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Abstract

Quaternions have been found to be the ideal tool for describing and developing the
theory of spatial regularization in celestial mechanics. This article corroborates
the above statement. Beginning with a summary of quaternion algebra, we will
describe the regularization procedure and its consequences in an elegant way. Also,
an alternative derivation of the theory of Kepler motion based on regularization will
be given. Furthermore, we will consider the regularization of the spatial restricted
three-body problem, i.e. the spatial generalization of the Birkhoff transformation.
Finally, the perturbed Kepler motion will be described in terms of regularized
variables.

Dedicated to Claude Frœschlé

Keywords: Quaternions, regularization, Kustaanheimo-Stiefel transforma-
tion, Kepler formulas, Birkhoff transformation, perturbed Kepler problem.



1 Introduction

In 1844 the Irish mathematician William Rowan Hamilton (1805-1865) pub-
lished a paper entitled On quaternions, or a new systen of imaginaries in

algebra (Hamilton 1844). Hamilton got inspiration from two multiplicative
operations involving vectors ∈ R3 (the scalar product and vector product)
and managed to devise a non-commutative algebra of 4-dimensional objects
generalizing the algebra of complex numbers. Quaternions soon became a
standard topic in higher analysis, and today, they are in use in computer
graphics, control theory, signal processing, orbital mechanics, etc., mainly
for representing rotations and orientations in 3-space.

The use of quaternions for the purpose of regularization of the spatial
Kepler problem has been contemplated soon after the discovery of the so-
called KS transformation by Kustaanheimo and Stiefel (1965). The fact
that the KS transformation is based on a 4-dimensional parametric space
immediately called for bringing quaternions into play. However, in their
comprehensive text Stiefel and Scheifele (1971) clearly rejected this idea (p.
286): “Any attempt to substitute the theory of the KS matrix by the more
popular theory of the quaternion matrices leads to failure or at least to
a very unwieldy formalism.” This statement was first refuted by Yu. N.
Chelnokov (1981) who presented a regularization theory of the spatial Kepler
problem using geometrical considerations in a rotating coordinate system
and quaternion matrices. In a series of papers, including Chelnokov (1992)
and Chelnokov (1999), the same author extended the theory of quaternion
regularization and also presented practical applications.

Later, but independently, Maria Dina Vivarelli (1983) and Jan Vrbik
(1994, 1995) demonstrated the usefulness of quaternions for regularization in
celestial mechanics. Recently, the Space Mechanics Group of the University
of Zaragoza (Spain) took advantage of the elegance of the quaternion lan-
guage in various applications in orbital and rigid-body dynamics, see, e.g.,
Arribas, Elipe and Palacios (2006).

Here we will first summarize the theory of quaternions and then give an
overview of the new, elegant way of handling three-dimensional regulariza-
tion by means of an unconventional conjugation of quaternions, as suggested
by Waldvogel (2006a, 2006b). As an application, the well-known theory of
Kepler motion will be rederived on the basis of the regularized equations of
motion. Furthermore, as a postscriptum to the author’s early works (Stiefel



and Waldvogel 1965, Waldvogel 1967a, 1967b), the spatial extention of the
Birkhoff (1915) regularization of the restricted three-body problem will be
elegantly described in terms of quaternions. Finally, we will state the regu-
larized equations of motion of the perturbed spatial Kepler problem.

It seems appropriate that this article appears in the Special Issue in Honor
of Claude Frœschlé. It was Claude, with his invitation extended to the author
for contributing to the Winter School Les Arcs 2000 on singularities (Benest
and Frœschlé, Eds., 2002), who initiated a process of revisiting regularization
theory in celestial mechanics.

