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Eidgenössische Technische Hochschule

CH-8092 Zürich
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1 Krylov spaces and their grade

Most currently used iterative methods for solving nonsingular linear systems
of equations Ax = b are Krylov space solvers, which generate a sequence of
approximate solutions xn, also called iterates, which are chosen from an affine
space that grows with n:

xn − x0 ∈ Kn := Kn(A, r0) := span (r0,Ar0, . . . ,A
n−1r0) , (1)

where r0 := b − Ax0 is the initial residual and Kn is the nth Krylov subspace
generated by A from r0. There are some Krylov space solvers, where xn may not
exist for some exceptional values of n: the iteration may break down temporarily,
but there may be a chance to recover, like in the biconjugate gradient method
with the option of applying look-ahead [10, 11], or when the conjugate gradient
method is applied to symmetric indefinite matrices [6]. But even in this case
many of the results we cite here remain true as they are results about subspaces,
not special methods.

We assume A ∈ CN×N nonsingular, b ∈ CN , x ∈ CN , so Kn ⊆ CN .
Although Krylov space solvers are iterative in spirit, many of them actually
produce in exact arithmetic the exact solution in at most N steps, and, as we
see in a moment, this bound can then be replaced by a well determined integer
ν that depends on A and b, but, under a weak assumption, not on the method.

In practice, this theoretical bound on the number of iterations, which is
valid in exact arithmetic, may be rather irrelevant: on the one hand, iterative
methods are often strongly contaminated by roundoff and therefore do not stop
at the νth step, on the other hand, they typically produce sufficiently good
approximate solutions in much fewer than ν iterations. Nevertheless the basic
facts on Krylov spaces deserve to be better known among the many users of
Krylov space methods, and so do the basic facts on block Krylov spaces. Many
of the results we cite, in particular those that do not explicitly refer to A−1 or
the solution of linear system, persist if A is singular. However, a full treatment
of the singular case that would involve the distinction between consistent and
inconsistent systems, is beyond the scope of this paper.

By definition, for given A and r0, the subspaces Kn are clearly nested, and
Kn can have at most dimension min{n,N}. However, one can say more. The
following results are well known and easy to prove. An early classical text that
addresses the topic is Section 8 of Chapter VII of Gantmacher’s first volume
[7], but there the aim is the description of Krylov’s method [16] for computing
the characteristic polynomial, from which one would compute its roots, the
eigenvalues of the matrix. Our treatment is much shorter, and the target is
different.

For generality and simplicity we replace r0 by y when appropriate.

The key observation [7] is that for any y 6= o there is a smallest positive
integer ν := ν(A,y) such that

Aνy = −yγ0 −Ayγ1 − · · · −Aν−1yγν−1 , (2)

and this can be reformulated as

ψ(A)y = o , where ψ(t) := ψA,y(t) := tν + γν−1 t
ν−1 + · · · + γ1 t+ γ0 . (3)
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Following Wilkinson [29] we call the positive integer ν := ν(A,y) the grade of
y with respect to A (or, grade of A with respect to y). The polynomial ψA,y

of (3) is the minimum polynomial of y with respect to A. Algebraist use a
different terminology1.

Clearly, ν ≤ N , and by choosing y as an eigenvector we see that, for every
A, ν can be as small as 1.

In (2), γ0 6= 0 because otherwise we could multiply by A−1 and replace ν by
ν−1. For n > ν we can then clearly write all terms Any as linear combinations
of y, Ay, . . . , Aν−1y. This establishes the first of a number of simple statements
that we are summarizing in the following proposition.

Proposition 1 The grade ν := ν(A,y) and the polynomial ψA,y of exact de-

gree ν are characterized by any of the following respective statements:

(i) dimKn(A,y) = n if n ≤ ν , dimKn(A,y) = ν if n ≥ ν .

(ii) ν(A,y) = min
{
n

∣∣ dimKn(A,y) = dimKn+1(A,y)
}
.

(iii) ν(A,y) = min
{
n

∣∣ Kn(A,y) = Kn+1(A,y)
}
.

(iv) ν(A,y) = min
{
n

∣∣ A−1y ∈ Kn(A,y)
}
.

