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Abstract

We have developed a high precision library based on a proposed IEEE format for
quad-precision numbers. The library uses the unique vector machine instructions
found on the IBM Cell B.E. processor to efficiently manipulate quad word data.
Usage, performance, and verification of results are described.



1 Introduction

The need for higher precision is often encountered in fields ranging from as-
trophysics to experimental mathematics, where both dynamic range and high
precision are often required. In particular, condition numbers κ(A) of matrices
often grow quickly with the problem size. For example, a simple finite difference
discretization of the second order differential −y′′(t) produces a tridiagonal ma-
trix with 2 for each diagonal element and −1 for each sub- and super-diagonal
element. The condition κ(A) of this matrix for large n grows like n2/2 + n, so
for n = a few million, the number of digits lost solving a linear system Ay = b
with this matrix, roughly log10(κ(A)), quickly ruins the total accuracy of dou-
ble precision (∼ 16 digits). Unfortunately, this is relatively slow growth. More
ill-conditioned problems are common, as we will revisit in one of our test ex-
amples below. Standard hardware rarely supports floating point numbers with
more than fifty three bits precision (64-bit double). In response to the demand,
several software libraries have been created to allow for higher or arbitrary pre-
cision. Notably, the dd [6] and qd [6] libraries combine two or four double
precision numbers, respectively. The arprec [1] library allows for arbitrarily
precise numbers. Both are highly portable and rely on the underlying machine
architecture for handling the floating point computations. Some Sun machines
provide a quad precision software library and the GNU MP library [5] has func-
tions for both arbitrary precision and extended precision numbers.

The Cell processor provides a unique, high performance platform for scien-
tific computing, but there is little hardware support for floating point numbers
numbers with higher precision than single. We are impressed with the com-
putational power of the Cell processor for scientific purposes, but note that
its potential for ever larger problems compels us to consider higher precision
arithmetic.

We have developed a quad precision number library specifically targeted for
the Cell processor based on an IEEE format. The computation is performed
entirely in software, but uses the unique vector instruction set only available on
the Cell. The library is competitive with other libraries mentioned before, while
often providing more precision for a given number of bits.

The Cell Broadband Engine (CBE), as it is technically known, is an impor-
tant innovation in the current trend of multi-core CPUs. The Cell consists of
a master PowerPC Processor Element (PPE) which controls eight Synergistic
Processor Units (SPUs) [2]. The PPE is a modified version of the PowerPC
found in IBM servers. The SPUs are optimized units designed for manipulating
large amounts of data, particularly when that data is in the form of vectors.
Although the SPUs forgo out-of-order execution, branch prediction, and regis-
ter renaming for flexible dynamic instruction execution, their ability to process
vector data is very attractive for scientific purposes.

2 Technical Aspects

The high-precision floating point number library Hfnlib has implemented the
four basic operations of addition, subtraction, multiplication, and division. The
next version will have square root, exponentiation, logarithm, and trigonometric
functions. The hfn format is 128 bits wide and fits into a single 128-bit Cell
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vector register, so we are able to use many of the bit manipulation intrinsics
that exist on the processor [8].

In an attempt to use as much of the IEEE compatible double precision as
possible, hfn numbers are stored in the format depicted in Figure 1. There is one
sign bit, an eleven bit exponent (as in IEEE double), an assumed normalization
bit, and a 116-bit mantissa. If a is an hfn then as, ae, and am represent the
sign, exponent, and mantissa, respectively.

We do not implement all the features typical of an IEEE floating point
standard. In particular, there is no support for NaN, Inf, overflow, underflow,
and un-normalized numbers. The rounding mode is “round to zero”, so the last
bits may not be accurate. This is similar to the behavior found on many graphics
cards today and consistent with the Cell single precision 32-bit arithmetic. The
trade-off in a slight loss of accuracy boosts the overall performance.

Figure 1: The format of an hfn is compatible with the IEEE format for double
precision floating point numbers. Because it is 128 bits wide, the number fits
completely into a 128-bit vector register on the Cell processor.

The core library is implemented in C but we make heavy use of the intrinsics
[8] that are provided for the Cell processor. In this way, we are able to make
use of the 128-bit opcodes as well as the unique shuffle opcodes.