2 Quaternion Algebra

A quote from Wikipedia: Hamilton was looking for ways of extending complex
numbers (which can be viewed as points on a 2-dimensional plane) to higher
spatial dimensions. He could not do so for 3 dimensions, and in fact it was
later shown that it is impossible. Eventually Hamilton tried 4 dimensions
and created quaternions. According to Hamilton, on October 16, 1843 he
was out walking along the Royal Canal in Dublin with his wife when the
solution in the form of the equations

i2 = j2 = k2 = i j k = −1 (1)

suddenly occurred to him; Hamilton then promptly carved these equations
into the side of the nearby Broom Bridge. [. . . ] Unfortunately, no trace of
the carving remains, though a stone plaque does commemorate the discovery.
2

Hamilton’s basic relations (1) are inconsistent with commutative multipli-
cation rules between the three imaginary units i, j, k. However, by postulat-
ing commutative multiplication with the real number −1 the better known
more explicit multiplication rules may easily be obtained from (1). Right
multiplication of the last equality of (1) by k yields i j = k; left multipli-
cation of this by i yields i k = −j. Furthermore, left multiplication of the
last relation of (1) by k and right division by k yields k i j = −1. This
implies that a cyclic permutation i → j → k → i transforms a valid relation
again into a valid relation. Hence we obtain the well known non-commutative
multiplication rules of the imaginary units:

i j = −j i = k , j k = −k j = i , k i = −i k = j . (2)



Given the real numbers ul ∈ R , l = 0, 1, 2, 3, the object

u = u0 + i u1 + j u2 + k u3 (3)

is called a quaternion u ∈ U, where U denotes the set of all quaternions (in the
following bold-face characters denote quaternions). The sum iu1 + ju2 + ku3

is called the quaternion part of u, whereas u0 is naturally referred to as its
real part. The above multiplication rules and vector space addition define the
quaternion algebra. Multiplication is generally non-commutative; however,
any quaternion commutes with a real,

cu = u c , c ∈ R , u ∈ U , (4)

and for any three quaternions u, v, w ∈ U the associative law holds:

(uv)w = u (v w) . (5)

The quaternion u may naturally be associated with the corresponding
vector u = (u0, u1, u2, u3) ∈ R4. For later reference we introduce notation
for 3-vectors in two important particular cases: ~u = (u1, u2, u3) ∈ R3 for the
vector associated with the pure quaternion u = i u1 + j u2 + k u3, and u =
(u0, u1, u2) for the vector associated with the quaternion having a vanishing
k-component, u = u0 + i u1 + j u2.

The conjugate ū of the quaternion u is defined as

ū = u0 − i u1 − j u2 − k u3 ; (6)

then the modulus |u| of u is obtained from

|u|2 = u ū = ū u =

3∑

l=0

u2

l . (7)

As transposition of a product of matrices, conjugation of a quaternion prod-
uct reverses the order of its factors:

uv = v̄ ū . (8)

The two kinds of division by u 6= 0 are carried out by left- or right-multiplication
with the inverse u−1 = ū/(u ū).



A very useful application of quaternions is the possibility of elegantly
representing rotations in R3. We only report the result; for a derivation and
proof see, e.g., Waldvogel (2006a).

Let ~a = (a1, a2, a3) ∈ R3, |~a | = 1 be a unit vector defining an oriented
rotation axis, and let ω be a rotation angle. Define the unit quaternion

r := cos
ω

2
+ (i a1 + j a2 + k a3) sin

ω

2
. (9)

Furthermore, let ~x ∈ R
3 be an arbitrary vector, and let x = i x1 + j x2 + k x3

be the associated pure quaternion. Then the mapping

x 7→ y = r x r−1 (10)

describes the right-handed rotation of ~x about the axis ~a through the angle
ω (since r is a unit quaternion we have r−1 = r̄).

3 The KS Transformation

The essential ingredient of regularization in 3-space is the use of a map-
ping from R4 to R3 that generalizes the conformal squaring used by Levi-
Civita (1920) for regularization in the plane. In fact, such a mapping – more
precisely, a mapping from the 3-sphere onto the 2-sphere – was discovered
already by Heinz Hopf (1931) and is referred to in topology as the Hopf
mapping.