(v) Kν(A,y) is the smallest A–invariant subspace that contains y.

(vi) Among the monic polynomials ψ satisfying ψ(A)y = o, the polynomial

ψ = ψA,y has the smallest degree. (In particular, ν is bounded by the

degree of the minimal polynomial χ̂A of A.)

There is no generally accepted preference for using the term “Krylov space”
or the term “Krylov subspace”, but one could argue that Kν(A,y) is the Krylov
space while Kn(A,y) with n ≤ ν are Krylov subspaces.

It is important to note that for Krylov spaces the minimal polynomial χ̂A

and not the characteristic polynomial χA matters. In particular, by Krylov
space methods we cannot determine the geometric multiplicity of an eigenvalue.
This follows from Statement (v) of Proposition 1 and was the main reason for
introducing block Krylov space methods for solving eigenvalue problems with
multiple eigenvalues; see, e.g., [3, 5]. Note in particular that if A is diagonal-
izable, a basis for the smallest A–invariant subspace containing y is given by a
minimal set of eigenvectors such that y is contained in their span. There can be
no two linearly independent eigenvectors associated with the same eigenvalue in
this set.

1Algebraists call Kν(A,y) an A–cyclic (sub)space or the cyclic C[x]–submodule induced by
A and generated by y; see, e.g., page 356 of [13] or pages 146–147 of [20]. Based on that, Ilić
and Turner [14] call ν the algebraic grade of A with respect to y. Unlike numerical analysts,
algebraists seem mainly interested in the cases where either Kν(A,y) is an invariant subspace
that belongs to a single Jordan block (i.e., to a single elementary divisor) or it is the whole
space (i.e., here CN ). In the latter case the starting vector y is called an A–cyclic vector or a
cyclic vector for A. Algebraists call ψA,y the A–annihilator of y, and the same name is given
to the ideal that is generated by ψA,y in C[x]. In systems and control theory Kν(A,y) is the
reachable subspace of a single-input-single-output (SISO) system, and in case of a minimal
realization, ν(A,y) is equal to the McMillan degree of the system; see. e.g., [4, 27].
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From Statement (iv) of Proposition 1 it follows in one line that

x? − x0 = A−1(b −Ax0) = −A−1r0 ∈ Kν(A, r0) ,

and that ν is the smallest integer with this property. This means that once
we have constructed a basis of Kν(A, r0) we can find the exact solution of the
linear system there.

Theorem 2 Let x? be the solution of Ax = b and let x0 be any initial ap-

proximation of it and r0 := b − Ax0 the corresponding residual. Moreover, let

ν := ν(A, r0). Then

x? ∈ x0 + Kν(A, r0) ,

and ν is the smallest index for which this holds.

This well-known fact was proved, for example, in [12] and in the technical
report associated with [30]. It has the following consequence.

Corollary 3 Any Krylov space solver that does not break down prematurely

and produces, for a particular starting vector, residuals that are linearly inde-

pendent (unless zero) or in some norm minimal with respect to the full search

space x0 + Kn for xn, and which applies only one matrix-vector product with

A per iteration will find (in exact arithmetic) the exact solution of Ax = b in

exactly ν := ν(A, r0) iterations: xν = x?.

Proof. We assume by definition that xn ∈ x0 + Kn, so rn ∈ r0 + AKn ∈ Kn+1. By
the minimality of ν in Theorem 2 we need at least n := ν steps to be able to find
x?. But if the residuals are linearly independent, rν ∈ Kν+1 = Kν must be the zero
vector since dimKν = ν only. So ν iterations are enough. The same is clearly true if
the residuals are minimal in some norm. �

Examples for methods where Corollary 3 applies are the conjugate gradient
method [12], the biconjugate gradient method [6] (if it does not break down),
and GMRes [23]. These and many others have this so-called finite-termination
property. In contrast, Chebyshev iteration [9] does not have this property: the
first ν residuals it generates are linearly independent, but the (ν+1)th is nonzero,
except under very special circumstances. GMRes may stagnate, that is, two
successive residuals may be identical (and therefore not linearly independent),
but since ‖rn‖ it will nevertheless terminate with xν = x?, rν = o