We also provide a C++ class wrappers that overloads the standard arith-
metic operators. Software that is already written using either standard floating
pointing numbers or another high precision library should be able to switch
to the hfn library with minimal code changes. There is no FORTRAN inter-
face available at this time but we plan to insert our library into the framework
provided by the dd library, which provides FORTRAN wrapper functions.

The software was developed on the Cell processors found in the Sony Playsta-
tion 3 game console. This was a cheap alternative to the Cell blade servers. For
software development this proved to be an adequate platform, but there are
serious limitations for more serious work. Namely, the system has limited mem-
ory and only a gigabit ethernet network connection. Also, the processor itself
has only seven of the eight SPUs available. None of these limitations affected
the current software development, but for future work that will parallelize the
library either over all of the SPUs or across machines via MPI, a new more
advanced machine will be necessary.

2.1 Addition and Subtraction

The addition or subtraction of two hfn’s a and b is fairly straightforward. We
assume that |a| > |b|. If this is not the case then the values are swapped.

To add two numbers the exponents must match. The bits of bm are shifted to
the right by ae − be and the hidden one inserted explicitly into bm. Bits shifted
off the right side are lost. Using SIMD instructions the mantissas are added
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A:

sign exponent mantissa
��� AAK

� �� �a1 a2 a3 a4

Figure 2: Partitioning of the hfn word for computation of multiplication.

or subtracted. If there is a carry or borrow, the exponent is incremented or
decremented by one. When we subtract two numbers (as 6= bs), then there may
be leading zeros in the mantissa. In this case, the mantissa is shifted to the left
until the first one becomes the hidden normalization bit. This renormalization
also requires the exponent to be adjusted.

2.2 Multiplication

Multiplication is much more involved, but the basic idea of the multiplication
is to split the mantissa, multiply the parts and add the products. These mul-
tiplications and additions involve smaller numbers and can be done directly in
hardware if the parts are small enough.

The sign and the exponent of the result are not difficult to compute: the sign
is the last bit of the sum of both signs and the exponent is also the sum of both
exponents, or this number +1 (we will see later which condition determines this
number).

The mantissa is divided into 4 parts. Each part is stored in a 32-bit variable.
The first part (a1, b1 or c1) contains the 31 most significant bits (including the
implicit normalization bit) and is therefore smaller than 231. The other parts
contain 30 bits, thus smaller than 230. The least significant part will contain
four 0’s at the end (in binary notation), because the mantissa in an hfn number
just contains 117 bits (116 bits + one hidden normalization bit = 117 bits).
The four parts of the mantissa contain 121 bits: the four extra bits at the end
are just used for the calculation and are not stored in the hfn format. Figure 2
shows the representation.

The parts of the mantissa a1, a2, . . . b4 are extracted from the number with
shift and logical AND operations: the shift operation aligns the bits and the
AND operation clears all the bits that are not needed. The first part (a1) also
needs an other operation: a logical OR to set a bit, the hidden 1 normalization.

Then the products are computed. The first part of the number A (a1) is
multiplied with all parts of B: a1 ∗ b1, a1 ∗ b2, a1 ∗ b3 and a1 ∗ b4. The second
part of A is just multiplied with b1, b2 and b3, the third part of A with b1 and
b2 and the fourth part of A with b1.

The next step is to combine the products in order to get the bits that will
form the mantissa of the result.

If the mantissa is represented as an integer, the product of both mantissas
is given by the following expression:

8∑
i=2

4∑
j=1

aj ∗ bi−j ∗ 230(8−i)

3



� �� �� �� �

�� ��

HH
HHY

@
@

@@I

J
J
J
J
JJ]

34 bits 30 bits

62 bits

a1 ∗ b1 a1 ∗ b2 a1 ∗ b3 a1 ∗ b4

a2 ∗ b1 a2 ∗ b2 a2 ∗ b3

a3 ∗ b1 a3 ∗ b2

a4 ∗ b1

r1 r2 r3cy1 cy2 cy3

+

+

+

Figure 3: Carry operations in multiplication.

where b5, b6 and b7 are 0. The sum of the indices of both factors of a product
determine the weight of the product in the result.

The result that will be computed is just an approximation of the exact result.
The low order terms will not be computed. that means that the number that will
be computed just contains the high-order bits of the product of both mantissas.
The last bits of this number may be wrong because the carry of the low-order
part is not computed.

The products with a given weight are added and the resulting sum is split
into two parts: the low-order bits are a part of the result and the high-order
bits will be added to the next sum as shown in Figure 3.