However, due to the fact that in 3-space only the trivial conformal map-
pings (translations, rotations and inversions) exist, the possibilty of spatial
regularization had been missed for a long time. Only in 1964 the use of ad-
ditional dimensions was considered and finally lead to the now well-known
Kustaanheimo-Stiefel or KS regularization. A preliminary version of the KS
transformation using spinor notation was proposed by Kustaanheimo (1964);
the full theory was developed in a subsequent joint paper (Kustaanheimo and
Stiefel, 1965); the entire topic is extensively discussed in the comprehensive
text by Stiefel and Scheifele (1971).

3.1 Quaternion Representation

In this subsection we will revisit KS regularization using quaternion nota-
tion. As observed by Waldvogel (2006a, 2006b), an elegant and concise



representation of the formal computations may be achieved by introducing
an unconventional “conjugate”, u?, referred to as the star conjugate of the
quaternion u = u0 + i u1 + j u2 + k u3:

u? := u0 + i u1 + j u2 − k u3 . (11)

The star conjugate of u may be expressed in terms of the conventional con-
jugate ū as

u? = k ū k−1 = −k ū k ;

however, it turns out that the definition (11) leads to a particularly elegant
treatment of KS regularization. The following elementary properties are
easily verified:

(u?)? = u , |u?|2 = |u|2 , (uv)? = v? u? . (12)

Consider now the mapping

u ∈ U 7−→ x = u u? . (13)

Star conjugation immediately yields x? = (u?)? u? = x; hence x is a quater-
nion of the form x = x0 + i x1 + j x2 which may be associated with the vector
x = (x0, x1, x2) ∈ R3. From u = u0 + i u1 + j u2 + k u3 we obtain

x0 = u2

0
− u2

1
− u2

2
+ u2

3

x1 = 2(u0 u1 − u2 u3) (14)

x2 = 2(u0 u2 + u1 u3) ,

which is exactly the KS transformation in its classical form or – up to a
permutation of the indices – the Hopf mapping. Therefore we have

Theorem 1: The KS transformation u = (u0, u1, u2, u3) ∈ R
4 7−→ x =

(x0, x1, x2) ∈ R3 is given by the quaternion relation

x = u u? ,

where u = u0 + i u1 + j u2 + k u3 , x = x0 + i x1 + j x2 , and u? is defined in
(11). 2

Corollary 1: The norms of the vectors x and u satisfy

r := ‖x‖ = ‖u‖2 = u ū . (15)



Proof: By appropriately combining the two conjugations and using the rules
(13), (5), (7), (8), (12) we obtain

‖x‖2 = x x̄ = u (u? ū?) ū = |u?|2 |u |2 = |u |4 = ‖u‖4 ,

from where the statement follows. 2

3.2 Differentiation

In order to regularize the perturbed three-dimensional Kepler motion by
means of the KS transformation it is necessary to look at the properties of
the mapping (13) under differentiation.

The transformation (13) or (14), being a mapping from R
4 to R

3, leaves
one degree of freedom in the parametric space undetermined. In KS theory
(Kustaanheimo and Stiefel, 1965; Stiefel and Scheifele, 1971), this freedom is
taken advantage of by trying to inherit as much as possible of the conformality
properties of the Levi-Civita mapping, x = u2, x ∈ C,u ∈ C, but other
approaches exist (e.g., Vrbik 1995). By imposing the “bilinear relation”

2 (u3 du0 − u2 du1 + u1 du2 − u0 du3) = 0 (16)

between the vector u = (u0, u1, u2, u3) and its differential du on orbits the
tangential mapping of (14) becomes a linear mapping with an orthogonal
(but non-normalized) matrix.

This property has a simple consequence on the differentiation of the
quaternion representation (13) of the KS transformation. Considering the
noncommutativity of the quaternion product, the differential of the mapping
(13) becomes

dx = du · u? + u · du? , (17)

whereas (16) takes the form of a commutator relation,

u · du? − du · u? = 0 . (18)

Combining (17) with the relation (18) yields the elegant result

dx = 2 u · du? , (19)

i.e. the bilinear relation (16) of KS theory is equivalent with the require-
ment that the tangential mapping of u 7→ uu? behaves as in a commutative
algebra.