Admittedly, Theorem 2 and Corollary 3 are theoretical results that are of
limited practical value. Normally ν is so large that we do not want to spend
the ν matrix-vector products that are needed to construct a basis of Kν(A, r0).
We want to find very good approximate solutions with much fewer matrix-
vector products. Typically, Krylov space solvers provide that; but there are
always exceptions of particularly hard problems. On the other hand, there
exist situations where ν is very small compared to N , and then Krylov space
solvers do particularly well, because ν iterations are enough; see, e.g., [18]. (In
contrast, if A is just one big Jordan block, so has just one eigenvalue of geometric
multiplicity 1, we may still need up to N iterations.)
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However, if we replaced the target of finding the exact solution x? by the one
of finding a good approximate solution, we could deduce from a correspondingly
adapted notion of grade results that are truly relevant in practice. An interesting
approach in this direction is due to Ilić and Turner [14], but alternatives exist
too.

2 Linear systems with multiple right-hand sides

and block Krylov spaces

A nonsingular linear system with s right-hand sides (RHSs) can be written as

AX = B with A ∈ CN×N , B ∈ CN×s , X ∈ CN×s . (4)

We will refer to the “tall and skinny” N × s matrices of the unknowns and the
RHSs as block vectors. Their s columns will be distinguished by a superscript
when they are referred to individually.

We gather the s initial approximations for the s systems in the block vector
X0 ∈ CN×s and determine the initial block residual

R0 := B −AX0 ∈ CN×s . (5)

A block Krylov space solver has the property that each of the nth iterates
gathered in Xn is up to the corresponding shift stored in X0 a linear combination
of all the ns columns of R0,AR0, . . . ,A

n−1R0:

Xn − X0 =

n−1∑

k=0

Ak R0 γk , where γk ∈ Cs×s (k = 0, . . . , n− 1) . (6)

This leads to the following definition.2

Definition. Given A ∈ CN×N nonsingular and Y :=
(

y(1) . . . y(s)
)
∈

CN×s with y(i) 6= o for i = 1, . . . , s, the block Krylov (sub)spaces B�
n (n ∈ N+)

generated by A from Y are

B�

n := B�

n (A,Y) := block span (Y,AY, . . . ,An−1Y) ⊆ CN×s , (7)

where ‘block span’ is defined such that

B�

n (A,Y) =

{
n−1∑

k=0

AkYγk ; γk ∈ Cs×s (k = 0, . . . , n− 1)

}
. (8)

N

In this notation, (6) can be written as

Xn ∈ X0 + B�

n (A,R0) . (9)

2In systems and control B�
ν (A,Y) is the reachable subspace of a multiple-input-multiple-

output (MIMO) system [27].
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Again, in practice there exist methods where Xn (or some columns of it) may
not exist for some n, e.g., block BiCG with look-ahead [17]. On the other
hand, (9) alone is too general a definition for block Krylov space solvers, as
it does not reflect some of their essential properties. For example, typically
Xn 6∈ X0 + B�

n−1(A,R0).

From now on we will for simplicity always suppose that the assumptions
of the definition hold. So, in particular, all initial residuals are assumed to be
nonzero.

Each column of an element of B�
n (A,Y) is itself an element of

Bn := Bn(A,Y) :=

{
s∑

i=1

n−1∑

k=0

Aky(i)βk,i ; βk,i ∈ C (∀k, i)

}
⊆ CN , (10)

and this subspace of CN is just the sum of the s Krylov subspaces Kn(A,y(i)):

Bn(A,Y) = Kn(A,y(1)) + · · · + Kn(A,y(s)) . (11)

B�
n is then the Cartesian product of s copies of Bn :

B�
n = Bn × · · · × Bn︸ ︷︷ ︸

s times

. (12)

Let us return to the solution of the s linear systems AX = B. Now, x
(i)
0 +

Bn(A,R0) is the affine space where the nth approximation x
(i)
n of the solution

of the ith system Ax(i) = b(i) is constructed from:

x(i)
n ∈ x

(i)
0 + Bn(A,R0) . (13)

So, we should learn more about this space.

