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R. Hiptmair, F. Krämer† and J. Ostrowski‡

Seminar für Angewandte Mathematik
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Abstract

A novel unified method for the stable numerical solution of the time-harmonic
Maxwells equations for any frequency is presented. The method is based on an
extended a−ϕ variational formulation of the full linear Maxwells equations. This
formulation avoids stability problems in the stationary limit, where it reduces to
the equations of electrostatics and magnetostatics. Both capacitive and inductive
effects are taken into account in a robust fashion for all frequencies.
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I. INTRODUCTION

We aim to devise a variational formulation of the full linear
Maxwell’s equations in frequency domain that remains stable
when passing to the stationary limit. We consider the case,
where field computation is confined to an artificially bounded
domain Ω ⊂ R3 of simple topolgy. The boundary ∂Ω is
partitioned into three non-overlapping parts Γ0, Γ1, and Γi,
where Γ0 and Γ1 must have positive distance, see Fig. 1
for a typical geometric situation. Inside Ω there is an ohmic
conductor occupying the region Ωc.

PSfrag replacements

Ω

Ωc

Γ0 Γ1

js

Fig. 1. RLC-arrangement: wire diameter 2.45 cm, diameter of capacitor
plates 10 cm, distance of plates 1cm, distance of Γ0 and Γ1 is 40 cm. The
resistance of the conductors represents a small R.

Voltage boundary conditions are imposed at Γ0 and Γ1,
whereas ideal coils and space charges may be prescribed
inside Ω. The former are modelled by a solenoidal current
js0, whereas the latter enter the model through a fictitious
current js1 with − div js1 = ρs. For simplicity zero total
charge is assumed, and both js0 and js1 have vanishing normal
components on ∂Ω. Summing up, in this setting both inductive
and capacitive effects matter.

The Coulomb gauged a-ϕ-formulation of Maxwell’s equa-
tions supplemented with Ohm’s law j = σe + js0 inside Ωc

reads:

curlµ−1 curl a− (ω2ε− iωσ)a+

(iωε+ σ)gradϕ = js , (1)

div(εiωa) = 0 , (2)

where js = js0 + iωjs1, and µ, ε, σ stand for the uniformly
positive material coefficients. Note that σ ≡ 0 outside ΩC . The
PDEs (1)-(2) have to be supplied with the boundary conditions

a× n = 0 , ϕ = lU on Γl, l = 0, 1, U ∈ C , (3)

curlµ−1 curl a · n = 0

curlΓat = 0 , εa · n = 0

}

on Γi . (4)

We wrote n for the exterior unit normal at ∂Ω and at for the
tangential surface trace of the vector field a. We also need
to require that the vector potential does not contribute to the
current,

∫

τ
a · ~ds = 0 for any path τ connecting Γ0 and Γ1.

The variational form of (1)-(4) relies on the Sobolev spaces

V := {v ∈H(curl,Ω): curlΓvt = 0 on ∂Ω,

∫

τ

v · ~ds = 0},

H(U) := {ψ ∈ H1(Ω): ψ|Γ0
= 0, ψ|Γ1

= U} .

Integration by parts yields the weak form of (1)-(4): seek a ∈
V , ϕ ∈ H(U) such that

(µ−1 curl a, curl a′)− ω2(εa, a′) + iω(σa, a′)

+((iωε+ σ)gradϕ, a′) = (js, a′) ,

(εa,gradϕ′) = 0 ,

(5)

for all a′ ∈ V , ϕ′ ∈ H(0) ((·, ·) =̂ L2 inner product). The
mathematical theory of generalized saddle point problems [1]
establishes that (5) has a unique solution for all ω > 0.

