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1 Introduction

In this paper we consider certain methods for solving a system of linear
algebraic equations

Ax = b, A ∈ R
N×N , b ∈ R

N , (1)

where A is a large and sparse nonsingular matrix that is, in general, non-
symmetric. For solving such systems, Krylov subspace methods are very
popular. They build a sequence of iterates xn (n = 0, 1, 2, . . .) such that
xn ∈ x0 +Kn(A, r0), where Kn(A, r0) ≡ span{r0, Ar0, . . . , A

n−1r0} is the nth
Krylov subspace generated by the matrix A from the residual r0 ≡ b − Ax0

that corresponds to the initial guess x0. Many approaches for defining such
approximations xn have been proposed, see, e.g., the books by Greenbaum
[11], Meurant [19], and Saad [23]. In particular, due to their smooth conver-
gence behavior, minimum residual methods satisfying

‖rn‖ = min
x̃∈x0+Kn(A,r0)

‖b − Ax̃‖, rn ≡ b − Axn, (2)

are widely used, e.g., the GMRES algorithm of Saad and Schultz [24].
The classical implementation of GMRES makes use of a nested sequence

of orthonormal bases of the Krylov subspaces Kn(A, r0). These bases are
generated by an Arnoldi process [2]. With the notation ρ0 ≡ ‖r0‖, q1 ≡ ρ−1

0 r0,
Qn ≡ [q1, . . . , qn], where the columns of Qn form this orthonormal basis of
Kn(A, r0), and with an (n+1)×n upper Hessenberg matrix Hn+1,n, its result
can be cast in matrix form as

[q1, AQn] = Qn+1[e1, Hn+1,n].

This can be viewed as the QR factorization of the matrix [q1, AQn]. Ulti-
mately, an approximate solution xn satisfying the minimum residual property
(2) is constructed in the form xn = x0 + Qnyn, but xn is not needed at every
step. From the relation

‖rn‖ = ‖r0 − AQnyn‖ = ‖ρ0e1 − Hn+1,nyn‖

it follows that yn is the solution of the (n + 1) × n least squares problem
Hn+1,nyn ≈ ρ0e1, and that ‖rn‖ equals the norm of its residual ρ0e1 −
Hn+1,nyn ∈ R

n+1. This problem can be solved via the recursive QR factor-
ization of Hn+1,n, updated by applying n Givens rotations and determining
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a new one in the nth step. Once the norm of the residual is small enough
— which can be seen without explicitly solving the least squares problem
— the triangular system with the computed R-factor is solved, and the ap-
proximate solution xn is computed. In [6, 12, 20] it was shown that this
“classical” version of the GMRES method is backward stable provided that
the Arnoldi process is implemented using the modified Gram-Schmidt algo-
rithm or Householder reflections.

In this paper we deal with a different approach proposed by Walker and
Zhou [29], who called it the Simpler GMRES method. To derive it, we recall
that the minimum residual property (2) is equivalent to the orthogonality
condition

rn ⊥ AKn(A, r0),

where ⊥ is the orthogonality relation induced by the standard Euclidean
inner product 〈·, ·〉. Instead of building an orthonormal basis of Kn(A, r0) we
look for an orthonormal basis Vn ≡ [v1, . . . , vn] of AKn(A, r0). As proposed
by Walker and Zhou, we could construct it again by an Arnoldi process. This
leads to the QR factorization

A[q1, Vn−1] = VnUn, (3)

where Un is an n × n upper triangular matrix. We propose a generalization
that consists in allowing to replace this Arnoldi process. Instead of using
the image Avn−1 of the last constructed orthonormal basis vectors to extend
the basis we consider any nested sequence of matrices Zn−1 ≡ [z1, . . . , zn−1]
such that the columns of [q1, Zn−1] form a basis of Kn(A, r0), and we make
use of Azn−1 to extend the basis. We may assume that the columns zk of
Zn−1 have unit length (and we will do so in the error analysis), but they need
not be mutually orthogonal. The orthonormal basis Vn of AKn(A, r0) is thus
obtained from the QR factorization of the image of [q1, Zn−1]:

A[q1, Zn−1] = VnUn. (4)

Since rn ∈ r0 + AKn(A, r0) = r0 + R(Vn) and rn ⊥ R(Vn), we can obtain
the residual from rn = (I − VnV T

n )r0. Note that rn is just the orthogonal
projection of r0 onto the orthogonal complement of R(Vn). To compute it
we apply the modified Gram-Schmidt method, which leads to the recursion

rn = rn−1 − αnvn, αn ≡ 〈rn−1, vn〉. (5)

2



This recursion can be cast into a matrix relation too. Let Rn+1 ≡ [r0, . . . , rn],
let Dn ≡ diag(α1, . . . , αn), and let Ln+1,n ∈ R

(n+1)×n be the bidiagonal matrix
with ones on the main diagonal and minus ones on the first subdiagonal; then
(5) can be written as