Whenever new terms are added, the 34 most significant bits of the sum
are added to the next sum. These bits are represented by cyi in the picture
(i = 1, . . . 3). They play the role of a carry. The other bits are a part of
the final mantissa. The bits of the result are represented by the number r :=
r1 ∗ 260 + r2 ∗ 230 + r3.

The numbers a1 and b1 are at least O(230), which means that the number r
is at least 260 ∗260 = 2120. And the number r contains at most 122 bits, because
a1, b1 < 231 ⇒ a1 ∗ b1 < 262.

The most significant 117 bits, beginning with the most significant 1, will
determine the mantissa of the result. Because r ≥ 2120, the most significant 1
is the bit number 121 or 122 (if the bits are numbered from 1 to 122, from the
least significant one to the most significant one). The value of the bit 122 will
be called d. It will be necessary for computing the mantissa and the exponent
of the result.

If d is 1, the bits will be shifted one position to the right, so that the two
most significant bits (122 and 121) are 0 and 1. The 1 in the bit 121 is the
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Figure 4: Final assembly of the hfn floating point number.

hidden 1. It will not be stored, but the next bits will: the 116 bits that will be
written in the mantissa are the bits number 5 to 120. The 4 bits that will not
be stored should ”absorb” the error that is caused by the lower-order bits that
are not computed.

The value of the exponent depends on d. If it is 1, then the exponent of the
result is eA + eB + 1, otherwise, if d = 0, the exponent is eA + eB (where eA is
the exponent of A and eB the exponent of B, without the bias).

It is easier to compute the sign of the result: it is just sA ⊕ sB (where sA is
the sign of A, sB the sign of B). The symbol ⊕ represents the XOR operation.

The exponent and sign are computed as shown in Figure 5.

2.3 Accuracy of Multiplication

Both mantissas are multiplied by multiplying the parts of A and B and adding
the results. Since each part contains a number smaller than 231, the product of
two such numbers is smaller than 262 and can therefore be stored using at most
62 bits. It is possible to add 4 such products and store the result in 64 bits:
4 · 262 = 264.

The number coded in the 121 bits of the extended mantissa used for the
calculation (for the number A) is a1290 + a2260 + a3230 + a4. The product with
the corresponding number for B is:

(a1290 + a2260 + a3230 + a4)(b1290 + b2260 + b3230 + b4)
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Figure 5: Exponent and sign construction.

=
4∑

i,j=1

aibj230(8−i−j)

This is the exact product. For performance reasons, not all the terms will be
computed: only the 117 most significant bits will be stored in the hfn num-
ber. Therefore it is possible not to compute the least significant terms without
making an error.

The sum can be split into two sums:

4∑
i,j=1

aibj230(8−i−j) =
4∑

i,j=1

i+j≤5

aibj230(8−i−j) +
4∑

i,j=1

i+j>5

aibj230(8−i−j) (1)

The sum on the left hand side (that will be called S) is bounded by 2240 ≤
S < 2242. This sum needs 241 or 242 bits to be stored. The mantissa of an hfn
number contains 117 bits. These bits are the most significant bits, i.e. the bits
126 to 242 or 125 to 241 of S (the bits will be numbered from 1 for the least
significant bit to 242 for the most significant bit).

It is possible to find an upper bound for the second sum on the right hand
side of equation (1). 1 ≤ i, j ≤ 4 implies that i+ j > 5⇒ i, j ≥ 2⇒ aibj < 260.
The following equation shows an upper bound:

4∑
i,j=1

i+j>5

aibj230(8−i−j) < 4 · 2120 (2)

The maximal error if the second sum on the right hand side is neglected is:
emax < 4 · 2120 = 2122. This means that the maximal error is smaller than half
the weight of the least significant stored bit. If the result would be “rounded
to nearest” the maximal error would be less than the weight of the last bit, but
that does not mean that the result would always be exact.

In the current implementations, the result is “rounded to zero” the value
in the extension of the mantissa is ignored. Therefore, the maximum difference
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between the stored number and the exact result is the sum of the error calculated
above and the maximal value that can be stored in the extra bits. That means
that the maximal error after a multiplication is less than twice the weight of the
least significant bit stored in the hfn format.