3.3 The Inverse Mapping

Since the mapping (14) does not preserve the dimension its inverse in the
usual sence does not exist. However, the present quaternion formalism yields
an elegant way of finding the corresponding fibration of the original space R4.
Being given a quaternion x = x0 + i x1 + j x2 with a vanishing k-component,
x = x?, we want to find all quaternions u such that uu? = x. We propose
the following solution in two steps:

First step: Find a particular solution u := v = v? = v0 + i v1 + j v2 which
has a vanishing k-component as well. Since v v? = v2 we may obtain v as
one of the quaternion square roots of x, e.g. as

v =
x + |x|

√

2 (x0 + |x|)
,

a well-known formula for the square root of the complex number
x = x0 + i x1 ∈ C.

Second step: The entire family of solutions (the fibre corresponding to x,
geometrically a circle in R

4 parametrized by the angle ϕ), is given by

u = v · e k ϕ = v (cos ϕ + k sin ϕ) .

Proof: u u? = v e k ϕ e−k ϕ v? = v v? = x . 2

4 Regularization

In this section we describe the formal procedure for KS-regularizing the equa-
tions of motion of the spatial two-body problem by using the four parameters
(u0, u1, u2, u3) =: u ∈ R4 and quaternion notation, u = u0 + i u1+j u2 +k u3.
The planar case, Levi-Civita (1920), is the particular case u2 = u3 = 0, i.e.
u = u0 + i u1 ∈ C.

We begin with the differential equations governing the Keplerian motion
of a particle about a central body with gravitational parameter µ, written in
quaternion notation as

ẍ + µ
x

r3
= 0 ∈ U , r = |x| , ˙( ) =

d

dt
. (20)



Here t is time, x = (x0, x1, x2) ∈ R3 is the position of the moving particle,
and x = x0 + i x1 + j x2 ∈ U is the corresponding quaternion. In addition, it
is necessary to consider the energy integral of (20),

1

2
| ẋ |2 − µ

r
= −h = const , (21)

where the right-hand side −h has been chosen such that h > 0 corresponds
to an elliptic orbit.

KS regularization of the spatial Kepler problem may be achieved by the
three steps 4.1, 4.2, 4.3 described below. In order to stress the simplicity of
this approach we present all the details of the formal computations. Care
must be taken to preserve the order of the factors in quaternion products.
Exchanging two factors is permitted if one of the factors is real or if the
factors are mutually conjugate. An important tool for simplifying expressions
is regrouping factors of multiple products according to the associative law
(5).

4.1 First step: Slow-motion movie

This regularization step calls for introducing a new independent variable τ ,
called fictitious time, according to the Sundman (1907) transformation

dt = r · dτ ,
d

dτ
( ) = ( )′ . (22)

Therefore, the ratio dt/dτ of the two infinitesimal increments is made pro-
portional to the distance r; the movie is run in slow-motion whenever r is
small. Equs. (20), (21) are transformed into

r x′′ − r′ x′ + µ x = 0 ,
1

2 r2
|x′|2 − µ

r
= −h . (23)

4.2 Second step: Conformal squaring with quaternions

The next step of the regularization procedure consists of introducing new
coordinates u ∈ U according to the KS or Hopf mapping (13), (14), as a
generalization of Levi-Civita’s conformal squaring:

x = uu? , r := |x| = |u|2 = u ū . (24)



Differentiation by means of (19) yields

x′ = 2uu? ′

, x′′ = 2uu? ′′

+ 2u′ u? ′

, r′ = u′ ū + u ū′ . (25)

Substitution of (24) and (25) into (231) results in the lengthy equation

(u ū) (2uu? ′′

+ 2u′ u? ′

) − (u′ ū + u ū′) 2uu? ′

+ µuu? = 0 , (26)

which is considerably simplified by observing that the second and third term
– after applying the distributive law – compensate:

2 (u ū)u′ u? ′ − 2u′ (ū u)u? ′

= 0 .