Rn+1Ln+1,n = VnDn. (6)

Since the columns of [q1, Zn−1] are a basis of Kn(A, r0), we can represent xn

in the form
xn = x0 + [q1, Zn−1]tn, (7)

so that rn = r0 −A[q1, Zn−1]tn = r0 − VnUntn. Due to the minimum residual
property, we have rn ⊥ R(Vn), and thus simply

Untn = V T
n r0 = [α1, . . . , αn]T . (8)

Hence, once the residual norm is small enough, we can solve this triangular
system and compute xn = x0 + [q1, Zn−1]tn. We call this general approach
the simpler approach. It includes, as a special case, Simpler GMRES, where
Zn−1 ≡ Vn−1. We will also be interested in the case of the residual basis
[q1, Zn−1] = [ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
], which we will call SGMRES/RB, where “RB”

refers to “residual basis”. (Recently this method has also been derived and
implemented by Yvan Notay.)

Recursion (5) reveals the connection between the simpler approach and
yet another minimum residual approach. Let us set pn ≡ A−1vn, Pn ≡
[p1, . . . , pn]. Then, left-multiplying (5) by A−1 yields

xn = xn−1 + αnpn, αn = 〈rn−1, Apn〉, (9)

or, in matrix form,
Xn+1Ln+1,n = −PnDn

with Xn+1 ≡ [x0, . . . , xn]. This shows that pn ∈ Kn(A, r0) is a direction
vector: it has the direction in which one moves from xn−1 to xn. The step
length αn can be determined from one of the formulas on the right-hand side
of (5) or (9). Recall that it follows from the condition 〈rn−1, vn〉 = 0, which
enforces the minimization of ‖rn‖ on the line α 7→ rn−1 − αvn. So, instead
of computing the coordinates tn of xn − x0 with respect to the columns of
[q1, Zn−1] first, we can directly update xn from (9). However, this requires
that we construct the direction vector pn (or a scalar multiple of it). Now,
note that left-multiplying (4) by A−1 yields

[q1, Zn−1] = PnUn. (10)
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If Un is known from (4), a recursion for pn can be extracted from this formula.
Note that it has the same recurrence coefficients (stored in the columns of
Un) that are used in the Gram-Schmidt process in (4); so the two recursions
can be run in the same loop. The obvious disadvantages of this approach is
that we have to store both all the direction vectors pn and all the original
orthonormal basis vectors vn = Apn. Moreover, any roundoff errors in Un may
have a strong effect on Pn. However, as we will see, this is the price we have
to pay if we want to apply the simple and convenient 2-term update formulas
(5) and (9) and spend only one matrix-vector (MV) product per step, namely
Azn−1 in (4) (or Avn−1 in (3) if Zn−1 ≡ Vn−1). The case Zn−1 ≡ Vn−1 of this
method was proposed in [22] under the name AT A–variant of GMRES. We
will use here the terminology update approach for this case and, more exactly,
refined ORTHODIR for the particular case with Zn−1 ≡ Vn−1, since, as we
will see, it is a refined version of the residual norm minimizing ORTHODIR
algorithm [10, 31]. Likewise the case with Zn−1 = [ r1

‖r1‖
, . . . , rn−1

‖rn−1‖
], which

can be viewed as a refined version of the ORTHOMIN algorithm [28, 31] (or
the GCR method of Elman [9, 8]) and is identical to the GMRESR method

[27] of van der Vorst and Vuik with the choice u
(0)
n = rn, will be referred to

as refined ORTHOMIN (see our comments below).
The refined ORTHODIR and ORTHOMIN algorithms with residual norm

minimization started from the fact that the direction vectors pn of the min-
imum residual method characterized by (2) are AT A–orthonormal to each
other: since Vn = APn, we have P T

n AT APn = V T
n Vn = I. Because direc-

tions are only determined up to a scalar multiple, we might give up the
normalization of Vn and choose instead P T

n AT APn = V T
n Vn to be a nonsin-

gular diagonal matrix. So, in analogy to (4), we can directly compute the
columns of Pn = [p1, . . . , pn] and Un from (10), and complement this by the
explicit successive evaluation of Vn = APn (which, at the same time, serves
for extending the Krylov subspace). Again, we can view (10) as either an
Arnoldi process for an AT A-orthogonal basis if we choose Zn−1 ≡ APn−1, or
as a Gram-Schmidt implementation of a QR decomposition of [q1, Zn−1] with
respect to the AT A–inner product if Zn−1 originates elsewhere. The case
where Zn−1 ≡ APn−1, q1 ≡ r0, and Un is unit triangular corresponds to the
original ORTHODIR algorithm [10, 31]; the case where Zn−1 ≡ [r1, . . . , rn−1],
q1 ≡ r0, and Un is unit triangular yields a version of the ORTHOMIN algo-
rithm as proposed by Young and Jea [31], which was called GCR by Elman
[9]. Despite the popularity of the name GCR we will mostly use the older
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name ORTHOMIN here, which also underlines the analogy to ORTHODIR.
Details can also be found in [3] (choosing B = AT A and C = I there). The
cases with short-term recurrences have been treated in detail in [17] and [4].

