seen in Fig. 2. The bulk solution of σyy is zero,
while the bulk solution of the temperature is the classical linear function.

The integration constants Ci have to be fixed by boundary conditions as given
in (10). Similarly to the equations, the boundary conditions also decouple into a
velocity and temperature part when linearized.

5.2 Knudsen Paradox

Gas flow through a channel is known to exhibit a paradoxical behavior known as
Knudsen paradox, [11].When reducing the Knudsen number in the experiment the
normalized mass flow rate

J =
∫ 1/2

−1/2
v(y) dy (31)

through the channel reaches a minimum and afterwards starts to increase for larger
Knudsen numbers.

To model this, we consider Poiseuille flow given by acceleration-driven chan-
nel flow with walls at rest and identical temperatures. The channel is considered
to be infinitely long such that a steady velocity profile has developed from the
viscous boundary layers. The given acceleration can be interpreted as a homoge-
neous pressure gradient.

Given the analytical result for channel flow of the linear R13-system above it
is easy to determine an explicit function for the mass flow rate. After integration
we find

J = γ1

K n
+ γ2 K n + γ3

where γ1,2,3 depend on the coefficients in the equations and boundary condi-
tions, like viscosity and accommodation factor. The functional dependence on
the Knudsen number is a valuable information. In general, the coefficients could
also be calibrated to measurements.

Fig. 3 shows the dimensionless mass flow rate obtained from R13 as a function
of K n. The curve clearly shows a minimum and thus correctly predicts a Knudsen
paradox. The figure also shows the mass flow rate obtained with NSF and standard
slip boundary conditions which clearly fails to produce a Knudsen minimum. In
[19] the mass flow rate has been calculated based on the linearized Boltzmann
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Figure 3: Averaged mass flow rate in acceleration-driven channel flow. The R13-
equations predict the Knudsen paradox.

equation and those results are given in Fig. 3 as symbols. The mass flow for R13
follows the Boltzmann result fairly accurate until K n . 1.0 and then lifts off too
quickly. At these high Knudsen numbers the assumptions of the theory are not
valid anymore.

Intuitively one would expect a decreasing mass flow for a smaller channel. The
explanation for the minimum is the following: For very small Knudsen numbers,
viscosity is almost vanishing and a fully developed flow would exhibit a huge
velocity profile, hence a very large mass flow rate. When viscosity is increased
this profile shrinks, however in the other extreme of large Knudsen numbers a
different effect takes over. The interaction between the particles and with the wall
becomes so small due to lack of collisions, that the particles are merely accelerated
and falling through the channel. Again, a fully developed flow of ”accelerated free
falling” particles leads to an infinite mass flux. Between these to extrema there
must be a minimum. In summary, at a certain micro-scale the friction inside the
gas becomes small and the growing slip velocity at the wall dominates the mass
flow rate.

5.3 Full Solution

In the linear setting the dissipation term in the energy balance is neglected and any
velocity profile does not lead to a temperature rise. To see the temperature profile
the non-linear equations have to be solved. Apart from arithmetic complexity this
is not a problem with the R13 model.

We solve the full non-linear R13-system in the form (1)-(9) for a Poiseuille
flow as described above with kinetic boundary conditions (10)/(13) for various
Knudsen numbers.
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Figure4: Velocity and temperature profiles in acceleration driven channel flow for various
Knudsen numbers. The symbols in the case Kn = 0.068 represent a DSMC result.
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Figure5: Micro-scale effects, like parallel heat flux q x and normal stresses σyy , in micro-
channels as predicted by R13 for various Knudsen numbers. The symbols in the case
Kn = 0.068 represent a DSMC result.
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The mass flow rate is only a rough property of micro flows and the R13 result
gives much more inside when considering the fields of the moments. Figs. 4 and 5
display some fields obtained by R13 for Knudsen numbers K n = 0.068, 0.15, 0.4, 1.0.
The figures show the conservation variables velocity vx and temperature θ , as well
as the micro-scale variables tangential heat flux qx and normal stress σyy . Note,
that the channel flow produces a significant parallel heat flux qx even though the
temperature is homogeneous along x . Similarly, the temperature field triggers a
normal stress even though ∂yvy = 0. This is a micro-scale effect. Higher Knudsen
numbers show stronger non-equilibrium as indicated by larger magnitudes of qx

and σyy . Interestingly, the temperature profile starts to invert for higher Knudsen
numbers. Note also, that the Knudsen paradox can be observed in the results of the
R13-system in Fig. 4. The velocity profile becomes flatter, but the slip increases
and the velocity curve for K n = 1.0 lies above the curve of K n = 0.4.

The simulations were obtained with a dimensionless acceleration force fixed
at F = 0.23, such that Knudsen number K n = 0.068 corresponds to the case
of Poiseuille flow calculated in [35] (see also [33]) by DSMC. These results are
shown in Figs. 4 and 5 as symbols. R13 gives good agreement with the DSMC
result.

6 Conclusions

With these properties and features, the R13 equations must be considered as the
most successful continuum model for gas micro-flows. In contrast to direct sim-
ulations or molecular dynamics, such a model gives valuable inside into physical
effects by identifying effects inside equations. The application of the R13 equa-
tions to a wider variety of micro-flow problems is planned for the future.

Interesting problems to simulate with R13 are thermal creep phenomena like in
Knudsen pumps. Also, micro-cavity flows like in [15] are important applications.
Challenges are extensions to mixtures and real gases.
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