3 The block grade

Clearly, if the ns vectors Aky(i) ∈ CN in (10) are linearly independent,

dimBn = ns . (14)

But dimBn can be less than ns because the sum (11) need not be a direct
sum and because dimKn(A,y(i)) < n may hold for some i. This is where
the difficulties of block Krylov space solvers come from, but also some of their
merits.

Like the Krylov subspaces, the subspaces Bn and B�
n are nested:

Bn ⊆ Bn+1 , B�

n ⊆ B�

n+1 .

We are going to show that, again, for sufficiently large n equality holds. Based
on this fact, Schmelzer [24] introduced a generalization of the grade discussed
in Section 1 to block Krylov spaces. It is defined by an adaptation of the
Statements (ii) and (iii) of Proposition 1 and will allow us to establish a number
of results that are analogous to those for the ordinary grade.
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Definition. The positive integer ν := ν(A,Y) defined by

ν(A,Y) = min
{
n

∣∣ dimBn(A,Y) = dimBn+1(A,Y)
}

= min
{
n

∣∣ Bn(A,Y) = Bn+1(A,Y)
}

is called block grade of Y with respect to A. N

Clearly, n ≤ dimBn ≤ ns if n ≤ ν(A,Y). Moreover, in analogy to the case
n ≥ ν of Statement (i) of Proposition 1 we have then:

Lemma 4 For n ≥ ν(A,Y),

Bn(A,Y) = Bν(A,Y)(A,Y) , B�

n (A,Y) = B�

ν(A,Y)(A,Y) . (15)

Proof. By definition of ν(A,Y), (15) holds for n = ν = ν(A,Y). Since for any
of the individual Krylov spaces Kn(A,y(j)) in (11) we have clearly Kn+1(A,y(j)) =
K1(A,y(j))+AKn(A,y(j)) it holds likewise that Bn+1(A,Y) = B1(A,Y)+ABn(A,Y).
So, in view of the nonsingularity of A and the dimensions of the subspaces involved,
B1(A,Y) ⊆ ABν(A,Y) = Bν(A,Y), that is, Bν(A,Y) is an invariant subspace of A.
So, applying A to any element of Bν(A,Y) does not lead beyond this space, and this
does not change if we replace ν by n > ν. Consequently, the equality on the left side
of (15) holds for all n ≥ ν. The one on the right side follows then from (12). �

Remark. Note that the inequality ν(A,y(i)) ≤ ν(A,Y) need not hold for
all i = 1, . . . , s. For example, let y(1) and y(2) be two eigenvectors of A

that belong to different eigenvalues, and let y(3) = y(1) + y(2) and Y :=(
y(1) y(2) y(3)

)
. Then ν(A,y(1)) = ν(A,y(2)) = 1 and ν(A,y(3)) = 2,

but ν(A,Y) = 1. H

On the other hand, the following inequalities hold:

Lemma 5 The block grade of the block Krylov space and the grades of the cor-

responding individual Krylov spaces are related by

ν(A,Y) ≤ max
i=1,...,s

ν(A,y(i)) . (16)

Proof. The claim follows from (11) and (15). If we had m := maxi=1,...,s ν(A,y(i)) <

ν(A,Y), it would follow that Bm(A,Y) = Bν(A,Y)(A,Y) in contrast to the definition
of ν(A,Y). �

In light of the above remark the following result is not completely trivial:

Lemma 6 A block Krylov space and the corresponding individual Krylov spaces

are related by

Bν(A,Y)(A,Y) = Kν(A,y(1))(A,y
(1)) + · · · + Kν(A,y(s))(A,y

(s)) , (17)

and ν(A,Y) is the smallest index for which this holds.
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Proof. We choose in (11) n larger than the indices ν of all the spaces that appear in
there and apply Lemma 4 on the left-hand side and s times Statement (i) of Propo-
sition 1 on the right-hand side. The minimality of ν(A,Y) is a consequence of its
definition: Bν(A,Y)−1(A,Y) ( Bν(A,Y)(A,Y), so (17) cannot hold for ν(A,Y) − 1 if
it holds for ν(A,Y). �

Now we easily obtain the analog of the first part of Statement (v) of Propo-
sition 1:

Lemma 7 Bν(A,Y)(A,Y) is the smallest A–invariant subspace of CN that con-

tains y(i), i = 1, . . . , s.