However, what we have concealed in these descriptions is that we need a
second matrix-vector product, namely Avn−1 in ORTHODIR and Arn in OR-
THOMIN, to compute the coefficients of the orthogonal projection (i.e., of the
Gram-Schmidt algorithm). Due to the AT A–orthogonality, in ORTHODIR
the relevant projection of Apn−1 is pn = (I − Pn−1(APn−1)

T A)Apn−1, which
with Vn−1 = APn−1 may be written as pn = (I − Pn−1V

T
n−1A)vn−1. The new

vector vn can be computed either from vn = (I −Vn−1V
T
n−1)Avn−1 or directly

as vn = Apn, but the latter requires an extra MV. An analogue considera-
tion holds for ORTHOMIN. So, in the latter form, these algorithms are not
competitive. Some remarks on their stability were drawn in [11]; we will not
cover these implementations here.

The well-known remedy suggested by Vinsome [28] and Eisenstadt, El-
man, and Schultz [8] consists in computing and storing both Pn and Vn.
This is achieved by computing Vn with either the Arnoldi process (3) or
with another QR decomposition of A[r0, r1, . . . , rn−1] analogous to (4). But
this means that up to the scaling of the bases Pn, Vn, and Zn we return
to the refined ORTHODIR and refined ORTHOMIN algorithms discussed
above. The remaining difference between Vinsome’s ORTHOMIN and our
refined ORTHOMIN is that we normalize the residuals before orthogonaliz-
ing them, and that we use normalized direction vectors. The analog is true
for the difference between the usual implementation of ORTHODIR and our
refined ORTHODIR. The importance of normalizing the residuals before the
orthogonalization will be seen later.

The paper is organized as follows. In Section 2 we analyze first the
maximum attainable accuracy of the simpler approach based on (3) or (4)
for vn and (7), (8) for xn. Then we turn to the update approach based
on (3) or (4) for vn, (10) for pn, and (9), (5) for xn and rn. To keep the
text readable, we assume rounding errors only in selected, most relevant
parts of the computation. The bounds presented in Theorems 2.1 and 2.2
show that the conditioning of the matrix [q1, Zn−1] plays an important role
in the numerical stability of these schemes. Both theorems give bounds
on the maximum attainable accuracy measured by the normwise backward
error. While for the simpler approach this quantity does not depend on the
conditioning of A, the bound for the update approach is proportional to
κ(A) (as we will show in our constructed numerical example, the bound is
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attainable). However, the dependence on κ(A) is usually an overestimate;
in practice, both the simpler and update approaches behave almost equally
for the same choice of the basis. This is especially true for the relative
errors of the computed approximate solutions, where we give essentially the
same upper bound. The situation is completely analogous to results for the
GMRES method [24] and the MINRES method [21] given by Sleijpen, van
der Vorst and Modersitzki in [26].

In Section 3 we derive particular results for two choices of the basis
[q1, Zn−1]. First for [q1, Zn−1] = [q1, Vn−1] leading to Simpler GMRES by
Walker and Zhou [29] and to refined ORTHODIR. Then for [q1, Zn−1] =
[ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
], which leads to SGMRES/RB and refined ORTHOMIN, re-

spectively. It appears that the two choices lead to truly different behavior
in the condition number of Un, which governs the stability of the considered
schemes. Since all these methods converge in a finite number of iterations,
we fix the iteration index n such that r0 6∈ AKn−1(A, r0), that is, the exact
solution has not yet been reached. Based on this we give conditions on the
linear independence of the basis [q1, Zn−1]. It is known that [r0, . . . , rn−1] can
be rank deficient when the GMRES method stagnates (the breakdown occurs
in ORTHOMIN and hence also in SGMRES/RB), while this does not hap-
pen for [q1, Vn−1] (Simpler GMRES and ORTHODIR are breakdown-free).
On the other hand, we show that while the choice [q1, Zn−1] = [q1, Vn−1]
leads to inherently less numerically stable schemes, the second selection
[q1, Zn−1] = [ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
] gives rise to conditionally stable implementa-

tions provided we have some reasonable residual decrease. In particular, we
show that the SGMRES/RB implementation is conditionally backward sta-
ble. Our theoretical results are illustrated by selected numerical experiments.
In Section 4 we conclude and give directions for future work.

Throughout the paper, we denote by ‖ · ‖ the Euclidean vector norm and
the induced matrix norm, and by ‖ · ‖F the Frobenius norm. Moreover, for
B ∈ R

N×n (N ≥ n) of rank n, σ1(B) ≥ σn(B) > 0 are the extremal singular
values of B, and κ(B) = σ1(B)/σn(B) is the spectral condition number. By
I we denote the unit matrix of a suitable dimension, by ek (k = 1, 2, . . .)
its kth column, and we let e ≡ [1, . . . , 1]T . We assume the standard model
of finite precision arithmetic with the unit roundoff u (see Higham [15] for
details). In our bounds, instead of distinguishing between several constants
(which are in fact polynomials in N and n that can differ from place to place),
we use a generic constant c.