Furthermore, by means of (5), (4) and (18) the fourth term of (26) may be
simplified as follows:

−2 (u ū′) (uu? ′

) = − 2u (ū′ u′)u? = − 2 |u′|2 uu? .

By using this and left-dividing by u Equ. (26) now becomes

2 r u? ′′

+ ( µ − 2 |u′| 2 )u? = 0 . (27)

4.3 Third step: Fixing the energy

From (7), (19), (12) we have

|x′ |2 = x′ x̄′ = 4u (u? ′

ū? ′

) ū = 4 r |u′ | 2 ; (28)

therefore Equ. (232) becomes

µ − 2 |u′ |2 = r h . (29)

Substituting this into the star-conjugate of (27) and dividing by r finally
yields

Theorem 2: The KS transformation (13) with the differentiation rule (19)
and the time transformation (22) maps the spatial Kepler problem (20) into
the quaternion differential equation

2 u′′ + h u = 0 (30)

describing the motion of four uncoupled harmonic oscillators with the com-
mon frequency ω :=

√

h/2. 2



5 The Kepler Formulas

As a first application we present an alternate way of deriving the well-known
explicit formulas describing Kepler motion in terms of the eccentric anomaly
E. For simplicity we restrict ourselves to the planar case u2 = u3 = 0, u =
u0 + i u1 ∈ C, in which the KS transformation (13) reduces to Levi-Civita’s
conformal squaring

x = x0 + i x1 = u2 . (31)

0 0.5 1 1.5 2
−0.5

0

0.5

1

b

Eφ
x

0

x
1

c = a e a

p

r

x=x
0
+ i x

1

µ

Figure 1: The planar elliptic Kepler motion with eccentricity e = 0.9. a, b
semi- axes, c focal distance, p semi-latus rectum, E eccentric anomaly, µ
gravitational parameter, r distance, φ polar angle

The differential equation (20) of Kepler motion,

ẍ + µ
x

r3
= 0 ∈ C , r = |x| = |u|2

is transformed into (30),

2u′′ + hu = 0 ∈ C with dt = r dτ , h = −1

2
|ẋ|2 +

µ

r
= const > 0 .



In this section bold-face characters denote complex numbers.

We begin with the general solution of (30) in two dimensions,

u = A cos(ω τ) + i B sin(ω τ) ∈ C , ω =
√

h/2 , (32)

thus parametrizing the origin-centered elliptic orbit of a planar harmonic
oscillator by means of τ . For simplicity we assume A, B ∈ R; this corresponds
to using a coordinate system aligned with the principal axes of the orbit.
Then τ = 0 corresponds to an apex of the ellipse.

5.1 The eccentric anomaly

The square of (32),

x = u2 =
A2 − B2

2
+

A2 + B2

2
cos(2ωτ) + i A B sin(2ωτ) , (33)

describes the elliptic Keplerian orbit of Figure 1. By comparing the figure
with Equ. (33) the geometric meaning of the angle

E := 2 ω τ =
√

2 h τ , (34)

may immediately be identified as the angle marked in Figure 1, having its
vertex at the center of the ellipse. E is referred to as the eccentric anomaly of
the Kepler motion under consideration; it is known to be the ideal parameter
for describing Kepler motion. In the present approach it comes into play in
a completely natural way.

5.2 The orbit

From (33) and Figure 1 we immediately identify the geometric parameters
a, b (major and minor semi-axes), and c (distance of the center from the
origin) as

a =
A2 + B2

2
, b = A B , c =

A2 − B2

2
. (35)

Because of c2 + b2 = a2 the origin is a focus of the ellipse; therefore the
eccentricity is

e :=
c

a
=

A2 − B2

A2 + B2
. (36)



In terms of a, e the parameters A, B may now be written as

A =
√

a (1 + e) , B =
√

a (1 − e) . (37)

Therefore, the parametrization of the orbit (33) in terms of E, in view of
x = x0 + i x1, becomes

x0 = a
(

e + cos(E)
)

, x1 = a
√

1 − e2 sin(E) . (38)