B�

ν(A,Y)(A,Y) is the smallest A–invariant subspace of CN×s that contains

Y.

Proof. We have seen in the proof of Lemma 4 that Bν(A,Y)(A,Y) is an A–invariant

subspace. But any A–invariant subspace that contains y(i), i = 1, . . . , s, must contain
Kν(A,y(i))(A,y(i)), i = 1, . . . , s, so by (17) it must contain Bν(A,Y)(A,Y). �

Before we come to the adaptation of Statement (iv) of Proposition 1, we note
the following generalization of (2). By definition of ν = ν(A,Y), the columns
of AνY are linear combinations of the columns of Y, AY, . . . , Aν−1Y, and this
does not hold for all columns of AnY for any n < ν. That means that there
are matrices γ0, . . . , γν−1 ∈ Cs×s, such that

AνY = −Yγ0 −AYγ1 − · · · −Aν−1Yγν−1 . (18)

Here, γ0 6= o, because of the minimality of ν, but unfortunately we cannot be
sure that γ0 is nonsingular. (In fact, although we could have assumed that Y

has linearly independent columns, we did not, because in practice, checking the
rank of Y = R0 is fully analogous to checking the rank of the block residuals
Rn (n > 0) and thus needs to be implemented within a good block Krylov solver
anyway. So, here, γ0 need not even be uniquely determined and may have rows
where all elements are zero.) So, we cannot solve (18) easily for Y and then
apply A−1 to it. Nevertheless, by an alternative, more complicated argument
we can still prove the following analog of Statement (iv) of Proposition 1.

Lemma 8 The block grade ν(A,Y) is characterized by

ν(A,Y) = min
{
n

∣∣ A−1Y ∈ B�

n (A,Y)
}
.

Proof. Defining m := min{n
˛

˛ A−1Y ∈ B�
n (A,Y)} we show first that m ≤ ν(A,Y)

and then that m ≥ ν(A,Y). We know from Statement (iv) of Proposition 1 that
A−1y(i) ∈ Kν(A,y(i))(A,y(i)), and so by (17) we have also A−1y(i) ∈ Bν(A,Y)(A,Y)

for all i, which is the same as A−1Y ∈ B�

ν(A,Y)(A,Y). Hence, m ≤ ν(A,Y).

If we knew that B�
m(A,Y) is an A–invariant subspace of CN×s, we could con-

clude that m ≥ ν(A,Y). By an argument similar to one in the proof of Lemma 4
we show that the former is indeed true. As A−1Y ∈ B�

m(A,Y) we have Y ∈
AB�

m(A,Y) ⊆ B�
m+1(A,Y). But B�

m+1(A,Y) is the sum of the subspaces AB�
m(A,Y)

7



and B�
1 (A,Y) = block span {Y}. However, as Y ∈ AB�

m(A,Y) we know that
B�

1 (A,Y) ⊆ AB�
m(A,Y) and therefore

AB�

m(A,Y) = B�

m+1(A,Y) .

As A is an invertible linear map acting on B�
m(A,Y) the dimension of B�

m+1(A,Y) is
the same as that of B�

m(A,Y). Knowing that those subspaces form a nested sequence
we end up with

AB�

m(A,Y) = B�

m+1(A,Y) = B�

m(A,Y) .

So, by definition of ν(A,Y) or by Lemma 7 we have m ≥ ν(A,Y). �

Next we are looking for an analog of Theorem 2. Amazingly, we do not need
Lemma 8 for its proof.

Theorem 9 Let X? be the block solution of AX = B and let X0 be any initial

block approximation of it and R0 := B−AX0 the corresponding block residual.

Moreover, let ν := ν(A,R0). Then

X? ∈ X0 + B�

ν (A,R0) , (19)

and ν is the smallest index for which this holds.