6



2 Maximum attainable accuracy of simpler

and update approaches

In this section we analyze the numerical stability of the simpler and update
approaches formulated in the previous section. In order to make our anal-
ysis readable, we assume that only the computations performed in (4), (8)
and (10) are affected by rounding errors and that the computed Q-factor
in the QR factorization (4) is close to an orthonormal matrix and has beed
computed in a backward stable way. Hence we assume that the computed
(orthogonal) factor Vn and the upper triangular factor Un in the QR factor-
ization (4) satisfy

A[q1, Zn−1] = VnUn + Fn, ‖Fn‖ ≤ cu‖A‖‖[q1, Zn−1]‖, (11)

and ‖Vn − V̂n‖ ≤ cu, where V̂n is the nearest orthonormal matrix satisfying
V̂ T

n V̂n = I. For simplicity, we will not distinguish between Vn and V̂n and
assume that Vn is exactly orthonormal. For details we refer to [5, 15]. From
[30, 15] we have for the computed solution t̂n of (8) that

(Un + ∆Un)t̂n = Dne, |∆Un| ≤ cu|Un|, (12)

where the absolute value and inequalities are understood component-wise.
The approximation x̂n to x is then computed as

x̂n = x0 + [q1, Zn−1]t̂n. (13)

The crucial quantity for the analysis of the maximum attainable accuracy
is the gap between the true residual b−Ax̂n of the computed approximation
and the updated residual rn obtained from the update formula (5) describing
the projection of the previous residual; see [11, 14]. In fact, once the true
residual becomes negligible compared to the true one (and in the algorithms
considered here it ultimately will), the gap equals the true residual divided
by ‖A‖‖x̂n‖, which therefore can be thought of as the backward error of the
ultimate approximate solution x̂n (after suitable normalization). Here is our
basic result on this gap for the simpler approach.

Theorem 2.1. In the simpler approach, the gap between the true residual
b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖

≤ cuκ([q1, Zn−1])

(

1 +
‖x0‖
‖x̂n‖

)

.
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Proof. From (13) we have b − Ax̂n = r0 − A[q1, Zn−1]t̂n = r0 − (VnUn +
Fn)(Un + ∆Un)−1Dne, and (5) gives rn = r0 − VnDne. Using the identity
I − Un(Un + ∆Un)−1 = ∆Un(Un + ∆Un)−1 and the relation [q1, Zn−1](Un +
∆Un)−1Dne = [q1, Zn−1]t̂n = x̂n−x0 we can express the gap between b−Ax̂n

and rn as

b − Ax̂n − rn = (Vn − (VnUn + Fn)(Un + ∆Un)−1)Dne

= (Vn∆Un + Fn)(Un + ∆Un)−1Dne

= (Vn∆Un + Fn)[q1, Zn−1]
†[q1, Zn−1](Un + ∆Un)−1Dne

= (Vn∆Un + Fn)[q1, Zn−1]
†(x̂n − x0).

(14)

Taking the norm, considering (11), and noting that the terms involving
Vn∆Un and Fn can be subsumed into the generic constant c, we get

‖b − Ax̂n − rn‖ ≤ cu‖A‖‖[q1, Zn−1]‖‖[q1, Zn−1]
†‖(‖x̂n‖ + ‖x0‖). (15)

Division by ‖A‖‖x̂n‖ concludes the proof.

In the following we analyze the maximum attainable accuracy of the
update approach. In accordance with (11) we assume that in finite precision
arithmetic the computed direction vectors satisfy

[q1, Zn−1] = PnUn + Gn, ‖Gn‖ ≤ cu‖Pn‖‖Un‖. (16)

Note that the norm of the matrix Gn cannot be bounded by cu‖A‖‖[q1, Zn−1]‖
as it is in the case of the QR factorization (11). As in (9) we compute then
the approximate solution x̂n as

x̂n = x̂n−1 + αnpn. (17)

Theorem 2.2. In the update approach, the gap between the true residual
b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖

≤ cuκ(A)κ([q1, Zn−1])

(

1 +
‖x0‖
‖x̂n‖

)

,

provided that ηn ≡ 1 − cuκ(A)κ([q1, Zn−1]) > 0.
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Proof. Since x̂n = x0 + PnDne = x0 + ([q1, Zn−1] − Gn)U−1
n Dne and rn =

r0 − VnDne, we have that

b − Ax̂n − rn = (Vn − A[q1, Zn−1]U
−1
n )Dne + AGnU−1

n Dne

= (−Fn + AGn)U−1
n Dne

(18)

due to (4). From (4) and (16), we get Pn = A−1Vn + (A−1Fn − Gn)U−1
n .