Furthermore, by using (32), (35) and (36) the distance r is found to be

r = |x| = |u|2 =
A2 + B2

2
+

A2 − B2

2
cos(E) = a

(

1 + e cos(E)
)

. (39)

5.3 Energy

According to Equ. (21) the negative energy h is a constant of motion. In this
section we will establish a relationship between h and the major semi-axis a.
According to (29) and (39) we have

2 |u′|2 = µ − r h with r = a
(

1 + e cos(E)
)

. (40)

On the other hand, the derivative of the regularized orbit (32) implies the
relation |u′|2 = ω2 a (1 − e cos (E)) or

2 |u′|2 = a h
(

1 − e cos(E)
)

.

This is compatible with (40) for every E if and only if

2 a h = µ or h =
µ

2 a
. (41)

5.4 Time

The motion as a function of time easily follows by rewriting Sundman’s trans-
formation (22) in terms of E by means of (34) and (39):

dt =
a√
2 h

(

1 + e cos(E)
)

dE .



By using (41) this becomes

dt =
1

n

(

1 + e cos(E)
)

dE with n :=

√
µ

a3
. (42)

The quantity n = 2 π/T (T the period of revolution) is the mean angular
velocity of the particle, or mean motion, as it is called in astronomy. Finally,
integration of (421) (normalized for t = 0 at the apocenter) yields Kepler’s
equation

t =
1

n

(

E + e sin(E)
)

, (43)

whereas (422) is Kepler’s third law,

n2 a3 = µ . (44)

5.5 Polar coordinates

Keplerian orbits have a surprisingly simple representation in polar coordi-
nates r, φ satisfying x = r ei φ. Rewriting (32) in terms of E, a, e by means
of (34), (37) yields

u =
√

x =
√

a (1 + e) cos
(E

2

)

+ i
√

a (1 − e) sin
(E

2

)

=
√

r ei φ/2 .

This immediately implies the famous relation

tan
(φ

2

)

=

√

1 − e

1 + e
tan

(E

2

)

. (45)

Solving (45) for tan(E/2) and passing over to cos(E) yields

cos(E) =
cos(φ) − e

1 − e cos(φ)
.

Substituting this into the last expression for r in (39) yields

r =
p

1 − e cos(φ)
with p = a (1 − e2) . (46)

p is called the semi-latus rectum; it is the value of r for φ = π/2.



5.6 Angular momentum

The invariance of the angular momentum vector D may be derived directly
from the equations of motion (20) by considering the vector product D =
x × ẋ. Following the philosophy of this section, we will derive the property
from the orbit by explicit computations.

Again restricting ourselves to the planar case and using the complex po-
sition x = x0 + i x1, the scalar angular momentum of a particle of unit mass
becomes D = Im(x̄ ẋ). By using the orbit (38) as well as r from (39) and p
from (46) we obtain

Im
(

x̄
dx

dE

)

=
√

a p · r .

Transforming this to time derivatives by means of (42) yields

D = Im
(
x̄

dx

dt

)
=

√
µ p = const . (47)

6 The Birkhoff Transformation

The conformal mapping proposed by G. D. Birkhoff (1915) regularizes all
singularities of the planar restricted three-body problem with a single trans-
formation. The same transformation – under the name Joukowsky mapping

– is being used in aerodynamics in order to map the cross section of airfoils
to near-circular domains. A three-dimensional generalization on the basis
of the KS transformation was discovered by Stiefel and Waldvogel (1965).
Later these ideas were used by Waldvogel (1967a, 1967b).

As a second application of our quaternion formalism for regularization
we will summarize the spatial generalization of the Joukowsky-Birkoff trans-
formation, following Waldvogel (2006b). The theory developed in Sections 2
to 4 allows for an elegant representation of the spatial Birkhoff mapping. A
concise proof of the resulting transformation equation will be added.