II. LOW-FREQUENCY INSTABILITY

It is well known that Gauss’ law div(εe) = ρ is contained
in (5) for any ω > 0, but becomes an independent equation in
Ωe := Ω \ Ωc in the stationary limit ω = 0. This decoupling
manifests itself as a loss of control of the scalar potential ϕ
in Ωe in (5) as ω → 0. In mathematical terms, the norm
of the solution operator for (5) will blow up as ω → 0;
(5) lacks uniform stability as ω → 0, since the recovery of
ϕ becomes ill-posed. Eventually, even round-off errors will
severely pollute any approximate solution for ϕ.

This is confirmed by numerical experiments, whose out-
come is depicted in Fig. 2. We used curved tetrahedral meshes

Fig. 2. 3D numerical experiments: solution of equation (5) on a simple test
geometry for several frequencies on a tetrahedral mesh with 26000 nodes and
180000 edges resulting in 206000 complex unknowns.

throughout. Discretization employed (parametric) linear finite
elements for the electric scalar potential and first order curved
edge elements for the vector potential. A voltage difference
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with complex amplitude 1 is imposed. The discretized problem
is solved with the direct sparse solver Pardiso [2], integrated
in the Intel Math Kernel Library 9.0. At 10 KHz this works
well, a meaningful scalar potential ϕ is obtained, and the skin
effect is conspicuous. Below 1 kHz we lose control of ϕ in the
non-conducting region Ωe. This becomes especially visible in
the imaginary part of the potential. As a result, the electric
field is disturbed. Note that the potential, thus also the electric
field, can accurately be recovered in the conducting domain
even for small frequencies.

III. GENERATING SYSTEM APPROACH

As an extremely simple model we study the variational
problem

~x ∈ R
2 : ~x · ~y = f(~y) ∀~y ∈ R

2 , (6)

where f is a linear functional on R2. The matrix represen-
tation of (6) with respect to the poorly conditioned basis
B := {b1 :=

(

1

0

)

, b2 :=
(

1

δ

)

}, 0 < δ � 1, of R2 is

A =

(

1 1

1 1 + δ2

)

. (7)

We may augment B by the linearly dependent vector b3 :=
(

1

−1

)

= (1 + 1

δ )b1 −
1

δ b2, thus obtaining a generating system
B̃ := B ∪ {b3}. Here, b3 was chosen such that B̃ contains
a δ-uniformly stable basis. When used to “discretize” (6), we
obtain the singular matrix

C :=







1 1 1

1 1 + δ2 1− δ

1 1− δ 2






=

(

A AG

GT A GT AG

)

, (8)

with G =
(

+1/δ
−1/δ

)

. The key observation is that most iterative
solvers can well cope with singular matrices provided that the
right hand sides of the linear systems are consistent [3]: crucial
is the distribution of non-zero eigenvalues. Fig. 3 demonstrates
this in the case of a simple Gauss-Seidel iteration: for small δ
it converges much faster for the singular system than for the
ill-conditioned. Of course, this striking difference is due to a
judicious choice of b3! It is worth noting that the very same
augmentation idea accounts for the power of multigrid meth-
ods [4], [5] and has been used to enhance ILU-preconditioners
in [6].

IV. STABILZED VARIATIONAL FORMULATION

The generating systems approach can also be applied to
variational problems set in function spaces, where it boils
down to using non-direct decompositions of trial and test
spaces. For (5) we may use the non-direct splitting

H(U) = H(U)′ +H1
e (Ω) , (9)

H1
e (Ω) :=











v ∈ H1(Ω) : v ≡ const

on all connected components of Ωc,

v|Γ0
= 0, v|Γ1

= 0 .











.

(10)
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Fig. 3. Gauss-Seidel convergence rates (ratios of norms of subsequent
residuals) for linear systems A~x = ~f and C~x = ~f , the latter with consistent
right hand side. Convergence rates determined by means of power iterations.