Taking a norm we obtain ‖Pn‖ ≤ ‖A−1‖ + cuκ(A)‖U−1
n ‖ + cu‖Pn‖κ(Un).

The norm of the residual matrix Gn in (16) can hence be estimated as

‖Gn‖ ≤ cuκ(A)‖[q1, Zn−1]‖. (19)

Owing to (17), we have the identity U−1
n Dne = U−1

n P †
nPnDne = U−1

n P †
n(x̂n −

x0), and ‖U−1
n P †

n‖ ≤ η−1
n ‖[q1, Zn−1]

†‖ following from (16). Thus we obtain

‖U−1
n Dne‖ ≤ η−1

n ‖[q1, Zn−1]
†‖(‖x̂n‖ + ‖x0‖), (20)

which together with (18), (19), and (11) proves the statement of the theorem.

The bound on the ultimate backward error given in Theorem 2.2 is worse
that the one of Theorem 2.1. We see that for the simpler approach the
normwise backward error is on the order of the roundoff unit, whereas for
the update approach we have an upper bound proportional to the condition
number of A. In terms of the residual norms, this leads to the bounds
involving cuκ(A)κ([q1, Zn−1]) and cuκ2(A)κ([q1, Zn−1]) terms for the simpler
and update approach, respectively.

From Theorems 2.1 and 2.2, we can also estimate the ultimate level of
the relative 2-norm of the error of both the simpler and update approach.
However, as shown below, it appears that the update approach leads to an
approximate solution on essentially the same accuracy level in the error as
the simpler approach. A similar phenomenon was also observed by Sleijpen,
van der Vorst and Modersitzki [26] in the symmetric case for GMRES and
MINRES.

Corollary 2.1. The gap between the computed approximate solutions x̂n and
exact approximations xn in both the simpler (xn = x0 + [q1, Zn−1]tn) and
update (xn = xn−1 + αnA−1vn) approaches can be bounded by

‖xn − x̂n‖
‖x‖ ≤ cuκ(A)κ([q1, Zn−1])

‖x̂n‖ + ‖x0‖
‖x‖ , (21)

provided that ηn ≡ 1 − cuκ(A)κ([q1, Zn−1]) > 0.

9



Proof. For the simpler approach, the result follows directly from Theorem
2.1. For the update approach, using (18) we have

xn − x̂n = x − x̂n − A−1rn = (−A−1Fn + Gn)U−1
n Dne

and the statement now follows from (11), (19) and (20).

The bound (21) from Corollary 2.1 depends on the quantity (‖x̂n‖ +
‖x0‖)/‖x‖ (or more precisely on ‖x̂n −x0‖/‖x‖), which is, however, strongly
influenced by the conditioning of the upper triangular matrix Un. As shown
in Section 3, the matrix Un can be ill-conditioned for a particular case
[q1, Zn−1] = [q1, Vn−1], thus leading to an inherently less numerically sta-
ble scheme, whereas (under some assumptions) the scheme with [q1, Zn−1] =
[ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
] gives rise to a well-conditioned triangular matrix Un. In the

following lemma we give bounds on ‖x̂n −x0‖ in terms of the singular values
of the matrix Un.

Lemma 2.1. In the simpler approach, we have

‖x̂n − x0‖ ≤ ‖[q1, Zn−1]‖‖t̂n‖ ≤ ‖[q1, Zn−1]‖‖(Un + ∆Un)−1Dne‖,

and in the update approach,

‖x̂n − x0‖ ≤ ‖PnDne‖ ≤ (1 + cuκ(A))‖[q1, Zn−1]‖‖U−1
n Dne‖.

The norms of (Un + ∆Un)−1Dne and U−1
n Dne satisfy

‖(Un + ∆Un)−1Dne‖
‖U−1

n Dne‖

}

≤
√

2

n
∑

k=1

‖rk−1‖
σk(Uk)

≤
√

2‖A−1‖
n

∑

k=1

η−1
k ‖rk−1‖

σk([q1, Zk−1])
,

(22)

provided that ηk ≡ 1 − cuκ(A)κ([q1, Zk−1]) > 0 for all k = 1, . . . , n.

Proof. Since eT
k Dnek = αk and |αk| =

√

‖rk−1‖2 − ‖rk‖2 ≤
√

2‖rk−1‖, we
have

‖(Un + ∆Un)−1Dne‖ ≤
n

∑

k=1

‖(Un + ∆Un)−1Dnek‖

≤
√

2
n

∑

k=1

‖rk−1‖
σk([Un + ∆Un]1:k,1:k)

,

(23)
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where [Un + ∆Un]1:k,1:k denotes the principal k × k submatrix of Un + ∆Un.
Owing to (12), we can estimate the perturbation of [Un]1:k,1:k = Uk as
‖[∆Un]1:k,1:k‖ ≤ cu‖Uk‖. Perturbation theory of singular values shows that

σk([Un + ∆Un]1:k,1:k) ≥ σk(Uk) − cu‖Uk‖
≥ σk(A[q1, Zk−1]) − cu‖A‖‖[q1, Zk−1]‖
≥ σN (A)σk([q1, Zk−1]) − cu‖A‖‖[q1, Zk−1]‖,

(24)

which, together with (23), concludes the proof of the first inequality. The
second inequality is proved analogously.