Proof. To prove (19) we just combine Theorem 2 and the relations (17) and (12).
The minimality of ν follows from Theorem 2 and Lemma 6. �

Unfortunately, the generalization of the polynomial relation (3) and the re-
lated second part of Statement (v) of Proposition 1 is not straightforward since
we cannot write AνY+Aν−1Yγν−1+· · ·+AYγ1+Yγ0 = O as ψA,Y(A)Y = O.
We will return to this point in Section 5.

4 Block Krylov bases

In the case of a single right-hand side we know from Statement (i) of Proposi-
tion 1 that for n ≤ ν the spanning set r0,Ar0, . . . ,A

n−1r0 in (1) is a basis of
Kn(A, r0), the so-called Krylov basis. The corresponding N × n Krylov matrix

Kn :=
(

r0 Ar0 . . . An−1r0

)
(20)

is typically very ill-conditioned, but there are situations where the basis or the
matrix are used for theoretical derivations.

In the multiple right-hand side case, where we want to switch again from
R0 to an arbitrary Y with s nonzero columns, the columns of the N ×ns block
Krylov matrix

Bn :=
(

Y AY . . . An−1Y
)

(21)

are still a spanning set of Bn(A,Y), but they are in general no longer linearly
independent. Clearly, it may happen that ns > N . For example, assume
ν(A,y(1)) = N and let y(2) = Ay(1); then, for s = 2 and n = N , Bn(A,Y) has
ns = 2N columns, but, of course, only N of them are linearly independent.

8



Kent [15] assumed in his treatment of block Krylov matrices that N is a
multiple of s and that BN/s is nonsingular. In this case we have

CN = KN/s(A,y
(1)) ⊕KN/s(A,y

(2)) ⊕ · · · ⊕ KN/s(A,y
(s)) , (22)

which is a very special situation, far from the reality of typical applications. We
would like to discuss the general case instead.

To get an analog of the Krylov basis in general, we may need to delete
some of the columns of Bn, and we want to do this in such a way that for
n = 1, . . . , ν, the columns of the constructed reduced block Krylov matrix B◦

n

are the basis vectors of a sequence of nested block Krylov bases for Bk(A,Y),
k = 1, . . . , n. This reduction corresponds to the need for deflation in block
Krylov space methods. Assume B◦

n−1 has been constructed for some n− 1 < ν.
To get B◦

n we append to B◦

n−1 the columns of An−1Y and check for linear
dependence of the new columns from those of B◦

n−1 and from each other. For
example this could be done by updating the QR decomposition of B◦

n−1, possibly
using column pivoting. If we detect linear dependence, we delete one or more
of the columns of An−1Y, but we do not make any changes to the columns that
are inherited from B◦

n−1.

This procedure is in general not unique. If, for example, the first column
of An−1Y appears in a linear combination that expresses the second column in
terms of this column and those of B◦

n−1, we have the option of deleting either
the first or the second column. Of course, we could opt for a specific rule, but we
prefer to leave the choice open. This means that, in general, B◦

n is not uniquely
determined. So, there exists not just one sequence of nested block Krylov bases
for B1, . . . ,Bν , but a whole tree of such bases. If we denote the dimension
of Bn(A,Y) by dn = dn(A,Y) then, clearly, any B◦

n has dn columns and, for
k = 1, . . . , n − 1, its first dk columns form a basis of Bk(A,Y) and are thus a
possible choice for B◦

k.

If dν = N , B◦

ν is nonsingular and hence its columns form a basis of CN . In
analogy to the terminology mentioned in the Footnote 1, we suggest to call Y

block A–cyclic in this case.

What we have described here is basically a recursive, exact-rank-revealing
QR decomposition of the block Krylov matrix Bn of (21). In finite-precision
arithmetic, this would be a very bad approach since the Krylov and block Krylov
matrices are typically extremely ill-conditioned. Therefore, in practice, other
algorithms are used to build up a block Krylov space basis. For example, there
are block versions of the Arnoldi process (or the symmetric Lanczos process if
A is Hermitian); they come in two flavors: the natural one, where a block of up
to s orthonormal basis vectors is appended at once, and Ruhe’s approach [21],
where basis vectors are added one after the other; see, e.g., [19], [22], [28]. The
nonsymmetric Lanczos process has also been implemented in these two flavors;
see, e.g., [1], [2] or Sections 4.6, 7.9, and 7.10 of [3]. We cannot go into the details
here. There are well over a hundred publications on block Krylov space solvers
for linear systems of equations and eigenvalue problems. Only a minority among
them discusses in detail the delicate problem of how to treat approximate linear
dependence among the columns of block vectors when it occurs, and there is
no generally accepted answer. To detect it, one should apply refined versions
of the rank-revealing QR decompositions or even the more expensive singular
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value decomposition.