According to (9), in (5) we replace ϕ with the sum ϕ = ϕ̃+ψ,
ϕ̃ ∈ H(U), ψ ∈ H1

e (Ω). The introduction of an extra unknown
has to be balanced by an extra equation, which we obtain by
testing the first equation of (5) with ψ′ ∈ H1

e (Ω):

− ω2(εa,gradψ′) + (iωεgrad(ϕ̃+ ψ),gradψ′)

= iω(js1,gradψ′) , (11)

Note that gradψ′ ≡ 0 inside ΩC . Equation (11) is redundant
for any ω > 0, but after dividing by iω it represents Gauss’ law
in the non-conducting domain. This is exactly the information
that is missing (5) in the stationary limit.

Thanks to the gauge condition, the first term of (11)
evaluates to zero. Thus, we arrive at the following variational
problem: seek a ∈ V , ϕ̃ ∈ H(U), ψ ∈ H1

e (Ω) such that for
all a ∈ V , ϕ̃′ ∈ H(0), ψ′ ∈ H1

e (Ω)

(µ−1 curl a, curl a′)− ω2(εa, a′) + iω(σa, a′)+

((iωε+ σ)grad ϕ̃, a′) + iω(εgradψ, a′)= (js, a′) ,

(εa,grad ϕ̃′) = 0 ,

(εgrad ϕ̃,gradψ′) + (εgradψ,gradψ′) =(div js1, ψ
′) .

(12)

If (a, ϕ) solves (5), then the same functions together with ψ =
0 will supply a solution of (12). Fittingly, in (12) the second
equation arises from combining the first and the third. Both
observations remain valid also after discretization by means
of conforming finite elements, that is, in the case of edge
element approximation for a and continuous piecewise linear
element used for ϕ̃ and ψ. Consequently, the linear systems of
equations arising from (12) will be square but singular, which
is natural for the generating systems approach.

V. STATIONARY LIMIT

Setting ω = 0 (stationary limit) in (12) perfectly decouples
the system into the familiar and stable variational problems of
stationary electromagnetism:
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First, we recover the stationary currents boundary value
problem inside the conductor and the electrostatic potential
equation in Ωe through testing the first equation with gradients,
and using the second: find ϕ ∈ H(U) with

(σ gradϕ,gradϕ′)
Ωc

= 0 ∀ϕ′ ∈ H(0) . (13)

(εgradϕ,gradψ′) = (div js1, ψ
′) ∀ψ′ ∈ H1

e (Ω) . (14)

Charge balance is hidden in the second variational equation,
because integration by parts reveals

∫

∂Ωc

εgradϕ · n dS =
∫

∂Ωc

js1 · n dS. The source term js1 enables us to fix the total
charge of connected components of the conductor, which is
another freedom in the stationary limit.

Second, the equations of magnetostatics emerge from the
first and second equation of (12): with ϕ from (13), (14), seek
a ∈ V such that

(µ−1 curl a, curl a′) = (js, a′)− (σ gradϕ, a′) ,

(εa,gradϕ′) = 0 ,
(15)

for all a′ ∈ V , ϕ′ ∈ H(0).
The bottom line is that the limit equations are perfectly well-

posed, which bodes well for the behavior of iterative solvers
when applied to a discretized version of (12): we can expect
robustness with respect to small values of ω.

VI. NUMERICAL EXPERIMENTS

The above numerical experiments, see Fig. 2, were repeated
with the stabilized formulation (12). The same finite elements
on the same mesh were used. The direct solver Pardiso [2]
failed on the singular system resulting from (12). Conversely,
an iterative preconditioned BiCGstab solver succeeded. A
preliminary preconditioner was obtained by applying the di-
rect solver to the discretized version of (12) after setting
ω ← max{ω, 1 Hz}, σ(x)← max{σ(x), 1 Ωm−1}. The finite
element spaces remain unchanged. This removes the linear
dependence of the equations. Nevertheless, this procedure pro-
vides a good approximation of (12), because of the continuity
with respect to frequency and conductivity. We emphasize that
this approach was chosen for testing purposes. For example,
the direct solver can be replaced by an approximative LU
decomposition based on H-matrices, see [7], in future, more
efficient implementations. Fig. 4 shows the results we obtained
with the iterative solver. Using zero initial guess, independent
of the frequency it took 3–5 BiCGstab iterations to reach a
relative residual of 1.0 · 10−14 (machine precision).