The first estimate given in (22), which involves the minimal singular val-
ues of Uk (k = 1, . . . , n), is quite sharp. However, the second estimate re-
lating the minimal singular values of Uk to those of [q1, Zk−1] can be a large
overestimate, as also observed in our numerical experiments in Section 3.

Theorems 2.1 and 2.2 indicate that as soon as the backward error of the
approximate solution in the simpler approach gets below cuκ(A)κ([q1, Zn−1]),
the difference between the backward errors in the simpler and update ap-
proaches may become visible and can be expected to be up to the order of
κ(A). Based on our experience it is difficult to find an example where this
difference is significant. Similarly to Sleijpen, van der Vorst and Moder-
sitzki [26], we use here a model example, where A = G1DGT

2 ∈ R
100×100

with D = diag(10−8, 2 · 10−8, 3, 4, . . . , 100) and with G1 and G2 being Givens
rotations over an angle of π

4
in the (1, 10)-plane and the (1, 100)-plane, re-

spectively; finally, b = e. The numerical experiments were performed in
MATLAB using double precision arithmetic (u ≈ 10−16), and the zero vector
was chosen as the initial guess x0. In Figure 1 we have plotted the norm-
wise backward errors ‖b−Ax̂n‖/(‖A‖‖x̂n‖) (solid and dashed lines) and the
relative 2-norms of the errors ‖x − x̂n‖/‖x‖ (dash-dotted and dotted lines)
for Simpler GMRES and refined ORTHODIR, respectively. The reciprocals
of the condition numbers of the basis [q1, Zn−1], the triangular matrix Un

and the system matrix A are depicted by dashed, dashed-dotted and dotted
lines. The same quantities for SGMRES/RB and refined ORTHOMIN are
reported in Figure 2. We see that the actual backward errors are close until
where they stagnate: for refined ORTHODIR and refined ORTHOMIN this
happens approximately at a level close to uκ(A), while for Simpler GMRES
and SGMRES/RB we have stagnation on the roundoff unit level. In con-
trast, the 2-norms of the errors stagnate on the uκ(A) level in all schemes
considered.
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Figure 1: The test problem solved by Simpler GMRES and refined OR-
THODIR.

3 Choice of basis and stability

In this section we discuss the two main particular choices for the matrix
Zn−1 leading to different algorithms for the simpler and update schemes. For
the sake of simplicity, we assume exact arithmetic here. First, we choose
Zn−1 = Vn−1, which leads to the Simpler GMRES method of Walker and
Zhou [29] and to the refined version of ORTHODIR by Young and Jea [31],
respectively. Hence, we choose {q1, v1, . . . , vn−1} as a basis of Kn(A, r0). To
be sure that such a choice is adequate, we state the following simple lemma.

Lemma 3.1. Let v1, . . . , vn−1 be an orthonormal basis of AKn−1(A, r0), r0 6∈
AKn−1(A, r0). Then the vectors q1, v1, . . . , vn−1 form a basis of Kn(A, r0).

Proof. It follows from the assumption r0 6∈ AKn−1(A, r0) implying that q1 6∈
AKn−1(A, r0) = span{v1, . . . , vn−1}.
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Figure 2: The test problem solved by SGMRES/RB and refined OR-
THOMIN.

Note that if r0 ∈ AKn(A, r0), then the condition (2) yields xn = A−1b,
rn = 0, and any implementation of a minimum residual method will termi-
nate. Lemma 3.1 ensures that it makes sense to build an orthonormal basis
Vn of AKn(A, r0) by the successive orthogonalization of the columns of the
matrix A[q1, Vn−1] via (4). It reflects the fact that, for any initial residual
r0, both Simpler GMRES and ORTHODIR converge (in exact arithmetic) to
the exact solution; see [31]. However, as observed by Liesen, Rozložńık and
Strakoš [18], this choice of the basis is not very suitable from the stability
point of view. This shortcoming is reflected by the unbounded growth of the
condition number of [q1, Vn−1] discussed next. The upper bound we give was
also derived in [29].

Theorem 3.1. Let r0 6∈ AKn−1(A, r0). Then the condition number of [q1, Vn−1]
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satisfies
‖r0‖
‖rn−1‖

≤ κ([q1, Vn−1]) ≤ 2
‖r0‖
‖rn−1‖

.

Proof. Since rn−1 = (I − Vn−1V
T
n−1)r0, it is easy to see that rn−1 is the

residual of the least squares problem Vn−1y ≈ r0. The statement follows
from Theorem 3.2 of [18].