We begin by revisiting the classical (planar) Birkhoff transformation and
represent it as the composition of three elementary conformal mappings; this
will then readily generalize to the spatial situation by means of quaternions.
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Figure 2: The sequence of conformal mappings generating the planar
Birkhoff transformation

Consider a rotating physical plane parametrized by the complex variable
y ∈ C; for convenience we assume the fixed primaries of the restricted three-
body problem to be located at the points A, C given by the complex posititons
y = −1 and y = 1, respectively (see Figure 2). The complex variable of the
parametric plane will be denoted by v and will be normalized in such a way
that the primaries correspond to v = −1 or v = 1, respectively.

The key observation is that Levi-Civita’s conformal mapping (31), u 7→
x = u2, not only regularizes collisions at x = 0 but also analogous singular-
ities at x = ∞. This is seen by closing the complex planes to become Rie-
mann spheres (by adding the point at infinity) and using inversions x = 1/x̃,
u = 1/ũ.

Taking advantage of this fact, we first map the v-sphere to an auxiliary
u-sphere by the Möbius transformation

v 7−→ u =
v + 1

v − 1
= 1 +

2

v − 1
, (48)

which takes the primaries A, C to the points u = 0, u = ∞, respectively. The
Levi-Civita mapping (31) will leave these points invariant while regularizing
collisions at A or C. Finally, the Möbius transformation

x 7−→ y =
x + 1

x − 1
= 1 +

2

x − 1
(49)



maps A, C to y = −1 and y = 1, respectively. The composition of the
mappings (48), (31), (49) yields

y =

(
v + 1

v − 1

)2

+ 1

(
v + 1

v − 1

)2

− 1

or y =
1

2

(

v +
1

v

)

, (50)

the well known mapping used by Joukowsky (1847-1921) and by G. D.
Birkhoff (1884-1944).

In the spatial case we choose v,u,x,y ∈ U to be quaternions, x = x?, y =
y? being quaternions with vanishing k-components associated with 3-vectors
x, y. Then the mappings (48), (49), now being shifted inversions in 4 or 3
dimensions, are both conformal mappings, in fact the only nontrivial con-
formal mappings existing in those dimensions (except for rotated versions).
Composing these with the KS or Hopf mapping (13), u 7→ x = uu?, yields

Theorem 3: Let v ∈ U be the quaternion coordinate in a 4-dimensional
parametric space R4, such that the points v = ±1 correspond to the positions
of the primaries of a spatial restricted three-body problem. Then

y = 1 + (v? − 1) (v + v?)−1 (v − 1) (51)

generalizes the Joukowsky-Birkhoff mapping from R4 to R3 with quaternion
coordinates y = y? = y0 + i y1 +j y2 ∈ U, where the primaries are normalized
to be located at y = ±1. 2

Remark. The right-hand side of (51) is easily split up into components
by means of the inversion formula u−1 = ū/|u|2 of Section 2; they agree
with the results of Stiefel and Waldvogel (1965) up to the sign of v3. Both
transformations regularize; the discrepancy is due to a different definition of
the orientation in the inversions.

Proof: Composition of (49) with (13) and (48) (in the appropriate quater-
nion versions) yields

y = 1 + 2
(
uu? − 1

)
−1

with u = 1 + 2 (v − 1)−1 . (52)

Rewriting uu? − 1 as

uu? − 1 = (u − 1) (u? − 1) + u − 1 + u? − 1



and substituting u from (522) yields

uu? − 1 = 4 (v − 1)−1 (v? − 1)−1 + 2 (v − 1)−1 + 2 (v? − 1)−1 . (53)

By inserting appropriate unit factors, Equ. (521) becomes

y = 1 + 2 (v? − 1) (v? − 1)−1
(
uu? − 1

)
−1

(v − 1)−1

︸ ︷︷ ︸

D−1

(v − 1) . (54)

Introducing the “denominator” D by defining D−1 as indicated in (54) we
obtain

D = (v − 1) (uu? − 1) (v? − 1) ,

which, by using (53), simplifies to

D = 2 (v + v?) . (55)

Now the statement (51) of Theorem 3 follows directly from (54). 2

7 The Perturbed Kepler Problem

Our third application of quaternion regularization is the perturbed spatial
Kepler problem,