5 Block minimal polynomials

The minimum polynomial ψA,y of y with respect to A defined in (3) had the
property that ψA,y(A)y = o. How can we extend this to the block case? Can
we also write (18) in terms of a polynomial?

Using the block Krylov matrix Bν defined by (21) with n = ν we can write
(18) as

AνY = −BνC , where C :=




γ0
...

γν−1


 ∈ Cνs×s , (23)

or, if we use instead the reduced block Krylov matrix B◦

ν ,

AνY = −B◦

νC
◦ , where C◦ :=




γ◦

0
...

γ◦

ν−1


 ∈ Cdν×s . (24)

Here, γ◦i ∈ C(di+1−di)×s (with d0 := 0), that is, these blocks of coefficients are
in general of different size. Whereas in (23) Bν is uniquely defined, but C may
be non-unique, in (24) B◦

ν is in general non-unique, but C◦ is unique once B◦

ν

has been chosen.

Given a matrix polynomial ϕ of degree m and with coefficients in Cs×s,

ϕ(t) = β0 + tβ1 + · · · + tmβm , (25)

it is unfortunately impossible to form ϕ(A)Y, because the dimensions do not
match. But let us recall from Kent [15] and Simoncini and Gallopoulos [25] the
following notation (which, in [25], is attributed to William B. Gragg):

ϕ(A) ◦Y := Yβ0 + AYβ1 + · · · + AmYβm . (26)

In this notation, and with ι the s× s unit matrix, (18) and (23) can be written
as

ψ(A) ◦Y = O , (27)

where
ψ(t) := ψA,Y(t) := tν ι + tν−1 γν−1 + · · · + tγ1 + γ0 . (28)

This looks very similar to the non-block case in (3), but it does not reflect the
possible need for deflation that led to (24). The difficulty is that the coefficients
γk need to be of the same size to define a matrix polynomial. We can bail out
by enforcing that those rows of C that do not appear in C◦ are set to zero.
Generalizing [15] we may call the corresponding (non-unique) polynomial ψA,Y

a matrix-valued minimal polynomial of Y with respect to A. It has a uniquely
determined degree and a minimum number of nonzero rows in C.

Matrix polynomials have been studied extensively by Gohberg, Lancaster,
and Rodman [8], but the construction (26) seems to have received little atten-
tion. But they have been shown to be of practical value in the discussion of
block Krylov spaces, see Simoncini and Gallopoulos [26].
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Due to the special structure of Bν Eq. (23) implies that

ABν = BνF , (29)

where

F :=




o · · · o −γ0

ι
. . .

... −γ1

. . . o
...

ι −γν−1




(30)

is a νs × νs block companion matrix. Particularly beneficial is the case where
νs = N and Bν is nonsingular, like under the assumption (22). Then A is
similar to Bν . More general results are covered in [8].

6 Conclusions

The block grade that we introduced here is not the dimension of an exhausted
block Krylov space and yet it is the natural generalization of the grade of a
Krylov space. As we have shown, almost all properties of the grade can be
reformulated for the block grade, although alternative approaches for most of
the proofs have to be used. There are further related mathematical concepts,
like the block Krylov basis, the corresponding block companion matrix, and the
matrix polynomial that is in a certain sense a block minimal polynomial for the
starting vector that generates the block Krylov space. For all these constructions
the possibility of linear dependence of columns of the block Krylov matrix —
which is related to the possible necessity for deflation in block Krylov methods
— causes extra difficulties.

There are also close connections to system and control theory, to certain
areas of pure linear algebra, and to the theory of matrix polynomials, but these
have only been noted in the margin here.

Acknowledgment. The authors appreciate the referees’ careful reading of the
manuscript and a large number of specific suggestions for improvements.
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