The conditioning of [q1, Vn−1] is thus related to the convergence of the
method; in particular, it is inversely proportional to the actual relative norm
of the residual. Hence, if the residual is small enough, Simpler GMRES
and refined ORTHODIR behave unstably. In practice, this difficulty can be
counteracted by frequent restarts.

Now we turn to the second choice, Zn−1 = [ r1

‖r1‖
, . . . , rn−1

‖rn−1‖
], which leads

to SGMRES/RB (which we propose here as a more stable counterpart of
Simpler GMRES) and to the refined version of ORTHOMIN by Vinsome
[28] known also under the name GCR; see Eisenstat, Elman and Schultz
[9, 8]. We have [q1, Zn−1] = RnB−1

n , where Bn ≡ diag(‖r0‖, . . . , ‖rn−1‖), i.e.,
we choose scaled residuals r0, . . . , rn−1 as the basis of Kn(A, r0). To be sure
that such a choice is adequate, we state the following result.

Lemma 3.2. Let v1, . . . , vn−1 be an orthonormal basis of AKn−1(A, r0), r0 6∈
AKn−1(A, r0) and rk = (I−VkV

T
k )r0, where Vk ≡ [v1, . . . , vk], k = 1, 2, . . . , n−

1. Then the following statements are equivalent:

1. ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n − 1,

2. r0, . . . , rn−1 are linearly independent.

Proof. Since r0 6∈ AKn−1(A, r0) = R(Vn−1), rk 6= 0 for all k = 0, 1, . . . , n− 1.
It is clear that ‖rk‖ < ‖rk−1‖ if and only if 〈rk−1, vk〉 6= 0. If that holds
for all k = 1, . . . , n − 1 the diagonal matrix Dn−1 is nonsingular. Us-
ing the relation (6) we find that Rn[Ln,n−1, en] = [Vn−1Dn−1, rn−1]. Since
rn−1 ⊥ Vn−1, the matrix [Vn−1Dn−1, rn−1] has orthogonal nonzero columns,
and hence its rank equals n. Moreover, rank([Ln,n−1, en]) = n and thus
rank(Rn) = n, i.e., r0, . . . , rn−1 are linearly independent. Conversely, from
the same matrix relation we find that if r0, . . . , rn−1 are linearly indepen-
dent, then rank([Vn−1Dn−1, rn−1]) = n, and hence Dn−1 is nonsingular, which
proves that ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n − 1.
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Therefore if the method does not stagnate, i.e., if the 2-norms of the
residuals r0, . . . , rn−1 are strictly monotonously decreasing, then r0, . . . , rn−1

are linearly independent. In this case, we can build an orthonormal basis Vn

of AKn(A, r0) by the successive orthogonalization of the columns of ARnB−1
n

via (4). If r0 ∈ AKn−1(A, r0), we have an exact solution of (1), and the
method stops with xn−1 = A−1b.

Several conditions for the non-stagnation of the minimum residual method
have been given in the literature. For example, Eisenstat, Elman and Schultz
[8, 9] show that GCR (and hence any minimum residual method) does not
stagnate if the symmetric part of A is positive definite, i.e., if the origin is not
contained in the field of values of A. See also Greenbaum and Strakoš [13] for
a different proof, and Eiermann and Ernst [7]. Several other conditions can
be found in Simoncini and Szyld [25] and the references therein. If stagnation
occurs, the residuals are no longer linearly independent, and thus the method
prematurely breaks down. In particular, if 0 ∈ F(A), choosing x0 such that
r0 ∈ F(A) leads to a breakdown in the first step. This was first pointed out
by Young and Jea [31] with a simple 2 × 2 example.

However, as shown in the following theorem, when the minimum residual
method does not stagnate, the columns of RnB−1

n are a reasonable choice for
the basis of Kn(A, r0).

Theorem 3.2. If r0 6∈ AKn−1(A, r0), the condition number of RnB−1
n satis-

fies

1 ≤ κ(RnB−1
n ) ≤

√
n γn, γn ≡

√

√

√

√1 +

n−1
∑

k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2
. (25)

Proof. From (6) it follows that

RnB−1
n [Qn,n−1, en] = [Vn−1,

rn−1

‖rn−1‖
], Qn,n−1 ≡ BnLn,n−1D

−1
n−1.

Since [Vn−1,
rn−1

‖rn−1‖
] is an orthonormal matrix, we have from Theorem 3.3.16

of [16]

1 = σn([Vn−1,
rn−1

‖rn−1‖
]) ≤ σn(RnB−1

n )‖[Qn,n−1, en]‖
≤ σn(RnB−1

n )‖[Qn,n−1, en]‖F .
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Figure 3: The test problem FS1836 solved by Simpler GMRES and refined
ORTHODIR.

The value of ‖[Qn,n−1, en]‖F can be directly computed as

‖[Qn,n−1, en]‖F =

√

√

√

√1 +

n−1
∑

k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2
= γn,

since α2
k = ‖rk−1‖2−‖rk‖2. The statement follows using ‖RnB−1

n ‖ ≤ √
n.