2.4 Division

Because z/y = z · (1/y), division is straightforward using a Newton method and
reciprocal approximation to get 1/y. Writing

f(x) = x−1 − y,

the solution to f(x) = 0 will be x = y−1, the desired reciprocal. Using the Cell
IEEE double precision to compute x0 ≈ y−1, two Newton steps in hfn of

xk+1 = 2 · xk − xk · y · xk

easily suffices to yield x = x2 accurate to 116 bit precision. This iteration only
requires hfn addition and multiplication. It should be noted that the initial
approximation only needs the first half of the hfn number y since the exponent
format is that of double.

3 Verification and Performance

We also developed performance and verification suites. This enables us to com-
pare new technical improvements to the code with previous versions and com-
peting libraries while ensuring that the code is correct.

The performance tests show that the Hfnlib compares favorably with the
dd library. dd uses two double precision numbers to represent a single number.
Unfortunately, the bits used for the exponent in the second double are unused so
dd does not quite achieve quad precision like the Hfnlib. Nevertheless, dd still
provides a good baseline for our comparisons, since it is often used in production
code. All our results are normalized to the performance of hardware double.
This shows immediately the performance hit a code will take using Hfnlib or
any other software library. We compare the addition and multiplication with
dd. The results are shown in Figure 6.

Our test suite covers the following three areas:

1. Testing specific corner cases where specially crafted input values trigger
code flow changes or special case handling.

2. Testing operations using random numbers as input and comparing the re-
sult to a reference-implementation. Obviously, this leads to a dependence
on the correctness of a third party’s work but provides a simple sanity
check. We tested against the dd library.

3. Testing operations with specially crafted input where the results are known
or simple to verify. Examples include a − a = 0, b/b = 1, b(a1 + a2) =
ba1 + ba2 for all a and b, This method was used for correctness testing in
[1, 6].
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Figure 6: Timing performance of the Hfnlib and dd [6] relative to double pre-
cision. Tests were conducted on the PS-3. To scale to Mflops, use the reciprocal
of these factors to rescale the double Mflops rates: 24.5 (sum), 27.2 (multiply),
and 1.16 (divide). Library dd has approximately 106 bits of precision, Hfnlib
has 116 bits.

4. Consistent with our objective of evaluating the Cell processor for scientific
purposes, a simple iterative refinement test was implemented [7]. The
idea is to solve a poorly conditioned linear system in double precision,
followed by a couple of iterative refinement steps combining double and
hfn precision. Although Moler’s analysis shows linear convergence only
when matrix A is not horribly conditioned, the method nevertheless shows
improvement even for the Hilbert matrix. This is not a contrived example.
If the first n moments of a distribution function, say p(x), 0 ≤ x ≤ 1, are
known, call them m0,m1, . . . ,mn−1, where mk =

∫
p(x)xkdx, trying to

determine the coefficients {ck} to approximate p(x) =
∑

k<n ckx
k gives

the Hilbert matrix (Aj,k = 1/(j + k + 1), for 0 ≤ j, k < n). One first
solves Ac = m in double precision, then successively computes refinements
c→ c+ δc, where Aδc = δm is solved in double precision. The right hand
side δm = m−Ac is computed using hfn from the previous iteration c. This
test is also available in our test suite: it is nearly the Linpack benchmark,
in C, modified to use rank-1 updates instead of DAXPY operations [3, 4],
plus iterative refinement.

The 128-bit random numbers used in the test suite were generated by a
relatively crude algorithm that generates three 64-bit random numbers, nor-
malizes them to a certain range of order of magnitude each and then adding
them within the high-precision libraries. It is worth investigating whether this
algorithm generates suitable random numbers.
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4 Summary and Future Work

We have implemented a 128-bit IEEE format floating point library for the IBM
Cell processor. Using the unique features of the Cell, we have implemented
fast and efficient functions for the basic arithmetic operations. With these
functions alone, all other higher level functions can be constructed. It will be
necessary, however, to provide more optimized versions to be of more practical
utility. Although the 128-bit vector registers were used, more optimization is
needed. In particular, because the SPUs have 128 such vector registers, multiple
operand pairs can be computed concurrently without register spill. We also plan
to implement exponentiation and logarithm, square root, and trigonometric
functions. Although many optimizations of Hfnlib remain to be implemented,
it does provide 116 bits of precision.

On ftp://ftp.math.ethz.ch/users/wpp/hfnlib the latest version of Hfnlib
will be updated as optimizations and features are added.
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