Fig. 4 highlights the improved stability of the new formula-
tion: The electric potential, the electric field and the magnetic
field are robustly computed for all frequencies, including the
stationary case at 0 Hz. For this simple example a magneto-
quasistatic approximation would also suffice (note the skin
effect at 10 kHz). Obviously the stationary limit boils down
to DC-conduction.

Conversely, the arrangement of Fig. 1 represents a situation
that cannot be handled by any classical electro/magneto-
quasistatic model. The stationary limit at 0 Hz is electrostatics,
but coupled inductive and capacitive effects are present at
all frequencies >0 Hz. The stability of the new formulation
(12) together with an iterative preconditioned BiCGstab solver

Fig. 4. 3D numerical experiments on the geometry of Fig. 2. Solution of
equation (12) on a simple test geometry for several frequencies.

as above was tested for this geometry. Copper with material
parameters σ = 5.7 · 107(Ωm)−1, µr = εr = 1 was used for
the conductors. A complex voltage drop of 1V was imposed.
Fig. 5 shows the results of the numerical experiments. The

Fig. 5. Solutions of the equation (5) in the first row, and equation (12) in
the other rows for a voltage of 1V. The mesh consists of 35000 Nodes and
240000 Edges, leading to 275000 complex unknowns.

same problems as described in Sec. II were found for the
direct solution of equation (5) at 1 kHz: the electric field is
disturbed in the nonconducting domain, especially in between
the capacitor plates (right column). Yet, the iterative solver
applied to the singular linear system of equations arising from
(12) produced excellent results. Many essential electromag-
netic effects are visible in Fig. 5: at 1kHz the current flows in a
skin layer at the surface of the conductor. The magnetic field is
repelled out of the conductors as well. The strongest magnetic
field prevails inside the windings of the coil. A homogeneous
electric field emerges between the capacitor plates (value = 100
V/m as expected) and it is very small inside the conductors.
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The magnetic field and the current vanishes with decreasing
frequency. A perfect electrostatic field is obtained at 0 Hz.
For all different frequencies the preconditioned iterative solver
converged within 3–5 steps to a relative residual of 1.0·10−14.

We also investigated how well the computations yield the
total current and the phase shift between voltage and current.
Fig. 6 shows the results. The total current rises linearly for
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Fig. 6. results for total peak currents and phase shifts for the RLC-
arrangement of Fig. 5. The conductivity was reduced to 1.0e−6(Ωm)−1

in order to avoid very small skin depths.

increasing frequency because the capacitor has to be loaded
more often. Current and voltage are shifted about −π/2 for
the complete 0-5 kHz frequency range, because the inductive
impedance iωL of the circuit is very small compared to the
capacitive impedance (iωC)−1.

Another example for coupled inductive and capacitive ef-
fects is shown in Fig. 7. The flat windings of the coil have a
small distance and a strong electric field forms between them.
The new formulation enables simulations for the entire range
50 Hz - 1 MHz of interesting frequencies.

Fig. 7. Industrially relevant example arising in the context of electro-
mechanical simulation of transformer windings: copper coil at 50Hz, applied
test-voltage U=1V. Note the electric field between the windings

VII. CONCLUSIONS

We have devised a generating system approach (12) to an
a − ϕ formulation of Maxwell’s equations in frequency do-
main. The new formulation, when discretized with conforming
finite elements

• yields well posed and physically meaningful boundary
value problems in the stationary limit ω → 0,

• allows the accurate simulation of combined capacitive
and inductive effects in low frequency applications,

• is amenable to stable and fast iterative solution.
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