We define the quantity γn in (25) as the stagnation factor. The condi-
tioning of RnB−1

n is thus related to the convergence of the method, but in
contrast to the conditioning of [q1, Vn−1], it is related to the intermediate
decrease of the residual norms, not to the residual decrease with respect to
the initial residual.

We illustrate our theoretical results by a numerical example using the
ill-conditioned matrix FS1836 (‖A‖ ≈ 1.18 · 109, ‖A−1‖ ≈ 1.47 · 102) ob-
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Figure 4: The test problem FS1836 solved by SGMRES/RB and refined
ORTHOMIN.

tained from the Matrix Market [1] with the right-hand side b = Ae (see
also the experiments in [18], where the relative residual norms were re-
ported). In Figures 3 and 4, we show again the normwise backward error
‖b − Ax̂n‖/(‖A‖‖x̂n‖) (solid lines with circles and crosses) and the relative
2-norms of the error ‖x − x̂n‖/‖x‖ (dotted lines with circles and crosses)
for the choice [q1, Zn−1] = [q1, Vn−1] that corresponds to Simpler GMRES
and refined ORTHODIR, and for [q1, Zn−1] = [ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
] correspond-

ing to SGMRES/RB and refined ORTHOMIN, respectively. The reciprocals
of the condition numbers of the basis [q1, Zn−1], the triangular matrix Un

and the system matrix A are depicted by dashed, dashed-dotted and dot-
ted lines. We see that the backward errors and the error norms are almost
identical for the simpler and update approaches. This can be observed in
most cases leading to practically negligible difference between Simpler GM-
RES and refined ORTHODIR, and SGMRES/RB and refined ORTHOMIN,
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respectively. Figure 3 illustrates our theoretical considerations and shows
that, after some initial reduction, the backward error of Simpler GMRES
and refined ORTHODIR may stagnate on a significantly higher level than the
backward error of SGMRES/RB or refined ORTHOMIN, which stagnates on
a level proportional to the roundoff unit, as shown in Figure 4. Due to The-
orem 3.1, after some initial phase, the norms of the errors start to diverge
in Simpler GMRES and refined ORTHODIR, while for SGMRES/RB and
refined ORTHOMIN we have a stagnation on a level approximately propor-
tional to uκ(A). The difference is clearly caused by the choice of the basis
[q1, Zn−1], which has an effect on the conditioning of the matrix Un. We see
that [q1, Zn−1] = [ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
] remains well-conditioned up to the very

end of the iteration process, while the conditioning of [q1, Vn−1] is linked to
the convergence of Simpler GMRES and may lead to a very ill-conditioned
triangular matrix Un. Consequently the approximate solution x̂n computed
from (8) becomes inaccurate and its error starts to diverge. Since the stagna-
tion factor γn ≈ 55.8 (for n = 50), the matrix Un remains well-conditioned,
and this problem does not occur in the SGMRES/RB method.

4 Conclusions

In this paper we have studied the numerical behavior of several minimum
residual methods mathematically equivalent to GMRES. Two general for-
mulations have been analyzed: the simpler approach that does not require
an upper Hessenberg factorization and the update approach which is based
on generating a sequence of appropriately computed direction vectors. It
has been shown that for the simpler approach our analysis leads to an upper
bound for the backward error proportional to the roundoff unit, whereas for
the update approach the same quantity can be bounded by a term propor-
tional to the condition number of A. Although our analysis suggests that
the difference between both may be up to the order of κ(A), in practice they
behave very similarly, and it is very difficult to find a concrete example with
a significant difference in the limiting accuracy measured by the normwise
backward error of the approximate solutions xn. Our first test problem dis-
played in Figures 1 and 2 is such a rare example. Moreover, when looking
at the errors, we note that both approaches lead essentially to the same
accuracy of xn.

We have indicated that the choice of the basis [q1, Zn−1] is the most
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important issue for the stability of the considered schemes. Our analysis
supports the well-known fact that even when implemented with the best
possible orthogonalization techniques Simpler GMRES and ORTHODIR are
inherently less stable due to the choice [q1, Zn−1] = [q1, Vn−1] for the ba-
sis. The situation becomes significantly better, when we use the residual
basis [q1, Zn−1] = [ r0

‖r0‖
, . . . , rn−1

‖rn−1‖
]. This choice leads to the popular GCR

(ORTHOMIN, GMRESR) method, which is widely used in applications. As-
suming some reasonable residual decrease (which happens almost always in
finite precision arithmetic), we have shown that this scheme is quite efficient
and proposed a conditionally backward stable variant (called SGMRES/RB
here). Our theoretical results in a sense justify the use of the GCR method in
practical computations. In this paper we studied only the unpreconditioned
implementations. The implications for the preconditioned GCR scheme will
be discussed elsewhere.
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