ẍ + µ
x

r3
= ε f(x, t) , r = |x | , (56)

written in quaternion notation. f(x, t) is the perturbing function, x ∈ U

and f ∈ U are quaternions with vanishing k-components, and ε is a small
parameter. Note that in the perturbed case an energy equation formally
identical with (21) still holds. However, h = h(t) and a = a(t) are now
slowly varying functions of time, a(t) being the osculating major semi-axis;
h(t) satisfies the differential equation

ḣ = −〈ẋ, ε f〉 or h′ = −〈x′, ε f〉 , (57)

where 〈· , ·〉 denotes the dot product of 3-vectors.
In the following, we report the results of the regularization procedure

outlined in Section 4; the details are left to the reader. Step 1 yields

r x′′ − r′ x′ + µx = r3 ε f(x, t)



instead of Equ. (231). By using (28) the energy equation (29) again becomes

µ − 2 |u′ |2 = r h .

The right-hand side of Equ. (26) becomes

u ū r2 ε f(x, t)

instead of 0. Simplification as in Section 4 as well as left-multiplication by
r−1 u−1 and star conjugation finally yields the perturbing equation for the
quaternion coordinate u:

Theorem 4: KS regularization, as formulated in terms of quaternions in
Section 4, transforms the perturbed Kepler problem (56) into the perturbed
harmonic oscillator

2u′′ + hu = r ε f(x, t) ū? , r = |u |2 , (58)

where h = r−1 (µ− 2 |u′ |2) is the negative of the (slowly varying) energy. 2

In the following summary we collect the complete set of differential equa-
tions defining the regularized system equivalent to the perturbed spatial Ke-
pler problem (56). The harmonic oscillator of Theorem 4 appears in the
first line. For stating an initial-value problem a starting value of u needs
to be chosen according to Section 3.3. The corresponding initial velocity is
obtained by solving (19) for du:

du

dτ
=

1

2 r

dx

dt
ū? . (59)

Summary. Regularized system corresponding to the perturbed spatial Ke-
pler problem (56):

2u′′ + hu = r ε f(x, t) ū? , r = |u |2, ( ) ′ =
d

dτ
t′ = r , x = uu?

h′ = −ε 〈 x′, f(x, t) 〉 or h = r−1 (µ − 2 |u′|2) .

(60)

Remark. Introducing the osculating eccentric anomaly E by the differential
relation dE =

√
2 h dτ transforms the first equation of (60) into

4u′′ + u =
ε

h

(

r f(x, t) ū? + 2 〈 x′, f(x, t) 〉u′

)

, (61)



a perturbed harmonic oscillator with constant frequency ω = 1

2
. Here ( ) ′ =

d/dE. This equation is particularly well suited for introducing orbital ele-
ments with simple pertubation equations by means of the method of varying

the constant, see, e.g., Waldvogel (2006a).
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auf die Kugelfläche”. Math. Ann. 104. Reprinted in Selecta Heinz Hopf,
p. 38 - 63, Springer-Verlag Berlin Heidelberg New York, 1964.



[9] Kustaanheimo, Paul (1964) “Spinor regularisation of the Kepler mo-
tion”. Ann. Univers. Turkuensis, Ser. A, 73, 1 - 7; Publ. Astr. Obs.
Helsinki 102.

[10] Kustaanheimo, Paul and Stiefel, Eduard L. (1965) “Perturbation theory
of Kepler motion based on spinor regularization”. J. Reine Angew. Math.

218, 204 - 219.

[11] Levi-Civita, Tullio (1920) “Sur la régularisation du problème des trois
corps”. Acta Math. 42, 99 - 144.

[12] Stiefel, Eduard L. and Scheifele, Gerhard (1971) “Linear and Regular
Celestial Mechanics”. Springer-Verlag Berlin Heidelberg New York, 301
pp.

[13] Stiefel, Eduard L. et Waldvogel, Jörg (1965) “Généralisation de la
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